1
|
Wild R, Nagel C, Geist J. Multiple climate change stressors reduce the emergence success of gravel-spawning fish species and alter temporal emergence patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175054. [PMID: 39097014 DOI: 10.1016/j.scitotenv.2024.175054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Climate change, with its profound effects on stream sediment, hydrological, and temperature dynamics, will exacerbate impacts on habitat conditions for many species, particularly those with vulnerable early life stages relying on the hyporheic zone, such as gravel-spawning fishes. Due to the complex and interactive nature of multiple stressor effects, we employed large-scale outdoor mesocosms to systemically test how the reproductive success of three gravel-spawning fish species brown trout (Salmo trutta), nase, (Chrondrostoma nasus) and Danube salmon (Hucho hucho) was affected by individual and combined effects of warming (+3-4 °C), fine sediment (increase in <0.85 mm by 22 %) and low-flow (eightfold discharge-reduction). Fine sediment had the most detrimental effect on emergence rate and fry length in all three species, reducing the emergence rate to zero in brown trout, 9 % in nase, and 4 % in Danube salmon. The emergence mortality caused by fine sediment surpassed that of hatching distinctly, suggesting that negative effects due to hypoxia were considerably exacerbated by entombment. Warming had only minor effects as a single stressor, but low flow reduced emergence rates of the spring spawning species nase and Danube salmon by 8 and 50 %, respectively. In combined treatments including fine sediment, however, the emergence success of all three species responded strongly negatively, even in the cyprinid species nase, which showed little interactive effects between stressors regarding hatching success. Warming and fine sediment also led to the earlier emergence of fry, implying a risk of asynchrony with available food resources. This study dramatically shows that climate change can have deleterious impacts on the reproductive success of gravel-spawning fish species, irrespective of taxonomic or ecological traits.
Collapse
Affiliation(s)
- Romy Wild
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, D-85350 Freising, Germany
| | - Christoffer Nagel
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, D-85350 Freising, Germany
| | - Juergen Geist
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, D-85350 Freising, Germany.
| |
Collapse
|
2
|
Cotter D, Ling EN, Egan F, Dillane M, Maoiléidigh NÓ, Moore A. Temporal and spatial use of a freshwater lake by upstream and downstream migrating adult Atlantic salmon Salmo salar. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39439419 DOI: 10.1111/jfb.15953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
Atlantic salmon Salmo salar typically enter fresh water several months prior to spawning and just as pools can provide areas of refuge in river systems, lakes may also provide important refuge habitat during the spawning migration. Using acoustic telemetry we examined the spatial and temporal movements of wild and a ranched strain of Atlantic salmon in a freshwater lake where the main spawning areas were located upstream of the lake. Over the study period (2011-2014), returning adult wild salmon spent an average of 228 days in fresh water and 90% of that time in the lake. On entering the lake, most wild salmon moved quickly to the northern part of the lake, close to the main inflow, spending an average 76% of the time in this location. The average number of days wild fish were absent from the lake during the main spawning period varied between years, ranging from 10 to 26 days for females and 32 to 35 days for males. Seventy four per cent (17/23) of salmon spawners returned to the lake and two salmon subsequently died in the lake post-spawning. Atypically, two salmon were resident in the lake for the whole period in 2013/14. During the study, wild salmon were detected at depths within the top 5 m for 73% of the time. Median depths post-spawning were greater than in the pre-spawning period, when salmon were found to spend extensive periods at depths in excess of 10 m. In July 2013, when the lake was stratified, thermal regulation behaviour was observed in wild salmon, whereby salmon moved to cooler deeper water when water temperatures at 1 m exceeded 20°C. In contrast to wild salmon, the majority of ranch salmon returned to the traps downstream of the lake prior to the spawning period, which would be expected as they were released as smolts below the freshwater lake. Ranch fish spent an average 80% of the time in the vicinity of receivers in the south of the lake and an average 98% of the time within the top 5 m. However, two ranch females were resident in the lake until the following spring and one ranch female moved upstream into the river during the spawning period. Clearly, in this catchment the lake provides an important habitat for migrating adult salmon. In the context of climate change, where thermal and hydrological regimes in rivers are expected to change in response to changes in air temperature and precipitation patterns, the availability of deep lakes that stratify in the summer and cool water refuges in river systems is likely to play a key role in the sustenance and conservation of salmonid species. Information about the migration patterns of Atlantic salmon in undisturbed freshwater systems may also assist in resolving issues associated with fish passage in impacted rivers and inform management decisions.
Collapse
Affiliation(s)
| | | | | | | | | | - Andy Moore
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UK
| |
Collapse
|
3
|
Vindas MA, Engdal VA, Kavaliauskiene S, Folkedal O, Höglund E, Moyano M, Øverli Ø, Frisk M, Johansen IB. Importance of environmental signals for cardiac morphological development in Atlantic salmon. J Exp Biol 2024; 227:jeb247557. [PMID: 39387107 PMCID: PMC11529873 DOI: 10.1242/jeb.247557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024]
Abstract
The hearts of salmonids display remarkable plasticity, adapting to various environmental factors that influence cardiac function and demand. For instance, in response to cold temperature, the salmonid heart undergoes growth and remodeling to counterbalance the reduced contractile function associated with dropping temperatures. Alongside heart size, the distinct pyramidal shape of the wild salmonid heart is essential for optimal cardiac performance, yet the environmental drivers behind this optimal cardiac morphology remain to be fully understood. Intriguingly, farmed salmonids often have rounded, asymmetrical ventricles and misaligned bulbi from an early age. These deformities are noteworthy given that farmed salmon are often not exposed to natural cues, such as a gradual temperature increase and changing day lengths, during critical developmental stages. In this study, we investigated whether natural environmental conditions during early life stages are pivotal for proper cardiac morphology. Atlantic salmon were raised under simulated natural conditions (low temperature with a natural photoperiod; SimNat) and compared with those reared under simulated farming conditions (SimFarm). Our findings reveal that the ventricle shape and bulbus alignment in SimNat fish closely resemble those of wild salmon, while functional analyses indicate significant differences between SimNat and SimFarm hearts, suggesting diastolic dysfunction and higher cardiac workload in SimFarm hearts. These findings highlight the profound influence of environmental factors such as water temperature and photoperiod on the structural development of the salmonid heart, underscoring the importance of early environmental conditions for cardiac health.
Collapse
Affiliation(s)
- Marco A. Vindas
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Vilde Arntzen Engdal
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Simona Kavaliauskiene
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital Ullevål, 0450 Oslo, Norway
- K.G. Jebsen Center for Cardiac Research, University of Oslo, 0450 Oslo, Norway
| | - Ole Folkedal
- Research Group of Animal Welfare, Institute of Marine Research, 5984 Matredal, Norway
| | - Erik Höglund
- Niva, Norwegian Institute for Water Research, 0579 Oslo, Norway
- Center of Coastal Research, University of Agder, 4604 Kristiansand, Norway
| | - Marta Moyano
- Niva, Norwegian Institute for Water Research, 0579 Oslo, Norway
- Center of Coastal Research, University of Agder, 4604 Kristiansand, Norway
| | - Øyvind Øverli
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital Ullevål, 0450 Oslo, Norway
- K.G. Jebsen Center for Cardiac Research, University of Oslo, 0450 Oslo, Norway
| | - Ida B. Johansen
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
4
|
Ranasinghe N, Huang YR, Wu WH, Lee SS, Ho CW, Lee TH, Hsiao KY. Environmental salinity differentiates responses to acute hypothermal stress in milkfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176643. [PMID: 39368505 DOI: 10.1016/j.scitotenv.2024.176643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Global warming has led to an increase in the frequency of cold extremes, causing significant economic losses in aquaculture, particularly in subtropical regions. Milkfish (Chanos chanos) holds significant importance in aquaculture within subtropical Asian regions. Despite milkfish's ability to tolerate varying salinity levels, frequent cold snaps associated with extreme weather events have caused substantial mortality. Understanding the molecular and cellular mechanisms underlying cold stress-induced cell death is crucial for developing effective strategies to mitigate such losses. Given the pivotal role of the liver in fish physiology, we established a primary milkfish hepatocyte culture demonstrating robust proliferation and expressing a unique marker leptin A. The molecular characterization of cold-treated hepatocytes at 18 °C showed that the mRNA levels of superoxide dismutase (sod1) and catalase (cat), responsible for neutralizing reactive oxygen species (ROS), were downregulated in freshwater (FW) conditions, while cat expression was upregulated in seawater (SW) conditions. This differential modulation of ROS signaling implies distinct responses in FW and SW, leading to higher ROS levels and increased cell death in FW condition compared to those in SW. Transcriptomic analysis of liver tissues from milkfish reared in FW or SW, with or without cold stress, revealed distinct gene expression patterns. Although cold stress affected a common set of genes in both FW and SW conditions, SW-specific cold responsive genes are associated with metabolic pathways while FW-specific genes were linked to cell proliferation pathways. Notably, gene set enrichment analysis highlighted the downregulation of cytochrome-related genes, a major source of ROS production, in response to cold stress in SW. In summary, our study unveils an insightful mechanism whereby the salinity of SW counteracts cold stress-induced ROS signaling, emphasizing the feasibility and practicality of preconditioning fish in SW as a preventive measure against cold stress-induced mortality.
Collapse
Affiliation(s)
- Naveen Ranasinghe
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Yi-Ren Huang
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Wan-Hua Wu
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Shi-Shien Lee
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 700, Taiwan
| | - Chuan-Wen Ho
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.
| | - Kuei-Yang Hsiao
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
5
|
Taheri-Khas Z, Gharzi A, Vaissi S, Heshmatzad P, Kalhori Z. Hormone-Driven Temperature Optimization for Elevated Reproduction in Goldfish ( Carassius auratus) under Laboratory Conditions. Animals (Basel) 2024; 14:2701. [PMID: 39335291 PMCID: PMC11444195 DOI: 10.3390/ani14182701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigates the efficacy of hormone-induced artificial reproduction in goldfish (Carassius auratus) under controlled temperatures. Ovaprim injections significantly enhanced ovulation and sperm production compared to controls. Medium temperature (22 °C) produced the highest ovulation rates, fastest ovulation timing, and optimal sperm quality (motility and morphology) compared to high (28 °C) and low (16 °C) temperature groups. The low-temperature group exhibited reduced sperm motility duration and higher rates of sperm and larvae damage. The sperm volume of the high-temperature group was higher, but their post-injection survival rates were lower. Furthermore, the lowest spawning rate and low egg quality were noted in the high temperature. Cryopreservation using extender E4 (15% DMSO) exhibited superior post-thaw sperm motility and achieved higher fertilization rates. Fertilization rates, embryo development, and larval survival were all highest at the medium temperature. Larvae hatched from fresh sperm at medium temperature exhibited faster growth and fewer deformities. These findings suggest that hormone stimulation coupled with a medium temperature regimen is critical for successful artificial reproduction in goldfish. Cryopreservation with extender E4 holds promise for sperm banking; however, further optimization is necessary to improve fertilization success with thawed sperm. Future research could explore the influence of temperature on sperm physiology and refine cryopreservation protocols to enhance fertilization rates.
Collapse
Affiliation(s)
- Zeynab Taheri-Khas
- Department of Biology, Faculty of Science, Razi University, Kermanshah 6714414971, Iran; (Z.T.-K.); (Z.K.)
| | - Ahmad Gharzi
- Department of Biology, Faculty of Science, Razi University, Kermanshah 6714414971, Iran; (Z.T.-K.); (Z.K.)
| | - Somaye Vaissi
- Department of Biology, Faculty of Science, Razi University, Kermanshah 6714414971, Iran; (Z.T.-K.); (Z.K.)
| | - Pouria Heshmatzad
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4918943464, Iran;
| | - Zahra Kalhori
- Department of Biology, Faculty of Science, Razi University, Kermanshah 6714414971, Iran; (Z.T.-K.); (Z.K.)
| |
Collapse
|
6
|
Lai SY, Pálsson A, Guðbergsson G, Jónsson IR, Ólafsson JS, Bárðarson H. The prey availability and diet of juvenile Atlantic salmon (Salmo salar L.) in low-productivity rivers in northern Europe. JOURNAL OF FISH BIOLOGY 2024; 105:72-84. [PMID: 38632843 DOI: 10.1111/jfb.15757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/07/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
The availability of resources varies across a species distributional range, and a low-productivity area can make a species more vulnerable. We investigated the invertebrate composition and prey choice of juvenile Atlantic salmon (Salmo salar L.) in low-productivity rivers in northeast Iceland, which is one of the species' most northerly distributions. By sampling benthic and drift invertebrate populations, we found that prey availability was similar within and between rivers. Gut content samples showed that the main prey choice for juvenile S. salar was the Chironomidae. The type of food items consumed varied across different weight groups of S. salar, with smaller juveniles having more diverse diet. S. salar did not have a selection preference for chironomids, which indicates that they were eating the highly available prey in their environment, rather than hunting high biomass items such as terrestrial invertebrates and large Dipterans. Estimates of dietary niche showed that S. salar in these low-productivity rivers relied on consuming what was most readily available, the chironomids, and that they must share resources with other salmonid species. This may be due to the low diversity of freshwater invertebrates (fewer prey options), whereas S. salar in nutrient-rich rivers could rely more on terrestrial invertebrates as an additional subsidy in their diet. In conclusion, with limited prey choices, juvenile S. salar in nutrient-poor rivers, especially in a biogeographically isolated region with low species diversity, may increase in vulnerability and decrease in adaptability to environmental change. Management methods that increase benthic prey abundance and diversity are recommended for conserving the S. salar population in a nutrient-poor river.
