1
|
Dehler CE, Boudinot P, Collet B, Martin SM. Phylogeny and expression of tetraspanin CD9 paralogues in rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104735. [PMID: 37187444 DOI: 10.1016/j.dci.2023.104735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
CD9 is a member of the tetraspanin family, which is characterised by a unique domain structure and conserved motifs. In mammals, CD9 is found in tetraspanin-enriched microdomains (TEMs) on the surface of virtually every cell type. CD9 has a wide variety of roles, including functions within the immune system. Here we show the first in-depth analysis of the cd9 gene family in salmonids, showing that this gene has expanded to six paralogues in three groups (cd9a, cd9b, cd9c) through whole genome duplication events. We suggest that through genome duplications, cd9 has undergone subfunctionalisation in the paralogues and that cd9c1 and cd9c2 in particular are involved in antiviral responses in salmonid fish. We show that these paralogues are significantly upregulated in parallel to classic interferon-stimulated genes (ISGs) active in the antiviral response. Expression analysis of cd9 may therefore become an interesting target to assess teleost responses to viruses.
Collapse
Affiliation(s)
- Carola E Dehler
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, 78350, Jouy-en-Josas, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, 78350, Jouy-en-Josas, France
| | - SamuelA M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
2
|
Milburn JV, Hoog AM, Winkler S, van Dongen KA, Leitner J, Patzl M, Saalmüller A, de Luca K, Steinberger P, Mair KH, Gerner W. Expression of CD9 on porcine lymphocytes and its relation to T cell differentiation and cytokine production. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104080. [PMID: 33781781 DOI: 10.1016/j.dci.2021.104080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
In this work, we report on two novel monoclonal antibodies, specific for porcine CD9. CD9 is a tetraspanin that is expressed on a wide variety of cells. We phenotyped porcine immune cell subsets and found that CD9 was expressed on all monocytes as well as a subset of B cells. CD9 was variably expressed on T cells, with CD4 T cells containing the highest frequency of CD9+ cells. CD9 expression positively correlated with the frequency of central memory CD4 T cells in ex vivo PBMC. Therefore, we proceeded to explore CD9 as a marker of T cell function. Here we observed that CD9 was expressed on the vast majority of long-lived influenza A virus-specific effector cells that retained the capacity for cytokine production in response to in vitro recall antigen. Therefore, the new antibodies enable the detection of a cell surface molecule with functional relevance to T cells. Considering the importance of CD9 in membrane remodelling across many cell types, they will also benefit the wider field of swine biomedical research.
Collapse
Affiliation(s)
- Jemma V Milburn
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Anna M Hoog
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Simona Winkler
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Katinka A van Dongen
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Judith Leitner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Martina Patzl
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Karelle de Luca
- Laboratory of Veterinary Immunology, Global Innovation, Boehringer Ingelheim Animal Health, Lyon, France
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Kerstin H Mair
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria; Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Wilhelm Gerner
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria; Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
3
|
Cao J, Tan X. Comparative analysis of the tetraspanin gene family in six teleost fishes. FISH & SHELLFISH IMMUNOLOGY 2018; 82:432-441. [PMID: 30145201 DOI: 10.1016/j.fsi.2018.08.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/02/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
Tetraspanins are a family of membrane proteins, which play important roles in many aspects of cell biology and physiology via binding other tetraspanins or proteins. In this study, we identified 251 putative tetraspanin genes in 6 teleost fishes. Conserved gene organization and motif distribution suggested their functional relevance existing in each group. Synteny analyses implied conserved and dynamic evolution characteristics of this gene family in several vertebrates. We also found that some recombination events have accelerated the evolution of this gene family. Moreover, a few positive selection sites were identified. Expression patterns of some tetraspanins were further studied under organophosphorus stress using transcriptome sequencing. Functional network analyses identified some interacting genes that exhibited 174 interactions, which reflected the diversity of tetraspanin binding proteins. The results will provide a foundation for the further functional investigation of the tetraspanin genes in fishes.
