1
|
Sun L, Li X, Zhong J, Wang Y, Li B, Ye Z, Zhang J. Recognition of a Fungal Effector Potentiates Pathogen-Associated Molecular Pattern-Triggered Immunity in Cotton. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407787. [PMID: 39488762 PMCID: PMC11714242 DOI: 10.1002/advs.202407787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Plants are equipped with multi-layered immune systems that recognize pathogen-derived elicitors to activate immunity. Verticillium dahliae is a soil-borne fungus that infects a broad range of plants and causes devastating wilt disease. The mechanisms underlying immune recognition between plants and V. dahliae remain elusive. Here, a V. dahliae secretory protein, elicitor of plant defense gene (VdEPD1), acts as an elicitor that triggers defense responses in both Nicotiana benthamiana and cotton plants is identified. Targeted gene deletion of VdEPD1 enhances V. dahliae virulence in plants. Expression of VdEPD1 triggers the accumulation of reactive oxygen species (ROS) and the activation of cell death in cotton plants. Gossypium barbadense EPD1-interacting receptor-like cytoplasmic kinase (GbEIR5A) and GbEIR5D interact with VdEPD1. Silencing of GbEIR5A/D significantly impairs VdEPD1-triggered cell death in cotton plants, indicating the contribution of GbEIR5A/D to VdEPD1-activated effector-triggered immunity (ETI). VdEPD1 stimulates the expression of GbEIR5A and GbEIR5D in cotton plants. Interestingly, cotton plants with silenced GbEIR5A/D genes exhibit compromised pathogen-associated molecular patterns (PAMPs)-triggered ROS accumulation, whereas overexpression of GbEIR5A or GbEIR5D enhances PAMP-induced ROS. These findings indicate that recognition of VdEPD1 potentiates GbEIRs to enhance cotton PAMP-triggered immunity (PTI), uncovering a cooperative interplay of PTI and ETI in cotton.
Collapse
Affiliation(s)
- Lifan Sun
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Xiangguo Li
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jiajie Zhong
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yu Wang
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Baiyang Li
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ziqin Ye
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jie Zhang
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
2
|
Chen X, Feng J, Li Z, Feng H, Song C, Cai L, Joosten MHAJ, Du Y. Lipid transfer protein StLTPa enhances potato disease resistance against different pathogens by binding and disturbing the integrity of pathogens plasma membrane. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1913-1925. [PMID: 38366362 PMCID: PMC11182592 DOI: 10.1111/pbi.14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/20/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Potato is the third most important food crop worldwide. Potato production suffers from severe diseases caused by multiple detrimental plant pathogens, and broad-spectrum disease resistance genes are rarely identified in potato. Here we identified the potato non-specific lipid transfer protein StLTPa, which enhances species none-specific disease resistance against various pathogens, such as the oomycete pathogen Phytophthora infestans, the fungal pathogens Botrytis cinerea and Verticillium dahliae, and the bacterial pathogens Pectobacterium carotovorum and Ralstonia solanacearum. The StLTPa overexpression potato lines do not show growth penalty. Furthermore, we provide evidence that StLTPa binds to lipids present in the plasma membrane (PM) of the hyphal cells of P. infestans, leading to an increased permeability of the PM. Adding of PI(3,5)P2 and PI(3)P could compete the binding of StLTPa to pathogen PM and reduce the inhibition effect of StLTPa. The lipid-binding activity of StLTPa is essential for its role in pathogen inhibition and promotion of potato disease resistance. We propose that StLTPa enhances potato broad-spectrum disease resistance by binding to, and thereby promoting the permeability of the PM of the cells of various pathogens. Overall, our discovery illustrates that increasing the expression of a single gene in potato enhances potato disease resistance against different pathogens without growth penalty.
Collapse
Affiliation(s)
- Xiaokang Chen
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production and College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jiashu Feng
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production and College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Zhenzhen Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production and College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Hui Feng
- College of Tobacco Science of Guizhou University/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)/Guizhou Key Lab of Agro‐BioengineeringGuiyangChina
| | - Chunxu Song
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
- National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Lin Cai
- College of Tobacco Science of Guizhou University/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)/Guizhou Key Lab of Agro‐BioengineeringGuiyangChina
| | | | - Yu Du
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production and College of HorticultureNorthwest A&F UniversityYanglingChina
| |
Collapse
|
3
|
Escobar-Niño A, Harzen A, Stolze SC, Nakagami H, Fernández-Acero FJ. The Adaptation of Botrytis cinerea Extracellular Vesicles Proteome to Surrounding Conditions: Revealing New Tools for Its Infection Process. J Fungi (Basel) 2023; 9:872. [PMID: 37754980 PMCID: PMC10532283 DOI: 10.3390/jof9090872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Extracellular vesicles (EVs) are membranous particles released by different organisms. EVs carry several sets of macromolecules implicated in cell communication. EVs have become a relevant topic in the study of pathogenic fungi due to their relationship with fungal-host interactions. One of the essential research areas in this field is the characterization protein profile of EVs since plant fungal pathogens rely heavily on secreted proteins to invade their hosts. However, EVs of Botrytis cinerea are little known, which is one of the most devastating phytopathogenic fungi. The present study has two main objectives: the characterization of B. cinerea EVs proteome changes under two pathogenic conditions and the description of their potential role during the infective process. All the experimental procedure was conducted in B. cinerea growing in a minimal salt medium supplemented with glucose as a constitutive stage and deproteinized tomato cell walls (TCW) as a virulence inductor. The isolation of EVs was performed by differential centrifugation, filtration, ultrafiltration, and sucrose cushion ultracentrifugation. EVs fractions were visualised by TEM using negative staining. Proteomic analysis of EVs cargo was addressed by LC-MS/MS. The methodology used allowed the correct isolation of B. cinerea EVs and the identification of a high number of EV proteins, including potential EV markers. The isolated EVs displayed differences in morphology under both assayed conditions. GO analysis of EV proteins showed enrichment in cell wall metabolism and proteolysis under TCW. KEGG analysis also showed the difference in EVs function under both conditions, highlighting the presence of potential virulence/pathogenic factors implicated in cell wall metabolism, among others. This work describes the first evidence of EVs protein cargo adaptation in B. cinerea, which seems to play an essential role in its infection process, sharing crucial functions with the conventional secretion pathways.