Collapse
Affiliation(s)
- Sum Yi Lai
- Marine and Freshwater Research Institute, Hafnarfjördur, Iceland
- University of Iceland, Reykjavík, Iceland
| | | | | | | | - Jón S Ólafsson
- Marine and Freshwater Research Institute, Hafnarfjördur, Iceland
| | - Hlynur Bárðarson
- Marine and Freshwater Research Institute, Hafnarfjördur, Iceland
| |
Collapse
|
7
|
Bekkevold D, Besnier F, Frank‐Gopolos T, Nielsen EE, Glover KA. Introgression affects Salmo trutta juvenile life-history traits generations after stocking with non-native strains. Evol Appl 2024; 17:e13725. [PMID: 38962360 PMCID: PMC11219512 DOI: 10.1111/eva.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 07/05/2024] Open
Abstract
Introgression of non-native conspecifics changes the genetic composition of wild populations, potentially leading to loss of local adaptations and fitness declines. However, long-term data from wild populations are still relatively few. Here, we studied the effects of introgression in a Danish brown trout (Salmo trutta, L.) population, subjected to intensive stocking with domesticated hatchery fish of non-native origin. We used wild-caught genetically wild and admixed trout as well as fish from the partly domesticated hatchery strain used for stocking the river up until ~15 years prior to this study, to produce 22 families varying in hatchery/wild admixture. Following a replicated common-garden experiment conducted in fish tanks from first feeding through 23 weeks at 7, 12, and 16°C, we observed a significant positive relationship between family admixture and fish size upon termination, an effect observed through all levels of admixture. Furthermore, the admixture effect was most distinct at the higher rearing temperatures. Although the hatchery strain used for stocking had been in culture for ~7 generations, it had not been deliberately selected for increased growth. These data thus demonstrate: (i) that growth had increased in the hatchery strain even in the absence of deliberate directional selection for this trait, (ii) that the increasing effect of admixture by temperature could represent inadvertent selection for performance in the hatchery strain at higher temperatures, and most significantly, (iii) that despite undergoing up to five generations of natural selection in the admixed wild population, the genetically increased growth potential was still detectable and thus persistent. Our findings suggest that altered growth patterns and potentially their cascading effects are of importance to the severity of hatchery/wild introgression, especially under changing-climate scenarios and are of general significance to conservation practitioners seeking to evaluate long-term effects of intra-specific hybridization including under recovery.
Collapse
Affiliation(s)
- Dorte Bekkevold
- National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | | | - Thomas Frank‐Gopolos
- National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Einar E. Nielsen
- National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | | |
Collapse
|
8
|
Ros A, Brinker A. Thermotactic behaviour in lacustrine and riverine forms of Salmo trutta and its relevance to an emerging parasitic disease (PKD) in the wake of climate change. Sci Rep 2024; 14:13539. [PMID: 38866937 PMCID: PMC11169546 DOI: 10.1038/s41598-024-64137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
The thermotactic response of brown trout (Salmo trutta) was examined with the goal to investigate potential effects of the emerging temperature-dependent fatal trout disease PKD (proliferative kidney disease). First the differences in cold-water preferences of two forms of brown trout, lacustrine (migratory) and riverine, were determined. Second, it was studied whether this preference was changed in fish infected with PKD. The experiment involved a one-week habituation period at 14 °C in a two-chamber runway followed by a week of 3 °C temperature difference between the two runways. The fish could freely move between lanes via an opening at the end where food was provided. The temperature manipulation was repeated twice, and there were 3 trials per experimental group. All fish developed a clear spatial preference in the test. Lacustrine trout demonstrated a preference for warmer water, while riverine trout preferred cooler water. This may increase the risk to PKD in the lacustrine form. Most strikingly, riverine trout experimentally exposed to Tetracapsuloides bryosalmonae, the parasite that causes PKD, demonstrated stronger cold-seeking behaviour than control fish. Cold seeking behaviour suggests the occurrence of a disease-induced behavioural chill response, which may play an important role in disease recovery. This demonstrates the significance of protecting river connectivity and cold-water sanctuaries as management strategies for preserving salmonid populations in a warming climate.
Collapse
Affiliation(s)
- Albert Ros
- Fisheries Research Station Baden-Württemberg, LAZBW, Argenweg 50/1, 88085, Langenargen, Germany.
| | - Alexander Brinker
- Fisheries Research Station Baden-Württemberg, LAZBW, Argenweg 50/1, 88085, Langenargen, Germany
- University of Konstanz, Mainaustraße 252, 78464, Konstanz, Germany
| |
Collapse
|
9
|
Wang ZZ, Wang ZT, Wang WL, Lei KK, Zhou JS. Effects of Different Farming Modes on Salmo trutta fario Growth and Intestinal Microbial Community. Microorganisms 2024; 12:1082. [PMID: 38930465 PMCID: PMC11205959 DOI: 10.3390/microorganisms12061082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
The gut microbiota plays a pivotal role in upholding intestinal health, fostering intestinal development, fortifying organisms against pathogen intrusion, regulating nutrient absorption, and managing the body's lipid metabolism. However, the influence of different cultivation modes on the growth indices and intestinal microbes of Salmo trutta fario remains underexplored. In this study, we employed high-throughput sequencing and bioinformatics techniques to scrutinize the intestinal microbiota in three farming modes: traditional pond aquaculture (TPA), recirculating aquaculture (RA), and flow-through aquaculture (FTA). We aimed to assess the impact of different farming methods on the water environment and Salmo trutta fario's growth performance. Our findings revealed that the final weight and weight gain rate in the FTA model surpassed those in the other two. Substantial disparities were observed in the composition, relative abundance, and diversity of Salmo trutta fario gut microbiota under different aquaculture modes. Notably, the dominant genera of Salmo trutta fario gut microbiota varied across farming modes: for instance, in the FTA model, the most prevalent genera were SC-I-84 (7.34%), Subgroup_6 (9.93%), and UTCFX1 (6.71%), while, under RA farming, they were Bacteroidetes_vadinHA17 (10.61%), MBNT15 (7.09%), and Anaeromyxoactor (6.62%). In the TPA model, dominant genera in the gut microbiota included Anaeromyxobacter (8.72%), Bacteroidetes_vadinHA17 (8.30%), and Geobacter (12.54%). From a comparative standpoint, the genus-level composition of the gut microbiota in the RA and TPA models exhibited relative similarity. The gut microbiota in the FTA model showcased the most intricate functional diversity, while TPA farming displayed a more intricate interaction pattern with the gut microbiota. Transparency, pH, dissolved oxygen, conductivity, total dissolved solids, and temperature emerged as pivotal factors influencing Salmo trutta fario gut microbiota under diverse farming conditions. These research findings offer valuable scientific insights for fostering healthy aquaculture practices and disease prevention and control measures for Salmo trutta fario, holding substantial significance for the sustainable development of the cold-water fish industry in the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Zhuang-Zhuang Wang
- Institute of Aquatic Sciences, Tibet Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lasa 850032, China; (Z.-Z.W.); (W.-L.W.); (K.-K.L.)
- Key Laboratory of Fishery and Germplasm Resources Utilization of Xizang Autonomous Region, Lasa 850032, China
| | - Zhi-Tong Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Wan-Liang Wang
- Institute of Aquatic Sciences, Tibet Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lasa 850032, China; (Z.-Z.W.); (W.-L.W.); (K.-K.L.)
- Key Laboratory of Fishery and Germplasm Resources Utilization of Xizang Autonomous Region, Lasa 850032, China
- Center for Research on Breeding and Utilization Techniques of Indigenous Fish Species in Xizang, Lasa 850032, China
| | - Kuan-Kuan Lei
- Institute of Aquatic Sciences, Tibet Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lasa 850032, China; (Z.-Z.W.); (W.-L.W.); (K.-K.L.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Jian-She Zhou
- Institute of Aquatic Sciences, Tibet Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lasa 850032, China; (Z.-Z.W.); (W.-L.W.); (K.-K.L.)
- Key Laboratory of Fishery and Germplasm Resources Utilization of Xizang Autonomous Region, Lasa 850032, China
| |
Collapse
|
10
|
Brown CJM, Noble BF, Munkittrick KR. Examination of recent hydroelectric dam projects in Canada for alignment of baseline studies, predictive modeling, and postdevelopment monitoring phases of aquatic environmental impact assessments. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:616-644. [PMID: 37526129 DOI: 10.1002/ieam.4823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Environmental impact assessment (EIA) has been widely criticized by the aquatic science community for poorly aligned approaches when selecting endpoints and collecting data during the baseline, predictive modeling, and postdevelopment monitoring phases. If these critical phases of the EIA process are not aligned properly, it can be difficult to evaluate the presence of postdevelopment effects. Examples of the misalignment of these phases include baseline studies failing to measure indicators that are monitored postdevelopment; predictive assessments that do not quantitatively predict conditions or potential impacts postdevelopment; and the failure to identify relevant indicators that may detect effects postdevelopment. For aquatic assessments, understanding how to protect critical ecosystem attributes to satisfy regulatory concerns could help to better align aquatic science monitoring activities across EIA phases. In this article we investigate recent Canadian hydroelectric dam EIAs to evaluate how well recent assessment approaches are meeting these necessary conditions of good aquatic EIA practice through the lens of ecosystem services from a fish's perspective. We found that larger facilities generally had baseline studies and modeling that better supported postdevelopment monitoring, but improvements in structure, linkages, and expectations would better align EIA phases in a manner that would improve assessments and environmental protection. Integr Environ Assess Manag 2024;20:616-644. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Carolyn J M Brown
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
- Canadian Rivers Institute, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Bram F Noble
- Department of Geography and Planning, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kelly R Munkittrick
- Canadian Rivers Institute, University of New Brunswick, Fredericton, New Brunswick, Canada
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Lazăr NN, Simionov IA, Petrea ȘM, Iticescu C, Georgescu PL, Dima F, Antache A. The influence of climate changes on heavy metals accumulation in Alosa immaculata from the Danube River Basin. MARINE POLLUTION BULLETIN 2024; 200:116145. [PMID: 38354592 DOI: 10.1016/j.marpolbul.2024.116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
This research report provides a comprehensive overview of the historical trends in heavy metal concentrations in the Pontic shad (Alosa immaculata) populations from both the Danube River and the Black Sea, while also exploring the potential influence of global warming on metal accumulation. Through bibliometric modeling analysis, it reveals significant limitations in existing international research, particularly the lack of comprehensive data on the impact of hydroclimatic changes on heavy metal accumulation in Alosa immaculata. Recognizing the critical importance of studies on heavy metal bioaccumulation in Danube shad, this research underscores their significance in defining tolerance thresholds, quantifying the impact of toxic elements along the aquatic food chain, and enhancing the economic sustainability of ichthyofauna monitoring efforts. Furthermore, these studies contribute invaluable insights into the complex dynamics of aquatic ecosystems, offering essential decision-making support for optimizing commercial fishing management practices on the Danube and ensuring robust support systems for industrial fishing endeavors.
