1
|
Chen DQ, Xie Y, Cao LQ, Fleishman JS, Chen Y, Wu T, Yang DH. The role of ABCC10/MRP7 in anti-cancer drug resistance and beyond. Drug Resist Updat 2024; 73:101062. [PMID: 38330827 DOI: 10.1016/j.drup.2024.101062] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Multidrug resistance protein 7 (MRP7), also known as ATP-binding cassette (ABC) transporter subfamily C10 (ABCC10), is an ABC transporter that was first identified in 2001. ABCC10/MRP7 is a 171 kDa protein located on the basolateral membrane of cells. ABCC10/MRP7 consists of three transmembrane domains and two nucleotide binding domains. It mediates multidrug resistance of tumor cells to a variety of anticancer drugs by increasing drug efflux and results in reducing intracellular drug accumulation. The transport substrates of ABCC10/MRP7 include antineoplastic drugs such as taxanes, vinca alkaloids, and epothilone B, as well as endobiotics such as leukotriene C4 (LTC4) and estradiol 17 β-D-glucuronide. A variety of ABCC10/MRP7 inhibitors, including cepharanthine, imatinib, erlotinib, tariquidar, and sildenafil, can reverse ABCC10/MRP7-mediated MDR. Additionally, the presence or absence of ABCC10/MRP7 is also closely related to renal tubular dysfunction, obesity, and other diseases. In this review, we discuss: 1) Structure and functions of ABCC10/MRP7; 2) Known substrates and inhibitors of ABCC10/MRP7 and their potential therapeutic applications in cancer; and 3) Role of ABCC10/MRP7 in non-cancerous diseases.
Collapse
Affiliation(s)
- Da-Qian Chen
- Department of Medical Oncology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518100, China
| | - Yuhao Xie
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Lu-Qi Cao
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Institute for Biotechnology, St. John's University, Queens, NY 11439, USA
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yang Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Tiesong Wu
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518100, China.
| | - Dong-Hua Yang
- Department of Medical Oncology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518100, China; New York College of Traditional Chinese Medicine, Mineola, NY 11501, USA.
| |
Collapse
|
2
|
Tiwari G, Khanna A, Mishra VK, Sagar R. Recent developments on microwave-assisted organic synthesis of nitrogen- and oxygen-containing preferred heterocyclic scaffolds. RSC Adv 2023; 13:32858-32892. [PMID: 37942237 PMCID: PMC10628940 DOI: 10.1039/d3ra05986c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
In recent decades, the utilization of microwave energy has experienced an extraordinary surge, leading to the introduction of innovative and revolutionary applications across various fields of chemistry such as medicinal chemistry, materials science, organic synthesis and heterocyclic chemistry. Herein, we provide a comprehensive literature review on the microwave-assisted organic synthesis of selected heterocycles. We highlight the use of microwave irradiation as an effective method for constructing a diverse range of molecules with high yield and selectivity. We also emphasize the impact of microwave irradiation on the efficient synthesis of N- and O-containing heterocycles that possess bioactive properties, such as anti-cancer, anti-proliferative, and anti-tumor activities. Specific attention is given to the efficient synthesis of pyrazolopyrimidines-, coumarin-, quinoline-, and isatin-based scaffolds, which have been extensively studied for their potential in drug discovery. The article provides valuable insights into the recent synthetic protocols and trends for the development of new drugs using heterocyclic molecules.
Collapse
Affiliation(s)
- Ghanshyam Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi 221005 India
| | - Ashish Khanna
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi 221005 India
| | - Vinay Kumar Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi 221005 India
| | - Ram Sagar
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi 221005 India
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
3
|
Samidurai A, Xi L, Das A, Kukreja RC. Beyond Erectile Dysfunction: cGMP-Specific Phosphodiesterase 5 Inhibitors for Other Clinical Disorders. Annu Rev Pharmacol Toxicol 2023; 63:585-615. [PMID: 36206989 DOI: 10.1146/annurev-pharmtox-040122-034745] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cyclic guanosine monophosphate (cGMP), an important intracellular second messenger, mediates cellular functional responses in all vital organs. Phosphodiesterase 5 (PDE5) is one of the 11 members of the cyclic nucleotide phosphodiesterase (PDE) family that specifically targets cGMP generated by nitric oxide-driven activation of the soluble guanylyl cyclase. PDE5 inhibitors, including sildenafil and tadalafil, are widely used for the treatment of erectile dysfunction, pulmonary arterial hypertension, and certain urological disorders. Preclinical studies have shown promising effects of PDE5 inhibitors in the treatment of myocardial infarction, cardiac hypertrophy, heart failure, cancer and anticancer-drug-associated cardiotoxicity, diabetes, Duchenne muscular dystrophy, Alzheimer's disease, and other aging-related conditions. Many clinical trials with PDE5 inhibitors have focused on the potential cardiovascular, anticancer, and neurological benefits. In this review, we provide an overview of the current state of knowledge on PDE5 inhibitors and their potential therapeutic indications for various clinical disorders beyond erectile dysfunction.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA;
| | - Lei Xi
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA;
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA;
| | - Rakesh C Kukreja
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA;
| |
Collapse
|
4
|
Chhonker SK, Rawat D, Koiri RK. Repurposing PDE5 inhibitor tadalafil and sildenafil as anticancer agent against hepatocellular carcinoma via targeting key events of glucose metabolism and multidrug resistance. J Biochem Mol Toxicol 2022; 36:e23100. [PMID: 35608386 DOI: 10.1002/jbt.23100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 02/28/2022] [Accepted: 05/11/2022] [Indexed: 11/12/2022]
Abstract
Hepatocellular carcinoma (HCC) has emerged as one of the most common and lethal cancers worldwide and is caused due to contamination of diets with aflatoxin B1 and chronic viral hepatitis. Recent reports suggest that phosphodiesterase-5 inhibitor (PDE5i) exhibits anticancer properties against several forms of cancer but till now has not been evaluated against HCC. We aimed to evaluate the anticancer property of phosphodiesterase-5 inhibitors (PDE5i) tadalafil and sildenafil against aflatoxin B1 HCC. Rats of HCC group were fed with 5% alcohol via drinking water for 3 weeks, followed by administration of AFB1 (1 mg/kg/bw, i.p.) at an interval of two subsequent days. PDE5i (tadalafil and sildenafil, 10 mg/kg bw) was administered along with drinking water after 6 weeks of treatment with AFB1 for 2 weeks. In the present investigation, in HCC elevation in the level of SGOT, SGPT, ALP, and urea vis-à-vis activity of key glycolytic enzyme LDH and mRNA expression of c-myc, Akt, LDH-A, and PFKFB3 was noted. Similarly, the level of multidrug resistance protein (MDR) and breast cancer resistance protein (BCRP/ABCG2) was elevated along with increased expression of angiogenesis marker (HIF-1α, VEGF, and TGF-β1) in HCC. Post-treatment with PDE5 inhibitor (tadalafil and sildenafil) downregulated and brought back the above parameters towards normal and out of two PDE5i (tadalafil and sildenafil), sildenafil effect was more potent as compared to tadalafil. Our findings demonstrate for the first time that PDE5 inhibitors tadalafil and sildenafil are able to prohibit the development and progression of aflatoxin B1 induced HCC.