Collapse
Affiliation(s)
- Almudena Escobar-Niño
- Microbiology Laboratory, Institute for Viticulture and Agri-Food Research (IVAGRO), Faculty of Environmental and Marine Sciences, Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, 11510 Puerto Real, Spain;
| | - Anne Harzen
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; (A.H.); (S.C.S.); (H.N.)
| | - Sara C. Stolze
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; (A.H.); (S.C.S.); (H.N.)
| | - Hirofumi Nakagami
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; (A.H.); (S.C.S.); (H.N.)
- Basic Immune System of Plants, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Francisco J. Fernández-Acero
- Microbiology Laboratory, Institute for Viticulture and Agri-Food Research (IVAGRO), Faculty of Environmental and Marine Sciences, Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, 11510 Puerto Real, Spain;
| |
Collapse
|
4
|
Qin S, Veloso J, Puccetti G, van Kan JAL. Molecular characterization of cross-kingdom RNA interference in Botrytis cinerea by tomato small RNAs. FRONTIERS IN PLANT SCIENCE 2023; 14:1107888. [PMID: 36968352 PMCID: PMC10031073 DOI: 10.3389/fpls.2023.1107888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Previous studies have suggested that plants can modulate gene expression in pathogenic fungi by producing small RNAs (sRNAs) that can be translocated into the fungus and mediate gene silencing, which may interfere with the infection mechanism of the intruder. We sequenced sRNAs and mRNAs in early phases of the Solanum lycopersicum (tomato)-Botrytis cinerea interaction and examined the potential of plant sRNAs to silence their predicted mRNA targets in the fungus. Almost a million unique plant sRNAs were identified that could potentially target 97% of all fungal genes. We selected three fungal genes for detailed RT-qPCR analysis of the correlation between the abundance of specific plant sRNAs and their target mRNAs in the fungus. The fungal Bcspl1 gene, which had been reported to be important for the fungal virulence, showed transient down-regulation around 20 hours post inoculation and contained a unique target site for a single plant sRNA that was present at high levels. In order to study the functionality of this plant sRNA in reducing the Bcspl1 transcript level, we generated a fungal mutant that contained a 5-nucleotide substitution that would abolish the interaction between the transcript and the sRNA without changing the encoded protein sequence. The level of the mutant Bcspl1 transcript showed a transient decrease similar to wild type transcript, indicating that the tomato sRNA was not responsible for the downregulation of the Bcspl1 transcript. The virulence of the Bcspl1 target site mutant was identical to the wild type fungus.
Collapse
Affiliation(s)
- Si Qin
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Javier Veloso
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
- Departamento de Biología Funcional, Escuela Politécnica Superior de Ingeniería, Universidad de Santiago de Compostela, Lugo, Spain
| | - Guido Puccetti
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Jan A. L. van Kan
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
5
|
Westrick NM, Park SC, Keller NP, Smith DL, Kabbage M. A broadly conserved fungal alcohol oxidase (AOX) facilitates fungal invasion of plants. MOLECULAR PLANT PATHOLOGY 2023; 24:28-43. [PMID: 36251755 PMCID: PMC9742500 DOI: 10.1111/mpp.13274] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Alcohol oxidases (AOXs) are ecologically important enzymes that facilitate a number of plant-fungal interactions. Within Ascomycota they are primarily associated with methylotrophy, as a peroxisomal AOX catalysing the conversion of methanol to formaldehyde in methylotrophic yeast. In this study we demonstrate that AOX orthologues are phylogenetically conserved proteins that are common in the genomes of nonmethylotrophic, plant-associating fungi. Additionally, AOX orthologues are highly expressed during infection in a range of diverse pathosystems. To study the role of AOX in plant colonization, AOX knockout mutants were generated in the broad host range pathogen Sclerotinia sclerotiorum. Disease assays in soybean showed that these mutants had a significant virulence defect as evidenced by markedly reduced stem lesions and mortality rates. Chemical genomics suggested that SsAOX may function as an aromatic AOX, and growth assays demonstrated that ΔSsAOX is incapable of properly utilizing plant extract as a nutrient source. Profiling of known aromatic alcohols pointed towards the monolignol coniferyl alcohol (CA) as a possible substrate for SsAOX. As CA and other monolignols are ubiquitous among land plants, the presence of highly conserved AOX orthologues throughout Ascomycota implies that this is a broadly conserved protein used by ascomycete fungi during plant colonization.
Collapse
Affiliation(s)
- Nathaniel M. Westrick
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- United States Department of Agriculture–Agricultural Research ServiceMadisonWisconsinUSA
| | - Sung Chul Park
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Nancy P. Keller
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Damon L. Smith
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Mehdi Kabbage
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
6
|
Qin S, Veloso J, Baak M, Boogmans B, Bosman T, Puccetti G, Shi‐Kunne X, Smit S, Grant‐Downton R, Leisen T, Hahn M, van Kan JAL. Molecular characterization reveals no functional evidence for naturally occurring cross-kingdom RNA interference in the early stages of Botrytis cinerea-tomato interaction. MOLECULAR PLANT PATHOLOGY 2023; 24:3-15. [PMID: 36168919 PMCID: PMC9742496 DOI: 10.1111/mpp.13269] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 05/14/2023]
Abstract
Plant immune responses are triggered during the interaction with pathogens. The fungus Botrytis cinerea has previously been reported to use small RNAs (sRNAs) as effector molecules capable of interfering with the host immune response. Conversely, a host plant produces sRNAs that may interfere with the infection mechanism of an intruder. We used high-throughput sequencing to identify sRNAs produced by B. cinerea and Solanum lycopersicum (tomato) during early phases of interaction and to examine the expression of their predicted mRNA targets in the other organism. A total of 7042 B. cinerea sRNAs were predicted to target 3185 mRNAs in tomato. Of the predicted tomato target genes, 163 were indeed transcriptionally down-regulated during the early phase of infection. Several experiments were performed to study a causal relation between the production of B. cinerea sRNAs and the down-regulation of predicted target genes in tomato. We generated B. cinerea mutants in which a transposon region was deleted that is the source of c.10% of the fungal sRNAs. Furthermore, mutants were generated in which both Dicer-like genes (Bcdcl1 and Bcdcl2) were deleted and these displayed a >99% reduction of transposon-derived sRNA production. Neither of these mutants was significantly reduced in virulence on any plant species tested. Our results reveal no evidence for any detectable role of B. cinerea sRNAs in the virulence of the fungus.