Collapse
Affiliation(s)
- Nina-Nicoleta Lazăr
- "Dunărea de Jos" University of Galati, REXDAN Research Infrastructure, 98 George Coșbuc Street, 800385 Galati, Romania
| | - Ira-Adeline Simionov
- "Dunărea de Jos" University of Galati, REXDAN Research Infrastructure, 98 George Coșbuc Street, 800385 Galati, Romania; "Dunărea de Jos" University of Galaţi, Faculty of Food Science and Engineering, 47 Domnească Street, 800008 Galați, Romania.
| | - Ștefan-Mihai Petrea
- "Dunărea de Jos" University of Galati, REXDAN Research Infrastructure, 98 George Coșbuc Street, 800385 Galati, Romania; "Dunărea de Jos" University of Galaţi, Faculty of Food Science and Engineering, 47 Domnească Street, 800008 Galați, Romania
| | - Cătălina Iticescu
- "Dunărea de Jos" University of Galati, REXDAN Research Infrastructure, 98 George Coșbuc Street, 800385 Galati, Romania; "Dunarea de Jos" University of Galati, Faculty of Sciences and Environment, 111 Domnească Street, 800008, Galati, Romania
| | - Puiu-Lucian Georgescu
- "Dunărea de Jos" University of Galati, REXDAN Research Infrastructure, 98 George Coșbuc Street, 800385 Galati, Romania; "Dunarea de Jos" University of Galati, Faculty of Sciences and Environment, 111 Domnească Street, 800008, Galati, Romania
| | - Floricel Dima
- Institute for Research and Development in Aquatic Ecology, Fishing and Aquaculture, 54 Portului Street, 800211, Galati, Romania; "Dunarea de Jos" University of Galati, Faculty of Enginnering and Agronomy in Braila, 111 Domnească Street, 800008 Galaţi, Romania
| | - Alina Antache
- "Dunărea de Jos" University of Galati, REXDAN Research Infrastructure, 98 George Coșbuc Street, 800385 Galati, Romania; "Dunărea de Jos" University of Galaţi, Faculty of Food Science and Engineering, 47 Domnească Street, 800008 Galați, Romania
| |
Collapse
|
12
|
Rinaldo A, de Eyto E, Reed T, Gjelland KØ, McGinnity P. Global warming is projected to lead to increased freshwater growth potential and changes in pace of life in Atlantic salmon Salmo salar. JOURNAL OF FISH BIOLOGY 2024; 104:647-661. [PMID: 37907447 DOI: 10.1111/jfb.15603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/02/2023]
Abstract
Global warming has been implicated in widespread demographic changes in Atlantic salmon Salmo salar populations, but projections of life-history responses to future climate change are lacking. Here, we first exploit multiple decades of climate and biological data from the Burrishoole catchment in the west of Ireland to model statistical relationships between atmospheric variables, water temperature, and freshwater growth of juvenile Atlantic salmon. We then use this information to project potential changes in juvenile growth and life-history scheduling under three shared socioeconomic pathway and representative concentration pathway scenarios from 1961 to 2100, based on an ensemble of five climate models. Historical water temperatures were well predicted with a recurrent neural network, using observation-based atmospheric forcing data. Length-at-age was in turn also well predicted by cumulative growing degree days calculated from these water temperatures. Most juveniles in the Burrishoole population migrated to sea as 2-year-old smolts, but our future projections indicate that the system should start producing a greater proportion of 1-year-old smolts, as increasingly more juveniles cross a size-based threshold in their first summer for smoltification the following spring. Those failing to cross the size-based threshold will instead become 2-year-old smolts, but at a larger length relative to 2-year-old smolts observed currently, owing to greater overall freshwater growth opportunity. These changes in age- and size-at-seaward migration could have cascading effects on age- and size-at-maturity and reproductive output. Consequently, the seemingly small changes that our results demonstrate have the potential to cause significant shifts in population dynamics over the full life cycle. This workflow is highly applicable across the range of the Atlantic salmon, as well as to other anadromous species, as it uses openly accessible climate data and a length-at-age model with minimal input requirements, fostering improved general understanding of phenotypic and demographic responses to climate change and management implications.
Collapse
Affiliation(s)
- Adrian Rinaldo
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Fisheries Ecosystems Advisory Services, Marine Institute, Newport, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Elvira de Eyto
- Fisheries Ecosystems Advisory Services, Marine Institute, Newport, Ireland
| | - Thomas Reed
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | | | - Philip McGinnity
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Tréhin C, Rivot E, Santanbien V, Patin R, Gregory SD, Lamireau L, Marchand F, Beaumont WRC, Scott LJ, Hillman R, Besnard AL, Boisson PY, Meslier L, King AR, Stevens JR, Nevoux M. A multi-population approach supports common patterns in marine growth and maturation decision in Atlantic salmon (Salmo salar L.) from southern Europe. JOURNAL OF FISH BIOLOGY 2024; 104:125-138. [PMID: 37728039 DOI: 10.1111/jfb.15567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/23/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
This study provides a regional picture of long-term changes in Atlantic salmon growth at the southern edge of their distribution, using a multi-population approach spanning 49 years and five populations. We provide empirical evidence of salmon life history being influenced by a combination of common signals in the marine environment and population-specific signals. We identified an abrupt decline in growth from 1976 and a more recent decline after 2005. As these declines have also been recorded in northern European populations, our study significantly expands a pattern of declining marine growth to include southern European populations, thereby revealing a large-scale synchrony in marine growth patterns for almost five decades. Growth increments during their sea sojourn were characterized by distinct temporal dynamics. At a coarse temporal resolution, growth during the first winter at sea seemed to gradually improve over the study period. However, the analysis of finer seasonal growth patterns revealed ecological bottlenecks of salmon life histories at sea in time and space. Our study reinforces existing evidence of an impact of early marine growth on maturation decision, with small-sized individuals at the end of the first summer at sea being more likely to delay maturation. However, each population was characterized by a specific probabilistic maturation reaction norm, and a local component of growth at sea in which some populations have better growth in some years might further amplify differences in maturation rate. Differences between populations were smaller than those between sexes, suggesting that the sex-specific growth threshold for maturation is a well-conserved evolutionary phenomenon in salmon. Finally, our results illustrate that although most of the gain in length occurs during the first summer at sea, the temporal variability in body length at return is buffered against the decrease in post-smolt growth conditions. The intricate combination of growth over successive seasons, and its interplay with the maturation decision, could be regulating body length by maintaining diversity in early growth trajectories, life histories, and the composition of salmon populations.
Collapse
Affiliation(s)
- Cécile Tréhin
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
- U3E, Experimental Unit of Aquatic Ecology and Ecotoxicology, INRAE, OFB, Rennes, France
- MIAME- Management of Diadromous Fish in their Environment, OFB, INRAE, Institut Agro, UNIV PAU & PAYS ADOUR/E2S UPPA, Rennes, France
| | - Etienne Rivot
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
- MIAME- Management of Diadromous Fish in their Environment, OFB, INRAE, Institut Agro, UNIV PAU & PAYS ADOUR/E2S UPPA, Rennes, France
| | - Valentin Santanbien
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | - Rémi Patin
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
- Univ. of Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Grenoble, France
| | - Stephen D Gregory
- Salmon and Trout Research Centre, Game and Wildlife Conservation Trust, River Laboratory, Wareham, UK
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, UK
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, UK
| | - Ludivine Lamireau
- U3E, Experimental Unit of Aquatic Ecology and Ecotoxicology, INRAE, OFB, Rennes, France
| | - Frédéric Marchand
- U3E, Experimental Unit of Aquatic Ecology and Ecotoxicology, INRAE, OFB, Rennes, France
| | - William R C Beaumont
- Salmon and Trout Research Centre, Game and Wildlife Conservation Trust, River Laboratory, Wareham, UK
| | - Luke J Scott
- Salmon and Trout Research Centre, Game and Wildlife Conservation Trust, River Laboratory, Wareham, UK
| | | | - Anne-Laure Besnard
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | - Pierre-Yves Boisson
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | - Lisa Meslier
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | - Andrew R King
- Department of Biosciences, Faculty of Health and Life Sciences, Hatherly Laboratories, Exeter, UK
| | - Jamie R Stevens
- Department of Biosciences, Faculty of Health and Life Sciences, Hatherly Laboratories, Exeter, UK
| | - Marie Nevoux
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
- MIAME- Management of Diadromous Fish in their Environment, OFB, INRAE, Institut Agro, UNIV PAU & PAYS ADOUR/E2S UPPA, Rennes, France
| |
Collapse
|
14
|
Ouellet-Proulx S, Daigle A, St-Hilaire A, Gillis CA, Linnansaari T, Dauphin G, Bergeron NÉ. A potential growth thermal index for estimating juvenile Atlantic salmon (Salmo salar) size-at-age across geographical scales. JOURNAL OF FISH BIOLOGY 2023; 103:1488-1500. [PMID: 37646305 DOI: 10.1111/jfb.15535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/28/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
We present a potential growth thermal index (PGTI) and assess its correlation with juvenile Atlantic salmon Salmo salar fork length data collected near the end of the growth season in a range of latitudinal locations and geographic scales (watershed, regional, continental) across the American north-east. The PGTI is based on two components: a water temperature-dependent growth curve and a water temperature time series continuously describing the thermal environment preceding fish sampling. Testing various shapes and characteristics of the temperature-growth curve against fish length data revealed strong positive correlations for all combinations. PGTI warming, calculated only from the beginning of the growth season until maximum summer temperature is reached, consistently performed well in explaining fish size-at-age across the latitudinal gradient and the three geographic scales that were considered. Varying thermal contrasts created by repeat subsampling of the dataset showed that fish length is better explained by the level of thermal contrast within the dataset than the geographical scale of analysis. A simple generalized linear model using a log link function with PGTI warming, fish density and water discharge as predictors explained 87% of the variance of size-at-age of 0+ and 1+ juvenile Atlantic salmon.
Collapse
Affiliation(s)
- Sébastien Ouellet-Proulx
- Eau Terre Environnement, Institut national de la recherche scientifique, Québec City, Québec, Canada
- Direction de la gestion intégrée de l'eau, Ministère de l'environnement et de la lutte contre les changements climatiques, Québec City, Québec, Canada
| | - Anik Daigle
- Eau Terre Environnement, Institut national de la recherche scientifique, Québec City, Québec, Canada
- CÉGEP Garneau, Québec City, Québec, Canada
| | - André St-Hilaire
- Eau Terre Environnement, Institut national de la recherche scientifique, Québec City, Québec, Canada
| | - Carole-Anne Gillis
- Gespe'gewa'gi Institute of Natural Understanding (GINU), Listuguj, Québec, Canada
| | - Tommi Linnansaari
- Forestry and Environmental Management, University of New-Brunswick, Fredericton, New Brunswick, Canada
| | - Guillaume Dauphin
- Diadromous Fish Section, Department of Fisheries and Oceans Canada, Moncton, New Brunswick, Canada
| | - Normand Émile Bergeron
- Eau Terre Environnement, Institut national de la recherche scientifique, Québec City, Québec, Canada
| |
Collapse
|
15
|
Graziano M, Solberg MF, Glover KA, Vasudeva R, Dyrhovden L, Murray D, Immler S, Gage MJG. Pre-fertilization gamete thermal environment influences reproductive success, unmasking opposing sex-specific responses in Atlantic salmon ( Salmo salar). ROYAL SOCIETY OPEN SCIENCE 2023; 10:231427. [PMID: 38094267 PMCID: PMC10716643 DOI: 10.1098/rsos.231427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 01/11/2024]
Abstract
The environment gametes perform in just before fertilization is increasingly recognized to affect offspring fitness, yet the contributions of male and female gametes and their adaptive significance remain largely unexplored. Here, we investigated gametic thermal plasticity and its effects on hatching success and embryo performance in Atlantic salmon (Salmo salar). Eggs and sperm were incubated overnight at 2°C or 8°C, temperatures within the optimal thermal range of this species. Crosses between warm- and cold-incubated gametes were compared using a full-factorial design, with half of each clutch reared in cold temperatures and the other in warm temperatures. This allowed disentangling single-sex interaction effects when pre-fertilization temperature of gametes mismatched embryonic conditions. Pre-fertilization temperature influenced hatch timing and synchrony, and matching sperm and embryo temperatures resulted in earlier hatching. Warm incubation benefited eggs but harmed sperm, reducing the hatching success and, overall, gametic thermal plasticity did not enhance offspring fitness, indicating vulnerability to thermal changes. We highlight the sensitivity of male gametes to higher temperatures, and that gamete acclimation may not effectively buffer against deleterious effects of thermal fluctuations. From an applied angle, we propose the differential storage of male and female gametes as a tool to enhance sustainability within the hatcheries.
