1
|
Sun H, Xia L, Li J, Zhang Y, Zhang G, Huang P, Wang X, Cui Y, Fang T, Fan P, Zhou Q, Chi X, Yu C. A novel bispecific antibody targeting two overlapping epitopes in RBD improves neutralizing potency and breadth against SARS-CoV-2. Emerg Microbes Infect 2024; 13:2373307. [PMID: 38953857 PMCID: PMC11249148 DOI: 10.1080/22221751.2024.2373307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
SARS-CoV-2 has been evolving into a large number of variants, including the highly pathogenic Delta variant, and the currently prevalent Omicron subvariants with extensive evasion capability, which raises an urgent need to develop new broad-spectrum neutralizing antibodies. Herein, we engineer two IgG-(scFv)2 form bispecific antibodies with overlapping epitopes (bsAb1) or non-overlapping epitopes (bsAb2). Both bsAbs are significantly superior to the parental monoclonal antibodies in terms of their antigen-binding and virus-neutralizing activities against all tested circulating SARS-CoV-2 variants including currently dominant JN.1. The bsAb1 can efficiently neutralize all variants insensitive to parental monoclonal antibodies or the cocktail with IC50 lower than 20 ng/mL, even slightly better than bsAb2. Furthermore, the cryo-EM structures of bsAb1 in complex with the Omicron spike protein revealed that bsAb1 with overlapping epitopes effectively locked the S protein, which accounts for its conserved neutralization against Omicron variants. The bispecific antibody strategy engineered from overlapping epitopes provides a novel solution for dealing with viral immune evasion.
Collapse
Affiliation(s)
- Hancong Sun
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Lingyun Xia
- Center for Infectious Disease Research, Research Center for Industries of the Future, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jianhua Li
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yuanyuan Zhang
- Center for Infectious Disease Research, Research Center for Industries of the Future, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Guanying Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ping Huang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Xingxing Wang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yue Cui
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ting Fang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Pengfei Fan
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Qiang Zhou
- Center for Infectious Disease Research, Research Center for Industries of the Future, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xiangyang Chi
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Changming Yu
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Kao MR, Ma TH, Chou HY, Chang SC, Cheng LC, Liao KS, Shie JJ, Harris PJ, Wong CH, Hsieh YSY. A Robust α-l-Fucosidase from Prevotella nigrescens for Glycoengineering Therapeutic Antibodies. ACS Chem Biol 2024; 19:1515-1524. [PMID: 38912881 PMCID: PMC11267573 DOI: 10.1021/acschembio.4c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
Eliminating the core fucose from the N-glycans of the Fc antibody segment by pathway engineering or enzymatic methods has been shown to enhance the potency of therapeutic antibodies, especially in the context of antibody-dependent cytotoxicity (ADCC). However, there is a significant challenge due to the limited defucosylation efficiency of commercially available α-l-fucosidases. In this study, we report a unique α-l-fucosidase (PnfucA) from the bacterium Prevotella nigrescens that has a low sequence identity compared with all other known α-l-fucosidases and is highly reactive toward a core disaccharide substrate with fucose α(1,3)-, α (1,4)-and α(1,6)-linked to GlcNAc, and is less reactive toward the Fuc-α(1,2)-Gal on the terminal trisaccharide of the oligosaccharide Globo H (Bb3). The kinetic properties of the enzyme, such as its Km and kcat, were determined and the optimized expression of PnfucA gave a yield exceeding 30 mg/L. The recombinant enzyme retained its full activity even after being incubated for 6 h at 37 °C. Moreover, it retained 92 and 87% of its activity after freezing and freeze-drying treatments, respectively, for over 28 days. In a representative glycoengineering of adalimumab (Humira), PnfucA showed remarkable hydrolytic efficiency in cleaving the α(1,6)-linked core fucose from FucGlcNAc on the antibody with a quantitative yield. This enabled the seamless incorporation of biantennary sialylglycans by Endo-S2 D184 M in a one-pot fashion to yield adalimumab in a homogeneous afucosylated glycoform with an improved binding affinity toward Fcγ receptor IIIa.
Collapse
Affiliation(s)
- Mu-Rong Kao
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, No. 250 Wuxing Street, Taipei 11031, Taiwan
- Genomics
Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 115201, Taiwan
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
| | - Tzu-Hsuan Ma
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, No. 250 Wuxing Street, Taipei 11031, Taiwan
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
| | - Hsiang-Yu Chou
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, No. 250 Wuxing Street, Taipei 11031, Taiwan
| | - Shu-Chieh Chang
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
| | - Lin-Chen Cheng
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, No. 250 Wuxing Street, Taipei 11031, Taiwan
| | - Kuo-Shiang Liao
- Genomics
Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 115201, Taiwan
| | - Jiun-Jie Shie
- Institute
of Chemistry, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 115201, Taiwan
| | - Philip J. Harris
- School
of Biological Sciences, The University of
Auckland, Auckland Mail Centre, Private Bag 92019, Auckland 1142, New Zealand
| | - Chi-Huey Wong
- Genomics
Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 115201, Taiwan
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yves S. Y. Hsieh
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, No. 250 Wuxing Street, Taipei 11031, Taiwan
- Genomics
Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 115201, Taiwan
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
| |
Collapse
|
3
|
Al Qaraghuli MM, Kubiak-Ossowska K, Ferro VA, Mulheran PA. Exploiting the Fc base of IgG antibodies to create functional nanoparticle conjugates. Sci Rep 2024; 14:14832. [PMID: 38937649 PMCID: PMC11211340 DOI: 10.1038/s41598-024-65822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
The structures of the Fc base of various IgG antibodies have been examined with a view to understanding how this region can be used to conjugate IgG to nanoparticles. The base structure is found to be largely consistent across a range of species and subtypes, comprising a hydrophobic region surrounded by hydrophilic residues, some of which are charged at physiological conditions. In addition, atomistic Molecular Dynamics simulations were performed to explore how model nanoparticles interact with the base using neutral and negatively charged gold nanoparticles. Both types of nanoparticle interacted readily with the base, leading to an adaptation of the antibody base surface to enhance the interactions. Furthermore, these interactions left the rest of the domain at the base of the Fc region structurally intact. This implies that coupling nanoparticles to the base of an IgG molecule is both feasible and desirable, since it leaves the antibody free to interact with its surroundings so that antigen-binding functionality can be retained. These results will therefore help guide future attempts to develop new nanotechnologies that exploit the unique properties of both antibodies and nanoparticles.
Collapse
Affiliation(s)
- Mohammed M Al Qaraghuli
- EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation, University of Strathclyde, Glasgow, UK.
- SiMologics Ltd. The Enterprise Hub, Level 6 Graham Hills Building, 50 Richmond Street, Glasgow, G1 1XP, UK.
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK.
| | - Karina Kubiak-Ossowska
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK
- Archie-West, Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG, UK
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Paul A Mulheran
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK
| |
Collapse
|
4
|
Alemán OR, Rosales C. Human neutrophil Fc gamma receptors: different buttons for different responses. J Leukoc Biol 2023; 114:571-584. [PMID: 37437115 DOI: 10.1093/jleuko/qiad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Neutrophils are fundamental cells in host defense. These leukocytes are quickly recruited from the blood to sites of infection or tissue damage. At these sites, neutrophils initiate several innate immune responses, including phagocytosis, production of reactive oxygen species, degranulation to release proteases and other antimicrobial compounds, production of inflammatory mediators, and formation of neutrophil extracellular traps. In addition to their role in innate immunity, neutrophils are now recognized as cells that also regulate adaptive immunity, via interaction with dendritic cells and lymphocytes. Neutrophils also respond to adaptive immunity by interacting with antibody molecules. Indeed, antibody molecules allow neutrophils to have antigen-specific responses. Neutrophils express different receptors for antibodies. The receptors for immunoglobulin G molecules are known as Fcγ receptors. Upon Fcγ receptor aggregation on the cell membrane, these receptors trigger distinct signal transduction cascades that activate particular cellular responses. In this review, we describe the major Fcγ receptors expressed on human neutrophils and discuss how each Fcγ receptor activates a choice of signaling pathways to stimulate particular neutrophil responses.
Collapse
Affiliation(s)
- Omar Rafael Alemán
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, México
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
5
|
Khosravi M, Khazaeil K, KhademiMoghadam F. Triggering of the immune response to MCF7 cell line using conjugated antibody with bacterial antigens: In-vitro and in-vivo study. PLoS One 2022; 17:e0275776. [PMID: 36206297 PMCID: PMC9543947 DOI: 10.1371/journal.pone.0275776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
The current study intended to trigger the immune response to cancer cells by using antibodies conjugated with bacterial antigens. The protein membrane of the MCF7 cell line was extracted and specific antibodies against cell membrane antigens was produced in rabbits. The specific antibodies were purified using chromatography methods and linked to E. coli antigens or doxorubicin using Diethylenetriamine pentaacetate (DTPA) linker. After confirmation of the conjugation process using SDS-PAGE and ATR-FTIR methods, the MCF7 and HUVEC cells were treated with various concentrations of the prepared conjugated antibodies along with human serum. The toxicity of each treatment against MCF7 and HUVEC cells was evaluated using the MTT assay. Also, polylactic acid scaffolds that contain 10×104 MCF7 cells were surgically placed in the peritoneal cavity of the rats. After treatment of each group, induction of the inflammatory responses was evaluated on stained histological sections of the scaffolds. The lowest cytotoxic doses of the antigen conjugated-antibody, doxorubicin-conjugated-antibody was 4 and 1 μg/mL, respectively. Doxorubicin conjugated antibodies displayed greater toxicity on both MCF7 and HUVEC cells. The in vivo finding revealed that the inflammatory cells were significantly higher in treating animals with antigen conjugated-antibody. The current synthetic agent stimulated the serum toxicity and induced an inflammatory response to MCF7 cell lines. Targeting of the bacterial antigens on tumor sites by immune system elements, could limit the growth of the tumor cells.