Collapse
Affiliation(s)
- Si Qin
- Laboratory of PhytopathologyWageningen UniversityWageningenNetherlands
| | - Javier Veloso
- Laboratory of PhytopathologyWageningen UniversityWageningenNetherlands
- FISAPLANTUniversity of A CoruñaA CoruñaSpain
| | - Mirna Baak
- Bioinformatics GroupWageningen UniversityWageningenNetherlands
| | - Britt Boogmans
- Laboratory of PhytopathologyWageningen UniversityWageningenNetherlands
| | - Tim Bosman
- Laboratory of PhytopathologyWageningen UniversityWageningenNetherlands
| | - Guido Puccetti
- Laboratory of PhytopathologyWageningen UniversityWageningenNetherlands
| | | | - Sandra Smit
- Bioinformatics GroupWageningen UniversityWageningenNetherlands
| | | | - Thomas Leisen
- Department of BiologyUniversity of KaiserslauternKaiserslauternGermany
| | - Matthias Hahn
- Department of BiologyUniversity of KaiserslauternKaiserslauternGermany
| | - Jan A. L. van Kan
- Laboratory of PhytopathologyWageningen UniversityWageningenNetherlands
| |
Collapse
|
7
|
Chen X, Wang W, Cai P, Wang Z, Li T, Du Y. The role of the MAP kinase-kinase protein StMKK1 in potato immunity to different pathogens. HORTICULTURE RESEARCH 2021; 8:117. [PMID: 34059659 PMCID: PMC8167122 DOI: 10.1038/s41438-021-00556-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/18/2021] [Accepted: 03/14/2021] [Indexed: 05/17/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play important roles in plant immunity. Previously, we reported that the potato StMKK1 protein negatively regulates Nicotiana benthamiana resistance to Phytophthora infestans. However, the functions of StMKK1 in potato immunity are unknown. To investigate the roles of StMKK1 in potato resistance to different pathogens, such as the potato late-blight pathogen P. infestans, the bacterial wilt pathogen Ralstonia solanacearum, and the gray-mold fungal pathogen Botrytis cinerea, we generated StMKK1 transgenic lines and investigated the response of potato transformants to destructive oomycete, bacterial, and fungal pathogens. The results showed that overexpression and silencing of StMKK1 do not alter plant growth and development. Interestingly, we found that StMKK1 negatively regulated potato resistance to the hemibiotrophic/biotrophic pathogens P. infestans and R. solanacearum, while it positively regulated potato resistance to the necrotrophic pathogen B. cinerea. Further investigation showed that overexpression of StMKK1 suppressed potato pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and salicylic acid (SA)-related responses, while silencing of StMKK1 enhanced PTI and SA-related immune responses. Taken together, our results showed that StMKK1 plays dual roles in potato defense against different plant pathogens via negative regulation of PTI and SA-related signaling pathways.
Collapse
Affiliation(s)
- Xiaokang Chen
- College of Horticulture, Northwest A&F University and Shaanxi Engineering Research Center for Vegetables, Yangling, Shaanxi, 712100, China
| | - Wenbin Wang
- College of Horticulture, Northwest A&F University and Shaanxi Engineering Research Center for Vegetables, Yangling, Shaanxi, 712100, China
| | - Pingping Cai
- College of Horticulture, Northwest A&F University and Shaanxi Engineering Research Center for Vegetables, Yangling, Shaanxi, 712100, China
| | - Ziwei Wang
- College of Horticulture, Northwest A&F University and Shaanxi Engineering Research Center for Vegetables, Yangling, Shaanxi, 712100, China
| | - Tingting Li
- College of Horticulture, Northwest A&F University and Shaanxi Engineering Research Center for Vegetables, Yangling, Shaanxi, 712100, China.
| | - Yu Du
- College of Horticulture, Northwest A&F University and Shaanxi Engineering Research Center for Vegetables, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Han Z, Xiong D, Xu Z, Liu T, Tian C. The Cytospora chrysosperma Virulence Effector CcCAP1 Mainly Localizes to the Plant Nucleus To Suppress Plant Immune Responses. mSphere 2021; 6:e00883-20. [PMID: 33627507 PMCID: PMC8544888 DOI: 10.1128/msphere.00883-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/01/2021] [Indexed: 01/07/2023] Open
Abstract
Canker disease is caused by the fungus Cytospora chrysosperma and damages a wide range of woody plants, causing major losses to crops and native plants. Plant pathogens secrete virulence-related effectors into host cells during infection to regulate plant immunity and promote colonization. However, the functions of C. chrysosperma effectors remain largely unknown. In this study, we used Agrobacterium tumefaciens-mediated transient expression system in Nicotiana benthamiana and confocal microscopy to investigate the immunoregulation roles and subcellular localization of CcCAP1, a virulence-related effector identified in C. chrysosperma CcCAP1 was significantly induced in the early stages of infection and contains cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily domain with four cysteines. CcCAP1 suppressed the programmed cell death triggered by Bcl-2-associated X protein (BAX) and the elicitin infestin1 (INF1) in transient expression assays with Nicotiana benthamiana The CAP superfamily domain was sufficient for its cell death-inhibiting activity and three of the four cysteines in the CAP superfamily domain were indispensable for its activity. Pathogen challenge assays in N. benthamiana demonstrated that transient expression of CcCAP1 promoted Botrytis cinerea infection and restricted reactive oxygen species accumulation, callose deposition, and defense-related gene expression. In addition, expression of green fluorescent protein-labeled CcCAP1 in N. benthamiana showed that it localized to both the plant nucleus and the cytoplasm, but the nuclear localization was essential for its full immune inhibiting activity. These results suggest that this virulence-related effector of C. chrysosperma modulates plant immunity and functions mainly via its nuclear localization and the CAP domain.IMPORTANCE The data presented in this study provide a key resource for understanding the biology and molecular basis of necrotrophic pathogen responses to Nicotiana benthamiana resistance utilizing effector proteins, and CcCAP1 may be used in future studies to understand effector-triggered susceptibility processes in the Cytospora chrysosperma-poplar interaction system.