Collapse
Affiliation(s)
- Marco Graziano
- Centre for Ecology, Evolution, and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Monica F. Solberg
- Population Genetics Group, Institute of Marine Research, 5817 Bergen, Norway
| | - Kevin A. Glover
- Population Genetics Group, Institute of Marine Research, 5817 Bergen, Norway
| | - Ramakrishnan Vasudeva
- Centre for Ecology, Evolution, and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Lise Dyrhovden
- Population Genetics Group, Institute of Marine Research, 5817 Bergen, Norway
| | - David Murray
- Centre for Ecology, Evolution, and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Lowestoft NR33 0HT, UK
| | - Simone Immler
- Centre for Ecology, Evolution, and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Matthew J. G. Gage
- Centre for Ecology, Evolution, and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
16
|
Larabi S, Schnorbus MA, Zwiers F. Diagnosing the ability of reservoir operations to meet hydropower production and fisheries needs under climate change in a western cordillera drainage basin. CLIMATIC CHANGE 2023; 176:161. [PMID: 38020238 PMCID: PMC10663265 DOI: 10.1007/s10584-023-03632-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
Water regulation has contributed to the decline in Pacific salmon in British Columbia (Canada) despite attempts to manage reservoir operations to achieve operational requirements while meeting environmental needs to limit fish thermal stress. The ability of reservoir managers to meet these trade-offs in a changing climate is unknown. Here, we examine the reliability and vulnerability of the Nechako Reservoir to meet hydropower production commitments and fisheries needs under two projected Shared Socioeconomic Pathway scenarios (SSP2-4.5 and SSP5-8.5). While our findings are specific to the operation of the Nechako Reservoir, the issues that emerge are likely common to many reservoirs in areas where reservoir inflow regimes are currently snow-storage dominated. We found that projected changes in the timing of water availability have little to no influence on hydropower generation commitments. However, larger water releases will be required to avoid compromising reservoir safety, possibly endangering downstream fish habitat through scouring. Furthermore, the temperature of water released from the reservoir is projected to more frequently exceed a level, 20°C, that is detrimental to migrating sockeye salmon. Water released is subject to further warming as it travels towards the lower reaches of the Nechako River used by migrating salmon. Hence, there is a need to adapt reservoir operations to ensure reservoir safety and mitigate adverse effects on salmon habitat. Supplementary Information The online version contains supplementary material available at 10.1007/s10584-023-03632-y.
Collapse
Affiliation(s)
- Samah Larabi
- Pacific Climate Impacts Consortium, University of Victoria, Victoria, BC Canada
| | - Markus A. Schnorbus
- Pacific Climate Impacts Consortium, University of Victoria, Victoria, BC Canada
| | - Francis Zwiers
- Pacific Climate Impacts Consortium, University of Victoria, Victoria, BC Canada
| |
Collapse
|
17
|
Bal G, de Eyto E. Simple Bayesian reconstruction and forecasting of stream water temperature for ecologists-A tool using air temperature, optionally flow, in a time series decomposition approach. PLoS One 2023; 18:e0291239. [PMID: 37721928 PMCID: PMC10506714 DOI: 10.1371/journal.pone.0291239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/25/2023] [Indexed: 09/20/2023] Open
Abstract
Mitigating the impacts of global warming on wildlife entails four practical steps. First, we need to study how processes of interest vary with temperature. Second, we need to build good temperature scenarios. Third, processes can be forecast accordingly. Only then can we perform the fourth step, testing mitigating measures. While having good temperature data is essential, this is not straightforward for stream ecologists and managers. Water temperature (WT) data are often short and incomplete and future projections are currently not routinely available. There is a need for generic models which address this data gap with good resolution and current models are partly lacking. Here, we expand a previously published hierarchical Bayesian model that was driven by air temperature (AT) and flow (Q) as a second covariate. The new model can hindcast and forecast WT time series at a daily time step. It also allows a better appraisal of real uncertainties in the warming of water temperatures in rivers compared to the previous version, stemming from its hybrid structure between time series decomposition and regression. This model decomposes all-time series using seasonal sinusoidal periodic signals and time varying means and amplitudes. It then links the contrasted frequency signals of WT (daily and six month) through regressions to that of AT and optionally Q for better resolution. We apply this model to two contrasting case study rivers. For one case study, AT only is available as a covariate. This expanded model further improves the already good fitting and predictive capabilities of its earlier version while additionally highlighting warming uncertainties. The code is available online and can easily be run for other temperate rivers.
Collapse
Affiliation(s)
| | - Elvira de Eyto
- Fisheries Ecosystems Advisory Services, Marine Institute, Furnace, Newport, Ireland
| |
Collapse
|
18
|
Chakraborty M, Acharya D, Dutta TK. Diversity analysis of hilsa (Tenualosa ilisha) gut microbiota using culture-dependent and culture-independent approaches. J Appl Microbiol 2023; 134:lxad208. [PMID: 37699793 DOI: 10.1093/jambio/lxad208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
AIMS The bacterial communities associated with the gastrointestinal (GI) tract are primarily involved in digestion, physiology, and the immune response against pathogenic bacteria for the overall development and health of the host. Hilsa shad (Tenualosa ilisha), a tropical anadromous fish, found predominantly in Bangladesh and India, has so far been poorly investigated for its gut bacterial communities. In this study, both culture-based and metagenomic approaches were used to detect intestinal isolates of hilsa, captured from both freshwater and seawater to investigate the community structure of intestinal microbiota. METHODS AND RESULTS Culture-dependent approach allowed to isolate a total of 23 distinct bacterial species comprising 16 Gram-negative, and 7 Gram-positive isolates, where Proteobacteria and Firmicutes were identified as the two most dominant phyla. While metagenomic approach explored a wide range of important GI bacteria, primarily dominated by Proteobacteria, Firmicutes, and Bacteroidetes, with Proteobacteria and Firmicutes, being the most abundant in freshwater and seawater samples, respectively. CONCLUSIONS A combination of these approaches provided the differential GI-associated bacterial diversity in freshwater and seawater hilsa with the prediction of overall functional potential. IMPACT STATEMENT The study explored the diversity of gut microbiota in hilsa, one of the most preferred nutritious dietary fish, captured from freshwater and seawater habitats, which may encourage to comprehend the composition of the gut microbiome in relation to the migratory behavior and polyunsaturated fatty acid profile of anadromous fish in general.
Collapse
Affiliation(s)
- Megha Chakraborty
- Department of Microbiology, Bose Institute, Kolkata 700091, West Bengal, India
| | - Debarun Acharya
- Department of Microbiology, Bose Institute, Kolkata 700091, West Bengal, India
| | - Tapan K Dutta
- Department of Microbiology, Bose Institute, Kolkata 700091, West Bengal, India
| |
Collapse
|
19
|
Bjørnås KL, Railsback S, Piccolo J. Modifying and parameterizing the individual-based model inSTREAM for Atlantic salmon and brown trout in the regulated Gullspång River, Sweden. MethodsX 2023; 10:102243. [PMID: 37424766 PMCID: PMC10326503 DOI: 10.1016/j.mex.2023.102243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023] Open
Abstract
We modified, parameterized, and applied the individual-based model inSTREAM version 6.1 for lake-migrating populations of landlocked Atlantic salmon (Salmo salar) and brown trout (S. trutta) in a residual flow stretch of the hydropower-regulated Gullspång River, Sweden. This model description is structured according to the TRACE model description framework. Our aim was to model responses in salmonid recruitment to alternative scenarios of flow release and other environmental alterations. The main response variable was the number of large out-migrating juvenile fish per year, with the assumption that individuals are more inclined to out-migrate the larger they get, and that migration is an obligatory strategy. Population and species-specific parameters were set based on local electrofishing surveys, redd surveys, physical habitat surveys, broodstock data as well as scientific literature.•Simulations were set to run over 10 years, with sub-daily time steps, in this spatially and temporally explicit model.•Model calibration and validation of fish growth was done using data on juvenile fish from electrofishing.•The results were found to be sensitive to parameter values for aggregated fish, i.e., "superindividuals" and for the high temperature limit to spawning.
Collapse
Affiliation(s)
- Kristine Lund Bjørnås
- Department of Environmental and Life Sciences, River Ecology and Management Research Group (RivEM), Karlstad University, Sweden
- Norwegian Institute for Nature Research, Trondheim, Norway
| | - Steven Railsback
- Department of Mathematics, Cal Poly Humboldt and Lang, Railsback and Associates, California, USA
| | - John Piccolo
- Department of Environmental and Life Sciences, River Ecology and Management Research Group (RivEM), Karlstad University, Sweden
| |
Collapse
|
20
|
Singh AK, Srivastava SC. Environmental drivers inducing habitat expansion and shift of introduced alien trout in the Himalayan ecosystem and management concerns. J Nat Conserv 2023. [DOI: 10.1016/j.jnc.2023.126392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
21
|
Duncan E, Papatheodoulou M, Metcalfe NB, McLennan D. Does pre-spawning catch and release angling affect offspring telomere dynamics in Atlantic salmon? CONSERVATION PHYSIOLOGY 2023; 11:coad018. [PMID: 37113976 PMCID: PMC10129346 DOI: 10.1093/conphys/coad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
The practice of 'catch and release' (C&R) angling confers a balance between animal welfare, conservation efforts and preserving the socio-economic interests of recreational angling. However, C&R angling can still cause exhaustion and physical injury, and often exposes the captured fish to the stress of air exposure. Therefore, the true conservation success of C&R angling depends on whether the angled individuals then survive to reproduction and whether there are any persisting effects on subsequent generations. Here we tested the hypothesis that the stress of C&R angling is then passed on to offspring. We experimentally manipulated the C&R experience of wild adult salmon prior to the spawning season. These parental fish either underwent a C&R simulation (which involved exercise with/without air exposure) or were left as control individuals. We then measured the telomere length of the arising offspring (at the larval stage of development) since previous studies have linked a shorter telomere length with reduced fitness/longevity and the rate of telomere loss is thought to be influenced by stress. Family-level telomere length was positively related to rate of growth. However, the telomere lengths of the salmon offspring were unrelated to the C&R experience of their parents. This may be due to there being no intergenerational effect of parental stress exposure on offspring telomeres, or to any potential effects being buffered by the significant telomere elongation mechanisms that are thought to occur during the embryonic and larval stages of development. While this may suggest that C&R angling has a minimal intergenerational effect on offspring fitness, there have been numerous other reports of negative C&R effects, therefore we should still be aiming to mitigate and refine such practices, in order to minimize their impacts on fish populations.
Collapse
Affiliation(s)
- Eleanor Duncan
- School of Biodiversity, One Health and Veterinary Medicine, Graham Kerr Building, University of Glasgow, G12 8QQ Glasgow, UK
| | - Magdalene Papatheodoulou
- School of Biodiversity, One Health and Veterinary Medicine, Graham Kerr Building, University of Glasgow, G12 8QQ Glasgow, UK
| | - Neil B Metcalfe
- School of Biodiversity, One Health and Veterinary Medicine, Graham Kerr Building, University of Glasgow, G12 8QQ Glasgow, UK
| | - Darryl McLennan
- School of Biodiversity, One Health and Veterinary Medicine, Graham Kerr Building, University of Glasgow, G12 8QQ Glasgow, UK
| |
Collapse
|
22
|
Réalis-Doyelle E, Cottin N, Daufresne M, Naffrechoux E, Reynaud S, Guillard J. Evolution of pace-of-life syndrome under conditions of maternal PCB contamination and global warming in early life stages of cold stenothermic fish (Arctic char). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 255:106396. [PMID: 36657268 DOI: 10.1016/j.aquatox.2023.106396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/14/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The end of the 20th century was characterised by rapid modifications of ecosystem functioning under different pressures (such as eutrophication and toxic pollution). Increasing temperatures in the context of global warming could have indirect consequences, such as increased bioavailability of hydrophobic organic pollutants amongst aquatic species. According to the "pace-of-life syndrome" (POLS) theory, these stressors could lead to covariations in many life traits. Lake Bourget is the largest natural lake in France and has been highly polluted from the fifties to the eighties both with a high load of nutrients (wastewater discharge) and polychlorinated biphenyls (PCBs) (industrial effluent discharge). Despite improvements in water quality since the 21st century, PCB levels are still higher than the United States Environmental Protection Agency cut-off for wildlife protection. The population of Arctic char, a cold stenothermic salmonid, has remained low in Lake Bourget for the last ten years despite restocking efforts and complete re-oligotrophication. We hypothesised that PCB pollution can affect the Arctic char population and that the increase in water temperature could magnify the effects of PCB. Thus, this study aimed to investigate the effects of maternal PCB contamination on offspring using a multiparametric and multiscale approach. Female Arctic char were contaminated with PCB before spawning, and each fertilised spawn was incubated at two temperatures (4 and 8.5 °C). The results showed that co-exposure to increased temperature and maternal PCB contamination influenced biodemographic, physiological, and behavioural parameters. The effects were highly dependant on the developmental stage. Based on the POLS theory, a continuum of life traits that may reflect potential physiological and behavioural modifications in response to these concurrent stressors is highlighted.