Collapse
Affiliation(s)
- Jun Cao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Xiaona Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
4
|
Liang W, Gao M, Song X, Han Y, Go M, Su P, Li Q, Liu X. A novel CD81 homolog identified in lamprey, Lampetra japonica, with roles in the immune response of lamprey VLRB+ lymphocytes. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1158-1165. [PMID: 30260364 DOI: 10.1093/abbs/gmy116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Indexed: 11/14/2022] Open
Abstract
The cluster of differentiation 81 (CD81), a member of the transmembrane 4 superfamily, is primarily found to be expressed in a wide variety of cells including T and B cells of vertebrates as a critical modulator. In the present study, the open reading frame of a CD81 gene homolog (Lja-CD81) was cloned in lamprey, Lampetra japonica, which is 702 bp long and encodes a protein of 233-amino acids. Although Lja-CD81 seems to be close to CD9 molecules in their full-length sequences, Lja-CD81 possesses higher identity to vertebrates' CD81 than to CD9 (including a lamprey CD9) molecules in their large extracellular loops. In addition, it also possesses a myristoylation site (Met-Gly-Val-Glu-Gly-Cys-Leu-Lys) in its N-terminal region which is identical to the N-terminal regions of CD81 molecules. These data suggest that CD9 and CD81 molecules diverged no later than the emergence of jawless vertebrates. The mRNA levels of Lja-CD81 in lymphocytes and supraneural myeloid bodies were up-regulated significantly after stimulation with mixed antigens, and a similar expressional pattern of Lja-CD81 at protein level was also confirmed. Furthermore, Lja-CD81 was found to be co-localized with variable lymphocyte receptor B (VLRB) evenly on the cell membrane of peripheral blood lymphocytes isolated from control group, but they were found to aggregate on one side of the membrane of peripheral blood VLRB+ lymphocytes after stimulation with mixed antigens. All these results indicate that the Lja-CD81 identified in lamprey may play an important role in the immune response of lamprey VLRB+ lymphocytes.
Collapse
Affiliation(s)
- Wenjing Liang
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Miceng Gao
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Xueying Song
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yinglun Han
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Meng Go
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Xin Liu
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| |
Collapse
|
5
|
Saiz ML, Rocha-Perugini V, Sánchez-Madrid F. Tetraspanins as Organizers of Antigen-Presenting Cell Function. Front Immunol 2018; 9:1074. [PMID: 29875769 PMCID: PMC5974036 DOI: 10.3389/fimmu.2018.01074] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
Professional antigen-presenting cells (APCs) include dendritic cells, monocytes, and B cells. APCs internalize and process antigens, producing immunogenic peptides that enable antigen presentation to T lymphocytes, which provide the signals that trigger T-cell activation, proliferation, and differentiation, and lead to adaptive immune responses. After detection of microbial antigens through pattern recognition receptors (PRRs), APCs migrate to secondary lymphoid organs where antigen presentation to T lymphocytes takes place. Tetraspanins are membrane proteins that organize specialized membrane platforms, called tetraspanin-enriched microdomains, which integrate membrane receptors, like PRR and major histocompatibility complex class II (MHC-II), adhesion proteins, and signaling molecules. Importantly, through the modulation of the function of their associated membrane partners, tetraspanins regulate different steps of the immune response. Several tetraspanins can positively or negatively regulate the activation threshold of immune receptors. They also play a role during migration of APCs by controlling the surface levels and spatial arrangement of adhesion molecules and their subsequent intracellular signaling. Finally, tetraspanins participate in antigen processing and are important for priming of naïve T cells through the control of T-cell co-stimulation and MHC-II-dependent antigen presentation. In this review, we discuss the role of tetraspanins in APC biology and their involvement in effective immune responses.
Collapse
Affiliation(s)
- Maria Laura Saiz
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Vera Rocha-Perugini
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| |
Collapse
|
6
|
Song X, Gao X, Lu J, Liang H, Su P, Li Q, Pang Y. High mobility group box transcription factor 1 (HBP1) from Lampetra japonica affects cell cycle regulation. Dev Growth Differ 2018. [PMID: 29520767 DOI: 10.1111/dgd.12426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
High mobility group (HMG) box-containing protein 1 (HBP1) is a member of the HMG family of chromosomal proteins. Previous studies have shown that human HBP1 exhibits tumor-suppressor activity. Here, we identified a homologue of HBP1, L-hbp1, in Lampetra japonica. The L-hbp1 gene shared high sequence similarity with its homologues in jawed vertebrates, as shown by bioinformatics analyses. L-hbp1 contains a 1,584-bp open reading frame that encodes 527 amino acids. A pAdenox-L-HBP1 plasmid was constructed and transfected successfully in Raji cells, as revealed by real-time PCR. The overexpression of L-HBP1 reduced cell growth rates, inhibited G1 phase progression, decreased cyclin D1 and c-Myc protein expression, and increased p53 protein expression. Western blot and immunohistochemical assays showed that L-HBP1 was primarily distributed in the heart, kidney, gill and liver of lamprey. Cell cycle analysis revealed that decreased L-HBP1 expression in HBP1 morpholino oligonucleotide-transfected lamprey cells resulted in a decreased fraction of cells in the G1 phase and corresponding increases in the S and G2/M phases. Additionally, treatment of lamprey cardiac cells with pharmacological inhibitors of p38 MAP kinase released the cells from G1 arrest. Together, these results indicated that HBP1 expression in lamprey was correlated with the onset of mitotic arrest in these cells, which have implications for cell cycle regulation.