Collapse
Affiliation(s)
- Zhu Han
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Dianguang Xiong
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Zhiye Xu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Tingli Liu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
9
|
Westrick NM, Smith DL, Kabbage M. Disarming the Host: Detoxification of Plant Defense Compounds During Fungal Necrotrophy. FRONTIERS IN PLANT SCIENCE 2021; 12:651716. [PMID: 33995447 PMCID: PMC8120277 DOI: 10.3389/fpls.2021.651716] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/26/2021] [Indexed: 05/02/2023]
Abstract
While fungal biotrophs are dependent on successfully suppressing/subverting host defenses during their interaction with live cells, necrotrophs, due to their lifestyle are often confronted with a suite of toxic metabolites. These include an assortment of plant defense compounds (PDCs) which can demonstrate broad antifungal activity. These PDCs can be either constitutively present in plant tissue or induced in response to infection, but are nevertheless an important obstacle which needs to be overcome for successful pathogenesis. Fungal necrotrophs have developed a number of strategies to achieve this goal, from the direct detoxification of these compounds through enzymatic catalysis and modification, to the active transport of various PDCs to achieve toxin sequestration and efflux. Studies have shown across multiple pathogens that the efficient detoxification of host PDCs is both critical for successful infection and often a determinant factor in pathogen host range. Here, we provide a broad and comparative overview of the various mechanisms for PDC detoxification which have been identified in both fungal necrotrophs and fungal pathogens which depend on detoxification during a necrotrophic phase of infection. Furthermore, the effect that these mechanisms have on fungal host range, metabolism, and disease control will be discussed.
Collapse
|
10
|
Reboledo G, Agorio A, Vignale L, Batista-García RA, Ponce De León I. Botrytis cinerea Transcriptome during the Infection Process of the Bryophyte Physcomitrium patens and Angiosperms. J Fungi (Basel) 2020; 7:11. [PMID: 33379257 PMCID: PMC7824268 DOI: 10.3390/jof7010011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Botrytis cinerea is a necrotrophic pathogen that causes grey mold in many plant species, including crops and model plants of angiosperms. B. cinerea also infects and colonizes the bryophyte Physcomitrium patens (previously Physcomitrella patens), which perceives the pathogen and activates defense mechanisms. However, these defenses are not sufficient to stop fungal invasion, leading finally to plant decay. To gain more insights into B. cinerea infection and virulence strategies displayed during moss colonization, we performed genome wide transcriptional profiling of B. cinerea during different infection stages. We show that, in total, 1015 B. cinerea genes were differentially expressed in moss tissues. Expression patterns of upregulated genes and gene ontology enrichment analysis revealed that infection of P. patens tissues by B. cinerea depends on reactive oxygen species generation and detoxification, transporter activities, plant cell wall degradation and modification, toxin production and probable plant defense evasion by effector proteins. Moreover, a comparison with available RNAseq data during angiosperm infection, including Arabidopsis thaliana, Solanum lycopersicum and Lactuca sativa, suggests that B. cinerea has virulence and infection functions used in all hosts, while others are more specific to P. patens or angiosperms.
Collapse
Affiliation(s)
- Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (G.R.); (A.A.); (L.V.)
| | - Astrid Agorio
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (G.R.); (A.A.); (L.V.)
| | - Lucía Vignale
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (G.R.); (A.A.); (L.V.)
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (G.R.); (A.A.); (L.V.)
| |
Collapse
|
11
|
Wei W, Pierre-Pierre N, Peng H, Ellur V, Vandemark GJ, Chen W. The D-galacturonic acid catabolic pathway genes differentially regulate virulence and salinity response in Sclerotinia sclerotiorum. Fungal Genet Biol 2020; 145:103482. [PMID: 33137429 DOI: 10.1016/j.fgb.2020.103482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 11/26/2022]
Abstract
Sclerotinia sclerotiorum causes white mold disease on a wide range of economically important crops such as soybean, canola, tomato, pea and sunflower. As one of the most successful plant pathogens, S. sclerotiorum has the unique ability of adapting to various environmental conditions and effectively suppressing or evading plant defense. Notably, S. sclerotiorum secretes an array of plant cell-wall degrading enzymes (CWDEs) to macerate host cell wall and utilizes the liberated monosaccharides and oligosaccharides as nutrients. One of the major plant cell wall constituents is polygalacturonic acid in pectin, with D-galacturonic acid being the most abundant component. In this research, we identified four S. sclerotiorum genes that encode the enzymes for the D-galacturonic acid catabolism, namely Ssgar1, Ssgar2, Sslgd1 and Sslga1. Gene-knockout mutants were created for all four catabolic genes. When cultured on pectin as the alternative carbon source, Sslgd1- and Sslga1-deletion mutants and Ssgar1/Ssgar2 double deletion mutants exhibited significantly reduced growth. The D-galacturonic acid catabolic genes are transcriptionally induced by either polygalacturonic acid in the culture media or during host infection. Virulence tests of the knockout mutants revealed that Ssgar2, Sslgd1 and Sslga1 all facilitated the effective colonization of S. sclerotiorum to the leaves of soybean and pea, but not of tomato which has the lowest D-galacturonic acid contents in its leaves. In addition to their positive roles in virulence, all four enzymes negatively affect S. sclerotiorum tolerance to salt stress. SsGAR2 has an additional function in tolerance to Congo Red, suggesting a potential role in cell wall stability of S. sclerotiorum. This study is the first report revealing the versatile functions of D-galacturonic acid catabolic genes in S. sclerotiorum virulence, salinity response and cell wall integrity.
Collapse
Affiliation(s)
- Wei Wei
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA.
| | | | - Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Vishnutej Ellur
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - George J Vandemark
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA; USDA Agricultural Research Service, Pullman, WA 99164, USA
| | - Weidong Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA; USDA Agricultural Research Service, Pullman, WA 99164, USA.
| |
Collapse
|
12
|
Xu Y, Li X, Liang W, Liu M. Proteome-Wide Analysis of Lysine 2-Hydroxyisobutyrylation in the Phytopathogenic Fungus Botrytis cinerea. Front Microbiol 2020; 11:585614. [PMID: 33329453 PMCID: PMC7728723 DOI: 10.3389/fmicb.2020.585614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Posttranslational modifications (PTMs) of the whole proteome have become a hot topic in the research field of epigenetics, and an increasing number of PTM types have been identified and shown to play significant roles in different cellular processes. Protein lysine 2-hydroxyisobutyrylation (Khib) is a newly detected PTM, and the 2-hydroxyisobutyrylome has been identified in several species. Botrytis cinerea is recognized as one of the most destructive pathogens due to its broad host distribution and very large economic losses; thus the many aspects of its pathogenesis have been continuously studied. However, distribution and function of Khib in this phytopathogenic fungus are not clear. In this study, a proteome-wide analysis of Khib in B. cinerea was performed, and 5,398 Khib sites on 1,181 proteins were identified. Bioinformatics analysis showed that the 2-hydroxyisobutyrylome in B. cinerea contains both conserved proteins and novel proteins when compared with Khib proteins in other species. Functional classification, functional enrichment and protein interaction network analyses showed that Khib proteins are widely distributed in cellular compartments and involved in diverse cellular processes. Significantly, 37 proteins involved in different aspects of regulating the pathogenicity of B. cinerea were detected as Khib proteins. Our results provide a comprehensive view of the 2-hydroxyisobutyrylome and lay a foundation for further studying the regulatory mechanism of Khib in both B. cinerea and other plant pathogens.