Collapse
Affiliation(s)
- Saurabh Kumar Chhonker
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
| | - Divya Rawat
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
| | - Raj Kumar Koiri
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
| |
Collapse
|
5
|
Sanati M, Aminyavari S, Mollazadeh H, Bibak B, Mohtashami E, Afshari AR. How do phosphodiesterase-5 inhibitors affect cancer? A focus on glioblastoma multiforme. Pharmacol Rep 2022; 74:323-339. [PMID: 35050491 DOI: 10.1007/s43440-021-00349-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022]
Abstract
Since the discovery of phosphodiesterase-5 (PDE5) enzyme overexpression in the central nervous system (CNS) malignancies, investigations have explored the potential capacity of current PDE5 inhibitor drugs for repositioning in the treatment of brain tumors, notably glioblastoma multiforme (GBM). It has now been recognized that these drugs increase brain tumors permeability and enhance standard chemotherapeutics effectiveness. More importantly, studies have highlighted the promising antitumor functions of PDE5 inhibitors, e.g., triggering apoptosis, suppressing tumor cell growth and invasion, and reversing tumor microenvironment (TME) immunosuppression in the brain. However, contradictory reports have suggested a pro-oncogenic role for neuronal cyclic guanosine monophosphate (cGMP), indicating the beneficial function of PDE5 in the brain of GBM patients. Unfortunately, due to the inconsistent preclinical findings, only a few clinical trials are evaluating the therapeutic value of PDE5 inhibitors in GBM treatment. Accordingly, additional studies should be conducted to shed light on the precise effect of PDE5 inhibitors in GBM biology regarding the existing molecular heterogeneities among individuals. Here, we highlighted and discussed the previously investigated mechanisms underlying the impacts of PDE5 inhibitors in cancers, focusing on GBM to provide an overview of current knowledge necessary for future studies.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
6
|
Wang JQ, Cui Q, Lei ZN, Teng QX, Ji N, Lin L, Liu Z, Chen ZS. Insights on the structure-function relationship of human multidrug resistance protein 7 (MRP7/ABCC10) from molecular dynamics simulations and docking studies. MedComm (Beijing) 2021; 2:221-235. [PMID: 34766143 PMCID: PMC8491190 DOI: 10.1002/mco2.65] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
ATP-binding cassette (ABC) transporters superfamily mediates multidrug resistance in cancer by extruding structurally distinct chemotherapeutic agents, causing failure in chemotherapy. Among the 49 ABC transporters, multidrug resistance protein 7 (MRP7 or ABCC10) is relatively new and has been identified as the efflux pump of multiple anticancer agents including Vinca alkaloids and taxanes. Herein, we construct and validate a homology model for human MRP7 based on the cryo-EM structures of MRP1. Structure-function relationship of MRP7 was obtained from molecular dynamics simulations and docking studies and was in accordance with previous studies of ABC transporters. The motion patterns correlated with efflux mechanism were discussed. Additionally, predicted substrate- and modulator-binding sites of MRP7 were described for the first time, which provided rational insights in understanding the drug binding and functional regulation in MRP7. Our findings will benefit the high-throughput virtual screening and development of MRP7 modulators in the future.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University Queens New York USA
| | - Qingbin Cui
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University Queens New York USA.,School of Public Health Guangzhou Medical University Guangzhou China
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University Queens New York USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University Queens New York USA
| | - Ning Ji
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University Queens New York USA
| | - Lusheng Lin
- Cell Research Center Shenzhen Bolun Institute of Biotechnology Shenzhen China
| | - Zhijun Liu
- Department of Medical Microbiology Weifang Medical University Weifang China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University Queens New York USA
| |
Collapse
|
7
|
The Potential Role of Sildenafil in Cancer Management through EPR Augmentation. J Pers Med 2021; 11:jpm11060585. [PMID: 34205602 PMCID: PMC8234771 DOI: 10.3390/jpm11060585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/25/2022] Open
Abstract
Enhanced permeation retention (EPR) was a significant milestone discovery by Maeda et al. paving the path for the emerging field of nanomedicine to become a powerful tool in the fight against cancer. Sildenafil is a potent inhibitor of phosphodiesterase 5 (PDE-5) used for the treatment of erectile dysfunction (ED) through the relaxation of smooth muscles and the modulation of vascular endothelial permeability. Overexpression of PDE-5 has been reported in lung, colon, metastatic breast cancers, and bladder squamous carcinoma. Moreover, sildenafil has been reported to increase the sensitivity of tumor cells of different origins to the cytotoxic effect of chemotherapeutic agents with augmented apoptosis mediated through inducing the downregulation of Bcl-xL and FAP-1 expression, enhancing reactive oxygen species (ROS) generation, phosphorylating BAD and Bcl-2, upregulating caspase-3,8,9 activities, and blocking cells at G0/G1 cell cycle phase. Sildenafil has also demonstrated inhibitory effects on the efflux activity of ATP-binding cassette (ABC) transporters such as ABCC4, ABCC5, ABCB1, and ABCG2, ultimately reversing multidrug resistance. Accordingly, there has been a growing interest in using sildenafil as monotherapy or chemoadjuvant in EPR augmentation and management of different types of cancer. In this review, we critically examine the basic molecular mechanism of sildenafil related to cancer biology and discuss the overall potential of sildenafil in enhancing EPR-based anticancer drug delivery, pointing to the outcomes of the most important related preclinical and clinical studies.
Collapse
|
8
|
Iratni R, Ayoub MA. Sildenafil in Combination Therapy against Cancer: A Literature Review. Curr Med Chem 2021; 28:2248-2259. [PMID: 32744956 DOI: 10.2174/0929867327666200730165338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/13/2020] [Accepted: 06/22/2020] [Indexed: 11/22/2022]
Abstract
The concepts of drug repurposing and Sildenafil or blue pill are tightly linked over the years. Indeed, in addition to its initial clinical application as an anti-hypertensive drug in the pulmonary system, Sildenafil is also known for its beneficial effects in erectile dysfunction. Moreover, evidence has been accumulated to support its value in anti-cancer therapy, either alone or in combination with other clinically efficient chemotherapy drugs. In this review, we focused on the old and recent in vitro and in vivo studies demonstrating the cellular and molecular rationale for the application of Sildenafil in combination therapy in various types of cancer. We emphasized on the different molecular targets as well as the different signaling pathways involved in cancer cells. The pro-apoptotic effect of Sildenafil through nitric oxide (NO)/ phosphodiesterase type 5 (PDE5)-dependent manner seems to be one of the most common mechanisms. However, the activation of autophagy, as well as the modulation of the anti-tumor immunity, constitutes the other pathways triggered by Sildenafil. Overall, the studies converged to reveal the complexity of the anti-cancer potential of Sildenafil. Thus, through our review, we aimed to present an updated and simplified picture of such repurposing of Sildenafil in the field of oncology.
Collapse
Affiliation(s)
- Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box: 15551, Al Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box: 15551, Al Ain, United Arab Emirates
| |
Collapse
|
9
|
Wu CP, Lusvarghi S, Tseng PJ, Hsiao SH, Huang YH, Hung TH, Ambudkar SV. MY-5445, a phosphodiesterase type 5 inhibitor, resensitizes ABCG2-overexpressing multidrug-resistant cancer cells to cytotoxic anticancer drugs. Am J Cancer Res 2020; 10:164-178. [PMID: 32064159 PMCID: PMC7017726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023] Open
Abstract
The overexpression of one or multiple ATP-binding cassette (ABC) transporters such as ABCB1, ABCC1 or ABCG2 in cancer cells often leads to the development of multidrug resistance phenotype and consequent treatment failure. Therefore, these transporters constitute an important target to improve the therapeutic outcome in cancer patients. In this study, we employed a drug repurposing approach to identify MY-5445, a known phosphodiesterase type 5 inhibitor, as a selective modulator of ABCG2. We discovered that by inhibiting the drug transport function of ABCG2, MY-5445 potentiates drug-induced apoptosis in ABCG2-overexpressing multidrug-resistant cancer cells and resensitizes these cells to chemotherapeutic drugs. Our data of MY-5445 stimulating the ATPase activity of ABCG2 and molecular docking analysis of its binding to the substrate-binding pocket of ABCG2 provide additional insight into the manner in which MY-5445 interacts with ABCG2. Furthermore, we found that ABCG2 does not confer resistance to MY-5445 in human cancer cells. Overall, our study revealed an additional action of MY-5445 to resensitize ABCG2-overexpressing multidrug-resistant cancer cells to conventional anticancer drugs, and this should be evaluated in future drug combination trials.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial HospitalTaipei, Taiwan
| | | | - Pin-Jung Tseng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
| | - Tai-Ho Hung
- Department of Chinese Medicine, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial HospitalTaipei, Taiwan
| | | |
Collapse
|
10
|
Fong W, To KKW. Drug repurposing to overcome resistance to various therapies for colorectal cancer. Cell Mol Life Sci 2019; 76:3383-3406. [PMID: 31087119 PMCID: PMC11105507 DOI: 10.1007/s00018-019-03134-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/06/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
Emergence of novel treatment modalities provides effective therapeutic options, apart from conventional cytotoxic chemotherapy, to fight against colorectal cancer. Unfortunately, drug resistance remains a huge challenge in clinics, leading to invariable occurrence of disease progression after treatment initiation. While novel drug development is unfavorable in terms of time frame and costs, drug repurposing is one of the promising strategies to combat resistance. This approach refers to the application of clinically available drugs to treat a different disease. With the well-established safety profile and optimal dosing of these approved drugs, their combination with current cancer therapy is suggested to provide an economical, safe and efficacious approach to overcome drug resistance and prolong patient survival. Here, we review both preclinical and clinical efficacy, as well as cellular mechanisms, of some extensively studied repurposed drugs, including non-steroidal anti-inflammatory drugs, statins, metformin, chloroquine, disulfiram, niclosamide, zoledronic acid and angiotensin receptor blockers. The three major treatment modalities in the management of colorectal cancer, namely classical cytotoxic chemotherapy, molecular targeted therapy and immunotherapy, are covered in this review.