Collapse
Affiliation(s)
- Xiaoping Song
- College of Life Science, Liaoning Normal University, Dalian, China.,Respiratory Medicine, Affiliated Zhong shan Hospital of Dalian University, Dalian, China
| | - Xingxing Gao
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Jiali Lu
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Hongfang Liang
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| |
Collapse
|
7
|
Chen L, Wu F, Yuan S, Feng B. Identification and characteristic of three members of the C1q/TNF-related proteins (CTRPs) superfamily in Eudontomyzon morii. FISH & SHELLFISH IMMUNOLOGY 2016; 59:233-240. [PMID: 27771341 DOI: 10.1016/j.fsi.2016.10.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
C1q is the target recognition protein of the classical complement pathway and a major connecting link between innate and acquired immunity. C1q and the multifunctional tumor necrosis factor (TNF) ligand family is of similar crystal structures, are designated the C1q/TNF-related proteins (CTRPs) superfamily. They are involved in processes as diverse as host defense, inflammation, apoptosis, autoimmunity, cell differentiation, organogenesis, hibernation and insulinresistant obesity. In this study, three members of the CTRPs superfamily were isolated and characterized in Yalu River lampreys (Eudontomyzon morii), and are respectively named LaC1qC, LaCTRP1, LaCTRP9. The full-length cDNAs of C1qC-like (LaC1qAL), CTRP1-like (LaCTRP1), and CTRP9-like (LaCTRP9) consist of 723, 762 and 825 bp of nucleotide sequence encoding polypeptides of 241, 254 and 275 amino acids, respectively. All-three proteins share three common domains: a signal peptide at the N terminus, a collagenous domain (characteristic Gly-X-Y repeats), and a C-terminal globular domain. In addition, the higher expression level of the three proteins in heart by RT-PCR and real-time PCR tissue profiling implied that they might involve in immune response or injury repair of the heart in lamprey.
Collapse
Affiliation(s)
- Liyong Chen
- Guangdong Province Key Laboratory for Medical Molecular Diagnostics, China-America Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan 523808, China.
| | - Fenfang Wu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, China
| | - Shengjian Yuan
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, China
| | - Bo Feng
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, China
| |
Collapse
|
8
|
Wu F, Chen L, Ren Y, Yang X, Yu T, Feng B, Chen S, Xu A. An inhibitory receptor of VLRB in the agnathan lamprey. Sci Rep 2016; 6:33760. [PMID: 27762335 PMCID: PMC5071834 DOI: 10.1038/srep33760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/31/2016] [Indexed: 01/19/2023] Open
Abstract
Lamprey, the primitive jawless vertebrate, uses variable lymphocyte receptor (VLR) as alternative adaptive immune system instead of immunoglobulin (Ig)-based receptors used in jawed vertebrates. In the present study, we characterized a potential inhibitory receptor of VLRB from leucocytes in lamprey. It is a novel ITIM-containing IgSF protein and was therefore named as NICIP. NICIP has two Ig-like domains in extracellular region, a transmembrane domain and two classical ITIM motifs in cytoplasmic domain. It is mainly expressed on the surface of granulocytes and monocytes and can interact with VLRB. In transiently transfected HEK293T cells, it was confirmed again that it could interact with VLRB and the two phosphorylated ITIM motifs could recruit SHP-1 and SHP-2. These results imply that NICIP may play a role as a potential inhibitory receptor of VLRB and involve in negative regulation of immune response mediated by VLRB.
Collapse
Affiliation(s)
- Fenfang Wu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, P. R. China
| | - Liyong Chen
- Guangdong Province Key Laboratory for Medical Molecular Diagnostics, China-America Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan 523808, P. R. China
| | - Yong Ren
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, P. R. China
| | - Xiaojing Yang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, P. R. China
| | - Tongzhou Yu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, P. R. China
| | - Bo Feng
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, P. R. China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, P. R. China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, P. R. China.,Beijing University of Chinese Medicine, Beijing, 100029, P. R. China
| |
Collapse
|
9
|
Zhang Q, Song X, Su P, Li R, Liu C, Gou M, Wang H, Liu X, Li Q. A novel homolog of protein tyrosine kinase Fyn identified in Lampetra japonica with roles in the immune response. Gene 2016; 579:193-200. [DOI: 10.1016/j.gene.2015.12.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/10/2015] [Accepted: 12/27/2015] [Indexed: 11/27/2022]
|
10
|
Transcriptomic Profiling of Spleen in Grass-Fed and Grain-Fed Angus Cattle. PLoS One 2015; 10:e0135670. [PMID: 26367387 PMCID: PMC4569079 DOI: 10.1371/journal.pone.0135670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/27/2015] [Indexed: 01/01/2023] Open
Abstract
The grass-fed cattle obtain nutrients directly from pastures containing limited assimilable energy but abundant amount of fiber; by contrast, grain-fed steers receive a diet that is comprised mainly of grains and serves as an efficient source of high-digestible energy. Besides energy, these two types of diet differ in a large number of nutritional components. Additionally, animals maintained on rich-energy regimen are more likely to develop metabolic disorders and infectious diseases than pasture raised individuals. Thus, we hypothesize that spleen–a relevant immune organ–may function differently under disparate regimes. The objective of this study was to find the differentially expressed genes in the spleen of grass-fed and grain-fed steers, and furtherly explore the potential involved biopathways. Through RNA sequencing (RNA-Seq), we detected 123 differentially expressed genes. Based on these genes, we performed an Ingenuity Pathway Analysis (IPA) and identified 9 significant molecular networks and 13 enriched biological pathways. Two of the pathways, Nur77 signaling in T lymphocytes and calcium-induced T lymphocyte apoptosis which are immune related, contain a pair of genes HLA-DRA and NR4A1 with dramatically altered expression level. Collectively, our results provided valuable insights into understanding the molecular mechanism of spleen under varied feeding regimens.