Collapse
Affiliation(s)
- Yang Xu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiaoxia Li
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Mengjie Liu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
13
|
The Destructive Fungal Pathogen Botrytis cinerea-Insights from Genes Studied with Mutant Analysis. Pathogens 2020; 9:pathogens9110923. [PMID: 33171745 PMCID: PMC7695001 DOI: 10.3390/pathogens9110923] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/03/2022] Open
Abstract
Botrytis cinerea is one of the most destructive fungal pathogens affecting numerous plant hosts, including many important crop species. As a molecularly under-studied organism, its genome was only sequenced at the beginning of this century and it was recently updated with improved gene annotation and completeness. In this review, we summarize key molecular studies on B. cinerea developmental and pathogenesis processes, specifically on genes studied comprehensively with mutant analysis. Analyses of these studies have unveiled key genes in the biological processes of this pathogen, including hyphal growth, sclerotial formation, conidiation, pathogenicity and melanization. In addition, our synthesis has uncovered gaps in the present knowledge regarding development and virulence mechanisms. We hope this review will serve to enhance the knowledge of the biological mechanisms behind this notorious fungal pathogen.
Collapse
|
14
|
Li B, Chen Y, Zhang Z, Qin G, Chen T, Tian S. Molecular basis and regulation of pathogenicity and patulin biosynthesis in
Penicillium expansum. Compr Rev Food Sci Food Saf 2020; 19:3416-3438. [DOI: 10.1111/1541-4337.12612] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/26/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
15
|
Cytological and Gene Profile Expression Analysis Reveals Modification in Metabolic Pathways and Catalytic Activities Induce Resistance in Botrytis cinerea Against Iprodione Isolated From Tomato. Int J Mol Sci 2020; 21:ijms21144865. [PMID: 32660143 PMCID: PMC7402349 DOI: 10.3390/ijms21144865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 01/19/2023] Open
Abstract
Grey mold is one of the most serious and catastrophic diseases, causing significant yield losses in fruits and vegetables worldwide. Iprodione is a broad spectrum agrochemical used as a foliar application as well as a seed protectant against many fungal and nematode diseases of fruits and vegetables from the last thirty years. The extensive use of agrochemicals produces resistance in plant pathogens and is the most devastating issue in food and agriculture. However, the molecular mechanism (whole transcriptomic analysis) of a resistant mutant of B. cinerea against iprodione is still unknown. In the present study, mycelial growth, sporulation, virulence, osmotic potential, cell membrane permeability, enzymatic activity, and whole transcriptomic analysis of UV (ultraviolet) mutagenic mutant and its wild type were performed to compare the fitness. The EC50 (half maximal effective concentration that inhibits the growth of mycelium) value of iprodione for 112 isolates of B. cinerea ranged from 0.07 to 0.87 µg/mL with an average (0.47 µg/mL) collected from tomato field of Guangxi Province China. Results also revealed that, among iprodione sensitive strains, only B67 strain induced two mutants, M0 and M1 after UV application. The EC50 of these induced mutants were 1025.74 μg/mL and 674.48 μg/mL, respectively, as compared to its wild type 1.12 μg/mL. Furthermore, mutant M0 showed higher mycelial growth sclerotia formation, virulence, and enzymatic activity than wild type W0 and M1 on potato dextrose agar (PDA) medium. The bctubA gene in the mutant M0 replaced TTC and GAT codon at position 593 and 599 by TTA and GAA, resulting in replacement of phenyl alanine into leucine (transversion C/A) and aspartic acid into glutamic acid (transversion T/C) respectively. In contrast, in bctubB gene, GAT codon at position 646 is replaced by AAT and aspartic acid converted into asparagine (transition G/A). RNA sequencing of the mutant and its wild type was performed without (M0, W0) and with iprodione treatment (M-ipro, W-ipro). The differential gene expression (DEG) identified 720 unigenes in mutant M-ipro than W-ipro after iprodione treatment (FDR ≤ 0.05 and log2FC ≥ 1). Seven DEGs were randomly selected for quantitative real time polymerase chain reaction to validate the RNA sequencing genes expression (log fold 2 value). The gene ontology (GO) enrichment and Kyoto encyclopedia genes and genomes (KEGG) pathway functional analyses indicated that DEG’s mainly associated with lysophopholipase, carbohydrate metabolism, amino acid metabolism, catalytic activity, multifunctional genes (MFO), glutathione-S transferase (GST), drug sensitivity, and cytochrome P450 related genes are upregulated in mutant type (M0, M-ipro) as compared to its wild type (W0, W-ipro), may be related to induce resistant in mutants of B. cinerea against iprodione.
Collapse
|
16
|
Yu X, Gong H, Cao L, Hou Y, Qu S. MicroRNA397b negatively regulates resistance of Malus hupehensis to Botryosphaeria dothidea by modulating MhLAC7 involved in lignin biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110390. [PMID: 32005395 DOI: 10.1016/j.plantsci.2019.110390] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/20/2019] [Accepted: 12/23/2019] [Indexed: 05/23/2023]
Abstract
MicroRNA (miRNA)-mediated post-transcriptional regulation plays a vital role in the response of plants to pathogens. Although the microRNA397 family has been implicated in physiological processes as an important regulator, little is known about its function in the resistance of plants to pathogens. Here, Malus hupehensis miR397, which was induced by Botryosphaeria dothidea infection, was identified to directly target M. hupehensis Laccase7 (MhLAC7). The expression analysis of mature Mh-miR397 and MhLAC7 revealed their partly opposite expression patterns. The coexpression of Mh-miR397b in MhLAC7 overexpressing Nicotiana benthamiana suppressed the accumulation of exogenous MhLAC7 and endogenous NbLAC7, which led to decreased lignin content and reduced plant resistance to Botrytis cinerea. As reflected by increasing disease severity and pathogen growth, overexpression of miR397b in both the resistant M. hupehensis and susceptible M. domestica 'Gala' resulted in an increased sensitivity to B. dothidea infection, owing to reduced LAC7 expression and lignin content; however, the inhibition of miR397 had opposite effects. MicroRNA397 functions as a negative regulator in the resistance of Malus to B. dothidea by modulating the LAC7 expression and lignin biosynthesis.