Collapse
Affiliation(s)
- Winnie Fong
- Faculty of Medicine, School of Pharmacy, Room 801N, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Area 39, Shatin, New Territories, Hong Kong SAR, China
| | - Kenneth K W To
- Faculty of Medicine, School of Pharmacy, Room 801N, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Area 39, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
11
|
Huang W, Sundquist J, Sundquist K, Ji J. Use of Phosphodiesterase 5 Inhibitors Is Associated With Lower Risk of Colorectal Cancer in Men With Benign Colorectal Neoplasms. Gastroenterology 2019; 157:672-681.e4. [PMID: 31103628 DOI: 10.1053/j.gastro.2019.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Phosphodiesterase 5 (PDE5) inhibitors have been proposed to have chemopreventative effects on colorectal cancer (CRC), although data are needed from population-based studies. We performed a nationwide cohort study to investigate the association between the use of PDE5 inhibitors and the risk of CRC in men with benign colorectal neoplasms. METHODS We identified men who received a diagnosis of benign colorectal neoplasm from July 2005 through March 2015 who were listed in the Swedish Hospital Discharge Register. We linked data with those from other national Swedish registers to obtain information about the prescription of PDE5 inhibitors and CRC diagnoses. Cox regression was used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS A total of 4823 patients were prescribed PDE5 inhibitors during the study period; the incidence rate of CRC was 2.64 per 1000 person-years for men prescribed PDE5 inhibitors compared with 4.46 per 1000 person-years for men without a prescription. We found a significant negative association between PDE5 inhibitor use and risk of CRC (adjusted HR, 0.65; 95% CI, 0.49-0.85); the decreased risk of CRC was associated with an increased cumulative dose of PDE5 inhibitors (P = .003). PDE5 prescription was associated with greater reduction in risk of advanced-stage CRC (adjusted HR, 0.61; 95% CI, 0.37-1.00) than early-stage CRC (adjusted HR, 0.70; 95% CI, 0.50-0.98), but the difference was not significant. CONCLUSIONS In a nationwide population-based study of men with a diagnosis of benign colorectal neoplasm in Sweden, we found evidence that use of PDE5 inhibitors is associated with a reduced risk of CRC. Further studies are needed to confirm the observed association.
Collapse
Affiliation(s)
- Wuqing Huang
- Center for Primary Health Care Research, Lund University/Region Skåne, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Sweden; Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York; Center for Community-Based Healthcare Research and Education, Department of Functional Pathology, School of Medicine, Shimane University, Japan
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Sweden; Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York; Center for Community-Based Healthcare Research and Education, Department of Functional Pathology, School of Medicine, Shimane University, Japan
| | - Jianguang Ji
- Center for Primary Health Care Research, Lund University/Region Skåne, Sweden.
| |
Collapse
|
12
|
Chk1 Inhibitor MK-8776 Restores the Sensitivity of Chemotherapeutics in P-glycoprotein Overexpressing Cancer Cells. Int J Mol Sci 2019; 20:ijms20174095. [PMID: 31443367 PMCID: PMC6747525 DOI: 10.3390/ijms20174095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
P-glycoprotein (P-gp), which is encoded by the ATP-binding cassette (ABC) transporter subfamily B member 1 (ABCB1) gene, is one of the most pivotal ABC transporters that transport its substrates across the cell membrane. Its overexpression is one of the confirmed causes of multidrug resistance (MDR), which results in the failure of cancer treatment. Here, we report that checkpoint kinase (Chk) 1 inhibitor MK-8776, a drug candidate in clinical trial, can restore the sensitivity of chemotherapeutics that are substrates of P-gp in KB-C2, SW620/Ad300 cells and human embryonic kidney (HEK)293/ABCB1 cells that overexpress P-gp. MK-8776 remarkably enhanced the cellular [3H]-paclitaxel accumulation and suppressed the efflux function of P-gp without reducing its expression and affecting its cellular localization in cancer cells. Furthermore, MK-8776 (0–40 μM) stimulated the activity of ATPase in P-gp, which was 4.1-fold greater than the control. In addition, MK-8776 formed a cation–π bond and π–π interaction with key residues of the substrate-binding site in P-gp, as indicated by computer-aided molecular docking study. Our study indicated that MK-8776 may significantly enhance the sensitivity of chemotherapeutics that are substrates of P-gp, providing important information for its application in the reversal of MDR.
Collapse
|
13
|
Wu Y, Gao XY, Chen XH, Zhang SL, Wang WJ, Sheng XH, Chen DZ. Fragment-centric topographic mapping method guides the understanding of ABCG2-inhibitor interactions. RSC Adv 2019; 9:7757-7766. [PMID: 35521159 PMCID: PMC9061187 DOI: 10.1039/c8ra09789e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/01/2019] [Indexed: 11/21/2022] Open
Abstract
Our study gains insight into the development of novel specific ABCG2 inhibitors, and develops a comprehensive computational strategy to understand protein ligand interaction with the help of AlphaSpace, a fragment-centric topographic mapping tool.
Collapse
Affiliation(s)
- Yao Wu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Xin-Ying Gao
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Xin-Hui Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Shao-Long Zhang
- College of Physics and Electronics
- Shandong Normal University
- Jinan 250014
- P. R. China
| | - Wen-Juan Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Xie-Huang Sheng
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - De-Zhan Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
14
|
Abstract
The transport of specific molecules across lipid membranes is an essential function of all living organisms. The processes are usually mediated by specific transporters. One of the largest transporter families is the ATP-binding cassette (ABC) family. More than 40 ABC transporters have been identified in human, which are divided into 7 subfamilies (ABCA to ABCG) based on their gene structure, amino acid sequence, domain organization, and phylogenetic analysis. Of them, at least 11 ABC transporters including P-glycoprotein (P-GP/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2) are involved in multidrug resistance (MDR) development. These ABC transporters are expressed in various tissues such as the liver, intestine, kidney, and brain, playing important roles in absorption, distribution, and excretion of drugs. Some ABC transporters are also involved in diverse cellular processes such as maintenance of osmotic homeostasis, antigen processing, cell division, immunity, cholesterol, and lipid trafficking. Several human diseases such as cystic fibrosis, sitosterolemia, Tangier disease, intrahepatic cholestasis, and retinal degeneration are associated with mutations in corresponding transporters. This chapter will describe function and expression of several ABC transporters (such as P-GP, BCRP, and MRPs), their substrates and inhibitors, as well as their clinical significance.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
15
|
El-Sharkawy LY, El-Sakhawy RA, Abdel-Halim M, Lee K, Piazza GA, Ducho C, Hartmann RW, Abadi AH. Design and synthesis of novel annulated thienopyrimidines as phosphodiesterase 5 (PDE5) inhibitors. Arch Pharm (Weinheim) 2018; 351:e1800018. [DOI: 10.1002/ardp.201800018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Lina Y. El-Sharkawy
- Faculty of Pharmacy and Biotechnology, Department of Pharmaceutical Chemistry; German University in Cairo; Cairo Egypt
| | - Rowaida A. El-Sakhawy
- Faculty of Pharmacy and Biotechnology, Department of Pharmaceutical Chemistry; German University in Cairo; Cairo Egypt
| | - Mohammad Abdel-Halim
- Faculty of Pharmacy and Biotechnology, Department of Pharmaceutical Chemistry; German University in Cairo; Cairo Egypt
| | - Kevin Lee
- Drug Discovery Research Center, Mitchell Cancer Institute; University of South Alabama; Mobile Alabama USA
| | - Gary A. Piazza
- Drug Discovery Research Center, Mitchell Cancer Institute; University of South Alabama; Mobile Alabama USA
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry; Saarland University; Saarbrücken Germany
| | - Rolf W. Hartmann
- Department of Drug Design and Optimization; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); Saarbrücken Germany
| | - Ashraf H. Abadi
- Faculty of Pharmacy and Biotechnology, Department of Pharmaceutical Chemistry; German University in Cairo; Cairo Egypt
| |
Collapse
|
16
|
Pantziarka P, Sukhatme V, Crispino S, Bouche G, Meheus L, Sukhatme VP. Repurposing drugs in oncology (ReDO)-selective PDE5 inhibitors as anti-cancer agents. Ecancermedicalscience 2018; 12:824. [PMID: 29743944 PMCID: PMC5931815 DOI: 10.3332/ecancer.2018.824] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Indexed: 12/26/2022] Open
Abstract
Selective phosphodiesterase 5 inhibitors, including sildenafil, tadalafil and vardenafil, are widely-used in the treatment of erectile dysfunction and pulmonary arterial hypertension. They are also well-known as examples of successful drug repurposing in that they were initially developed for angina and only later developed for erectile dysfunction. However, these drugs may also be effective cancer treatments. A range of evidentiary sources are assessed in this paper and the case made that there is pre-clinical and clinical evidence that these drugs may offer clinical benefit in a range of cancers. In particular, evidence is presented that these drugs have potent immunomodulatory activity that warrants clinical study in combination with check-point inhibition.