Collapse
Affiliation(s)
- Mohammad Khosravi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- * E-mail:
| | - Kaveh Khazaeil
- Department of Basic sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | |
Collapse
|
6
|
Suzuki H, Ohishi T, Asano T, Tanaka T, Saito M, Mizuno T, Yoshikawa T, Kawada M, Kaneko M, Kato Y. Defucosylated mouse‑dog chimeric anti‑HER2 monoclonal antibody exerts antitumor activities in mouse xenograft models of canine tumors. Oncol Rep 2022; 48:154. [PMID: 35856438 PMCID: PMC9350980 DOI: 10.3892/or.2022.8366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) overexpression has been reported in various types of cancer, including breast, gastric, lung, colorectal and pancreatic cancer. A humanized anti-HER2 monoclonal antibody (mAb), trastuzumab, has been shown to improve survival of patients in HER2-positive breast and gastric cancer. An anti-HER2 mAb, H2Mab-77 (mouse IgG1, kappa) was previously developed. In the present study, a defucosylated version of mouse-dog chimeric anti-HER2 mAb (H77Bf) was generated. H77Bf possesses a high binding-affinity [a dissociation constant (KD): 7.5×10−10 M, as determined by flow cytometric analysis] for dog HER2-overexpressed CHO-K1 (CHO/dHER2) cells. H77Bf highly exerted antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) for CHO/dHER2 cells by canine mononuclear cells and complement, respectively. Moreover, administration of H77Bf significantly suppressed the development of CHO/dHER2 ×enograft tumor in mice compared with the control dog IgG. H77Bf also possesses a high binding-affinity (KD: 7.2×10−10 M) for a canine mammary gland tumor cell line (SNP), and showed high ADCC and CDC activities for SNP cells. Intraperitoneal administration of H77Bf in mouse xenograft models of SNP significantly suppressed the development of SNP xenograft tumors compared with the control dog IgG. These results indicated that H77Bf exerts antitumor activities against dHER2-positive canine cancers, and could be valuable treatment regimen for canine cancers.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Numazu, Shizuoka 410‑0301, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753‑8515, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Numazu, Shizuoka 410‑0301, Japan
| | - Mika Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| |
Collapse
|
7
|
Advances of research of Fc-fusion protein that activate NK cells for tumor immunotherapy. Int Immunopharmacol 2022; 109:108783. [PMID: 35561479 DOI: 10.1016/j.intimp.2022.108783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 12/21/2022]
Abstract
The rapid development of bioengineering technology has introduced Fc-fusion proteins, representing a novel kind of recombinant protein, as promising biopharmaceutical products in tumor therapy. Numerous related anti-tumor Fc-fusion proteins have been investigated and are in different stages of development. Fc-fusion proteins are constructed by fusing the Fc-region of the antibody with functional proteins or peptides. They retain the bioactivity of the latter and partial properties of the former. This structural and functional advantage makes Fc-fusion proteins an effective tool in tumor immunotherapy, especially for the recruitment and activation of natural killer (NK) cells, which play a critical role in tumor immunotherapy. Even though tumor cells have developed mechanisms to circumvent the cytotoxic effect of NK cells or induce defective NK cells, Fc-fusion proteins have been proven to effectively activate NK cells to kill tumor cells in different ways, such as antibody-dependent cell-mediated cytotoxicity (ADCC), activate NK cells in different ways in order to promote killing of tumor cells. In this review, we focus on NK cell-based immunity for cancers and current research progress of the Fc-fusion proteins for anti-tumor therapy by activating NK cells.
Collapse
|
8
|
Joubert S, Guimond J, Perret S, Malenfant F, Elahi SM, Marcil A, Parat M, Gilbert M, Lenferink A, Baardsnes J, Durocher Y. Production of afucosylated antibodies in CHO cells by co-expression of an anti-FUT8 intrabody. Biotechnol Bioeng 2022; 119:2206-2220. [PMID: 35509261 DOI: 10.1002/bit.28127] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 11/11/2022]
Abstract
Some effector functions prompted by IgG antibodies, such as antibody-dependent cell-mediated cytotoxicity (ADCC), strongly depend on the N-glycans linked to asparagine 297 of the Fc region of the protein. A single alpha-(1,6)-fucosyltransferase (FUT8) is responsible for catalyzing the addition of an α-1,6-linked fucose residue to the first GlcNAc residue of the N-linked glycans. Antibodies missing this core fucose show a significantly enhanced ADCC and increased anti-tumor activity, which could help reduce therapeutic dose requirement, potentially translating into reduced safety concerns and manufacturing costs. Several approaches have been developed to modify glycans and improve the biological functions of antibodies. Here, we demonstrate that expression of a membrane-associated anti-FUT8 intrabody engineered to reside in the endoplasmic reticulum and Golgi apparatus can efficiently reduce FUT8 activity and therefore the core-fucosylation of the Fc N-glycan of an antibody. IgG1-producing CHO cells expressing the intrabody secrete antibodies with reduced core fucosylation as demonstrated by lectin blot analysis and UPLC-HILIC glycan analysis. Cells engineered to inhibit directly and specifically alpha-(1,6)-fucosyltransferase activity allows for the production of g/L levels of IgGs with strongly enhanced ADCC effector function, for which the level of fucosylation can be selected. The quick and efficient method described here should have broad practical applicability for the development of next-generation therapeutic antibodies with enhanced effector functions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Simon Joubert
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Julie Guimond
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Sylvie Perret
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Félix Malenfant
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Seyyed Mehdy Elahi
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Anne Marcil
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Marie Parat
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Michel Gilbert
- Human Health Therapeutics Research Center, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Anne Lenferink
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Jason Baardsnes
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| |
Collapse
|
9
|
Hui X, Yuan C, Cao W, Ge W, Zhang D, Dan M, Zhao Q, Liu B, Yao B. An Innovative Site-Specific Anti-HER2 Antibody-Drug Conjugate with High Homogeneity and Improved Therapeutic Index. Onco Targets Ther 2022; 15:331-343. [PMID: 35422630 PMCID: PMC9005139 DOI: 10.2147/ott.s357326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Antibody-drug conjugates (ADCs) have emerged as a potent cancer therapeutic option in recent years. DP303c is a HER2-targeting ADC with a cleavable linker-MMAE payload. The current study aimed to evaluate the therapeutic potentials of DP303c in vitro as well as in vivo. Materials and Methods Size exclusion chromatography (SEC), reverse-phase high-performance liquid chromatography (RP-HPLC), and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to analyze the physicochemical characterization of DP303c. An enzyme-linked immunosorbent assay (ELISA), a cell-based assay, and bio-layer interferometry (BLI) were used to evaluate DP303c’s affinity with HER2 and Fc receptors. A confocal laser scanning microscopy was used to observe the internalization of DP303c. Antibody-dependent cell-mediated cytotoxicity (ADCC) and cytotoxicity assays were used to investigate the activity of DP303c in vitro. The antitumor activity of DP303c was assessed in vivo in the HER2-positive cell-derived xenograft model. Results DP303c was a site-specific anti-HER2 antibody-drug conjugate with a monomethyl auristatin E (MMAE) with an average drug-to-antibody ratio (DAR) of 2.0. DP303c showed a high affinity with HER2 and could be effectively internalized. In vitro and in vivo, DP303c showed stronger antitumor activity as compared to trastuzumab-DM1 (T-DM1) in a series of HER2-positive cancer cells and cell-derived xenograft (CDX) models, especially in the lower HER2-expressing cells. DP303c also exhibited high serum stability and a good PK profile. Conclusion DP303c was a steady and homogenous DAR 2 ADC that was predicted to deliver MMAE inhibitor to tumor cells. DP303c demonstrated remarkable anticancer efficacy against T-DM1 in xenograft models. DP303c was a strong candidate for the treatment of patients with HER2-positive cancer.
Collapse
Affiliation(s)
- Xiwu Hui
- Institute of Quality Analysis, CSPC Megalith Biopharmaceutical Co., Ltd., Shijiazhuang, Hebei, People’s Republic of China
| | - Can Yuan
- Institute of Quality Analysis, CSPC Megalith Biopharmaceutical Co., Ltd., Shijiazhuang, Hebei, People’s Republic of China
| | - Weirong Cao
- Institute of Quality Analysis, CSPC Megalith Biopharmaceutical Co., Ltd., Shijiazhuang, Hebei, People’s Republic of China
| | - Wenli Ge
- Institute of Quality Analysis, CSPC Megalith Biopharmaceutical Co., Ltd., Shijiazhuang, Hebei, People’s Republic of China
| | - Di Zhang
- Institute of Quality Analysis, CSPC Megalith Biopharmaceutical Co., Ltd., Shijiazhuang, Hebei, People’s Republic of China
| | - Mo Dan
- Pharmacology Center, CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, Hebei, People’s Republic of China
| | - Qian Zhao
- Pharmacology Center, CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, Hebei, People’s Republic of China
| | - Boning Liu
- Institute of Quality Analysis, CSPC Megalith Biopharmaceutical Co., Ltd., Shijiazhuang, Hebei, People’s Republic of China
- Correspondence: Boning Liu; Bing Yao, Institute of Quality Analysis, CSPC Megalith Biopharmaceutical Co., Ltd., No. 226 Huanghe Street, Shijiazhuang, Hebei, People’s Republic of China, Tel +8613284452520; +8613930148328, Fax +86031169085667, Email ;
| | - Bing Yao
- Institute of Quality Analysis, CSPC Megalith Biopharmaceutical Co., Ltd., Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
10
|
García-Fernández C, Saz A, Fornaguera C, Borrós S. Cancer immunotherapies revisited: state of the art of conventional treatments and next-generation nanomedicines. Cancer Gene Ther 2021; 28:935-946. [PMID: 33837365 DOI: 10.1038/s41417-021-00333-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
Nowadays, the landscape of cancer treatments has broadened thanks to the clinical application of immunotherapeutics. After decades of failures, cancer immunotherapy represents an exciting alternative for those patients suffering from a wide variety of cancers, especially for those skin cancers, such as the early stages of melanoma. However, those cancers affecting internal organs still face a long way to success, because of the poor biodistribution of immunotherapies. Here, nanomedicine appears as a hopeful strategy to modulate the biodistribution aiming at target organ accumulation. In this way, efficacy will be improved, while reducing the side effects at the same time. In this review, we aim to highlight the most promising cancer immunotherapeutic strategies. From monoclonal antibodies and their traditional use as targeted therapies to their current use as immune checkpoint inhibitors; as well as adoptive cell transfer therapies; oncolytic viruses, and therapeutic cancer vaccination. Then, we aim to discuss the important role of nanomedicine to improve the performance of these immunotherapeutic tools to finally review the already marketed nanomedicine-based cancer immunotherapies.
Collapse
Affiliation(s)
- Coral García-Fernández
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain
| | - Anna Saz
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain.