Collapse
|
11
|
Castro R, Abós B, González L, Aquilino C, Pignatelli J, Tafalla C. Molecular characterization of CD9 and CD63, two tetraspanin family members expressed in trout B lymphocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:116-125. [PMID: 25769915 DOI: 10.1016/j.dci.2015.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
Tetraspanins are a family of membrane-organizing proteins, characterized by the presence of four highly conserved transmembrane regions that mediate diverse physiological functions. In the current study, we have identified two novel tetraspanin members in rainbow trout (Oncorhynchus mykiss), homologs to mammalian CD9 and CD63. Both genes were expressed in muscle, skin, gills, hindgut, gonad, liver, spleen, head kidney, thymus and peripheral blood leukocytes. Throughout the early life cycle stages, CD9 mRNA levels significantly increased after first feeding, whereas CD63 transcription remained constant during all the developmental stages analyzed. In response to an experimental bath infection with viral hemorrhagic septicemia virus (VHSV), CD9 transcription was down-regulated in the gills, while CD63 mRNA levels were down-regulated in the head kidney. Instead, when the virus was intraperitoneally injected, the transcription of both genes was significantly up-regulated in peritoneal cells at several days post-infection. Additionally, both genes were transcriptionally up-regulated in the muscle of trout injected with a VHSV DNA vaccine. To gain insight on the relation of these tetraspanins with B cell activity we determined their constitutive expression in naive IgM(+) populations from different sources and observed that both molecules were being transcribed by IgM(+) cells in different tissues. Furthermore, CD9 transcription was significantly down-regulated in splenic IgM(+) cells in response to in vitro VHSV exposure. Our results provide insights on the potential role of these tetraspanins on teleost B cell and antiviral immunity.
Collapse
Affiliation(s)
- Rosario Castro
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Beatriz Abós
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Lucia González
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Carolina Aquilino
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Jaime Pignatelli
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain.
| |
Collapse
|
12
|
Yue P, Rong X, Zhuang X, Sha HJ, Li JM, Xin L, Li QW. Cloning and expression analysis of a novel high-mobility group box 2 homologue from Lampetra japonica. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:625-634. [PMID: 24158500 PMCID: PMC3948571 DOI: 10.1007/s10695-013-9871-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/24/2013] [Indexed: 06/02/2023]
Abstract
High-mobility group box 2 (HMGB2) is a nonhistone architectural protein that plays important roles in many biological processes. In this study, we cloned a homologue of the HMGB2 from the lymphocyte-like cells of Lampetra japonica (L. japonica). Sequence analysis reveals that L. japonica HMGB2 contains two highly conserved motifs and shares more than 70 % identity with the homologues from other vertebrate species. Subsequently, Lj-HMGB2 was subcloned into the pET-28a(+) and pIRES2 AcGFP1-Nuc vector and expressed in Rosetta blue (DE3) and Hela cell lines, respectively. The recombinant L. japonica HMGB2 (rLj-HMGB2) with apparent molecular mass of 22 kDa was further purified by His-Bind affinity chromatography. Real-time quantitative PCR indicates that the expression level of Lj-HMGB2 was particularly up-regulated in intestines after challenged with lipopolysaccharide, while up-regulated in lymphocyte-like cells and heart after challenged with concanavalin A in vivo. In addition, rLj-HMGB2 could induce the generation of proinflammatory mediators in the activated human acute monocytic leukemia cell line (THP1), which suggested that Lj-HMGB2 may participate in the immune response of the lampreys.
Collapse
Affiliation(s)
- Pang Yue
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| | - Xiao Rong
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| | - Xue Zhuang
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| | - Huang Jin Sha
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| | - Jin Min Li
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| | - Liu Xin
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| | - Qing Wei Li
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| |
Collapse
|