Collapse
Affiliation(s)
- Pan Pantziarka
- Anticancer Fund, Brussels, Strombeek-Bever 1853, Belgium.,The George Pantziarka TP53 Trust, London KT1 2JP, UK
| | | | | | | | - Lydie Meheus
- Anticancer Fund, Brussels, Strombeek-Bever 1853, Belgium
| | - Vikas P Sukhatme
- GlobalCures Inc., Newton, MA 02459, USA.,Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
17
|
Tai LH, Alkayyal AA, Leslie AL, Sahi S, Bennett S, Tanese de Souza C, Baxter K, Angka L, Xu R, Kennedy MA, Auer RC. Phosphodiesterase-5 inhibition reduces postoperative metastatic disease by targeting surgery-induced myeloid derived suppressor cell-dependent inhibition of Natural Killer cell cytotoxicity. Oncoimmunology 2018; 7:e1431082. [PMID: 29872554 DOI: 10.1080/2162402x.2018.1431082] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 12/27/2022] Open
Abstract
Cancer surgery while necessary for primary tumor removal, has been shown to induce immune suppression and promote metastases in preclinical models and human cancer surgery patients. Activating the immune system and reversing immunosuppression have emerged as promising ways to treat cancer and they can be safely employed in the perioperative period. In this study, we evaluated the immunotherapeutic potential of phosphodiesterase-5 (PDE-5) inhibitors to target surgery-induced myeloid-derived suppressor cells (MDSC) and restore natural killer (NK) cell function in the clinically relevant perioperative period. Immunocompetent murine tumor models of major surgery were used to characterize the functional suppression of surgery-induced MDSC and to assess the in vivo efficacy of perioperative PDE5 inhibition. In cancer surgery patients with abdominal malignancies, we assessed postoperative NK cell function following co-culture with MDSC and PDE5 inhibition. Perioperative PDE5 inhibition reverses surgery-induced immunosuppression. In particular, sildenafil reduces surgery-derived granulocytic-MDSC (gMDSC) function through downregulation of arginase 1 (ARG1), IL4Ra and reactive oxygen species (ROS) expression, enabling NK cell antitumor cytotoxicity and reducing postoperative disease recurrence. By removing surgery-derived immunosuppressive mechanisms of MDSCs, sildenafil can be combined with the administration of perioperative influenza vaccination which targets NK cells to reduce postoperative metastasis. Importantly, sildenafil reverses MDSC suppression in cancer surgery patients. These findings demonstrate that PDE5 inhibitors reduce postoperative metastasis by their ability to inhibit surgery-induced MDSC. Further clinical studies are warranted to investigate the immunotherapeutic role of PDE5 inhibitors in combination with cancer surgery.
Collapse
Affiliation(s)
- Lee-Hwa Tai
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Almohanad A Alkayyal
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada.,Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Tabuk, Saudi Arabia
| | - Amanda L Leslie
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Shalini Sahi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Sean Bennett
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Surgery, University of Ottawa, Ottawa, ON, Canada
| | | | - Katherine Baxter
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Leonard Angka
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Rebecca Xu
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Michael A Kennedy
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rebecca C Auer
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada.,Department of Surgery, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
18
|
Xie T, Geng J, Wang Y, Wang L, Huang M, Chen J, Zhang K, Xue L, Liu X, Mao X, Chen Y, Wang Q, Dai T, Ren L, Yu H, Wang R, Chen L, Chen C, Chu X. FOXM1 evokes 5-fluorouracil resistance in colorectal cancer depending on ABCC10. Oncotarget 2018; 8:8574-8589. [PMID: 28051999 PMCID: PMC5352423 DOI: 10.18632/oncotarget.14351] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/07/2016] [Indexed: 12/16/2022] Open
Abstract
5-Fluorouracil (5-FU) is the most commonly used chemotherapeutic agent for colorectal cancer (CRC). However, frequently occurred 5-FU resistance poses a great challenge in the clinic. Elucidating the underlying mechanisms and developing effective strategies against 5-FU resistance are highly desired. Here we identified the upregulation of FOXM1 in 5-FU nonresponsive CRC patients by gene expression profile analysis and 5-FU-resistant CRC cells by qRT-PCR assay. Silencing of FOXM1 promoted the sensitivity of CRC cells to 5-FU by enhancing cell apoptosis, while overexpression of FOXM1 conferred CRC cells with 5-FU resistance both in vitro and in vivo. Furthermore, we showed that genetic and pharmacological inhibition of FOXM1 resensitized resistant CRC cells to 5-FU treatment. Mechanistically, FOXM1 promoted the transcription of ABCC10 by directly binding to its promoter region. Notably, treatment with ABCC10 inhibitor reversed FOXM1-induced resistance to 5-FU in vivo. Clinical investigation revealed that the levels of FOXM1 and ABCC10 were positively correlated in CRC tissues. Therefore, FOXM1 promotes 5-FU resistance by upregulating ABCC10, suggesting that FOXM1/ABCC10 axis may serve as a potential therapeutic target for 5-FU resistance in CRC patients.
Collapse
Affiliation(s)
- Tao Xie
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing 210002, China
| | - Jian Geng
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing 210002, China
| | - Ye Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing 210002, China
| | - Liya Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Mengxi Huang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Jing Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Kai Zhang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Lijun Xue
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Xiaobei Liu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Xiaobei Mao
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Yanan Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Qian Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Tingting Dai
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Lili Ren
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Hongju Yu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Cheng Chen
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing 210002, China.,Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing 210002, China.,Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| |
Collapse
|
19
|
Domvri K, Zarogoulidis K, Zogas N, Zarogoulidis P, Petanidis S, Porpodis K, Kioseoglou E, Hohenforst-Schmidt W. Potential synergistic effect of phosphodiesterase inhibitors with chemotherapy in lung cancer. J Cancer 2017; 8:3648-3656. [PMID: 29151951 PMCID: PMC5688917 DOI: 10.7150/jca.21783] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
Purpose: Lung cancer remains the leading cause of cancer-related deaths worldwide and novel therapeutic approaches targeting crucial pathways are urgently needed to improve its treatment. Differentiation-based therapeutics (Methylxanthines) and phosphodiesterase inhibitors (type 4 and 5), have been implicated in cancer treatment. Our objectives were to capture any potential anti-tumor effect of these drug combinations with chemotherapeutic agents in vitro. Methods: Theophylline as Methylxanthines, Roflumilast as phosphodiesterase type 4 (PDE4) inhibitor and Sildenafil as phosphodiesterase type 5 (PDE5) inhibitor are the drugs that we combined with the chemotherapeutic agents (Docetaxel, Cisplatin and Carboplatin) in vitro. Lung cancer cell lines (NCI-H1048-Small cell lung cancer-SCLC, A549- Non-small cell lung cancer-NSCLC) were purchased from ATCC LGC Standards. At indicated time-point, following 24h and 48h incubation, cell viability and apoptosis were measured with Annexin V staining by flow cytometry. Statistical analysis was performed by GraphPad Prism. Results: In SCLC, following 48h incubation, platinum combinations of carboplatin with roflumilast and sildenafil (p<0.001) and carboplatin with theophylline and sildenafil showed increased apoptosis when compared to carboplatin alone. Concerning the combinations of cisplatin, when combined with roflumilast, theophylline and sildenafil appeared with increased apoptosis of that alone (p<0.001, 24h and 48h incubation). In NSCLC, the 24h incubation was not enough to induce satisfactory apoptosis, except for the combination of cisplatin with roflumilast and theophylline (p<0.05) when compared to cisplatin alone. However, following 48h incubation, carboplatin plus sildenafil, carboplatin plus sildenafil, theophylline and roflumilast showed more cytotoxicity when compared to carboplatin alone (p<0.001). Docetaxel combinations showed no statistically significant results. Conclusion: The synergistic effect of PDE inhibitors with platinum-based agents has been demonstrated in lung cancer. Our suggestion is that these combinations could be used as additive and maintenance treatment in combination to antineoplastic agents in lung cancer patients.