Collapse
Affiliation(s)
- Emilie Réalis-Doyelle
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200 Thonon-les-Bains, France; Pôle R&D ECLA (ECosystèmes LAcustres) (OFB - INRAE - USMB), France.
| | | | | | | | | | - Jean Guillard
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200 Thonon-les-Bains, France; Pôle R&D ECLA (ECosystèmes LAcustres) (OFB - INRAE - USMB), France
| |
Collapse
|
23
|
Lähteenmäki L, Orell P, Romakkaniemi A, Snickars M. Spawning migration behaviour of sea trout (Salmo trutta L.) in a boreal river system: effects of flow conditions and obstacles on migratory activity. JOURNAL OF FISH BIOLOGY 2023; 102:479-491. [PMID: 36480233 DOI: 10.1111/jfb.15286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
In this study, radio telemetry was used to examine the upstream spawning migration behaviour of anadromous brown trout (sea trout), Salmo trutta L., in a boreal river system, the River Isojoki, western Finland. The aim was to study the movement activity and migration characteristics of trout during the upstream spawning migration, as well as to locate the important spawning habitats and study the spawning characteristics. Furthermore, the authors analysed how flow conditions and a hydropower dam, with adjacent fishways, affected the upstream spawning migration. Tagged trout spawned in both the main stem and four tributaries, with spawning taking place from early October to November. The movement activity of radio-tagged trout was influenced by a hydropower dam (Perus dam), with spring migrators spending prolonged periods at the dam area, postponing the migration upstream. Flow conditions affected the total time spent at the dam area, as well as the movement activity in the free-flowing sections above the dam, with increasing flow stimulating activity. In addition, time of river ascent and location of spawning area had a significant effect on the movement activity of tagged trout. These results are further evidence that synergistic effects of flow and migratory obstacles can negatively influence migrations of anadromous fish, regardless of constructed fishways. The management of flow regimes and the efficiency of fishways are vital, as climate change will likely influence the flow and increase the water temperature of boreal river systems, further aggravating issues caused by obstacles.
Collapse
Affiliation(s)
- Linus Lähteenmäki
- Environmental and Marine Biology, Faculty of Science and Engineering, Åbo Akademi University, Åbo, Finland
| | - Panu Orell
- Natural Resources Institute Finland (Luke), Oulu, Finland
| | | | - Martin Snickars
- Environmental and Marine Biology, Faculty of Science and Engineering, Åbo Akademi University, Åbo, Finland
| |
Collapse
|
24
|
Healy BD, Budy P, Yackulic CB, Murphy BP, Schelly RC, McKinstry MC. Exploring metapopulation-scale suppression alternatives for a global invader in a river network experiencing climate change. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e13993. [PMID: 36047692 PMCID: PMC10107352 DOI: 10.1111/cobi.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Invasive species can dramatically alter ecosystems, but eradication is difficult, and suppression is expensive once they are established. Uncertainties in the potential for expansion and impacts by an invader can lead to delayed and inadequate suppression, allowing for establishment. Metapopulation viability models can aid in planning strategies to improve responses to invaders and lessen invasive species' impacts, which may be particularly important under climate change. We used a spatially explicit metapopulation viability model to explore suppression strategies for ecologically damaging invasive brown trout (Salmo trutta), established in the Colorado River and a tributary in Grand Canyon National Park. Our goals were to estimate the effectiveness of strategies targeting different life stages and subpopulations within a metapopulation; quantify the effectiveness of a rapid response to a new invasion relative to delaying action until establishment; and estimate whether future hydrology and temperature regimes related to climate change and reservoir management affect metapopulation viability and alter the optimal management response. Our models included scenarios targeting different life stages with spatially varying intensities of electrofishing, redd destruction, incentivized angler harvest, piscicides, and a weir. Quasi-extinction (QE) was obtainable only with metapopulation-wide suppression targeting multiple life stages. Brown trout population growth rates were most sensitive to changes in age 0 and large adult mortality. The duration of suppression needed to reach QE for a large established subpopulation was 12 years compared with 4 with a rapid response to a new invasion. Isolated subpopulations were vulnerable to suppression; however, connected tributary subpopulations enhanced metapopulation persistence by serving as climate refuges. Water shortages driving changes in reservoir storage and subsequent warming would cause brown trout declines, but metapopulation QE was achieved only through refocusing and increasing suppression. Our modeling approach improves understanding of invasive brown trout metapopulation dynamics, which could lead to more focused and effective invasive species suppression strategies and, ultimately, maintenance of populations of endemic fishes.
Collapse
Affiliation(s)
- Brian D. Healy
- Department of Watershed Sciences and the Ecology CenterUtah State UniversityLoganUtahUSA
- Native Fish Ecology and Conservation Program, Division of Science and Resource ManagementGrand Canyon National Park, National Park ServiceFlagstaffArizonaUSA
| | - Phaedra Budy
- U.S. Geological Survey, Utah Cooperative Fish and Wildlife Research Unit, Department of Watershed SciencesUtah State UniversityLoganUtahUSA
| | - Charles. B. Yackulic
- U.S. Geological Survey, Southwest Biological Science CenterGrand Canyon Monitoring and Research CenterFlagstaffArizonaUSA
| | - Brendan P. Murphy
- School of Environmental ScienceSimon Fraser UniversityVancouverBritish ColumbiaCanada
| | - Robert C. Schelly
- Native Fish Ecology and Conservation Program, Division of Science and Resource ManagementGrand Canyon National Park, National Park ServiceFlagstaffArizonaUSA
| | - Mark C. McKinstry
- Upper Colorado Regional OfficeU.S. Bureau of ReclamationSalt Lake CityUtahUSA
| |
Collapse
|
25
|
Bernthal FR, Seaman BW, Rush E, Armstrong JD, McLennan D, Nislow KH, Metcalfe NB. High summer temperatures are associated with poorer performance of underyearling Atlantic salmon (Salmo salar) in upland streams. JOURNAL OF FISH BIOLOGY 2023; 102:537-541. [PMID: 36448734 DOI: 10.1111/jfb.15282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Future warming scenarios are predicted to result in an increased frequency of high, and potentially stressful, temperatures in aquatic ecosystems. Here we examined whether the performance of wild underyearling Atlantic salmon (Salmo salar) in Scottish streams stocked with identical egg densities was influenced by thermal stress. Biomass and density declined with degree hours exceeding 23°C, indicating apparent mortality or emigration as a possible result of exposure to high temperatures. These results strengthen the need for further action such as riparian tree planting to reduce stream summer temperatures.
Collapse
Affiliation(s)
- Fionn R Bernthal
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | | | | | - John D Armstrong
- Marine Scotland - Science, Freshwater Fisheries Laboratory, Pitlochry, UK
| | - Darryl McLennan
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Keith H Nislow
- USDA Forest Service Northern Research Station, Amherst, Massachusetts, USA
| | - Neil B Metcalfe
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
26
|
Keiz K, Ulrich S, Wenderlein J, Keferloher P, Wiesinger A, Neuhaus K, Lagkouvardos I, Wedekind H, Straubinger RK. The Development of the Bacterial Community of Brown Trout ( Salmo trutta) during Ontogeny. Microorganisms 2023; 11:211. [PMID: 36677503 PMCID: PMC9863972 DOI: 10.3390/microorganisms11010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Brown trout (Salmo trutta) is an important aquaculture species in Germany, but its production faces challenges due to global warming and a high embryo mortality. Climate factors might influence the fish's bacterial community (BC) and thus increase embryo mortality. Yet, knowledge of the physiological BC during ontogeny in general is scarce. In this project, the BC of brown trout has been investigated in a period from unfertilized egg to 95 days post fertilization (dpf) using 16S rRNA gene amplicon sequencing. Developmental changes differed between early and late ontogeny and major differences in BC occurred especially during early developmental stages. Thus, analysis was conducted separately for 0 to 67 dpf and from 67 to 95 dpf. All analyzed stages were sampled in toto to avoid bias due to different sampling methods in different developmental stages. The most abundant phylum in the BC of all developmental stages was Pseudomonadota, while only two families (Comamonadaceae and Moraxellaceae) occurred in all developmental stages. The early developmental stages until 67 dpf displayed greater shifts in their BC regarding bacterial richness, microbial diversity, and taxonomic composition. Thereafter, in the fry stages, the BC seemed to stabilize and changes were moderate. In future studies, a reduction in the sampling time frames during early development, an increase in sampling numbers, and an attempt for biological reproduction in order to characterize the causes of these variations is recommended.
Collapse
Affiliation(s)
- Katharina Keiz
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Sebastian Ulrich
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Jasmin Wenderlein
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Patrick Keferloher
- Bavarian State Research Center for Agriculture (LfL), Institute for Fisheries (IFI), Weilheimer Straße 8, 82319 Starnberg, Germany
| | - Anna Wiesinger
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL—Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Ilias Lagkouvardos
- Core Facility Microbiome, ZIEL—Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology and Aquaculture (IMBBC), 715 00 Heraklion, Greece
| | - Helmut Wedekind
- Bavarian State Research Center for Agriculture (LfL), Institute for Fisheries (IFI), Weilheimer Straße 8, 82319 Starnberg, Germany
| | - Reinhard K. Straubinger
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| |
Collapse
|
27
|
Friesen CR, Wapstra E, Olsson M. Of telomeres and temperature: Measuring thermal effects on telomeres in ectothermic animals. Mol Ecol 2022; 31:6069-6086. [PMID: 34448287 DOI: 10.1111/mec.16154] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
Ectotherms are classic models for understanding life-history tradeoffs, including the reproduction-somatic maintenance tradeoffs that may be reflected in telomere length and their dynamics. Importantly, life-history traits of ectotherms are tightly linked to their thermal environment, with diverse or synergistic mechanistic explanations underpinning the variation. Telomere dynamics potentially provide a mechanistic link that can be used to monitor thermal effects on individuals in response to climatic perturbations. Growth rate, age and developmental stage are all affected by temperature, which interacts with telomere dynamics in complex and intriguing ways. The physiological processes underpinning telomere dynamics can be visualized and understood using thermal performance curves (TPCs). TPCs reflect the evolutionary history and the thermal environment during an individual's ontogeny. Telomere maintenance should be enhanced at or near the thermal performance optimum of a species, population and individual. The thermal sensitivity of telomere dynamics should reflect the interacting TPCs of the processes underlying them. The key processes directly underpinning telomere dynamics are mitochondrial function (reactive oxygen production), antioxidant activity, telomerase activity and telomere endcap protein status. We argue that identifying TPCs for these processes will significantly help design robust, repeatable experiments and field studies of telomere dynamics in ectotherms. Conceptually, TPCs are a valuable framework to predict and interpret taxon- and population-specific telomere dynamics across thermal regimes. The literature of thermal effects on telomeres in ectotherms is sparse and mostly limited to vertebrates, but our conclusions and recommendations are relevant across ectothermic animals.
Collapse
Affiliation(s)
- Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, Wollongong, New South Wales, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Erik Wapstra
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Mats Olsson
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, Wollongong, New South Wales, Australia.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Gallagher BK, Geargeoura S, Fraser DJ. Effects of climate on salmonid productivity: A global meta-analysis across freshwater ecosystems. GLOBAL CHANGE BIOLOGY 2022; 28:7250-7269. [PMID: 36151941 PMCID: PMC9827867 DOI: 10.1111/gcb.16446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Salmonids are of immense socio-economic importance in much of the world, but are threatened by climate change. This has generated a substantial literature documenting the effects of climate variation on salmonid productivity in freshwater ecosystems, but there has been no global quantitative synthesis across studies. We conducted a systematic review and meta-analysis to gain quantitative insight into key factors shaping the effects of climate on salmonid productivity, ultimately collecting 1321 correlations from 156 studies, representing 23 species across 24 countries. Fisher's Z was used as the standardized effect size, and a series of weighted mixed-effects models were compared to identify covariates that best explained variation in effects. Patterns in climate effects were complex and were driven by spatial (latitude, elevation), temporal (time-period, age-class), and biological (range, habitat type, anadromy) variation within and among study populations. These trends were often consistent with predictions based on salmonid thermal tolerances. Namely, warming and decreased precipitation tended to reduce productivity when high temperatures challenged upper thermal limits, while opposite patterns were common when cold temperatures limited productivity. Overall, variable climate impacts on salmonids suggest that future declines in some locations may be counterbalanced by gains in others. In particular, we suggest that future warming should (1) increase salmonid productivity at high latitudes and elevations (especially >60° and >1500 m), (2) reduce productivity in populations experiencing hotter and dryer growing season conditions, (3) favor non-native over native salmonids, and (4) impact lentic populations less negatively than lotic ones. These patterns should help conservation and management organizations identify populations most vulnerable to climate change, which can then be prioritized for protective measures. Our framework enables broad inferences about future productivity that can inform decision-making under climate change for salmonids and other taxa, but more widespread, standardized, and hypothesis-driven research is needed to expand current knowledge.