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain
| |
Collapse
|
11
|
Kim J, Lee JY, Kim HG, Kwak MW, Kang TH. Fc Receptor Variants and Disease: A Crucial Factor to Consider in the Antibody Therapeutics in Clinic. Int J Mol Sci 2021; 22:9489. [PMID: 34502398 PMCID: PMC8431278 DOI: 10.3390/ijms22179489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/19/2022] Open
Abstract
The fragment crystallizable (Fc) domain of antibodies is responsible for their protective function and long-lasting serum half-life via Fc-mediated effector function, transcytosis, and recycling through its interaction with Fc receptors (FcRs) expressed on various immune leukocytes, epithelial, and endothelial cells. Therefore, the Fc-FcRs interaction is a control point of both endogenous and therapeutic antibody function. There are a number of reported genetic variants of FcRs, which include polymorphisms in (i) extracellular domain of FcRs, which change their affinities to Fc domain of antibodies; (ii) both cytoplasmic and intracellular domain, which alters the extent of signal transduction; and (iii) the promoter region of the FcRs gene, which affects the expression level of FcRs, thus being associated with the pathogenesis of disease indications. In this review, we firstly describe the correlation between the genetic variants of FcRs and immunological disorders by individual differences in the extent of FcRs-mediated regulations. Secondly, we discuss the influence of the genetic variants of FcRs on the susceptibility to infectious diseases or cancer in the perspective of FcRs-induced effector functions. Overall, we concluded that the genetic variants of FcRs are one of the key elements in the design of antibody therapeutics due to their variety of clinical outcomes among individuals.
Collapse
Affiliation(s)
- Jin Kim
- Department of Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Korea;
| | - Ji Young Lee
- Department of Chemistry, Kookmin University, Seoul 02707, Korea;
| | - Han Gil Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Korea; (H.G.K.); (M.W.K.)
| | - Min Woo Kwak
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Korea; (H.G.K.); (M.W.K.)
| | - Tae Hyun Kang
- Department of Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Korea;
- Department of Chemistry, Kookmin University, Seoul 02707, Korea;
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Korea; (H.G.K.); (M.W.K.)
| |
Collapse
|
12
|
Cowling P, Bradley M, Lilienkampf A. Attaching palladium catalysts to antibodies. Bioorg Med Chem 2021; 44:116298. [PMID: 34243043 DOI: 10.1016/j.bmc.2021.116298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 01/03/2023]
Abstract
Antibody-directed enzyme prodrug therapy (ADEPT) is a powerful concept in which antibody targeting is linked to enzymatic prodrug activation. The work herein describes the first steps in the development of a technology analogous to ADEPT but in which a palladium catalyst is attached of an antibody rather than an enzyme. Antibody-metal conjugates have been used in a variety of contexts including for radiotherapy; however, none of the metals attached to the antibodies have been used for catalytic purposes. This work represents the first example a metal being attached to an antibody for the purposes of carrying a functional catalyst.
Collapse
Affiliation(s)
- Paul Cowling
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - Annamaria Lilienkampf
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK.
| |
Collapse
|
13
|
Al Qaraghuli MM, Kubiak-Ossowska K, Ferro VA, Mulheran PA. Structural Analysis of Anti-Hapten Antibodies to Identify Long-Range Structural Movements Induced by Hapten Binding. Front Mol Biosci 2021; 8:633526. [PMID: 33869281 PMCID: PMC8044860 DOI: 10.3389/fmolb.2021.633526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/17/2021] [Indexed: 11/21/2022] Open
Abstract
Antibodies are well known for their high specificity that has enabled them to be of significant use in both therapeutic and diagnostic applications. Antibodies can recognize different antigens, including proteins, carbohydrates, peptides, nucleic acids, lipids, and small molecular weight haptens that are abundantly available as hormones, pharmaceuticals, and pesticides. Here we focus on a structural analysis of hapten-antibody couples and identify potential structural movements originating from the hapten binding by comparison with unbound antibody, utilizing 40 crystal structures from the Protein Data Bank. Our analysis reveals three binding surface trends; S1 where a pocket forms to accommodate the hapten, S2 where a pocket is removed when the hapten binds, and S3 where no pockets changes are found. S1 and S2 are expected for induced-fit binding, whereas S3 indicates that a pre-existing population of optimal binding antibody conformation exists. The structural analysis reveals four classifications of structural reorganization, some of which correlate to S2 but not to the other binding surface changes. These observations demonstrate the complexity of the antibody-antigen interaction, where structural changes can be restricted to the binding sites, or extend through the constant domains to propagate structural changes. This highlights the importance of structural analysis to ensure successful and compatible transformation of small antibody fragments at the early discovery stage into full antibodies during the subsequent development stages, where long-range structural changes are required for an Fc effector response.
Collapse
Affiliation(s)
- Mohammed M Al Qaraghuli
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, United Kingdom.,SiMologics Ltd., The Enterprise Hub, Glasgow, United Kingdom
| | - Karina Kubiak-Ossowska
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, United Kingdom.,Department of Physics, University of Strathclyde, Glasgow, United Kingdom
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Paul A Mulheran
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
14
|
Zhmurina MA, Vrublevskaya VV, Skarga YY, Petrenko VS, Zhalimov VK, Morenkov OS. Internalization by Cells and Antitumor Activity of Antibodies and Immunotoxins Specific for the Heat Shock Protein 90 β Isoform. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920060238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Al Qaraghuli MM, Kubiak-Ossowska K, Ferro VA, Mulheran PA. Antibody-protein binding and conformational changes: identifying allosteric signalling pathways to engineer a better effector response. Sci Rep 2020; 10:13696. [PMID: 32792612 PMCID: PMC7426963 DOI: 10.1038/s41598-020-70680-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous monoclonal antibodies have been developed successfully for the treatment of various diseases. Nevertheless, the development of biotherapeutic antibodies is complex, expensive, and time-consuming, and to facilitate this process, careful structural analysis beyond the antibody binding site is required to develop a more efficacious antibody. In this work, we focused on protein antigens, since they induce the largest antibody changes, and provide interesting cases to compare and contrast. The structures of 15 anti-protein antibodies were analysed to compare the antigen-bound/unbound forms. Surprisingly, three different classes of binding-induced changes were identified. In class (B1), the antigen binding fragment distorted significantly, and we found changes in the loop region of the heavy chain's constant domain; this corresponds well with expected allosteric movements. In class (B2), we found changes in the same loop region without the overall distortion. In class (B3), these changes did not present, and only local changes at the complementarity determining regions were found. Consequently, structural analysis of antibodies is crucial for therapeutic development. Careful evaluation of allosteric movements must be undertaken to develop better effector responses, especially during the transformation of these antibodies from small fragments at the discovery stage to full antibodies at the subsequent development stages.
Collapse
Affiliation(s)
- Mohammed M Al Qaraghuli
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK.
- SiMologics Ltd. The Enterprise Hub, Level 6 Graham Hills Building, 50 Richmond Street, Glasgow, G1 1XP, UK.
| | - Karina Kubiak-Ossowska
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK
- Department of Physics, University of Strathclyde, Glasgow, G4 0NG, UK
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Paul A Mulheran
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK
| |
Collapse
|
16
|
Genetically engineered mesenchymal stem cells: targeted delivery of immunomodulatory agents for tumor eradication. Cancer Gene Ther 2020; 27:854-868. [PMID: 32418986 DOI: 10.1038/s41417-020-0179-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022]
Abstract
Cancer immunotherapy emerged as a novel therapeutic option that employs enhanced or amended native immune system to create a robust response against malignant cells. The systemic therapies with immune-stimulating cytokines have resulted in substantial dose-limiting toxicities. Targeted cytokine immunotherapy is being explored to overcome the heterogeneity of malignant cells and tumor cell defense with a remarkable reduction of systemic side effects. Cell-based strategies, such as dendritic cells (DCs), fibroblasts or mesenchymal stem cells (MSCs) seek to minimize the numerous toxic side effects of systemic administration of cytokines for extended periods of time. The usual toxicities comprised of a vascular leak, hypotension, and respiratory insufficiency. Natural and strong tropism of MSCs toward malignant cells made them an ideal systemic delivery vehicle to direct the proposed therapeutic genes to the vicinity of a tumor where their expression could evoke an immune reaction against the tumor. Compared with other methods, the delivery of cytokines via engineered MSCs is safer and renders a more practical, and promising strategy. Large numbers of genes code for cytokines have been utilized to reengineer MSCs as therapeutic cells. This review highlights the recent findings on the cytokine gene therapy for human malignancies by focusing on MSCs application in cancer immunotherapy.
Collapse
|
17
|
Cavaco M, Gaspar D, ARB Castanho M, Neves V. Antibodies for the Treatment of Brain Metastases, a Dream or a Reality? Pharmaceutics 2020; 12:E62. [PMID: 31940974 PMCID: PMC7023012 DOI: 10.3390/pharmaceutics12010062] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/13/2019] [Accepted: 12/28/2019] [Indexed: 12/25/2022] Open
Abstract
The incidence of brain metastases (BM) in cancer patients is increasing. After diagnosis, overall survival (OS) is poor, elicited by the lack of an effective treatment. Monoclonal antibody (mAb)-based therapy has achieved remarkable success in treating both hematologic and non-central-nervous system (CNS) tumors due to their inherent targeting specificity. However, the use of mAbs in the treatment of CNS tumors is restricted by the blood-brain barrier (BBB) that hinders the delivery of either small-molecules drugs (sMDs) or therapeutic proteins (TPs). To overcome this limitation, active research is focused on the development of strategies to deliver TPs and increase their concentration in the brain. Yet, their molecular weight and hydrophilic nature turn this task into a challenge. The use of BBB peptide shuttles is an elegant strategy. They explore either receptor-mediated transcytosis (RMT) or adsorptive-mediated transcytosis (AMT) to cross the BBB. The latter is preferable since it avoids enzymatic degradation, receptor saturation, and competition with natural receptor substrates, which reduces adverse events. Therefore, the combination of mAbs properties (e.g., selectivity and long half-life) with BBB peptide shuttles (e.g., BBB translocation and delivery into the brain) turns the therapeutic conjugate in a valid approach to safely overcome the BBB and efficiently eliminate metastatic brain cells.
Collapse
Affiliation(s)
| | | | - Miguel ARB Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.); (D.G.)
| | - Vera Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.); (D.G.)
| |
Collapse
|
18
|
Wen J, Lord H, Knutson N, Wikström M. Nano differential scanning fluorimetry for comparability studies of therapeutic proteins. Anal Biochem 2020; 593:113581. [PMID: 31935356 DOI: 10.1016/j.ab.2020.113581] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 01/26/2023]
Abstract
Differential scanning calorimetry (DSC) has been extensively used in the biopharmaceutical industry to characterize protein thermal stability and domain folding integrity. Recently, nano differential scanning fluorimetry (nanoDSF) has emerged as a powerful tool for thermal stability analysis and studies of protein domain unfolding. Due to increased interests in the qualification of characterization methods, we are in this study presenting the qualification results for the comparability studies of thermal stability analysis using nanoDSF. The results show that nanoDSF is able to detect thermal transition signals for mAbs, BiTE® molecules, and cytokines at a wide concentration range with high precision, clearly indicating that nanoDSF is suitable for characterization including comparability studies of therapeutic proteins. Compared to the current recognized industry standard DSC, the nanoDSF method enables thermal stability analysis over a much wider concentration range, consumes considerably less materials, and provides significantly higher throughput.