Collapse
Affiliation(s)
- Kalliopi Domvri
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Zarogoulidis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Zogas
- Gene and Cell Therapy Center, Hematology Department-Bone Marrow Transplantation Unit, “G. Papanikolaou” General Hospital, Thessaloniki, Greece
| | - Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Savvas Petanidis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Porpodis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efrosini Kioseoglou
- Gene and Cell Therapy Center, Hematology Department-Bone Marrow Transplantation Unit, “G. Papanikolaou” General Hospital, Thessaloniki, Greece
| | - Wolfgang Hohenforst-Schmidt
- Sana Clinic Group Franken, Department of Cardiology / Pulmonology / Intensive Care / Nephrology, ''Hof'' Clinics, University of Erlangen, Hof, Germany
| |
Collapse
|
20
|
|
21
|
Subbotina A, Ravna AW, Lysaa RA, Abagyan R, Bugno R, Sager G. Inhibition of PDE5A1 guanosine cyclic monophosphate (cGMP) hydrolysing activity by sildenafil analogues that inhibit cellular cGMP efflux. ACTA ACUST UNITED AC 2017; 69:675-683. [PMID: 28211580 PMCID: PMC5434896 DOI: 10.1111/jphp.12693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/18/2016] [Indexed: 12/16/2022]
Abstract
Objectives To determine the ability of 11 sildenafil analogues to discriminate between cyclic nucleotide phosphodiesterases (cnPDEs) and to characterise their inhibitory potencies (Ki values) of PDE5A1‐dependent guanosine cyclic monophosphate (cGMP) hydrolysis. Methods Sildenafil analogues were identified by virtual ligand screening (VLS) and screened for their ability to inhibit adenosine cyclic monophosphate (cAMP) hydrolysis by PDE1A1, PDE1B1, PDE2A1, PDE3A, PDE10A1 and PDE10A2, and cGMP hydrolysis by PDE5A, PDE6C, PDE9A2 for a low (1 nm) and high concentration (10 μm). Complete IC50 plots for all analogues were performed for PDE5A‐dependent cGMP hydrolysis. Docking studies and scoring were made using the ICM molecular modelling software. Key findings The analogues in a low concentration showed no or low inhibition of PDE1A1, PDE1B1, PDE2A1, PDE3A, PDE10A1 and PDE10A2. In contrast, PDE5A and PDE6C were markedly inhibited to a similar extent by the analogues in a low concentration, whereas PDE9A2 was much less inhibited. The analogues showed a relative narrow range of Ki values for PDE5A inhibition (1.2–14 nm). The sildenafil molecule was docked in the structure of PDE5A1 co‐crystallised with sildenafil. All the analogues had similar binding poses as sildenafil. Conclusions Sildenafil analogues that inhibit cellular cGMP efflux are potent inhibitors of PDE5A and PDE6C.
Collapse
Affiliation(s)
- Anna Subbotina
- Experimental and Clinical Pharmacology, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Aina W Ravna
- Experimental and Clinical Pharmacology, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Roy A Lysaa
- Experimental and Clinical Pharmacology, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California - San Diego, La Jolla, CA, USA
| | - Ryszard Bugno
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Georg Sager
- Experimental and Clinical Pharmacology, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
22
|
Shen K, Johnson DW, Gobe GC. The role of cGMP and its signaling pathways in kidney disease. Am J Physiol Renal Physiol 2016; 311:F671-F681. [PMID: 27413196 DOI: 10.1152/ajprenal.00042.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/10/2016] [Indexed: 01/20/2023] Open
Abstract
Cyclic nucleotide signal transduction pathways are an emerging research field in kidney disease. Activated cell surface receptors transduce their signals via intracellular second messengers such as cAMP and cGMP. There is increasing evidence that regulation of the cGMP-cGMP-dependent protein kinase 1-phosphodiesterase (cGMP-cGK1-PDE) signaling pathway may be renoprotective. Selective PDE5 inhibitors have shown potential in treating kidney fibrosis in patients with chronic kidney disease (CKD), via their downstream signaling, and these inhibitors also have known activity as antithrombotic and anticancer agents. This review gives an outline of the cGMP-cGK1-PDE signaling pathways and details the downstream signaling and regulatory functions that are modulated by cGK1 and PDE inhibitors with regard to antifibrotic, antithrombotic, and antitumor activity. Current evidence that supports the renoprotective effects of regulating cGMP-cGK1-PDE signaling is also summarized. Finally, the effects of icariin, a natural plant extract with PDE5 inhibitory function, are discussed. We conclude that regulation of cGMP-cGK1-PDE signaling might provide novel, therapeutic strategies for the worsening global public health problem of CKD.
Collapse
Affiliation(s)
- Kunyu Shen
- Centre for Kidney Disease Research, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Australia; Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China; and
| | - David W Johnson
- Centre for Kidney Disease Research, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Australia; Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Glenda C Gobe
- Centre for Kidney Disease Research, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Australia;
| |
Collapse
|
23
|
Peak TC, Richman A, Gur S, Yafi FA, Hellstrom WJG. The Role of PDE5 Inhibitors and the NO/cGMP Pathway in Cancer. Sex Med Rev 2016; 4:74-84. [PMID: 27872007 DOI: 10.1016/j.sxmr.2015.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/28/2015] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Phosphodiesterase 5 (PDE5) inhibitors (PDE5i) have been used clinically for the treatment of erectile dysfunction, acting on the nitric oxide/cyclic guanosine monophosphate (NO/cGMP) signaling pathway. Simultaneously, researchers have elucidated the roles that this pathway plays in the regulation of cell proliferation, tumor development, and progression. As a result, our knowledge of PDE5i and cancer biology has expanded and provides an integration that holds great promise for some, but concern for others. AIM This review evaluates the role of PDE5i and the NO/cGMP signaling pathway in the pathogenesis and prevention of various malignancies. METHODS A literature review was performed with regard to the role of NO/cGMP pathway in tumor formation and prevention in preclinical and clinical studies. Studies that utilized PDE5i to further explore the involvement of this pathway also were included. MAIN OUTCOME MEASURES To evaluate whether PDE5i provide a potential benefit for treating and/or preventing malignancies; or if they create potential harm leading to the development of these malignancies. RESULTS The best available data suggest that the interactions between PDE5i and cancer are tumor- and tissue-specific. Currently, the effect of PDE5i use on melanoma development is being debated. Further clinical controversy lies in PDE5i use for penile rehabilitation after nerve-sparing prostate cancer surgery. Preclinical studies suggest that PDE5 inhibition could lead to a decreased risk of developing colorectal and breast cancer, leukemia, and myeloma. PDE5i also may provide an additional antitumor immune response. Finally, researchers have demonstrated a synergistic effect from combining PDE5i with current chemotherapeutic regimens. CONCLUSION Currently, there are inadequate data to make any conclusive statements regarding the role of PDE5i in cancer pathogenesis and how to alter clinical management. In order to create appropriate clinical guidelines, further experimental and clinical evidence is required.