Collapse
Affiliation(s)
- Xinyi Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Hongyong Gong
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Lifang Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yingjun Hou
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
17
|
Petrasch S, Knapp SJ, van Kan JAL, Blanco‐Ulate B. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2019; 20:877-892. [PMID: 30945788 PMCID: PMC6637890 DOI: 10.1111/mpp.12794] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The fungal pathogen Botrytis cinerea causes grey mould, a commercially damaging disease of strawberry. This pathogen affects fruit in the field, storage, transport and market. The presence of grey mould is the most common reason for fruit rejection by growers, shippers and consumers, leading to significant economic losses. Here, we review the biology and epidemiology of the pathogen, mechanisms of infection and the genetics of host plant resistance. The development of grey mould is affected by environmental and genetic factors; however, little is known about how B. cinerea and strawberry interact at the molecular level. Despite intensive efforts, breeding strawberry for resistance to grey mould has not been successful, and the mechanisms underlying tolerance to B. cinerea are poorly understood and under-investigated. Current control strategies against grey mould include pre- and postharvest fungicides, yet they are generally ineffective and expensive. In this review, we examine available research on horticultural management, chemical and biological control of the pathogen in the field and postharvest storage, and discuss their relevance for integrative disease management. Additionally, we identify and propose approaches for increasing resistance to B. cinerea in strawberry by tapping into natural genetic variation and manipulating host factors via genetic engineering and genome editing.
Collapse
Affiliation(s)
- Stefan Petrasch
- Department of Plant SciencesUniversity of California, DavisDavisCAUSA
| | - Steven J. Knapp
- Department of Plant SciencesUniversity of California, DavisDavisCAUSA
| | - Jan A. L. van Kan
- Laboratory of PhytopathologyWageningen UniversityWageningenNetherlands
| | | |
Collapse
|
18
|
Schmitz K, Protzko R, Zhang L, Benz JP. Spotlight on fungal pectin utilization-from phytopathogenicity to molecular recognition and industrial applications. Appl Microbiol Biotechnol 2019; 103:2507-2524. [PMID: 30694345 DOI: 10.1007/s00253-019-09622-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 11/29/2022]
Abstract
Pectin is a complex polysaccharide with D-galacturonic acid as its main component that predominantly accumulates in the middle lamella of the plant cell wall. Integrity and depolymerization of pectic structures have long been identified as relevant factors in fungal phytosymbiosis and phytopathogenicity in the context of tissue penetration and carbon source supply. While the pectic content of a plant cell wall can vary significantly, pectin was reported to account for up to 20-25% of the total dry weight in soft and non-woody tissues with non- or mildly lignified secondary cell walls, such as found in citrus peel, sugar beet pulp, and apple pomace. Due to their potential applications in various industrial sectors, pectic sugars from these and similar agricultural waste streams have been recognized as valuable targets for a diverse set of biotechnological fermentations.Recent advances in uncovering the molecular regulation mechanisms for pectinase expression in saprophytic fungi have led to a better understanding of fungal pectin sensing and utilization that could help to improve industrial, pectin-based fermentations. Related research in phytopathogenic fungi has furthermore added to our knowledge regarding the relevance of pectinases in plant cell wall penetration during onset of disease and is therefore highly relevant for agricultural sciences and the agricultural industry. This review therefore aims at summarizing (i) the role of pectinases in phytopathogenicity, (ii) the global regulation patterns for pectinase expression in saprophytic filamentous fungi as a highly specialized class of pectin degraders, and (iii) the current industrial applications in pectic sugar fermentations and transformations.
Collapse
Affiliation(s)
- Kevin Schmitz
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Ryan Protzko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Lisha Zhang
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - J Philipp Benz
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany.
| |
Collapse
|
19
|
Vilanova L, López-Pérez M, Ballester AR, Teixidó N, Usall J, Lara I, Viñas I, Torres R, González-Candelas L. Differential contribution of the two major polygalacturonases from Penicillium digitatum to virulence towards citrus fruit. Int J Food Microbiol 2018; 282:16-23. [DOI: 10.1016/j.ijfoodmicro.2018.05.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 11/27/2022]
|
20
|
Hua C, Zhao JH, Guo HS. Trans-Kingdom RNA Silencing in Plant-Fungal Pathogen Interactions. MOLECULAR PLANT 2018; 11:235-244. [PMID: 29229568 DOI: 10.1016/j.molp.2017.12.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/31/2017] [Accepted: 12/01/2017] [Indexed: 05/02/2023]
Abstract
Fungal pathogens represent a major group of plant invaders that are the causative agents of many notorious plant diseases. Large quantities of RNAs, especially small RNAs involved in gene silencing, have been found to transmit bidirectionally between fungal pathogens and their hosts. Although host-induced gene silencing (HIGS) technology has been developed and applied to protect crops from fungal infections, the mechanisms of RNA transmission, especially small RNAs regulating trans-kingdom RNA silencing in plant immunity, are largely unknown. In this review, we summarize and discuss recent important findings regarding trans-kingdom sRNAs and RNA silencing in plant-fungal pathogen interactions compared with the well-known RNAi mechanisms in plants and fungi. We focus on the interactions between plant and fungal pathogens with broad hosts, represented by the vascular pathogen Verticillium dahliae and non-vascular pathogen Botrytis cinerea, and discuss the known instances of natural RNAi transmission between fungal pathogens and host plants. Given that HIGS has been developed and recently applied in controlling Verticillium wilt diseases, we propose an ideal research system exploiting plant vasculature-Verticillium interaction to further study trans-kingdom RNA silencing.