Collapse
Affiliation(s)
- Jie Wen
- Higher Order Structure, Attribute Sciences, Thousand Oaks, CA, 91320, United States.
| | - Harrison Lord
- Higher Order Structure, Attribute Sciences, Thousand Oaks, CA, 91320, United States
| | - Nicholas Knutson
- Higher Order Structure, Attribute Sciences, Thousand Oaks, CA, 91320, United States
| | - Mats Wikström
- Higher Order Structure, Attribute Sciences, Thousand Oaks, CA, 91320, United States.
| |
Collapse
|
19
|
Shitara K, Satoh T, Iwasa S, Yamaguchi K, Muro K, Komatsu Y, Nishina T, Esaki T, Hasegawa J, Kakurai Y, Kamiyama E, Nakata T, Nakamura K, Sakaki H, Hyodo I. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the afucosylated, humanized anti-EPHA2 antibody DS-8895a: a first-in-human phase I dose escalation and dose expansion study in patients with advanced solid tumors. J Immunother Cancer 2019; 7:219. [PMID: 31412935 PMCID: PMC6694490 DOI: 10.1186/s40425-019-0679-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/16/2019] [Indexed: 12/19/2022] Open
Abstract
Background Erythropoietin-producing hepatocellular receptor A2 (EPHA2) is overexpressed on the cell surface in many cancers and predicts poor prognosis. DS-8895a is a humanized anti-EPHA2 IgG1 monoclonal antibody afucosylated to enhance antibody-dependent cellular cytotoxicity activity. We conducted a two-step, phase I, multicenter, open-label study to determine the safety, tolerability, and pharmacokinetics of DS-8895a in patients with advanced solid tumors. Methods Step 1 was a dose escalation cohort in advanced solid tumor patients (six dose levels, 0.1–20 mg/kg) to determine Step 2 dosing. Step 2 was a dose expansion cohort in EPHA2-positive esophageal and gastric cancer patients. DS-8895a was intravenously administered every 2 weeks for the duration of the study, with a 28-day period to assess dose-limiting toxicity (DLT). Safety, pharmacokinetics, tumor response, and potential biomarkers were evaluated. Results Thirty-seven patients (Step 1: 22, Step 2: 15 [9: gastric cancer, 6: esophageal cancer]) were enrolled. Although one DLT (Grade 4 platelet count decreased) was observed in Step 1 (dose level 6, 20 mg/kg), the maximum tolerated dose was not reached; the highest dose (20 mg/kg) was used in Step 2. Of the 37 patients, 24 (64.9%) experienced drug-related adverse events (AEs) including three (8.1%) with Grade ≥ 3 AEs. Infusion-related reactions occurred in 19 patients (51.4%) but were manageable. All patients discontinued the study (evident disease progression, 33; AEs, 4). Maximum and trough serum DS-8895a concentrations increased dose-dependently. One gastric cancer patient achieved partial response and 13 patients achieved stable disease. Serum inflammatory cytokines transiently increased at completion of and 4 h after the start of DS-8895a administration. The proportion of CD16-positive natural killer (NK) cells (CD3−CD56+CD16+) decreased 4 h after the start of DS-8895a administration, and the ratio of CD3−CD56+CD137+ to CD3−CD56+CD16+ cells increased on day 3. Conclusions Twenty mg/kg DS-8895a infused intravenously every 2 weeks was generally safe and well tolerated in patients (n = 21) with advanced solid tumors. The exposure of DS-8895a seemed to increase dose-dependently and induce activated NK cells. Trial registration Phase 1 Study of DS-8895a in patients with advanced solid tumors (NCT02004717; 7 November 2013 to 2 February 2017); retrospectively registered on 9 December 2013. Electronic supplementary material The online version of this article (10.1186/s40425-019-0679-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kohei Shitara
- National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa City, Chiba, Japan.
| | - Taroh Satoh
- Osaka University Graduate School of Medicine, Osaka, Japan
| | | | - Kensei Yamaguchi
- Cancer Institute Hospital of Japan Foundation for Cancer Research, Tokyo, Japan
| | - Kei Muro
- Aichi Cancer Center Hospital and Research Institute, Aichi, Japan
| | | | | | - Taito Esaki
- National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kapelski S, Cleiren E, Attar RM, Philippar U, Häsler J, Chiu ML. Influence of the bispecific antibody IgG subclass on T cell redirection. MAbs 2019; 11:1012-1024. [PMID: 31242061 PMCID: PMC6748600 DOI: 10.1080/19420862.2019.1624464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/03/2019] [Accepted: 05/23/2019] [Indexed: 01/07/2023] Open
Abstract
T cell redirection mediated by bispecific antibodies (BsAbs) is a promising cancer therapy. Dual antigen binding is necessary for potent T cell redirection and is influenced by the structural characteristics of a BsAb, which are dependent on its IgG subclass. In this study, model BsAbs targeting CD19xCD3 were generated in variants of IgG1, IgG2, and IgG4 carrying Fc mutations that reduce FcγR interaction, and two chimeric IgG subclasses termed IgG1:2 and IgG4:2, in which the IgG1- or IgG4-F(ab)2 are grafted on an IgG2 Fc. Molecules containing an IgG2 or IgG4-F(ab)2 domain were confirmed to be the most structurally compact molecules. All BsAbs were shown to bind both of their target proteins (and corresponding cells) equally well. However, CD19xCD3 IgG2 did not bind both antigens simultaneously as measured by the absence of cellular clustering of T cells with target cells. This translated to a reduced potency of IgG2 BsAbs in T-cell redirection assays. The activity of IgG2 BsAbs was fully restored in the chimeric subclasses IgG4:2 and IgG1:2. This confirmed the major contribution of the F(ab)2 region to the BsAb's functional activity and demonstrated that function of BsAbs can be modulated by engineering molecules combining different Fc and F(ab)2 domains. Abbreviations: ADCC: Antibody-dependent cellular cytotoxicity; AlphaScreenTM: Amplified Luminescent Proximity Homogeneous Assay Screening; ANOVA: Analysis of variance; BiTE: bispecific T-cell engager; BSA: bovine serum albumin; BsAb: bispecific antibody; cFAE: controlled Fab-arm exchange; CDC: complement-dependent cellular cytotoxicity; CIEX: cation-exchange; CIR: chimeric immune receptor; DPBS: Dulbecco's phosphate-buffered saline; EC50 value: effective concentration to reach half-maximum effect; EGFR: epidermal growth factor receptor; EI: expansion index (RAt=x/RAt=0); FACS: fluorescence-activated cell sorting; FVD: fixable viability dye; HI-HPLC: hydrophobic interaction HPLC; HI-FBS: heat-inactivated fetal bovine serum; HPLC: high-pressure liquid chromatography; IC50 value: effective concentration to reach half-maximum inhibition; IQ: Inhibition Quotient; IS: immunological synapse; MES: 2-(N-morpholino)ethanesulfonic acid; R-PE: recombinant phycoerythrin; RA: red area in μm2/well; RD: receptor density; RFP: red fluorescent protein; Rg: radius of gyration; RSV: respiratory syncytial virus; SAXS: small-angle x-ray scattering; scFv: single-chain variable fragment; SD: standard deviation; SPR: surface plasmon resonance; WT: wild-type.
Collapse
Affiliation(s)
- Stephanie Kapelski
- Biologics Discovery, Janssen BioTherapeutics, Janssen Research and Development, Beerse, Belgium
- Oncology Biology & Discovery, Janssen Research and Development, Beerse, Belgium
| | - Erna Cleiren
- Former Discovery Sciences, LD-Screening BE, Janssen Research and Development, Beerse, Belgium
- Charles River Laboratories, Beerse, Belgium
| | - Ricardo M. Attar
- Oncology Biology & Discovery, Janssen Research and Development, Spring House, PA,USA
| | - Ulrike Philippar
- Oncology Biology & Discovery, Janssen Research and Development, Beerse, Belgium
| | - Julien Häsler
- Biologics Discovery, Janssen BioTherapeutics, Janssen Research and Development, Beerse, Belgium
| | - Mark L. Chiu
- BioTherapeutics Analytical Development, Discovery, Product Development & Supply, Janssen Research and Development, Malvern, PA, USA
| |
Collapse
|
21
|
Abstract
Resistance to therapy is one of the prime causes for treatment failure in cancer and recurrent disease. In recent years, autophagy has emerged as an important cell survival mechanism in response to different stress conditions that are associated with cancer treatment and aging. Autophagy is an evolutionary conserved catabolic process through which damaged cellular contents are degraded after uptake into autophagosomes that subsequently fuse with lysosomes for cargo degradation, thereby alleviating stress. In addition, autophagy serves to maintain cellular homeostasis by enriching nutrient pools. Although autophagy can act as a double-edged sword at the interface of cell survival and cell death, increasing evidence suggest that in the context of cancer therapy-induced stress responses, it predominantly functions as a cell survival mechanism. Here, we provide an up-to-date overview on our current knowledge of the role of pro-survival autophagy in cancer therapy at the preclinical and clinical stages and delineate the molecular mechanisms of autophagy regulation in response to therapy-related stress conditions. A better understanding of the interplay of cancer therapy and autophagy may allow to unveil new targets and avenues for an improved treatment of therapy-resistant tumors in the foreseeable future.