Collapse
Affiliation(s)
- Taylor C Peak
- Department of Urology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Ashley Richman
- Department of Urology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Serap Gur
- Department of Pharmacology, School of Pharmacy, Ankara University, Ankara, Turkey
| | - Faysal A Yafi
- Department of Urology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Wayne J G Hellstrom
- Department of Urology, Tulane University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
24
|
Ling X, Liu X, Zhong K, Smith N, Prey J, Li F. FL118, a novel camptothecin analogue, overcomes irinotecan and topotecan resistance in human tumor xenograft models. Am J Transl Res 2015; 7:1765-1781. [PMID: 26692923 PMCID: PMC4656756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Irinotecan and topotecan are the only camptothecin analogues approved by the FDA for cancer treatment. However, inherent and/or acquired irinotecan and topotecan resistance is a challenging issue in clinical practice. In this report, we showed that FL118, a novel camptothecin analogue, effectively obliterated human xenograft tumors that acquire irinotecan and topotecan resistance. Consistent with this finding, Pharmacokinetics studies indicated that FL118 rapidly clears from circulation, while effectively accumulating in tumors with a long elimination half-life. Consistent with our previous studies on irinotecan, FL118 exhibited ≥25 fold more effectiveness than topotecan at inhibiting cancer cell growth and colony formation; we further showed that although topotecan can inhibit the expression of survivin, Mcl-1, XIAP or cIAP2, its effectiveness is about 10-100 fold weaker than FL118. Lastly, in contrast to both SN-38 (active metabolite of irinotecan) and topotecan are substrates of the efflux pump proteins P-gp/MDR1 and ABCG2/BCRP, FL118 is not a substrate of P-gp and ABCG2. Consistently, sildenafil, a multiple efflux pump inhibitor, sensitized SN-38 much more than these of the ABCG2-selective inhibitor KO143 in growth inhibition of SW620 and HCT-8 cells. In contrast, both inhibitors showed no effect on FL118 efficacy. Given that both P-gp and ABCG2 express in SW620 and HCT-8 cells and FL118 is not a substrate for P-gp and ABCG2, this suggests that FL118 appears to bypass multiple efflux pump protein-induced resistance, which may contribute to FL118 overcoming irinotecan and topotecan resistance in vivo. These new findings provide renewed perspectives for further development of FL118 for clinical applications.
Collapse
Affiliation(s)
- Xiang Ling
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute (RPCI)Buffalo, New York 14263, USA
- Canget BioTekpharma LLCBuffalo, New York 14203, USA
| | - Xiaojun Liu
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute (RPCI)Buffalo, New York 14263, USA
| | - Kai Zhong
- Canget BioTekpharma LLCBuffalo, New York 14203, USA
| | | | - Joshua Prey
- Pharmacokinetics and Pharmacodynamics Facility, Roswell Park Cancer Institute (RPCI)Buffalo, New York 14263, USA
| | - Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute (RPCI)Buffalo, New York 14263, USA
- NCI-supported Experimental Therapeutics Program, Roswell Park Cancer Institute (RPCI)Buffalo, New York 14263, USA
| |
Collapse
|
25
|
Mei XL, Yang Y, Zhang YJ, Li Y, Zhao JM, Qiu JG, Zhang WJ, Jiang QW, Xue YQ, Zheng DW, Chen Y, Qin WM, Wei MN, Shi Z. Sildenafil inhibits the growth of human colorectal cancer in vitro and in vivo. Am J Cancer Res 2015; 5:3311-3324. [PMID: 26807313 PMCID: PMC4697679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023] Open
Abstract
Colorectal cancer is the third most common human cancer with frequent overexpression of the cGMP-specific phosphodiesterase 5 (PDE5). In the present study, we investigated that the anticancer effect of sildenafil on human colorectal cancer in vitro and in vivo, which is a potent and selective inhibitor of PDE5 for the treatment of erectile dysfunction and pulmonary arterial hypertension in the clinic. Sildenafil significantly induced cell growth inhibition, cell cycle arrest and apoptosis of human colorectal cancer with increased intracellular reactive oxidative specie (ROS) levels, which were accompanied by obvious alterations of related proteins such as CDKs, Cyclins and PARP etc. Pretreatment with ROS scavenger N-acetyl-L-cysteine could reverse sildenafil-induced ROS accumulation and cell apoptosis. Inhibition of the activity of protein kinase G with KT-5823 could enhance sildenafil-induced apoptosis. Furthermore, sildenafil caused the reduction of xenograft models of human colorectal cancer in nude mice. Overall, these findings suggest that sildenafil has the potential to be used for treatment of human colorectal cancer.
Collapse
Affiliation(s)
- Xiao-Long Mei
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Yang Yang
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Yao-Jun Zhang
- Department of Hepatobiliary Surgery, Cancer Center, Sun Yat-sen UniversityGuangzhou 510060, Guangdong, China
| | - Yong Li
- Department of Gastrointertinal Surgery and General Surgery, Guangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhou 510080, Guangdong, China
| | - Jin-Ming Zhao
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510060, Guangdong, China
| | - Jian-Ge Qiu
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Wen-Ji Zhang
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Qi-Wei Jiang
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - You-Qiu Xue
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Di-Wei Zheng
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Yao Chen
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Wu-Ming Qin
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Meng-Ning Wei
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Zhi Shi
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| |
Collapse
|
26
|
Barone I, Giordano C, Bonofiglio D, Catalano S, Andò S. Phosphodiesterase Type 5 as a Candidate Therapeutic Target in Cancers. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0083-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Zhang YK, Wang YJ, Gupta P, Chen ZS. Multidrug Resistance Proteins (MRPs) and Cancer Therapy. AAPS JOURNAL 2015; 17:802-12. [PMID: 25840885 DOI: 10.1208/s12248-015-9757-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/23/2015] [Indexed: 12/21/2022]
Abstract
The ATP-binding cassette (ABC) transporters are members of a protein superfamily that are known to translocate various substrates across membranes, including metabolic products, lipids and sterols, and xenobiotic drugs. Multidrug resistance proteins (MRPs) belong to the subfamily C in the ABC transporter superfamily. MRPs have been implicated in mediating multidrug resistance by actively extruding chemotherapeutic substrates. Moreover, some MRPs are known to be essential in physiological excretory or regulatory pathways. The importance of MRPs in cancer therapy is also implied by their clinical insights. Modulating the function of MRPs to re-sensitize chemotherapeutic agents in cancer therapy shows great promise in cancer therapy; thus, multiple MRP inhibitors have been developed recently. This review article summarizes the structure, distribution, and physiological as well as pharmacological function of MRP1-MRP9 in cancer chemotherapy. Several novel modulators targeting MRPs in cancer therapy are also discussed.
Collapse
Affiliation(s)
- Yun-Kai Zhang
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA,
| | | | | | | |
Collapse
|
28
|
Kathawala RJ, Gupta P, Ashby CR, Chen ZS. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Updat 2014; 18:1-17. [PMID: 25554624 DOI: 10.1016/j.drup.2014.11.002] [Citation(s) in RCA: 536] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette (ABC) transporters represent one of the largest and oldest families of membrane proteins in all extant phyla from prokaryotes to humans, which couple the energy derived from ATP hydrolysis essentially to translocate, among various substrates, toxic compounds across the membrane. The fundamental functions of these multiple transporter proteins include: (1) conserved mechanisms related to nutrition and pathogenesis in bacteria, (2) spore formation in fungi, and (3) signal transduction, protein secretion and antigen presentation in eukaryotes. Moreover, one of the major causes of multidrug resistance (MDR) and chemotherapeutic failure in cancer therapy is believed to be the ABC transporter-mediated active efflux of a multitude of structurally and mechanistically distinct cytotoxic compounds across membranes. It has been postulated that ABC transporter inhibitors known as chemosensitizers may be used in combination with standard chemotherapeutic agents to enhance their therapeutic efficacy. The current paper reviews the advance in the past decade in this important domain of cancer chemoresistance and summarizes the development of new compounds and the re-evaluation of compounds originally designed for other targets as transport inhibitors of ATP-dependent drug efflux pumps.