Collapse
Affiliation(s)
| | - Sarah Geargeoura
- Department of BiologyConcordia UniversityMontrealQuebecCanada
- Present address:
Environment and Climate Change CanadaGatineauQuebecCanada
| | - Dylan J. Fraser
- Department of BiologyConcordia UniversityMontrealQuebecCanada
| |
Collapse
|
29
|
Yao Y, Gu Z, Li Y, Ding H, Wang T. Intelligent Simulation of Water Temperature Stratification in the Reservoir. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13588. [PMID: 36294167 PMCID: PMC9603658 DOI: 10.3390/ijerph192013588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
In order to fully make use of limited water resources, humans have built many water conservancy projects. The projects produce many economic benefits, but they also change the natural environment. For example, the phenomenon of water temperature stratification often occurs in deep reservoirs. Thus, effective ways are needed to predict the water temperature stratification in a reservoir to control its discharge water temperature. Empirical formula methods have low computational accuracy if few factors are considered. Mathematical model methods rely on large amounts of accurate hydrological data and cost long calculation times. The purpose of the research was to simulate water temperature stratification in a reservoir by constructing an intelligent simulation model (ISM-RWTS) with five inputs and one output, determined on the basis of artificial neural networks (ANN). A 3D numerical model (3DNM) was also constructed to provide training samples for the ISM-RWTS and be used to test its simulation effect. The ISM-RWTS was applied to the Tankeng Reservoir, located in the Zhejiang province of China, and performed well, with an average error of 0.72 °C. Additionally, the Intelligent Computation Model of Reservoir Water Temperature Stratification (ICM-RWTS) was also discussed in this paper. The results indicated that the intelligent method was a powerful tool to estimate the water temperature stratification in a deep reservoir. Finally, it was concluded that the advantages of the intelligent method lay in its simplicity of use, its lower demand for hydrological data, its well generalized performance, and its flexibility for considering different input and output parameters.
Collapse
Affiliation(s)
- Yuan Yao
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Zhenghua Gu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Yun Li
- Nanjing Hydraulic Research Institute, Nanjing 210029, China
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing 210029, China
| | - Hao Ding
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Tinghui Wang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
30
|
Brignone S, De Santis V, Putelli T, Molina C, Piccinini A, Carmichael RA, Volta P. What's the effectiveness of stocking actions in small creeks? The role of water discharge behind hatchery trout downstream movement. PeerJ 2022; 10:e14069. [PMID: 36187751 PMCID: PMC9521347 DOI: 10.7717/peerj.14069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/27/2022] [Indexed: 01/20/2023] Open
Abstract
Fish stocking to enhance freshwater fisheries or to improve the conservation status of endangered fish species is a common practice in many countries. Little is known, however, of the effectiveness of these practices in spite of the high efforts and investments required. The movement of subadult/adult hatchery-released brown trout Salmo trutta L. was studied by passive telemetry in a small tributary of Lake Lugano (i.e., Laveggio Creek, Canton Ticino, Switzerland). Hatchery fish, together with some resident wild individuals sampled during electrofishing surveys, were tagged with Passive Integrated Transponders (PIT) tags. Hatchery fish were released upstream and downstream a submersible monitoring antenna, which was anchored to the streambed in a pass-over orientation. The number of hatchery fish detected daily by the antenna (divided between fish released upstream and downstream the antenna) was analyzed in relation to the daily water discharge, to search for similar patterns in their fluctuation over time. Only the movement of fish released upstream the antenna displayed a significant relationship with water discharge, with the highest number of fish detected during periods of high-water flow, occurring after heavy rains. High-water discharge events had a significant role in hatchery trout downstream movement in our study site, likely acting as a driver for the downstream migration to Lake Lugano. Such events contributed to the poor effectiveness of stocking actions in this small tributary, providing further evidence against stocking strategies based on subadult/adult fish.
Collapse
Affiliation(s)
| | | | - Tiziano Putelli
- Ufficio della caccia e della pesca, Repubblica e Cantone Ticino, Bellinzona, Canton Ticino, Switzerland
| | - Christophe Molina
- Ufficio della caccia e della pesca, Repubblica e Cantone Ticino, Bellinzona, Canton Ticino, Switzerland
| | | | | | - Pietro Volta
- National Research Council CNR-IRSA, Verbania, Italy
| |
Collapse
|
31
|
de Eyto E, Kelly S, Rogan G, French A, Cooney J, Murphy M, Nixon P, Hughes P, Sweeney D, McGinnity P, Dillane M, Poole R. Decadal Trends in the Migration Phenology of Diadromous Fishes Native to the Burrishoole Catchment, Ireland. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.915854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Migration is an important ecological trait that allows animals to exploit resources in different habitats, obtaining extra energy for growth and reproduction. The phenology (or timing) of migration is a highly heritable trait, but is also controlled by environmental factors. Numerous studies have reported the advancement of species life-events with climate change, but the rate and significance of such advancement is likely to be species specific, spatially variable and dependent on interactions with population and ecosystem changes. This is particularly true for diadromous fishes which are sentinels of change in both freshwater and marine domains, and are subject to considerable multiple stressors including overfishing and habitat degradation. Here, we describe trends in the migration phenology of three native Irish migratory fishes over half a century, Atlantic salmon (Salmo salar), brown trout (Salmo trutta) and European eel (Anguilla anguilla). The trends were derived from daily counts of 745,263 fish moving upstream and downstream through the fish traps of the Burrishoole catchment, an internationally important monitoring infrastructure allowing a full census of migrating fish. We found that the start of the seaward migration of eel has advanced by one month since 1970. The commencement of the salmon smolt migration has advanced by one week, although the rest of the migration, and the entirety of the trout smolt run has remained stable. The beginning of the upstream migration of trout to freshwater has advanced by 20 days, while the end of the run is more than one month later than in the 1970’s. The greatest phenological shift has been in the upstream migration of adult salmon, with at least half of migrating fish returning between one and two months earlier from the marine environment compared to the 1970’s. The earlier return of these salmon is coincident with reduced marine survival and decreasing body size, indicating considerable oceanic challenges for this species. Our results demonstrate that the impacts of climate change on the phenology of diadromous fish are context-dependent and may interact with other factors. The mobilization of long-term datasets are crucial to parse the ecological impacts of climate change from other anthropogenic stresses.
Collapse
|
32
|
Cotter D, Vaughan L, Bond N, Dillane M, Duncan R, Poole R, Rogan G, Ó Maoiléidigh N. Long-term changes and effects of significant fishery closures on marine survival and biological characteristics of wild and hatchery-reared Atlantic salmon Salmo salar. JOURNAL OF FISH BIOLOGY 2022; 101:128-143. [PMID: 35514226 DOI: 10.1111/jfb.15078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Long-term data, over four decades, were analysed to examine temporal trends in survival indices and phenotypic characteristics of Atlantic salmon Salmo salar returning to the Burrishoole national salmonid monitored river in Ireland. Before 2007, the marine drift net fishery was the major capture method for salmon in Irish home waters, accounting for over 70% of the commercial catch and targeting mixed stocks from multiple rivers. The authors examined size differences in fish captured in marine and freshwater environments and the impact of closure of this fishery on long-term survival indices and fish size. Return rates to Irish home waters for wild one sea-winter (1SW) and a ranching strain of hatchery-reared 1SW Atlantic salmon stocks showed a declining trend up to the time of closure of the fishery (1985-2006). In contrast, closure of the drift net fishery resulted in the anticipated increase in return rate to fresh water in the short term. Nonetheless, the short-term upward trend was not sustained in the following years: the trend for return rate to fresh water (1985-2017) was found to be neither increasing nor decreasing. Mean return rates to fresh water 10 years pre- and post-closure of the drift net fishery increased from 7.4% to 8.5% for wild 1SW and significantly from 2.4% to 3.7% for ranched 1SW suggesting some benefit had accrued as a consequence of drift net closure. For ranched 1SW salmon, entry into fresh water was found to be occurring earlier, which is likely a phenotypical response to changing climatic conditions. A declining trend in fish length was found in the pre-closure period, followed by a more stable trend post-closure. Similar patterns were observed for fish condition and weight parameters. Significantly, a step change in fish size occurred just before the closure of the Irish drift net fishery in both marine and freshwater habitats, when the average length decreased by 3.8 and 4.6 cm, respectively, between 2005 and 2006. This suggests an environmental effect on the population, rather than a fishery closure effect. Similar trends in fish length were observed in wild 1SW salmon kelts and ranched 2SW salmon in fresh water. The stable but not increasing trends post-closure suggest that conditions at sea may not be improving. These findings show that a clear decline occurred in wild and ranched salmon populations' return rates and lengths, while the drift net fishery was still active. Closure of the fishery did not result in a rebound to pre-exploitation levels of these indicators. Nonetheless, the trends went from declining to stable, suggesting the closure helped mitigate the impact of unfavourable environmental and rearing habitat conditions. These findings, based on four decades of data, highlight the urgency of strengthening monitoring of fisheries populations in face of climate change, so as to guide precautionary management measures that, as this study suggests, may be able to mitigate its impacts.
Collapse
Affiliation(s)
- Deirdre Cotter
- Marine Institute, Furnace, Newport, County Mayo, Ireland
| | - Louise Vaughan
- Marine Institute, Furnace, Newport, County Mayo, Ireland
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Nigel Bond
- Marine Institute, Furnace, Newport, County Mayo, Ireland
| | - Mary Dillane
- Marine Institute, Furnace, Newport, County Mayo, Ireland
| | - Roxanne Duncan
- Marine Institute, Furnace, Newport, County Mayo, Ireland
| | - Russell Poole
- Marine Institute, Furnace, Newport, County Mayo, Ireland
| | - Gerard Rogan
- Marine Institute, Furnace, Newport, County Mayo, Ireland
| | | |
Collapse
|
33
|
Bernthal FR, Armstrong JD, Nislow KH, Metcalfe NB. Nutrient limitation in Atlantic salmon rivers and streams: Causes, consequences, and management strategies. AQUATIC CONSERVATION : MARINE AND FRESHWATER ECOSYSTEMS 2022; 32:1073-1091. [PMID: 35915662 PMCID: PMC9314074 DOI: 10.1002/aqc.3811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 02/17/2022] [Accepted: 03/06/2022] [Indexed: 06/16/2023]
Abstract
Freshwater catchments can experience nutrient deficits that result in reduced primary and secondary productivity. The most commonly limiting nutrients are nitrogen and phosphorus, either separately or together. This review considers the impact of increasing nutrient limitation in temperate basin stream and river systems, focusing on upland areas that currently or previously supported wild Atlantic salmon (Salmo salar) populations.Anthropogenic changes to land use and increases in river barriers have altered upland nutrient dynamics, with particular impacts on salmon and other migratory fish species which may be net importers of nutrients to upland streams. Declining salmon populations may further reduce nutrient sources, reducing ecosystem and fisheries productivity below desired levels.Experimental manipulations of nutrient levels have examined the impacts of this cultural oligotrophication. There is evidence that growth and biomass of juvenile salmon can be increased via appropriate additions of nutrients, offering potential as a conservation tool. However, further research is required to understand the long-term effects of these additions on salmon populations and stream ecosystems, and to assess the vulnerability of downstream habitats to eutrophication as a result.Although purposeful nutrient addition with the aim of enhancing and conserving salmonid populations may be justified in some cases, it should be undertaken in an adaptive management framework. In addition, nutrient addition should be linked to nutrient retention and processing, and integrated into large-scale habitat restoration and recovery efforts.Both the scientific and the management community should recognize that the ecological costs and benefits associated with adding nutrients to salmon streams may change in a non-stationary world.