Collapse
|
22
|
González-González E, Camacho-Sandoval R, Jiménez-Uribe A, Montes-Luna A, Cortés-Paniagua I, Sánchez-Morales J, Muñoz-García L, Tenorio-Calvo AV, López-Morales CA, Velasco-Velázquez MA, Pavón L, Pérez-Tapia SM, Medina-Rivero E. Validation of an ADCC assay using human primary natural killer cells to evaluate biotherapeutic products bearing an Fc region. J Immunol Methods 2018; 464:87-94. [PMID: 30395815 DOI: 10.1016/j.jim.2018.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/28/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023]
Abstract
The development of biotherapeutics requires continuous improvement in analytical methodologies for the assessment of their quality attributes. A subset of biotherapeutics is designed to interact with specific antigens that are exposed on the membranes of target cells or circulating in a soluble form, and effector functions are achieved via recognition of their Fc region by effector cells that induce mechanisms such as antibody-dependent cell-mediated cytotoxicity (ADCC). Thus, ADCC induction is a critical quality attribute (CQA) that must be evaluated to ensure biotherapeutic efficacy. Induction of ADCC can be evaluated by employing effector cells from different sources, such as peripheral blood mononuclear cells (PBMC) and genetically modified cell lines (e.g., transfected NKs or Jurkat cells), and different approaches can be used for detection and results interpretation depending on the type of effector cells used. In this regard, validation of the assays is relevant to ensure the reliability of the results according to the intended purpose. Herein, we show the standardization and validation of ADCC assays to test the potency of three biotherapeutic proteins using primary NK cells obtained from fresh blood as effector cells and detecting cell death by flow cytometry. The advantage of using primary NKs instead of modified cells is that the response is closer to that occurring in vivo since cytotoxicity is evaluated in a direct manner. Our results indicate that in all cases, the assays exhibited a characteristic sigmoidal dose/response curve complying with accurate, precise and specific parameters. Thereby, the validated ADCC assay is an appropriate alternative to evaluate the biological activities of these type of biotherapeutics.
Collapse
Affiliation(s)
- Edith González-González
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Rosa Camacho-Sandoval
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Alexis Jiménez-Uribe
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Alejandra Montes-Luna
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ilselena Cortés-Paniagua
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Jazmín Sánchez-Morales
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Leslie Muñoz-García
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Alejandra V Tenorio-Calvo
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Carlos A López-Morales
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Marco A Velasco-Velázquez
- Departamento de Farmacología y Unidad Periférica de Investigación en Biomedicina Traslacional (CMN 20 de noviembre, ISSSTE), Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México, Mexico.
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Emilio Medina-Rivero
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| |
Collapse
|
23
|
|
24
|
Zahavi D, AlDeghaither D, O'Connell A, Weiner LM. Enhancing antibody-dependent cell-mediated cytotoxicity: a strategy for improving antibody-based immunotherapy. Antib Ther 2018; 1:7-12. [PMID: 33928217 PMCID: PMC7990127 DOI: 10.1093/abt/tby002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 05/25/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
The targeting of surface antigens expressed on tumor cells by monoclonal antibodies (mAbs) has revolutionized cancer therapeutics. One mechanism of action of antibody-based immunotherapy is the activation of immune effector cells to mediate antibody-dependent cell-mediated cytotoxicity (ADCC). This review will summarize the process of ADCC, its important role in the efficacy of mAb therapy, how to measure it, and finally future strategies for antibody design that can take advantage of it to improve clinical performance.
Collapse
Affiliation(s)
- David Zahavi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center,3800 Reservoir Rd NW, Washington, DC 20007, USA
| | - Dalal AlDeghaither
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center,3800 Reservoir Rd NW, Washington, DC 20007, USA
| | - Allison O'Connell
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center,3800 Reservoir Rd NW, Washington, DC 20007, USA
| | - Louis M Weiner
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center,3800 Reservoir Rd NW, Washington, DC 20007, USA
| |
Collapse
|
25
|
Cavaco M, Castanho MARB, Neves V. Peptibodies: An elegant solution for a long-standing problem. Biopolymers 2017; 110. [PMID: 29266205 DOI: 10.1002/bip.23095] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 01/09/2023]
Abstract
Chimeric proteins composed of a biologically active peptide and a fragment crystallizable (Fc) domain of immunoglobulin G (IgG) are known as peptibodies. They present an extended half-life due to neonatal Fc receptor (FcRn) salvage pathway, a decreased renal clearance rate owing to its increased size (≈70 kDa) and, depending on the peptide used in the design of the peptibody, an active-targeting moiety. Also, the peptides therapeutic activity is boosted by the number of peptides in the fusion protein (at least two peptides) and to some peptides' alterations. Peptibodies are mainly obtained through recombinant DNA technology. However, to improve peptide properties, "unnatural" changes have been introduced to the original peptides' sequence, for instance, the incorporation of D- or non-natural amino acid residues or even cyclization thus, limiting the application of genetic engineering in the production of peptibodies, since these peptides must be obtained via chemical synthesis. This constrains prompted the development of new methods for conjugation of peptides to Fc domains. Another challenge, subject of intense research, relates to the large-scale production of such peptibodies using these new techniques, which can be minimized by their proved value. To date, two peptibodies, romiplostim and dulaglutide, have been approved and stay as the standard of care in their areas of action. Furthermore, a considerable number of peptibodies are currently in preclinical and clinical development.
Collapse
Affiliation(s)
- Marco Cavaco
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa, 1649-028, Portugal
| | - Miguel A R B Castanho
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa, 1649-028, Portugal
| | - Vera Neves
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa, 1649-028, Portugal
| |
Collapse
|
26
|
Christopoulos PF, Corthay A, Koutsilieris M. Aiming for the Insulin-like Growth Factor-1 system in breast cancer therapeutics. Cancer Treat Rev 2017; 63:79-95. [PMID: 29253837 DOI: 10.1016/j.ctrv.2017.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022]
Abstract
Despite the major discoveries occurred in oncology the recent years, breast malignancies remain one of the most common causes of cancer-related deaths for women in developed countries. Development of HER2-targeting drugs has been considered a breakthrough in anti-cancer approaches and alluded to the potential of targeting growth factors in breast cancer (BrCa) therapeutics. More than twenty-five years have passed since the Insulin-like Growth Factor-1 (IGF-1) system was initially recognized as a potential target candidate in BrCa therapy. To date, a growing body of studies have implicated the IGF-1 signaling with the BrCa biology. Despite the promising experimental evidence, the impression from clinical trials is rather disappointing. Several reasons may account for this and the last word regarding the efficacy of this system as a target candidate in BrCa therapeutics is probably not written yet. Herein, we provide the theoretical basis, as well as, a comprehensive overview of the current literature, regarding the different strategies targeting the various components of the IGF-1/IGF-1R axis in several pathophysiological aspects of BrCa, including the tumor micro-environment and cancer stemness. In addition, we review the rationale for targeting the IGF-1 system in the different BrCa molecular subtypes and in treatment resistant breast tumors with a focus on both the molecular mechanisms and on the clinical perspectives of such approaches in specific population subgroups. We also discuss the future challenges, as well as, the development of novel molecules and strategies targeting the system and suggest potential improvements in the field.
Collapse
Affiliation(s)
- Panagiotis F Christopoulos
- Department of Experimental Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece; Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway; Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway.
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
27
|
Sakae Y, Satoh T, Yagi H, Yanaka S, Yamaguchi T, Isoda Y, Iida S, Okamoto Y, Kato K. Conformational effects of N-glycan core fucosylation of immunoglobulin G Fc region on its interaction with Fcγ receptor IIIa. Sci Rep 2017; 7:13780. [PMID: 29062024 PMCID: PMC5653758 DOI: 10.1038/s41598-017-13845-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/02/2017] [Indexed: 12/04/2022] Open
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) is promoted through interaction between the Fc region of immunoglobulin G1 (IgG1) and Fcγ receptor IIIa (FcγRIIIa), depending on N-glycosylation of these glycoproteins. In particular, core fucosylation of IgG1-Fc N-glycans negatively affects this interaction and thereby compromises ADCC activity. To address the mechanisms of this effect, we performed replica-exchange molecular dynamics simulations based on crystallographic analysis of a soluble form of FcγRIIIa (sFcγRIIIa) in complex with IgG1-Fc. Our simulation highlights increased conformational fluctuation of the N-glycan at Asn162 of sFcγRIIIa upon fucosylation of IgG1-Fc, consistent with crystallographic data giving no interpretable electron density for this N-glycan, except for the innermost part. The fucose residue disrupts optimum intermolecular carbohydrate-carbohydrate interactions, rendering this sFcγRIIIa glycan distal from the Fc glycan. Moreover, our simulation demonstrates that core fucosylation of IgG1-Fc affects conformational dynamics and rearrangements of surrounding amino acid residues, typified by Tyr296 of IgG1-Fc, which was more extensively involved in the interaction with sFcγRIIIa without Fc core fucosylation. Our findings offer a structural foundation for designing and developing therapeutic antibodies with improved ADCC activity.
Collapse
Affiliation(s)
- Yoshitake Sakae
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.
| | - Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Saeko Yanaka
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan.,Institute for Molecular Science and Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Takumi Yamaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan.,Institute for Molecular Science and Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.,School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Yuya Isoda
- Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, 3-6-6 Asahi-machi, Machida-shi, Tokyo, 194-8533, Japan
| | - Shigeru Iida
- Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, 3-6-6 Asahi-machi, Machida-shi, Tokyo, 194-8533, Japan
| | - Yuko Okamoto
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.,Information Technology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan.,Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.,Center for Computational Science, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, 464-8603, Japan.,JST-CREST, Nagoya, Aichi, 464-8602, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan. .,Institute for Molecular Science and Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
28
|
Lobner E, Humm AS, Mlynek G, Kubinger K, Kitzmüller M, Traxlmayr MW, Djinović-Carugo K, Obinger C. Two-faced Fcab prevents polymerization with VEGF and reveals thermodynamics and the 2.15 Å crystal structure of the complex. MAbs 2017; 9:1088-1104. [PMID: 28816592 PMCID: PMC5627596 DOI: 10.1080/19420862.2017.1364825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fcabs (Fc domain with antigen-binding sites) are promising novel therapeutics. By engineering of the C-terminal loops of the CH3 domains, 2 antigen binding sites can be inserted in close proximity. To elucidate the binding mode(s) between homodimeric Fcabs and small homodimeric antigens, the interaction between the Fcabs 448 and CT6 (having the AB, CD and EF loops and the C-termini engineered) with homodimeric VEGF was investigated. The crystal structures of these Fcabs, which form polymers with the antigen VEGF in solution, were determined. However, construction of heterodimeric Fcabs (JanusFcabs: one chain Fc-wt, one chain VEGF-binding) results in formation of distinct JanusFcab–VEGF complexes (2:1), which allowed elucidation of the crystal structure of the JanusCT6–VEGF complex at 2.15 Å resolution. VEGF binding to Janus448 and JanusCT6 is shown to be entropically unfavorable, but enthalpically favorable. Structure-function relationships are discussed with respect to Fcab design and engineering strategies.