Collapse
Affiliation(s)
- Rishil J Kathawala
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
29
|
Wu L, Xu J, Yuan W, Wu B, Wang H, Liu G, Wang X, Du J, Cai S. The reversal effects of 3-bromopyruvate on multidrug resistance in vitro and in vivo derived from human breast MCF-7/ADR cells. PLoS One 2014; 9:e112132. [PMID: 25372840 PMCID: PMC4221289 DOI: 10.1371/journal.pone.0112132] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/13/2014] [Indexed: 12/31/2022] Open
Abstract
Purpose P-glycoprotein mediated efflux is one of the main mechanisms for multidrug resistance in cancers, and 3-Bromopyruvate acts as a promising multidrug resistance reversal compound in our study. To test the ability of 3-Bromopyruvate to overcome P-glycoprotein-mediated multidrug resistance and to explore its mechanisms of multidrug resistance reversal in MCF-7/ADR cells, we evaluate the in vitro and in vivo modulatory activity of this compound. Methods The in vitro and in vivo activity was determined using the MTT assay and human breast cancer xenograft models. The gene and protein expression of P-glycoprotein were determined using real-time polymerase chain reaction and the Western blotting technique, respectively. ABCB-1 bioactivity was tested by fluorescence microscopy, multi-mode microplate reader, and flow cytometry. The intracellular levels of ATP, HK-II, and ATPase activity were based on an assay kit according to the manufacturer’s instructions. Results 3-Bromopyruvate treatment led to marked decreases in the IC50 values of selected chemotherapeutic drugs [e.g., doxorubicin (283 folds), paclitaxel (85 folds), daunorubicin (201 folds), and epirubicin (171 folds)] in MCF-7/ADR cells. 3-Bromopyruvate was found also to potentiate significantly the antitumor activity of epirubicin against MCF-7/ADR xenografts. The intracellular level of ATP decreased 44%, 46% in the presence of 12.5.25 µM 3-Bromopyruvate, whereas the accumulation of rhodamine 123 and epirubicin (two typical P-glycoprotein substrates) in cells was significantly increased. Furthermore, we found that the mRNA and the total protein level of P-glycoprotein were slightly altered by 3-Bromopyruvate. Moreover, the ATPase activity was significantly inhibited when 3-Bromopyruvate was applied. Conclusion We demonstrated that 3-Bromopyruvate can reverse P-glycoprotein-mediated efflux in MCF-7/ADR cells. Multidrug resistance reversal by 3-Bromopyruvate occurred through at least three approaches, namely, a decrease in the intracellular level of ATP and HK-II bioactivity, the inhibition of ATPase activity, and the slight decrease in P-glycoprotein expression in MCF-7/ADR cells.
Collapse
Affiliation(s)
- Long Wu
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jun Xu
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Weiqi Yuan
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Baojian Wu
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Hao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guang Zhou 510275, P. R. China
| | - Guangquan Liu
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Xiaoxiong Wang
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jun Du
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guang Zhou 510275, P. R. China
- * E-mail: (JD); (SHC)
| | - Shaohui Cai
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
- * E-mail: (JD); (SHC)
| |
Collapse
|
30
|
Roberts JL, Booth L, Conley A, Cruickshanks N, Malkin M, Kukreja RC, Grant S, Poklepovic A, Dent P. PDE5 inhibitors enhance the lethality of standard of care chemotherapy in pediatric CNS tumor cells. Cancer Biol Ther 2014; 15:758-67. [PMID: 24651037 DOI: 10.4161/cbt.28553] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We determined whether clinically relevant phosphodiesterase 5 (PDE5) inhibitors interacted with clinically relevant chemotherapies to kill medulloblastoma cells. In medulloblastoma cells PDE5 inhibitors interacted in a greater than additive fashion with vincristine/etoposide/cisplatin to cause cell death. Knockdown of PDE5 expression recapitulated the combination effects of PDE5 inhibitor drugs with chemotherapy drugs. Expression of dominant negative caspase 9 did not significantly inhibit chemotherapy lethality but did significantly reduce enhanced killing in combination with the PDE5 inhibitor sildenafil. Overexpression of BCL-XL and c-FLIP-s suppressed individual and combination drug toxicities. Knockdown of CD95 or FADD suppressed drug combination toxicity. Treatment with PDE5 inhibitors and chemotherapy drugs promoted autophagy which was maximal at ~12 h post-treatment, and in a cell type-dependent manner knockdown of Beclin1 or ATG5 either suppressed or enhanced drug combination lethality. PDE5 inhibitors enhanced the induction of chemotherapy-induced DNA damage in a nitric oxide synthase-dependent fashion. In conclusion, our data demonstrate that the combination of PDE5 inhibitors with standard of care chemotherapy agents for medulloblastoma represents a possible novel modality for future treatment of this disease.
Collapse
Affiliation(s)
- Jane L Roberts
- Department of Biochemistry; Virginia Commonwealth University; Richmond, VA USA
| | - Laurence Booth
- Department of Biochemistry; Virginia Commonwealth University; Richmond, VA USA
| | - Adam Conley
- Department of Neurosurgery; Virginia Commonwealth University; Richmond, VA USA
| | | | - Mark Malkin
- Department of Neurology; Virginia Commonwealth University; Richmond, VA USA
| | - Rakesh C Kukreja
- Department of Cardiology; Virginia Commonwealth University; Richmond, VA USA
| | - Steven Grant
- Department of Medicine; Virginia Commonwealth University; Richmond, VA USA
| | - Andrew Poklepovic
- Department of Medicine; Virginia Commonwealth University; Richmond, VA USA
| | - Paul Dent
- Department of Biochemistry; Virginia Commonwealth University; Richmond, VA USA
| |
Collapse
|
31
|
Co-delivery of Sildenafil (Viagra(®)) and Crizotinib for synergistic and improved anti-tumoral therapy. Pharm Res 2014; 31:2516-28. [PMID: 24623484 DOI: 10.1007/s11095-014-1347-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/24/2014] [Indexed: 12/11/2022]
Abstract
PURPOSE Cancer multi-drug resistance is a major issue associated with current anti-tumoral therapeutics. In this work, Crizotinib an anti-tumoral drug approved for the treatment of non-small lung cancer in humans, and Sildenafil (Viagra(®)), were loaded into micellar carriers to evaluate the establishment of a possible synergistic anti-tumoral effect in breast cancer cells. METHODS Micellar carriers comprised by PEG-PLA block co-polymers were formulated by the solvent displacement method in which the simultaneous encapsulation of Crizotinib and Sildenafil was promoted. Encapsulation efficiency was analyzed by a new UPLC method validated for this combination of compounds. Micelle physicochemical characterization and cellular uptake were characterized by light scattering and confocal microscopy. The bio- and hemocompatibility of the carriers was also evaluated. MCF-7 breast cancer cells were used to investigate the synergistic anti-tumoral effect. RESULTS Our results demonstrate that this particular combination induces massive apoptosis of breast cancer cells. The co-delivery of Crizotinib and Sildenafil was only possible due to the high encapsulation efficiency of the micellar systems (>70%). The micelles with size ranging between 93 and 127 nm were internalized by breast cancer cells and subsequently released their payload in the intracellular compartment. The results obtained demonstrated that the delivery of both drugs by micellar carriers led to a 2.7 fold increase in the anti-tumoral effect, when using only half of the concentration that is required when free drugs are administered. CONCLUSIONS Altogether, co-delivery promoted a synergistic effect and demonstrated for the first time the potential of PEG-PLA-Crizotinib-Sildenafil combination for application in cancer therapy.