Collapse
Affiliation(s)
- Chenlei Hua
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China; College of Life Science, University of the Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
21
|
Di X, Cao L, Hughes RK, Tintor N, Banfield MJ, Takken FLW. Structure-function analysis of the Fusarium oxysporum Avr2 effector allows uncoupling of its immune-suppressing activity from recognition. THE NEW PHYTOLOGIST 2017; 216:897-914. [PMID: 28857169 PMCID: PMC5659127 DOI: 10.1111/nph.14733] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/03/2017] [Indexed: 05/09/2023]
Abstract
Plant pathogens employ effector proteins to manipulate their hosts. Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of tomato wilt disease, produces effector protein Avr2. Besides being a virulence factor, Avr2 triggers immunity in I-2 carrying tomato (Solanum lycopersicum). Fol strains that evade I-2 recognition carry point mutations in Avr2 (e.g. Avr2R45H ), but retain full virulence. Here we investigate the virulence function of Avr2 and determine its crystal structure. Transgenic tomato and Arabidopsis expressing either wild-type ΔspAvr2 (deleted signal-peptide) or the ΔspAvr2R45H variant become hypersusceptible to fungal, and even bacterial infections, suggesting that Avr2 targets a conserved defense mechanism. Indeed, Avr2 transgenic plants are attenuated in immunity-related readouts, including flg22-induced growth inhibition, ROS production and callose deposition. The crystal structure of Avr2 reveals that the protein shares intriguing structural similarity to ToxA from the wheat pathogen Pyrenophora tritici-repentis and to TRAF proteins. The I-2 resistance-breaking Avr2V41M , Avr2R45H and Avr2R46P variants cluster on a surface-presented loop. Structure-guided mutagenesis enabled uncoupling of virulence from I-2-mediated recognition. We conclude that I-2-mediated recognition is not based on monitoring Avr2 virulence activity, which includes suppression of immune responses via an evolutionarily conserved effector target, but by recognition of a distinct epitope.
Collapse
Affiliation(s)
- Xiaotang Di
- Molecular Plant PathologySILSUniversity of AmsterdamPO Box 942151090 GEAmsterdamthe Netherlands
| | - Lingxue Cao
- Molecular Plant PathologySILSUniversity of AmsterdamPO Box 942151090 GEAmsterdamthe Netherlands
| | - Richard K. Hughes
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Nico Tintor
- Molecular Plant PathologySILSUniversity of AmsterdamPO Box 942151090 GEAmsterdamthe Netherlands
| | - Mark J. Banfield
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Frank L. W. Takken
- Molecular Plant PathologySILSUniversity of AmsterdamPO Box 942151090 GEAmsterdamthe Netherlands
| |
Collapse
|
22
|
Zhang L, Ni H, Du X, Wang S, Ma XW, Nürnberger T, Guo HS, Hua C. The Verticillium-specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections. THE NEW PHYTOLOGIST 2017; 215:368-381. [PMID: 28407259 DOI: 10.1111/nph.14537] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/21/2017] [Indexed: 05/05/2023]
Abstract
Fungal pathogens secrete effector proteins to suppress plant basal defense for successful colonization. Resistant plants, however, can recognize effectors by cognate R proteins to induce effector-triggered immunity (ETI). By analyzing secretomes of the vascular fungal pathogen Verticillium dahliae, we identified a novel secreted protein VdSCP7 that targets the plant nucleus. The green fluorescent protein (GFP)-tagged VdSCP7 gene with either a mutated nuclear localization signal motif or with additional nuclear export signal was transiently expressed in Nicotiana benthamiana, and investigated for induction of plant immunity. The role of VdSCP7 in V. dahliae pathogenicity was characterized by gene knockout and complementation, and GFP labeling. Expression of the VdSCP7 gene in N. benthamiana activated both salicylic acid and jasmonate signaling, and altered the plant's susceptibility to the pathogens Botrytis cinerea and Phytophthora capsici. The immune response activated by VdSCP7 was highly dependent on its initial extracellular secretion and subsequent nuclear localization in plants. Knockout of the VdSCP7 gene significantly enhanced V. dahliae aggressiveness on cotton. GFP-labeled VdSCP7 is secreted by V. dahliae and accumulates in the plant nucleus. We conclude that VdSCP7 is a novel effector protein that targets the host nucleus to modulate plant immunity, and suggest that plants can recognize VdSCP7 to activate ETI during fungal infection.
Collapse
Affiliation(s)
- Lisha Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, D-72076, Germany
| | - Hao Ni
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Du
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Wei Ma
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Thorsten Nürnberger
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, D-72076, Germany
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenlei Hua
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, D-72076, Germany
| |
Collapse
|
23
|
Fu Y, van Silfhout A, Shahin A, Egberts R, Beers M, van der Velde A, van Houten A, van Tuyl JM, Visser RGF, Arens P. Genetic mapping and QTL analysis of Botrytis resistance in Gerbera hybrida. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2017; 37:13. [PMID: 28216997 PMCID: PMC5285436 DOI: 10.1007/s11032-016-0617-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/25/2016] [Indexed: 05/25/2023]
Abstract
Gerbera hybrida is an economically important cut flower. In the production and transportation of gerbera with unavoidable periods of high relative humidity, grey mould occurs and results in losses in quality and quantity of flowers. Considering the limitations of chemical use in greenhouses and the impossibility to use these chemicals in auction or after sale, breeding for resistant gerbera cultivars is considered as the best practical approach. In this study, we developed two segregating F1 populations (called S and F). Four parental linkage maps were constructed using common and parental specific SNP markers developed from expressed sequence tag sequencing. Parental genetic maps, containing 30, 29, 27 and 28 linkage groups and a consensus map covering 24 of the 25 expected chromosomes, could be constructed. After evaluation of Botrytis disease severity using three different tests, whole inflorescence, bottom (of disc florets) and ray floret, quantitative trait locus (QTL) mapping was performed using the four individual parental maps. A total of 20 QTLs (including one identical QTL for whole inflorescence and bottom tests) were identified in the parental maps of the two populations. The number of QTLs found and the explained variance of most QTLs detected reflect the complex mechanism of Botrytis disease response.