Collapse
Affiliation(s)
- Elisabeth Lobner
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| | - Anne-Sophie Humm
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,c Department for Structural and Computational Biology , Max F. Perutz Laboratories, University of Vienna , Dr. Bohr-Gasse 9, Vienna , Austria
| | - Georg Mlynek
- c Department for Structural and Computational Biology , Max F. Perutz Laboratories, University of Vienna , Dr. Bohr-Gasse 9, Vienna , Austria
| | - Konstantin Kubinger
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| | - Michael Kitzmüller
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| | - Michael W Traxlmayr
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| | - Kristina Djinović-Carugo
- c Department for Structural and Computational Biology , Max F. Perutz Laboratories, University of Vienna , Dr. Bohr-Gasse 9, Vienna , Austria.,d Department of Biochemistry, Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113, Ljubljana , Slovenia
| | - Christian Obinger
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| |
Collapse
|
29
|
Grandal MM, Havrylov S, Poulsen TT, Koefoed K, Dahlman A, Galler GR, Conrotto P, Collins S, Eriksen KW, Kaufman D, Woude GF, Jacobsen HJ, Horak ID, Kragh M, Lantto J, Bouquin T, Park M, Pedersen MW. Simultaneous Targeting of Two Distinct Epitopes on MET Effectively Inhibits MET- and HGF-Driven Tumor Growth by Multiple Mechanisms. Mol Cancer Ther 2017; 16:2780-2791. [DOI: 10.1158/1535-7163.mct-17-0374] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/03/2017] [Accepted: 08/02/2017] [Indexed: 11/16/2022]
|
30
|
Epp A, Sullivan KC, Herr AB, Strait RT. Immunoglobulin Glycosylation Effects in Allergy and Immunity. Curr Allergy Asthma Rep 2017; 16:79. [PMID: 27796794 DOI: 10.1007/s11882-016-0658-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The aim of this review will be to familiarize the reader with the general area of antibody (Ab) glycosylation and to summarize the known functional roles of glycosylation and how glycan structure can contribute to various disease states with emphasis on allergic disease. RECENT FINDINGS Both immunoglobulin (Ig) isotype and conserved Fc glycosylation sites often dictate the downstream activity of an Ab where complexity and degree of glycosylation contribute to its ability to bind Fc receptors (FcRs) and activate complement. Most information on the effects of glycosylation center on IgG in cancer therapy and autoimmunity. In cancer therapy, glycosylation modifications that enhance affinity for activating FcRs are utilized to facilitate immune-mediated tumor cell killing. In autoimmunity, disease severity has been linked to alterations in the presence, location, and composition of Fc glycans. Significantly less is understood about the role of glycosylation in the setting of allergy and asthma. However, recent data demonstrate that glycosylation of IgE at the asparagine-394 site of Cε3 is necessary for IgE interaction with the high affinity IgE receptor but, surprisingly, glycosylation has no effect on IgE interaction with its low-affinity lectin receptor, CD23. Variations in the specific glycoform may modulate the interaction of an Ig with its receptors. Significantly more is known about the functional effects of glycosylation of IgG than for other Ig isotypes. Thus, the role of glycosylation is much better understood in the areas of autoimmunity and cancer therapy, where IgG is the dominant isotype, than in the field of allergy, where IgE predominates. Further work is needed to fully understand the role of glycan variation in IgE and other Ig isotypes with regard to the inhibition or mediation of allergic disease.
Collapse
Affiliation(s)
- Alexandra Epp
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Kathryn C Sullivan
- Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Andrew B Herr
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Richard T Strait
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA. .,Division of Emergency Medicine, Cincinnati Children's Hospital, 3333 Burnet Ave, ML 2008, Cincinnati, OH, 45229, USA.
| |
Collapse
|
31
|
Fcab-HER2 Interaction: a Ménage à Trois. Lessons from X-Ray and Solution Studies. Structure 2017; 25:878-889.e5. [PMID: 28528777 DOI: 10.1016/j.str.2017.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/10/2017] [Accepted: 04/28/2017] [Indexed: 01/07/2023]
Abstract
The crystallizable fragment (Fc) of the immunoglobulin class G (IgG) is an attractive scaffold for the design of novel therapeutics. Upon engineering the C-terminal loops in the CH3 domains, Fcabs (Fc domain with antigen-binding sites) can be designed. We present the first crystal structures of Fcabs, i.e., of the HER2-binding clone H10-03-6 having the AB and EF loop engineered and the stabilized version STAB19 derived by directed evolution. Comparison with the crystal structure of the Fc wild-type protein reveals conservation of the overall domain structures but significant differences in EF-loop conformations. Furthermore, we present the first Fcab-antigen complex structures demonstrating the interaction between the engineered Fcab loops with domain IV of HER2. The crystal structures of the STAB19-HER2 and H10-03-6-HER2 complexes together with analyses by isothermal titration calorimetry, SEC-MALS, and fluorescence correlation spectroscopy show that one homodimeric Fcab binds two HER2 molecules following a negative cooperative binding behavior.
Collapse
|
32
|
Rosales C. Fcγ Receptor Heterogeneity in Leukocyte Functional Responses. Front Immunol 2017; 8:280. [PMID: 28373871 PMCID: PMC5357773 DOI: 10.3389/fimmu.2017.00280] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/27/2017] [Indexed: 01/12/2023] Open
Abstract
Antibodies participate in defense of the organism from all types of pathogens, including viruses, bacteria, fungi, and protozoa. IgG antibodies recognize their associated antigen via their two Fab portions and are in turn recognized though their Fc portion by specific Fcγ receptors (FcγRs) on the membrane of immune cells. Multiple types and polymorphic variants of FcγR exist. These receptors are expressed in many cells types and are also redundant in inducing cell responses. Crosslinking of FcγR on the surface of leukocytes activates several effector functions aimed toward the destruction of pathogens and the induction of an inflammatory response. In the past few years, new evidence on how the particular IgG subclass and the glycosylation pattern of the antibody modulate the IgG-FcγR interaction has been presented. Despite these advances, our knowledge of what particular effector function is activated in a certain cell and in response to a specific type of FcγR remains very limited today. On one hand, each immune cell could be programmed to perform a particular cell function after FcγR crosslinking. On the other, each FcγR could activate a particular signaling pathway leading to a unique cell response. In this review, I describe the main types of FcγRs and our current view of how particular FcγRs activate various signaling pathways to promote unique leukocyte functions.
Collapse
Affiliation(s)
- Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
33
|
Portnoff AD, Gao C, Borrok MJ, Gao X, Gao C, Rainey GJ. An antidote approach to reduce risk and broaden utility of antibody-based therapeutics. J Biol Chem 2017; 292:8498-8506. [PMID: 28258216 PMCID: PMC5437253 DOI: 10.1074/jbc.m117.775528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/24/2017] [Indexed: 02/05/2023] Open
Abstract
Antibody therapeutics offer effective treatment options for a broad range of diseases. One of the greatest benefits of antibody therapeutics is their extraordinarily long serum half-life, allowing infrequent dosing with long-lasting effects. A characteristic of antibodies that drives long half-life is the ability to interact with the recycling receptor, FcRn, in a pH-dependent manner. The benefit of long half-life, however, carries with it liabilities. Although the positive effects of antibody therapeutics are long-lasting, any acute adverse events or chronic negative impacts, such as immunosuppression in the face of an infection, are also long-lasting. Therefore, we sought to develop antibodies with a chemical handle that alone would enjoy the long half-life of normal antibodies but, upon addition of a small-molecule antidote, would interact with the chemical handle and inhibit the antibody recycling mechanism, thus leading to rapid degradation and shortened half-life in vivo Here we present a proof of concept study where we identify sites to incorporate a non-natural amino acid that can be chemically modified to modulate FcRn interaction in vitro and antibody half-life in vivo This is an important first step in developing safer therapeutics, and the next step will be development of technology that can perform the modifying chemistry in vivo.
Collapse
Affiliation(s)
| | - Cuihua Gao
- Departments of Antibody Discovery and Protein Engineering
| | - M Jack Borrok
- Departments of Antibody Discovery and Protein Engineering
| | - Xizhe Gao
- Translational Sciences, MedImmune, Gaithersburg, Maryland 20878
| | - Changshou Gao
- Departments of Antibody Discovery and Protein Engineering.
| | - G Jonah Rainey
- Departments of Antibody Discovery and Protein Engineering.
| |
Collapse
|
34
|
A novel monoclonal antibody targeting coxsackie virus and adenovirus receptor inhibits tumor growth in vivo. Sci Rep 2017; 7:40400. [PMID: 28074864 PMCID: PMC5225458 DOI: 10.1038/srep40400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 12/07/2016] [Indexed: 12/26/2022] Open
Abstract
To create a new anti-tumor antibody, we conducted signal sequence trap by retrovirus-meditated expression method and identified coxsackie virus and adenovirus receptor (CXADR) as an appropriate target. We developed monoclonal antibodies against human CXADR and found that one antibody (6G10A) significantly inhibited the growth of subcutaneous as well as orthotopic xenografts of human prostate cancer cells in vivo. Furthermore, 6G10A also inhibited other cancer xenografts expressing CXADR, such as pancreatic and colorectal cancer cells. Knockdown and overexpression of CXADR confirmed the dependence of its anti-tumor activity on CXADR expression. Our studies of its action demonstrated that 6G10A exerted its anti-tumor activity primarily through both antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. Moreover, 6G10A reacted with human tumor tissues, such as prostate, lung, and brain, each of which express CXADR. Although we need further evaluation of its reactivity and safety in human tissues, our results show that a novel anti-CXADR antibody may be a feasible candidate for cancer immunotherapy.
Collapse
|
35
|
Saxena A, Wu D. Advances in Therapeutic Fc Engineering - Modulation of IgG-Associated Effector Functions and Serum Half-life. Front Immunol 2016; 7:580. [PMID: 28018347 PMCID: PMC5149539 DOI: 10.3389/fimmu.2016.00580] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/24/2016] [Indexed: 12/20/2022] Open
Abstract
Today, monoclonal immunoglobulin gamma (IgG) antibodies have become a major option in cancer therapy especially for the patients with advanced or metastatic cancers. Efficacy of monoclonal antibodies (mAbs) is achieved through both its antigen-binding fragment (Fab) and crystallizable fragment (Fc). Fab can specifically recognize tumor-associated antigen (TAA) and thus modulate TAA-linked downstream signaling pathways that may lead to the inhibition of tumor growth, induction of tumor apoptosis, and differentiation. The Fc region can further improve mAbs’ efficacy by mediating effector functions such as antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cell-mediated phagocytosis. Moreover, Fc is the region interacting with the neonatal Fc receptor in a pH-dependent manner that can slow down IgG’s degradation and extend its serum half-life. Loss of the antibody Fc region dramatically shortens its serum half-life and weakens its anticancer effects. Given the essential roles that the Fc region plays in the modulation of the efficacy of mAb in cancer treatment, Fc engineering has been extensively studied in the past years. This review focuses on the recent advances in therapeutic Fc engineering that modulates its related effector functions and serum half-life. We also discuss the progress made in aglycosylated mAb development that may substantially reduce the cost of manufacture but maintain similar efficacies as conventional glycosylated mAb. Finally, we highlight several Fc engineering-based mAbs under clinical trials.