Collapse
|
32
|
Booth L, Roberts JL, Cruickshanks N, Conley A, Durrant DE, Das A, Fisher PB, Kukreja RC, Grant S, Poklepovic A, Dent P. Phosphodiesterase 5 inhibitors enhance chemotherapy killing in gastrointestinal/genitourinary cancer cells. Mol Pharmacol 2013; 85:408-19. [PMID: 24353313 DOI: 10.1124/mol.113.090043] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The present studies determined whether clinically relevant phosphodiesterase 5 (PDE5) inhibitors interacted with clinically relevant chemotherapies to kill gastrointestinal/genitourinary cancer cells. In bladder cancer cells, regardless of H-RAS mutational status, at clinically achievable doses, PDE5 inhibitors interacted in a greater than additive fashion with doxorubicin/mitomycin C/gemcitabine/cisplatin/paclitaxel to cause cell death. In pancreatic tumor cells expressing mutant active K-RAS, PDE5 inhibitors interacted in a greater than additive fashion with doxorubicin/gemcitabine/paclitaxel to cause cell death. The most potent PDE5 inhibitor was sildenafil. Knock down of PDE5 expression recapitulated the combination effects of PDE5 inhibitor drugs with chemotherapy drugs. Expression of cellular FLICE-like inhibitory protein-short did not significantly inhibit chemotherapy lethality but did significantly reduce enhanced killing in combination with sildenafil. Overexpression of B-cell lymphoma-extra large suppressed individual and combination drug toxicities. Knock down of CD95 or Fas-associated death domain protein suppressed drug combination toxicity. Combination toxicity was also abolished by necrostatin or receptor interacting protein 1 knock down. Treatment with PDE5 inhibitors and chemotherapy drugs promoted autophagy, which was maximal at ∼24 hour posttreatment, and 3-methyl adenine or knock down of Beclin1 suppressed drug combination lethality by ∼50%. PDE5 inhibitors enhanced and prolonged the induction of DNA damage as judged by Comet assays and γhistone 2AX (γH2AX) and checkpoint kinase 2 (CHK2) phosphorylation. Knock down of ataxia telangiectasia mutated suppressed γH2AX and CHK2 phosphorylation and enhanced drug combination lethality. Collectively our data demonstrate that the combination of PDE5 inhibitors with standard of care chemotherapy agents for gastrointestinal/genitourinary cancers represents a novel modality.
Collapse
Affiliation(s)
- Laurence Booth
- Departments of Biochemistry and Molecular Biology (L.B., J.L.R., N.C., A.C., P.D.), Cardiology (D.E.D., A.D., R.C.K.), Medicine (S.G., A.P.), Human and Molecular Genetics (P.B.F.), Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kathawala RJ, Wang YJ, Ashby CR, Chen ZS. Recent advances regarding the role of ABC subfamily C member 10 (ABCC10) in the efflux of antitumor drugs. CHINESE JOURNAL OF CANCER 2013; 33:223-30. [PMID: 24103790 PMCID: PMC4026542 DOI: 10.5732/cjc.013.10122] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABCC10, also known as multidrug-resistant protein 7 (MRP7), is the tenth member of the C subfamily of the ATP-binding cassette (ABC) superfamily. ABCC10 mediates multidrug resistance (MDR) in cancer cells by preventing the intracellular accumulation of certain antitumor drugs. The ABCC10 transporter is a 171-kDa protein that is localized on the basolateral cell membrane. ABCC10 is a broad-specificity transporter of xenobiotics, including antitumor drugs, such as taxanes, epothilone B, vinca alkaloids, and cytarabine, as well as modulators of the estrogen pathway, such as tamoxifen. In recent years, ABCC10 inhibitors, including cepharanthine, lapatinib, erlotinib, nilotinib, imatinib, sildenafil, and vardenafil, have been reported to overcome ABCC10-mediated MDR. This review discusses some recent and clinically relevant aspects of the ABCC10 drug efflux transporter from the perspective of current chemotherapy, particularly its inhibition by tyrosine kinase inhibitors and phosphodiesterase type 5 inhibitors.
Collapse
Affiliation(s)
- Rishil J Kathawala
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | | | | | | |
Collapse
|
34
|
Chen JJ, Patel A, Sodani K, Xiao ZJ, Tiwari AK, Zhang DM, Li YJ, Yang DH, Ye WC, Chen SD, Chen ZS. bba, a synthetic derivative of 23-hydroxybutulinic acid, reverses multidrug resistance by inhibiting the efflux activity of MRP7 (ABCC10). PLoS One 2013; 8:e74573. [PMID: 24069321 PMCID: PMC3775757 DOI: 10.1371/journal.pone.0074573] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 08/05/2013] [Indexed: 12/19/2022] Open
Abstract
Natural products are frequently used for adjuvant chemotherapy in cancer treatment. 23-O-(1,4'-bipiperidine-1-carbonyl) betulinic acid (BBA) is a synthetic derivative of 23-hydroxybutulinic acid (23-HBA), which is a natural pentacyclic triterpene and the major active constituent of the root of Pulsatillachinensis. We previously reported that BBA could reverse P-glycoprotein (P-gp/ABCB1)-mediated multidrug resistance (MDR). In the present study, we investigated whether BBA has the potential to reverse multidrug resistance protein 7 (MRP7/ABCC10)-mediated MDR. We found that BBA concentration-dependently enhanced the sensitivity of MRP7-transfected HEK293 cells to paclitaxel, docetaxel and vinblastine. Accumulation and efflux experiments demonstrated that BBA increased the intracellular accumulation of [3H]-paclitaxel by inhibiting the efflux of [3H]-paclitaxel from HEK293/MRP7 cells. In addition, immunoblotting and immunofluorescence analyses indicated no significant alteration of MRP7 protein expression and localization in plasma membranes after treatment with BBA. These results demonstrate that BBA reverses MRP7-mediated MDR through blocking the drug efflux function of MRP7 without affecting the intracellular ATP levels. Our findings suggest that BBA has the potential to be used in combination with conventional chemotherapeutic agents to augment the response to chemotherapy.
Collapse
Affiliation(s)
- Jun-Jiang Chen
- Guangdong Key Laboratory for Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, United States of America
| | - Atish Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, United States of America
| | - Kamlesh Sodani
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, United States of America
| | - Zhi-Jie Xiao
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, United States of America
| | - Amit K. Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, United States of America
| | | | - Ying-Jie Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Dong-Hua Yang
- Biosample Repository, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Si-Dong Chen
- Guangdong Key Laboratory for Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- * E-mail: (Z-SC); (S-DC)
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, United States of America
- * E-mail: (Z-SC); (S-DC)
| |
Collapse
|
35
|
Tiwari AK, Chen ZS. Repurposing phosphodiesterase-5 inhibitors as chemoadjuvants. Front Pharmacol 2013; 4:82. [PMID: 23805103 PMCID: PMC3691472 DOI: 10.3389/fphar.2013.00082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 06/08/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Amit K Tiwari
- Department of Biomedical Sciences, College of Veterinary Medicine, Nursing and Allied Health, Tuskegee University Tuskegee, AL, USA
| | | |
Collapse
|
36
|
Targetting cancer with Ru(III/II)-phosphodiesterase inhibitor adducts: a novel approach in the treatment of cancer. Med Hypotheses 2013; 80:841-6. [PMID: 23587478 DOI: 10.1016/j.mehy.2013.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 03/03/2013] [Accepted: 03/17/2013] [Indexed: 12/20/2022]
Abstract
Lack of specificity and normal tissue toxicity are the two major limitations faced with most of the anticancer agents in current use. Due to effective biodistribution and multimodal cellular actions, during recent past, ruthenium complexes have drawn much attention as next generation anticancer agents. This is because metal center of ruthenium (Ru) effectively binds with the serum transferrin and due to higher concentration of transferrin receptors on the tumor cells, much of the circulating Ru-transferrin complexes are delivered preferentially to the tumor site. This enables Ru-complexes to become tumor cell specific and to execute their anticancer activities in a somewhat targeted manner. Also, there are evidences to suggest that inhibition of phosphodiesterases leads to increased cyclic guanosine monophosphate (cGMP) level, which in turn can evoke cell cycle arrest and can induce apoptosis in the tumor cells. In addition, phosphodiesterase inhibition led increased cGMP level may act as a potent vasodilator and thus, it is likely to enhance blood flow to the growing tumors in vivo, and thereby it can further facilitate delivery of the drugs/compounds to the tumor site. Therefore, it is hypothesized that tagging PDE inhibitors (PDEis) with Ru-complexes could be a relevant strategy to deliver Ru-complexes-PDEi adduct preferentially to the tumor site. The Ru-complex tagged entry of PDEi is speculated to initially enable the tumor cells to become a preferential recipient of such adducts followed by induction of antitumor activities shown by both, the Ru-complex & the PDEi, resulting into enhanced antitumor activities with a possibility of minimum normal tissue toxicity due to administration of such complexes.
Collapse
|