Collapse
Affiliation(s)
- Fionn R. Bernthal
- Institute of Biodiversity Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - John D. Armstrong
- Marine Scotland – ScienceFreshwater Fisheries LaboratoryFaskallyPitlochryUK
| | - Keith H. Nislow
- USDA Forest Service Northern Research StationAmherstMassachusettsUSA
| | - Neil B. Metcalfe
- Institute of Biodiversity Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
34
|
Abidi O, St-Hilaire A, Ouarda TB, Charron C, Boyer C, Daigle A. Regional thermal analysis approach: A management tool for predicting water temperature metrics relevant for thermal fish habitat. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Zheng Y, Zhang Y, Xie Z, Shin PKS, Xu J, Fan H, Zhuang P, Hu M, Wang Y. Seasonal Changes of Growth, Immune Parameters and Liver Function in Wild Chinese Sturgeons Under Indoor Conditions: Implication for Artificial Rearing. Front Physiol 2022; 13:894729. [PMID: 35514333 PMCID: PMC9062076 DOI: 10.3389/fphys.2022.894729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/01/2022] [Indexed: 01/08/2023] Open
Abstract
Seasonality has a significant effect on the physiology of fish, especially the effect of water temperature changes. In the present study, the growth, innate immune parameters and liver function indices of two rescued wild adult Chinese sturgeons under captive conditions were monitored for 1 year. The results showed that the total annual weight loss rate of the male was −4.58% and the total weight gain rate of the female was 24.12%, in which the weight of both individuals registered highly significant differences in summer, fall and winter (p < 0.01). The male Chinese sturgeon also exhibited negative specific growth rates (−0.1 to −0.8%) during spring to fall, whereas positive specific growth rates, ranging from 0.03 to 0.11%, were recorded in the female. Seasonality also affected the innate immune parameters of the two Chinese sturgeons, in which leukocytes had been increasing since spring and C-reactive protein (CRP) content was significantly higher (p < 0.05) in summer than fall in both individuals. The CRP level of the male Chinese sturgeon showed a significant increase from fall to winter (p < 0.05), suggesting that it may have contracted infection or inflammation during this study period. With the analysis of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), transaminase (AST:ALT) ratio, alkaline phosphatase, albumin to globulin ratio and triglycerides, it was found that the liver function of the captive Chinese sturgeons was adversely affected along seasonal changes, with the highest degree of liver impairment in winter. In combining observations from growth performance and changes in innate immune and liver function parameters, the present findings deduced that the male Chinese sturgeon under study was more susceptible to seasonal changes than the female. For better indoor culture of adult Chinese sturgeons, monitoring of hematological parameters to detect early signs of inflammation and liver function abnormality should be conducted with routine veterinary care during prolonged captivity.
Collapse
Affiliation(s)
- Yueping Zheng
- International Research Center for Marine Biosciences & College of Fisheries and Life Science at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Aquatic Wildlife Research Center, Shanghai, China
| | - Yong Zhang
- International Research Center for Marine Biosciences & College of Fisheries and Life Science at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Zhe Xie
- International Research Center for Marine Biosciences & College of Fisheries and Life Science at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Paul K S Shin
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jianan Xu
- Shanghai Aquatic Wildlife Research Center, Shanghai, China
| | - Houyong Fan
- Shanghai Aquatic Wildlife Research Center, Shanghai, China
| | - Ping Zhuang
- Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Scientific Observing and Experimental Station of Fisheries Resources and Environment of East China Sea and Yangtze Estuary, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Menghong Hu
- International Research Center for Marine Biosciences & College of Fisheries and Life Science at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Youji Wang
- International Research Center for Marine Biosciences & College of Fisheries and Life Science at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
36
|
Density-dependence and environmental variability have stage-specific influences on European grayling growth. Oecologia 2022; 199:103-117. [PMID: 35507086 PMCID: PMC9119903 DOI: 10.1007/s00442-022-05163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 04/02/2022] [Indexed: 11/04/2022]
Abstract
Fish somatic growth is indeterminate and can be influenced by a range of abiotic and biotic variables. With climate change forecast to increase the frequency of warming and unusual discharge events, it is thus important to understand how these variables currently influence somatic growth and how that might differ for specific age-classes and/ or life stages. Here, we used a 17-year dataset from a chalk stream in southern England to identify the abiotic and biotic influences on the growth of juvenile, sub-adult and adult life stages of European grayling (Thymallus thymallus), a cold-water riverine salmonid. The results revealed that interannual variations in grayling growth were well described by annual- and site-specific abiotic and biotic explanatory variables. We found divergent responses between life stages to increased temperature and unusual discharge during the main growth period with, for example, elevated temperatures related to increased juvenile growth but reduced sub-adult growth, and high discharge events related to increased sub-adult growth yet reduced juvenile growth. Conversely, stage-specific grayling abundance negatively influenced growth at each life stage, though only juvenile growth was impacted by the abundance of a competitor species, brown trout (Salmo trutta). These results emphasise the merits of testing a wide range of environmental and biological explanatory variables on fish growth, and across life stages. They also reveal the importance of maintaining high habitat heterogeneity in rivers to ensure all life stages can reduce their competitive interactions and have access to adequate flow and thermal refugia during periods of elevated environmental stress.
Collapse
|
37
|
The Ten Commandments of Successful Fishery Management of Wild Brown Trout Salmo trutta Populations in Salmonid Streams in the Bohemian Region (Czech Republic). APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The brown trout Salmo trutta is a fish species that is vulnerable to climate change and anthropogenic activities in its native range. The case studies of successful restoration of brown trout populations are rare. In this study, fishery managers who successfully restored brown trout populations are sharing their know-how and advice about their conservation strategy. Overall, twenty fishery managers were interviewed to give advice about their successful conservation practices of local brown trout populations. Using a qualitative analysis method, ten main recommendations were extracted: (1) assess the status of local brown trout populations, (2) form a union of fisheries managers and work together, (3) support the ability of the streams to retain water, (4) prevent artificial removal of water from the salmonid streams, (5) adjust the brown trout stocking strategy to individual streams, (6) set strict protection of native wild brown trout populations, (7) enforce angling bans and regulations, (8) support the rearing of brown trout in the aquaculture sector, (9) limit brown trout stocking to genetically native fish, and (10) stock smaller 0 + brown trout instead of large adult ones. In conclusion, the fishery managers agreed on the basic management steps that need to be made to conserve brown trout populations.
Collapse
|
38
|
Reid CH, Patrick PH, Rytwinski T, Taylor JJ, Willmore WG, Reesor B, Cooke SJ. An updated review of cold shock and cold stress in fish. JOURNAL OF FISH BIOLOGY 2022; 100:1102-1137. [PMID: 35285021 DOI: 10.1111/jfb.15037] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/23/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Temperature is critical in regulating virtually all biological functions in fish. Low temperature stress (cold shock/stress) is an often-overlooked challenge that many fish face as a result of both natural events and anthropogenic activities. In this study, we present an updated review of the cold shock literature based on a comprehensive literature search, following an initial review on the subject by M.R. Donaldson and colleagues, published in a 2008 volume of this journal. We focus on how knowledge on cold shock and fish has evolved over the past decade, describing advances in the understanding of the generalized stress response in fish under cold stress, what metrics may be used to quantify cold stress and what knowledge gaps remain to be addressed in future research. We also describe the relevance of cold shock as it pertains to environmental managers, policymakers and industry professionals, including practical applications of cold shock. Although substantial progress has been made in addressing some of the knowledge gaps identified a decade ago, other topics (e.g., population-level effects and interactions between primary, secondary and tertiary stress responses) have received little or no attention despite their significance to fish biology and thermal stress. Approaches using combinations of primary, secondary and tertiary stress responses are crucial as a research priority to better understand the mechanisms underlying cold shock responses, from short-term physiological changes to individual- and population-level effects, thereby providing researchers with better means of quantifying cold shock in laboratory and field settings.
Collapse
Affiliation(s)
- Connor H Reid
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | - Trina Rytwinski
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Canadian Centre for Evidence-Based Conservation, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Jessica J Taylor
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Canadian Centre for Evidence-Based Conservation, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | | | | | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
39
|
Adams CE, Chavarie L, Rodger JR, Honkanen HM, Thambithurai D, Newton MP. An opinion piece: the evolutionary and ecological consequences of changing selection pressures on marine migration in Atlantic salmon. JOURNAL OF FISH BIOLOGY 2022; 100:860-867. [PMID: 35212396 PMCID: PMC9311443 DOI: 10.1111/jfb.15024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
There are strong signals that the selection forces favouring the expression of long-distance sea migration by Atlantic salmon (Salmo salar) are changing. Unlike many other behavioural traits, the costs of migration are incurred before any fitness benefits become apparent to the migrant. The expression of this behaviour has thus been shaped by selection forces over multiple generations and cannot respond to short interval (within a single generation) environmental change as many other behavioural traits can. Here we provide a framework to examine the evolutionary and ecological consequences of a sustained increase in migration cost. We argue that Atlantic salmon may have entered an evolutionary trap, where long-distance sea migration has become maladaptive because of shifting environmental conditions. We predict that if higher migration costs (affecting survivorship and ultimately fitness) persist, then shifting selection pressures will result in continuing declines in population size. We suggest, however, that in some populations there is demonstrable capacity for evolutionary rescue responses within the species which is to be found in the variation in the expression of migration. Under a scenario of low to moderate change in the selection forces that previously promoted migration, we argue that disruptive, sex-based selection would result in partial migration, where females retain sea migration but with anadromy loss predominantly in males. With more acute selection forces, anadromy may be strongly selected against, under these conditions both sexes may become freshwater resident. We suggest that as the migration costs appear to be higher in catchments with standing waters, then this outcome is more likely in such systems. We also speculate that as a result of the genetic structuring in this species, not all populations may have the capacity to respond adequately to change. The consequences of this for the species and its management are discussed.
Collapse
Affiliation(s)
- Colin E. Adams
- Scottish Centre for Ecology & the Natural EnvironmentInstitute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, RowardennanGlasgowUK
| | - Louise Chavarie
- Scottish Centre for Ecology & the Natural EnvironmentInstitute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, RowardennanGlasgowUK
- Faculty of Environmental Sciences and Natural Resource ManagementThe Norwegian University of Life SciencesÅsNorway
| | - Jessica R. Rodger
- Atlantic Salmon Trust FellowScottish Centre for Ecology & the Natural Environment, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, RowardennanGlasgowUK
| | - Hannele M. Honkanen
- Scottish Centre for Ecology & the Natural EnvironmentInstitute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, RowardennanGlasgowUK
| | - Davide Thambithurai
- Atlantic Salmon Trust FellowScottish Centre for Ecology & the Natural Environment, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, RowardennanGlasgowUK
| | - Matthew P. Newton
- Scottish Centre for Ecology & the Natural EnvironmentInstitute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, RowardennanGlasgowUK
| |
Collapse
|
40
|
Pierce R, Rosgen D, Geenen D, Rosgen B. Wild trout and hydrologic response to restoration of incised streams with improved water use for ranching and fisheries. Ecosphere 2022. [DOI: 10.1002/ecs2.3986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Dave Rosgen
- Wildland Hydrology Fort Collins Colorado USA
| | | | | |
Collapse
|
41
|
Kennedy RJ, Rosell R, Allen M. Investigating the phenology of juvenile potamodromous brown trout (Salmo trutta L.) in two large lake catchments. JOURNAL OF FISH BIOLOGY 2022; 100:697-704. [PMID: 34932222 DOI: 10.1111/jfb.14982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
There is growing interest in the phenology of juvenile Salmo trutta and evidence of significant downstream migration during the autumn in some anadromous populations. The present study used acoustic telemetry to examine the phenology of potamodromous trout parr across a region encompassing two large lake catchments. One hundred sixty-seven trout parr were tagged in late summer across four lake tributaries between 2018 and 2020. In total, 75 tagged parr migrated into the lakes with 67 (89%) migrating between September and December and 8 (11%) migrating between March and June. Autumn migration was highly prevalent across all the tributaries, with 16%-66% of each tagged sample exhibiting autumn migration, and 0%-15% of each tagged sample exhibiting spring migration. Autumn migrants were significantly longer and heavier than spring migrants, but condition factor was similar. Autumn migrants were associated with higher river discharge levels and lower water temperatures than spring migrants. The management challenges posed by extensive autumn migration behaviour in migratory trout stocks are examined and discussed.
Collapse
Affiliation(s)
- Richard J Kennedy
- Agri-Food & Biosciences Institute, River Bush Salmon Station, Bushmills, UK
| | - Robert Rosell
- Agri-Food & Biosciences Institute, Newforge Lane, Belfast, UK
| | - Michelle Allen
- Agri-Food & Biosciences Institute, Newforge Lane, Belfast, UK
| |
Collapse
|
42
|
Liu G, Wang H, Lv Z, Tang X, Yu M. A comprehensive metabolomic and lipidomic analysis reveals the effect of temperature on flounder (paralichthys olivaceus). J Therm Biol 2022; 104:103203. [DOI: 10.1016/j.jtherbio.2022.103203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/20/2021] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
|
43
|
Larval Development in Tropical Gar (Atractosteus tropicus) Is Dependent on the Embryonic Thermal Regime: Ecological Implications under a Climate Change Context. FISHES 2022. [DOI: 10.3390/fishes7010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In ectotherm species, environmental temperature plays a key role in development, growth, and survival. Thus, determining how temperature affects fish populations is of utmost importance to accurately predict the risk of climate change over fisheries and aquaculture, critical to warrant nutrition and food security in the coming years. Here, the potential effects of abnormal thermal regimes (24, 28 and 32 °C; TR24, TR28, and TR32, respectively) exclusively applied during embryogenesis in tropical gar (Atractosteus tropicus) has been explored to decipher the potential consequences on hatching and growth from fertilization to 16 days post-fertilization (dpf), while effects on skeletal development and body morphology were explored at fertilization and 16 dpf. Egg incubation at higher temperatures induced an early hatching and mouth opening. A higher hatching rate was obtained in eggs incubated at 28 °C when compared to those at 24 °C. No differences were found in fish survival at 16 dpf, with values ranging from 84.89 to 88.86%, but increased wet body weight and standard length were found in larvae from TR24 and TR32 groups. Thermal regime during embryogenesis also altered the rate at which the skeletal development occurs. Larvae from the TR32 group showed an advanced skeletal development, with a higher development of cartilaginous structures at hatching but reduced at 16 dpf when compared with the TR24 and TR28 groups. Furthermore, this advanced skeletal development seemed to determine the fish body morphology. Based on biometric measures, a principal component analysis showed how along development, larvae from each thermal regime were clustered together, but with each population remaining clearly separated from each other. The current study shows how changes in temperature may induce craniofacial and morphological alterations in fish during early stages and contribute to understanding the possible effects of global warming in early development of fish and its ecological implications.