Collapse
Affiliation(s)
- Abhishek Saxena
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University , Shanghai , China
| | - Donghui Wu
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University , Shanghai , China
| |
Collapse
|
36
|
Hashimoto K, Kurosawa K, Murayama A, Seo H, Ohta K. B Cell-Based Seamless Engineering of Antibody Fc Domains. PLoS One 2016; 11:e0167232. [PMID: 27907066 PMCID: PMC5131995 DOI: 10.1371/journal.pone.0167232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 11/10/2016] [Indexed: 12/27/2022] Open
Abstract
Engineering of monoclonal antibodies (mAbs) enables us to obtain mAbs with additional functions. In particular, modifications in antibody's Fc (fragment, crystallizable) region can provide multiple benefits such as added toxicity by drug conjugation, higher affinity to Fc receptors on immunocytes, or the addition of functional modules. However, the generation of recombinant antibodies requires multiple laborious bioengineering steps. We previously developed a technology that enables rapid in vitro screening and isolation of specific mAb-expressing cells from the libraries constructed with chicken B-cell line DT40 (referred to as the 'ADLib system'). To upgrade this ADLib system with the ability to generate customized mAbs, we developed a novel and rapid engineering technology that enables seamless exchanges of mAbs' Fc domains after initial selections of mAb-producing clones by the ADLib system, using a gene-replacement unit for recombinase-mediated cassette exchange (RMCE). In this system, Cre-recombinase recognition sites were inserted into the Fc region of the active DT40 IgM allele, allowing the replacement of the Fc domain by the sequences of interest upon co-transfection of a Cre recombinase and a donor DNA, enabling the rapid exchange of Fc regions. Combining this method with the ADLib system, we demonstrate rapid Fc engineering to generate fluorescent antibodies and to enhance affinity to Fc receptors.
Collapse
Affiliation(s)
- Koji Hashimoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kohei Kurosawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Akiho Murayama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidetaka Seo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Beirão BCB, Raposo T, Jain S, Hupp T, Argyle DJ. Challenges and opportunities for monoclonal antibody therapy in veterinary oncology. Vet J 2016; 218:40-50. [PMID: 27938708 DOI: 10.1016/j.tvjl.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/15/2016] [Accepted: 11/13/2016] [Indexed: 12/22/2022]
Abstract
Monoclonal antibodies (mAbs) have come to dominate the biologics market in human cancer therapy. Nevertheless, in veterinary medicine, very few clinical trials have been initiated using this form of therapy. Some of the advantages of mAb therapeutics over conventional drugs are high specificity, precise mode of action and long half-life, which favour infrequent dosing of the antibody. Further advancement in the field of biomedical sciences has led to the production of different forms of antibodies, such as single chain antibody fragment, Fab, bi-specific antibodies and drug conjugates for use in diagnostic and therapeutic purposes. This review describes the potential for mAbs in veterinary oncology in supporting both diagnosis and therapy of cancer. The technical and financial hurdles to facilitate clinical acceptance of mAbs are explored and insights into novel technologies and targets that could support more rapid clinical development are offered.
Collapse
Affiliation(s)
- Breno C B Beirão
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, EH25 9RG, United Kingdom
| | - Teresa Raposo
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, EH25 9RG, United Kingdom; Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro, 5001-801, Portugal
| | - Saurabh Jain
- Edinburgh Cancer Research Centre, University of Edinburgh, EH4 2XR, United Kingdom
| | - Ted Hupp
- Edinburgh Cancer Research Centre, University of Edinburgh, EH4 2XR, United Kingdom
| | - David J Argyle
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, EH25 9RG, United Kingdom.
| |
Collapse
|
38
|
Antibody-Drug Conjugates for Cancer Therapy. Biomedicines 2016; 4:biomedicines4030014. [PMID: 28536381 PMCID: PMC5344263 DOI: 10.3390/biomedicines4030014] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 11/18/2022] Open
Abstract
Antibody–drug conjugates (ADCs) take advantage of the specificity of a monoclonal antibody to deliver a linked cytotoxic agent directly into a tumour cell. The development of these compounds provides exciting opportunities for improvements in patient care. Here, we review the key issues impacting on the clinical success of ADCs in cancer therapy. Like many other developing therapeutic classes, there remain challenges in the design and optimisation of these compounds. As the clinical applications for ADCs continue to expand, key strategies to improve patient outcomes include better patient selection for treatment and the identification of mechanisms of therapy resistance.
Collapse
|
39
|
Carvalho S, Levi‐Schaffer F, Sela M, Yarden Y. Immunotherapy of cancer: from monoclonal to oligoclonal cocktails of anti-cancer antibodies: IUPHAR Review 18. Br J Pharmacol 2016; 173:1407-24. [PMID: 26833433 PMCID: PMC4831314 DOI: 10.1111/bph.13450] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/14/2016] [Accepted: 01/20/2016] [Indexed: 12/11/2022] Open
Abstract
Antibody-based therapy of cancer employs monoclonal antibodies (mAbs) specific to soluble ligands, membrane antigens of T-lymphocytes or proteins located at the surface of cancer cells. The latter mAbs are often combined with cytotoxic regimens, because they block survival of residual fractions of tumours that evade therapy-induced cell death. Antibodies, along with kinase inhibitors, have become in the last decade the mainstay of oncological pharmacology. However, partial and transient responses, as well as emergence of tumour resistance, currently limit clinical application of mAbs. To overcome these hurdles, oligoclonal antibody mixtures are being tested in animal models and in clinical trials. The first homo-combination of two mAbs, each engaging a distinct site of HER2, an oncogenic receptor tyrosine kinase (RTK), has been approved for treatment of breast cancer. Likewise, a hetero-combination of antibodies to two distinct T-cell antigens, PD1 and CTLA4, has been approved for treatment of melanoma. In a similar vein, additive or synergistic anti-tumour effects observed in animal models have prompted clinical testing of hetero-combinations of antibodies simultaneously engaging distinct RTKs. We discuss the promise of antibody cocktails reminiscent of currently used mixtures of chemotherapeutics and highlight mechanisms potentially underlying their enhanced clinical efficacy.
Collapse
Affiliation(s)
- Silvia Carvalho
- Department of Biological RegulationWeizmann Institute of ScienceRehovotIsrael
| | - Francesca Levi‐Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Michael Sela
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
| | - Yosef Yarden
- Department of Biological RegulationWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
40
|
Kim Y, Park EJ, Na DH. Antibody–drug conjugates for targeted anticancer drug delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016. [DOI: 10.1007/s40005-016-0254-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Kaumaya PTP. A paradigm shift: Cancer therapy with peptide-based B-cell epitopes and peptide immunotherapeutics targeting multiple solid tumor types: Emerging concepts and validation of combination immunotherapy. Hum Vaccin Immunother 2016; 11:1368-86. [PMID: 25874884 DOI: 10.1080/21645515.2015.1026495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a recognizable and urgent need to speed the development and application of novel, more efficacious anti-cancer vaccine therapies that inhibit tumor progression and prevent acquisition of tumor resistance. We have created and established a portfolio of validated peptide epitopes against multiple receptor tyrosine kinases and we have identified the most biologically effective combinations of EGFR (HER-1), HER-2, HER-3, VEGF and IGF-1R peptide vaccines/mimics to selectively inhibit multiple receptors and signaling pathways. The strategy is based on the use of chimeric conformational B-cell epitope peptides incorporating "promiscuous" T-cell epitopes that afford the possibility of generating an enduring immune response, eliciting protein-reactive high-affinity anti-peptide antibodies as potential vaccines and peptide mimics that act as antagonists to receptor signaling that drive cancer metastasis. In this review we will summarize our ongoing studies based on the development of combinatorial immunotherapeutic strategies that act synergistically to enhance immune-mediated tumor killing aimed at addressing mechanisms of tumor resistance for several tumor types.
Collapse
Affiliation(s)
- Pravin T P Kaumaya
- a Department of Obstetrics and Gynecology; The Ohio State University Wexner Medical Center ; Columbus , OH , USA
| |
Collapse
|
42
|
Abstract
Chemokine receptors are involved in various pathologies such as inflammatory diseases, cancer, and HIV infection. Small molecule and antibody-based antagonists have been developed to inhibit chemokine-induced receptor activity. Currently two small molecule inhibitors targeting CXCR4 and CCR5 are on the market for stem cell mobilization and the treatment of HIV infection, respectively. Antibody fragments (e.g., nanobodies) targeting chemokine receptors are primarily orthosteric ligands, competing for the chemokine binding site. This is opposed by most small molecules, which act as allosteric modulators and bind to the receptor at a topographically distinct site as compared to chemokines. Allosteric modulators can be distinguished from orthosteric ligands by unique features, such as a saturable effect and probe dependency. For successful drug development, it is essential to determine pharmacological parameters (i.e., affinity, potency, and efficacy) and the mode of action of potential drugs during early stages of research in order to predict the biological effect of chemokine receptor targeting drugs in the clinic. This chapter explains how the pharmacological profile of chemokine receptor targeting ligands can be determined and quantified using binding and functional experiments.
Collapse
|
43
|
|
44
|
Könitzer JD, Sieron A, Wacker A, Enenkel B. Reformatting Rituximab into Human IgG2 and IgG4 Isotypes Dramatically Improves Apoptosis Induction In Vitro. PLoS One 2015; 10:e0145633. [PMID: 26713448 PMCID: PMC4694715 DOI: 10.1371/journal.pone.0145633] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/06/2015] [Indexed: 12/31/2022] Open
Abstract
The direct induction of cell death, or apoptosis, in target cells is one of the effector mechanisms for the anti CD20 antibody Rituximab. Here we provide evidence that Rituximab’s apoptotic ability is linked to the antibody IgG isotype. Reformatting Rituximab from the standard human IgG1 heavy chain into IgG2 or IgG4 boosted in vitro apoptosis induction in the Burkitt’s lymphoma B cell line Ramos five and four-fold respectively. The determinants for this behavior are located in the hinge region and CH1 domain of the heavy chain. By transplanting individual IgG2 or IgG4 specific amino acid residues onto otherwise IgG1 like backbones, thereby creating hybrid antibodies, the same enhancement of apoptosis induction could be achieved. The cysteines at position 131 of the CH1 domain and 219 in the hinge region, involved in IgG2 and IgG4 disulfide formation, were found to be of particular structural importance. Our data indicates that the hybrid antibodies possess a different CD20 binding mode than standard Rituximab, which appears to be key in enhancing apoptotic ability. The presented work opens up an interesting engineering route for enhancing the direct cytotoxic ability of therapeutic antibodies.
Collapse
Affiliation(s)
- Jennifer D. Könitzer
- Boehringer Ingelheim, Division Research Germany, Immune Modulation and Biotherapeutics Discovery, Biberach/Riß, Germany
- * E-mail:
| | - Annette Sieron
- Boehringer Ingelheim, Biopharma Operations Germany, Biberach/Riß, Germany
| | - Angelika Wacker
- Boehringer Ingelheim, Bioprocess and Pharmaceutical Development Germany, Biberach/Riß, Germany
| | - Barbara Enenkel
- Boehringer Ingelheim, Bioprocess and Pharmaceutical Development Germany, Biberach/Riß, Germany
| |
Collapse
|
45
|
The influence of NK cell-mediated ADCC: Structure and expression of the CD16 molecule differ among FcγRIIIa-V158F genotypes in healthy Japanese subjects. Hum Immunol 2015; 77:165-71. [PMID: 26582002 DOI: 10.1016/j.humimm.2015.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/05/2015] [Accepted: 11/12/2015] [Indexed: 11/23/2022]
Abstract
NK cells express the CD16 (FcγRIIIa) receptor, which mediates antibody-dependent cellular cytotoxicity (ADCC), on their cell surface. Therefore, ADCC activity may be influenced by qualitative or quantitative changes in the CD16 molecule on NK cells. Responses to NK cell-mediated ADCC have been shown to depend on single nucleotide polymorphisms (SNPs) at FcγRIIIa amino acid position 158. However, a consensus has not yet been reached regarding differences in the structure and expression levels of the CD16 molecule among FcγRIIIa-V158F genotypes, which have not yet been adequately investigated in healthy Japanese individuals. We herein examined the influence of the FcγRIIIa polymorphism on ADCC, binding affinity of CD16 to the Fc region, FCGR3A gene expression, and cell-surface CD16 expression in healthy Japanese subjects. FcγRIIIa-V158F genotyping was performed for 101 subjects. The results obtained showed that all parameters analyzed increased in the order of V/V>V/F>F/F and were significantly higher in V/V subjects than in F/F subjects. Moreover, a positive correlation was observed between ADCC activity and binding affinity, FCGR3A transcript levels, and surface CD16 expression levels. These results suggest that the structure and expression of the CD16 molecule differs among FcγRIIIa-V158F genotypes, and the FcγRIIIa-V158F polymorphism may be represent a haplotype with other SNPs in regulatory regions in Japanese subjects.
Collapse
|
46
|
Generation of new peptide-Fc fusion proteins that mediate antibody-dependent cellular cytotoxicity against different types of cancer cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15043. [PMID: 26605373 PMCID: PMC4632835 DOI: 10.1038/mtm.2015.43] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/05/2015] [Accepted: 09/29/2015] [Indexed: 12/14/2022]
Abstract
Antibody-dependent cellular cytotoxicity (ADCC), a key effector function for the clinical effectiveness of monoclonal antibodies, is triggered by the engagement of the antibody Fc domain with the Fcγ receptors expressed by innate immune cells such as natural killer (NK) cells and macrophages. Here, we fused cancer cell-binding peptides to the Fc domain of human IgG1 to engineer novel peptide-Fc fusion proteins with ADCC activity. The designed fusion proteins were expressed in human embryonic kidney 293T cells, followed by purification and characterization by western blots. One of the engineered variants (WN-Fc), bound with high affinity to a wide range of solid tumor cell lines (e.g., colon, lung, prostate, skin, ovarian, and mammary tumors). Treatment of cancer cells with the engineered peptide-Fc fusions in the presence of effector NK cells potentially enhanced cytotoxicity, degranulation, and interferon-γ production by NK cells when compared to cells treated with the Fc control. The presence of competing peptides inhibited NK cell activation. Furthermore, a bispecific peptide-Fc fusion protein activated NK cells against HER-1- and/or HER-2-expressing cancer cells. Collectively, the engineered peptide-Fc fusions constitute a new promising strategy to recruit and activate NK cells against tumor cells, a primary goal of cancer immunotherapy.
Collapse
|
47
|
Expression of enhancing-activity-free neutralizing antibody against dengue type 1 virus in plasmid-inoculated mice. Vaccine 2015; 33:6070-7. [DOI: 10.1016/j.vaccine.2015.07.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/16/2015] [Accepted: 07/23/2015] [Indexed: 01/10/2023]
|
48
|
Caaveiro JMM, Kiyoshi M, Tsumoto K. Structural analysis of Fc/FcγR complexes: a blueprint for antibody design. Immunol Rev 2015; 268:201-21. [DOI: 10.1111/imr.12365] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jose M. M. Caaveiro
- Department of Bioengineering; School of Engineering; The University of Tokyo; Tokyo Japan
| | - Masato Kiyoshi
- Department of Bioengineering; School of Engineering; The University of Tokyo; Tokyo Japan
- Division of Biological Chemistry and Biologicals; National Institute of Health Sciences; Tokyo Japan
| | - Kouhei Tsumoto
- Department of Bioengineering; School of Engineering; The University of Tokyo; Tokyo Japan
- Institute of Medical Science; The University of Tokyo; Tokyo Japan
| |
Collapse
|
49
|
Isoda Y, Yagi H, Satoh T, Shibata-Koyama M, Masuda K, Satoh M, Kato K, Iida S. Importance of the Side Chain at Position 296 of Antibody Fc in Interactions with FcγRIIIa and Other Fcγ Receptors. PLoS One 2015; 10:e0140120. [PMID: 26444434 PMCID: PMC4596520 DOI: 10.1371/journal.pone.0140120] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/22/2015] [Indexed: 11/20/2022] Open
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) is an important effector function determining the clinical efficacy of therapeutic antibodies. Core fucose removal from N-glycans on the Fc portion of immunoglobulin G (IgG) improves the binding affinity for Fcγ receptor IIIa (FcγRIIIa) and dramatically enhances ADCC. Our previous structural analyses revealed that Tyr–296 of IgG1-Fc plays a critical role in the interaction with FcγRIIIa, particularly in the enhanced FcγRIIIa binding of nonfucosylated IgG1. However, the importance of the Tyr–296 residue in the antibody in the interaction with various Fcγ receptors has not yet been elucidated. To further clarify the biological importance of this residue, we established comprehensive Tyr–296 mutants as fucosylated and nonfucosylated anti-CD20 IgG1s rituximab variants and examined their binding to recombinant soluble human Fcγ receptors: shFcγRI, shFcγRIIa, shFcγRIIIa, and shFcγRIIIb. Some of the mutations affected the binding of antibody to not only shFcγRIIIa but also shFcγRIIa and shFcγRIIIb, suggesting that the Tyr–296 residue in the antibody was also involved in interactions with FcγRIIa and FcγRIIIb. For FcγRIIIa binding, almost all Tyr–296 variants showed lower binding affinities than the wild-type antibody, irrespective of their core fucosylation, particularly in Y296K and Y296P. Notably, only the Y296W mutant showed improved binding to FcγRIIIa. The 3.00 Å-resolution crystal structure of the nonfucosylated Y296W mutant in complex with shFcγRIIIa harboring two N-glycans revealed that the Tyr-to-Trp substitution increased the number of potential contact atoms in the complex, thus improving the binding of the antibody to shFcγRIIIa. The nonfucosylated Y296W mutant retained high ADCC activity, relative to the nonfucosylated wild-type IgG1, and showed greater binding affinity for FcγRIIa. Our data may improve our understanding of the biological importance of human IgG1-Fc Tyr–296 in interactions with various Fcγ receptors, and have applications in the modulation of the IgG1-Fc function of therapeutic antibodies.
Collapse
Affiliation(s)
- Yuya Isoda
- Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, Asahi-machi, Machida-shi, Tokyo, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya, Japan
| | - Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya, Japan
- JST, PRESTO, Tanabe-dori, Mizuho-ku, Nagoya, Japan
| | - Mami Shibata-Koyama
- Immunology & Allergy R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, Asahi-machi, Machida-shi, Tokyo, Japan
| | - Kazuhiro Masuda
- Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, Asahi-machi, Machida-shi, Tokyo, Japan
| | - Mitsuo Satoh
- Immunology & Allergy R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, Asahi-machi, Machida-shi, Tokyo, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya, Japan
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Higashiyama, Myodaiji, Okazaki, Aichi, Japan
- GLYENCE Co., Ltd., Chikusa, Chikusa-ku, Nagoya, Japan
- The Glycoscience Institute, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan
| | - Shigeru Iida
- Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, Asahi-machi, Machida-shi, Tokyo, Japan
- * E-mail:
| |
Collapse
|
50
|
Redman JM, Hill EM, AlDeghaither D, Weiner LM. Mechanisms of action of therapeutic antibodies for cancer. Mol Immunol 2015; 67:28-45. [PMID: 25911943 PMCID: PMC4529810 DOI: 10.1016/j.molimm.2015.04.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/29/2015] [Accepted: 04/03/2015] [Indexed: 02/06/2023]
Abstract
The therapeutic utility of antibodies and their derivatives is achieved by various means. The FDA has approved several targeted antibodies that disrupt signaling of various growth factor receptors for the treatment of a number of cancers. Rituximab, and other anti-CD20 monoclonal antibodies are active in B cell malignancies. As more experience has been gained with anti-CD20 monoclonal antibodies, the multifactorial nature of their anti-tumor mechanisms has emerged. Other targeted antibodies function to dampen inhibitory checkpoints. These checkpoint inhibitors have recently achieved dramatic results in several cancers, including melanoma. These and related antibodies continue to be investigated in the clinical and pre-clinical settings. Novel antibody structures that target two or more antigens have also made their way into clinical use. Tumor targeted antibodies can also be conjugated to chemo- or radiotherapeutic agents, or catalytic toxins, as a means to deliver toxic payloads to cancer cells. Here we provide a review of these mechanisms and a discussion of their relevance to current and future clinical applications.
Collapse
Affiliation(s)
- J M Redman
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - E M Hill
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - D AlDeghaither
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - L M Weiner
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States.
| |
Collapse
|