Collapse
|
44
|
Mc Nicholl DG, Harris LN, Loewen T, May P, Tran L, Akeeagok R, Methuen K, Lewis C, Jeppesen R, Illasiak S, Green B, Koovaluk J, Annahatak Z, Kapakatoak J, Kaosoni N, Hainnu B, Maksagak B, Reist JD, Dunmall KM. Noteworthy occurrences among six marine species documented with community engagement in the Canadian Arctic. ANIMAL MIGRATION 2021. [DOI: 10.1515/ami-2020-0113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Arctic marine ecosystems are changing, one aspect of which appears to be distributional expansions of sub-arctic species. For Arctic marine systems, there is limited occurrence information for many species, especially those found in restricted habitats (e.g., ice-covered, far north, or deep-water). Increasing observations through on-going Fisheries and Oceans Canada (DFO) community-based monitoring programs (e.g., Arctic Coast, Cambridge Bay Arctic Char stock assessment, Arctic Salmon, and Kugluktuk coastal surveys), community observation networks, and local media have augmented opportunities to document new occurrences of marine fishes. Combined data from historical records and contemporary observations at the local scale can then delineate these among three types of occurrences: gradual distributional expansion, episodic vagrants, and rare endemics. Here we document nine occurrences of unusual sightings across six fish species (Pink Salmon Oncorhynchus gorbuscha, Bering Wolffish Anarhichas orientalis, Greenland Shark Somniosus microcephalus, Broad Whitefish Coregonus nasus, Banded Gunnel Pholis fasciata and Salmon Shark Lamna ditropis) from six northern Canadian communities and classify the nature of each observation as rare, vagrant, or expanding distributions. Uniting scientific and local observations represents a novel approach to monitor distributional changes suitable for a geographically large but sparsely populated area such as the Canadian Arctic. The new occurrences are important for discerning the potential effects of the presence of these species in Arctic ecosystems. These observations more broadly will build on our understanding of northern biodiversity change associated with warming Arctic environments.
Collapse
Affiliation(s)
| | - Les N. Harris
- Fisheries and Oceans Canada , Winnipeg, R3T 2N6, MB , Canada
| | - Tracey Loewen
- Fisheries and Oceans Canada , Winnipeg, R3T 2N6, MB , Canada
| | - Peter May
- Makivik Corporation , Kuujjuaq, J0M 1C0, QC , Canada
| | - Lilian Tran
- Makivik Corporation , Kuujjuaq, J0M 1C0, QC , Canada
| | | | - Kevin Methuen
- Government of Nunavut , Kugluktuk, X0B 0E0, NU , Canada
| | | | | | | | | | | | | | | | | | | | - Beverly Maksagak
- Ekaluktutiak Hunters and Trappers Organization , Cambridge Bay, X0B 0C0, NU , Canada
| | - James D. Reist
- Fisheries and Oceans Canada , Winnipeg, R3T 2N6, MB , Canada
| | | |
Collapse
|
45
|
Arevalo E, Maire A, Tétard S, Prévost E, Lange F, Marchand F, Josset Q, Drouineau H. Does global change increase the risk of maladaptation of Atlantic salmon migration through joint modifications of river temperature and discharge? Proc Biol Sci 2021; 288:20211882. [PMID: 34875197 PMCID: PMC8651411 DOI: 10.1098/rspb.2021.1882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In freshwater ecosystems, water temperature and discharge are two intrinsically associated triggers of key events in the life cycle of aquatic organisms such as the migration of diadromous fishes. However, global changes have already profoundly altered the thermal and hydrological regimes of rivers, affecting the timing of fish migration as well as the environmental conditions under which it occurs. In this study, we focused on Atlantic salmon (Salmo salar), an iconic diadromous species whose individuals migrate between marine nursery areas and continental spawning grounds. An innovative multivariate method was developed to analyse long-term datasets of daily water temperature, discharge and both salmon juvenile downstream and adult upstream migrations in three French rivers (the Bresle, Oir and Nivelle rivers). While all three rivers have gradually warmed over the last 35 years, changes in discharge have been very heterogeneous. Juveniles more frequently used warmer temperatures to migrate. Adults migrating a few weeks before spawning more frequently used warm temperatures associated with high discharges. This has already led to modifications in preferential niches of both life stages and suggests a potential mismatch between these populations' ecological preference and changes in their local environment due to global change.
Collapse
Affiliation(s)
- Elorri Arevalo
- INRAE, Unité EABX-Écosystèmes Aquatiques et Changements Globaux, HYNES (Irstea-EDF R&D), 50 avenue de Verdun, 33612 Cestas Cedex, France
| | - Anthony Maire
- EDF Recherche et Développement, Laboratoire National d'Hydraulique et Environnement, HYNES (Irstea-EDF R&D), 6 quai Watier, 78401 Chatou Cedex, France
| | - Stéphane Tétard
- ICEO Environnement, 220 rue des Ailes, 85440 Talmont-Saint-Hilaire, France
| | - Etienne Prévost
- Université de Pau et des Pays de l'Adour, e2s UPPA, INRAE, ECOBIOP, Saint-Pée-sur-Nivelle, France
| | - Frédéric Lange
- Université de Pau et des Pays de l'Adour, e2s UPPA, INRAE, ECOBIOP, Saint-Pée-sur-Nivelle, France
| | - Frédéric Marchand
- INRAE, Unité Expérimentale d'Écologie et d'Écotoxicologie Aquatique, 65, rue de Saint-Brieuc, 35042 Rennes CEDEX, France
| | - Quentin Josset
- UMR BOREA 7208, Muséum National D'Histoire Naturelle, Service des Stations Marines, 35800 Dinard, France.,MIAME - Management of Diadromous Fish in their Environment, OFB, INRAE, Institut Agro, UNIV PAU & PAYS ADOUR/E2S UPPA, Rennes, France.,Office Français de la Biodiversité, Direction Recherche et Appui Scientifique, Rue des Fontaines, 76260 Eu, France
| | - Hilaire Drouineau
- INRAE, Unité EABX-Écosystèmes Aquatiques et Changements Globaux, HYNES (Irstea-EDF R&D), 50 avenue de Verdun, 33612 Cestas Cedex, France
| |
Collapse
|
46
|
Negative effects of parasite exposure and variable thermal stress on brown trout (Salmo trutta) under future climatic and hydropower production scenarios. CLIMATE CHANGE ECOLOGY 2021. [DOI: 10.1016/j.ecochg.2021.100039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
The effect of temperature on growth performance and aerobic metabolic scope in Arctic charr, Salvelinus alpinus (L.). J Therm Biol 2021; 104:103117. [DOI: 10.1016/j.jtherbio.2021.103117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 09/27/2021] [Accepted: 10/22/2021] [Indexed: 11/20/2022]
|
48
|
Caradima B, Scheidegger A, Brodersen J, Schuwirth N. Bridging mechanistic conceptual models and statistical species distribution models of riverine fish. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Archer LC, Hutton SA, Harman L, Russell Poole W, Gargan P, McGinnity P, Reed TE. Associations between metabolic traits and growth rate in brown trout ( Salmo trutta) depend on thermal regime. Proc Biol Sci 2021; 288:20211509. [PMID: 34521251 PMCID: PMC8441116 DOI: 10.1098/rspb.2021.1509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 02/04/2023] Open
Abstract
Metabolism defines the energetic cost of life, yet we still know relatively little about why intraspecific variation in metabolic rate arises and persists. Spatio-temporal variation in selection potentially maintains differences, but relationships between metabolic traits (standard metabolic rate (SMR), maximum metabolic rate (MMR), and aerobic scope) and fitness across contexts are unresolved. We show that associations between SMR, MMR, and growth rate (a key fitness-related trait) vary depending on the thermal regime (a potential selective agent) in offspring of wild-sampled brown trout from two populations reared for approximately 15 months in either a cool or warm (+1.8°C) regime. SMR was positively related to growth in the cool, but negatively related in the warm regime. The opposite patterns were found for MMR and growth associations (positive in warm, negative in the cool regime). Mean SMR, but not MMR, was lower in warm regimes within both populations (i.e. basal metabolic costs were reduced at higher temperatures), consistent with an adaptive acclimation response that optimizes growth. Metabolic phenotypes thus exhibited a thermally sensitive metabolic 'floor' and a less flexible metabolic 'ceiling'. Our findings suggest a role for growth-related fluctuating selection in shaping patterns of metabolic variation that is likely important in adapting to climate change.
Collapse
Affiliation(s)
- Louise C. Archer
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland
- Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
| | - Stephen A. Hutton
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland
- Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
| | - Luke Harman
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland
- Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
| | | | - Patrick Gargan
- Inland Fisheries Ireland, 3044 Lake Drive, Citywest Business Campus, Dublin D24 Y265, Ireland
| | - Philip McGinnity
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland
- Marine Institute, Furnace, Newport, Co. Mayo, Ireland
| | - Thomas E. Reed
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland
- Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
| |
Collapse
|
50
|
Marsh JE, Lauridsen RB, Riley WD, Simmons OM, Artero C, Scott LJ, Beaumont WRC, Beaumont WA, Davy-Bowker J, Lecointre T, Roberts DE, Gregory SD. Warm winters and cool springs negatively influence recruitment of Atlantic salmon (Salmo salar L.) in a southern England chalk stream. JOURNAL OF FISH BIOLOGY 2021; 99:1125-1129. [PMID: 33881168 DOI: 10.1111/jfb.14760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Previous work suggests that juvenile salmon recruitment in rain-fed rivers is negatively influenced by warm and wet winters and cool springs. We tested whether this is generally applicable to a southern England chalk stream characterized by comparatively stable discharges and temperatures. We found that warm spawning and cool emergence temperatures negatively influenced juvenile recruitment between 2015 and 2020. Together these findings suggest an ability to predict juvenile productivity from water temperature records around spawning and fry emergence, thereby allowing time for management interventions in years of unfavourable temperatures.
Collapse
Affiliation(s)
- Jessica E Marsh
- Salmon and Trout Research Centre, Game and Wildlife Conservation Trust, River Laboratory, Dorset, UK
- Department of Life and Environmental Sciences, Bournemouth University, Dorset, UK
| | - Rasmus B Lauridsen
- Salmon and Trout Research Centre, Game and Wildlife Conservation Trust, River Laboratory, Dorset, UK
| | - William D Riley
- The Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, Suffolk, UK
| | - Olivia M Simmons
- Salmon and Trout Research Centre, Game and Wildlife Conservation Trust, River Laboratory, Dorset, UK
- Department of Life and Environmental Sciences, Bournemouth University, Dorset, UK
| | - Céline Artero
- Salmon and Trout Research Centre, Game and Wildlife Conservation Trust, River Laboratory, Dorset, UK
| | - Luke J Scott
- Salmon and Trout Research Centre, Game and Wildlife Conservation Trust, River Laboratory, Dorset, UK
| | - William R C Beaumont
- Salmon and Trout Research Centre, Game and Wildlife Conservation Trust, River Laboratory, Dorset, UK
| | - William A Beaumont
- Salmon and Trout Research Centre, Game and Wildlife Conservation Trust, River Laboratory, Dorset, UK
| | - John Davy-Bowker
- Department of Life and Environmental Sciences, Bournemouth University, Dorset, UK
- Freshwater Biological Association, River Laboratory, Dorset, UK
- Natural History Museum, London, UK
| | - Thomas Lecointre
- Salmon and Trout Research Centre, Game and Wildlife Conservation Trust, River Laboratory, Dorset, UK
| | - Dylan E Roberts
- Salmon and Trout Research Centre, Game and Wildlife Conservation Trust, River Laboratory, Dorset, UK
| | - Stephen D Gregory
- Salmon and Trout Research Centre, Game and Wildlife Conservation Trust, River Laboratory, Dorset, UK
| |
Collapse
|