Collapse
Affiliation(s)
- Yiqian Fu
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700AJ Wageningen, The Netherlands
| | - Alex van Silfhout
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700AJ Wageningen, The Netherlands
| | - Arwa Shahin
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700AJ Wageningen, The Netherlands
| | - Ronny Egberts
- Schreurs Holland B.V., Hoofdweg 81, 1424PD De Kwakel, The Netherlands
| | - Martin Beers
- Florist Holland B.V., Dwarsweg 15, 1424PL De Kwakel, The Netherlands
| | - Ans van der Velde
- Florist Holland B.V., Dwarsweg 15, 1424PL De Kwakel, The Netherlands
| | - Adrie van Houten
- Schreurs Holland B.V., Hoofdweg 81, 1424PD De Kwakel, The Netherlands
| | - Jaap M. van Tuyl
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700AJ Wageningen, The Netherlands
| | - Richard G. F. Visser
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700AJ Wageningen, The Netherlands
| | - Paul Arens
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700AJ Wageningen, The Netherlands
| |
Collapse
|
24
|
Zhang H, Hong Y, Huang L, Li D, Song F. Arabidopsis AtERF014 acts as a dual regulator that differentially modulates immunity against Pseudomonas syringae pv. tomato and Botrytis cinerea. Sci Rep 2016; 6:30251. [PMID: 27445230 PMCID: PMC4957219 DOI: 10.1038/srep30251] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/01/2016] [Indexed: 11/09/2022] Open
Abstract
ERF transcription factors play critical roles in plant immune responses. Here, we report the function of AtERF014, a nucleus-localized transcriptional activator, in Arabidopsis immunity. Expression of AtERF014 was induced by Pseudomonas syringae pv. tomato (Pst) and Botrytis cinerea (Bc). AtERF014-overexpressing (OE) plants displayed increased Pst resistance but decreased Bc resistance, whereas AtERF014-RNAi plants exhibited decreased Pst resistance but increased Bc resistance. After Pst infection, expression of salicylic acid (SA)-responsive genes AtPR1 and AtPR5 in AtERF014-OE plants and of a jasmonic acid/ethylene-responsive gene AtPDF1.2 in AtERF014-RNAi plants was intensified but expression of AtPDF1.2 in AtERF014-OE plants and of AtPR1 and AtPR5 in AtERF014-RNAi plants was weakened. After Bc infection, expression of AtPR1 and AtPR5 in AtERF014-OE plants was attenuated but expression of AtPR1, AtPR5 and AtPDF1.2 in AtERF014-RNAi plants was strengthened. Pathogen- and flg22-induced ROS burst, expression of PTI genes and SA-induced defense were partially suppressed in AtERF014-RNAi plants, whereas pathogen-induced ROS and flg22-induced immune response were strengthened in AtER014-OE plants. Altered expression of AtERR014 affected expression of pectin biosynthetic genes and pectin content in AtERF014-RNAi plants was decreased. These data demonstrate that AtERF014 acts as a dual regulator that differentially modulates immunity against Pst and Bc in Arabidopsis.
Collapse
Affiliation(s)
- Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yongbo Hong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
25
|
Zhang L, Lubbers RJM, Simon A, Stassen JHM, Vargas Ribera PR, Viaud M, van Kan JAL. A novel Zn2 Cys6 transcription factor BcGaaR regulates D-galacturonic acid utilization in Botrytis cinerea. Mol Microbiol 2016; 100:247-62. [PMID: 26691528 DOI: 10.1111/mmi.13314] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2015] [Indexed: 12/16/2023]
Abstract
D-galacturonic acid (GalA) is the most abundant monosaccharide component of pectin. Previous transcriptome analysis in the plant pathogenic fungus Botrytis cinerea identified eight GalA-inducible genes involved in pectin decomposition, GalA transport and utilization. Co-expression of these genes indicates that a specific regulatory mechanism occurs in B. cinerea. In this study, promoter regions of these genes were analysed and eight conserved sequence motifs identified. The Bclga1 promoter, containing all these motifs, was functionally analysed and the motif designated GalA Responsive Element (GARE) was identified as the crucial cis-regulatory element in regulation of GalA utilization in B. cinerea. Yeast one-hybrid screening with the GARE motif led to identification of a novel Zn2 Cys6 transcription factor (TF), designated BcGaaR. Targeted knockout analysis revealed that BcGaaR is required for induction of GalA-inducible genes and growth of B. cinerea on GalA. A BcGaaR-GFP fusion protein was predominantly localized in nuclei in mycelium grown in GalA. Fluorescence in nuclei was much stronger in mycelium grown in GalA, as compared to fructose and glucose. This study provides the first report of a GalA-specific TF in filamentous fungi. Orthologs of BcGaaR are present in other ascomycete fungi that are able to utilize GalA, including Aspergillus spp., Trichoderma reesei and Neurospora crassa.
Collapse
Affiliation(s)
- Lisha Zhang
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Ronnie J M Lubbers
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Adeline Simon
- UMR1290 BIOGER, INRA-AgroParisTech, Avenue Lucien Brétignières, 78850, Thiverval-Grignon, France
| | - Joost H M Stassen
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Pablo R Vargas Ribera
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Muriel Viaud
- UMR1290 BIOGER, INRA-AgroParisTech, Avenue Lucien Brétignières, 78850, Thiverval-Grignon, France
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| |
Collapse
|
26
|
Bethke G, Thao A, Xiong G, Li B, Soltis NE, Hatsugai N, Hillmer RA, Katagiri F, Kliebenstein DJ, Pauly M, Glazebrook J. Pectin Biosynthesis Is Critical for Cell Wall Integrity and Immunity in Arabidopsis thaliana. THE PLANT CELL 2016; 28:537-56. [PMID: 26813622 PMCID: PMC4790862 DOI: 10.1105/tpc.15.00404] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 12/11/2015] [Accepted: 01/19/2016] [Indexed: 05/19/2023]
Abstract
Plant cell walls are important barriers against microbial pathogens. Cell walls of Arabidopsis thaliana leaves contain three major types of polysaccharides: cellulose, various hemicelluloses, and pectins. UDP-D-galacturonic acid, the key building block of pectins, is produced from the precursor UDP-D-glucuronic acid by the action of glucuronate 4-epimerases (GAEs). Pseudomonas syringae pv maculicola ES4326 (Pma ES4326) repressed expression of GAE1 and GAE6 in Arabidopsis, and immunity to Pma ES4326 was compromised in gae6 and gae1 gae6 mutant plants. These plants had brittle leaves and cell walls of leaves had less galacturonic acid. Resistance to specific Botrytis cinerea isolates was also compromised in gae1 gae6 double mutant plants. Although oligogalacturonide (OG)-induced immune signaling was unaltered in gae1 gae6 mutant plants, immune signaling induced by a commercial pectinase, macerozyme, was reduced. Macerozyme treatment or infection with B. cinerea released less soluble uronic acid, likely reflecting fewer OGs, from gae1 gae6 cell walls than from wild-type Col-0. Although both OGs and macerozyme-induced immunity to B. cinerea in Col-0, only OGs also induced immunity in gae1 gae6. Pectin is thus an important contributor to plant immunity, and this is due at least in part to the induction of immune responses by soluble pectin, likely OGs, that are released during plant-pathogen interactions.
Collapse
Affiliation(s)
- Gerit Bethke
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Amanda Thao
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Guangyan Xiong
- Energy Biosciences Institute, University of California, Berkeley, California 94720
| | - Baohua Li
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Nicole E Soltis
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Noriyuki Hatsugai
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Rachel A Hillmer
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 Plant Biological Sciences Graduate Program, University of Minnesota, St. Paul, Minnesota 55108
| | - Fumiaki Katagiri
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | | | - Markus Pauly
- Energy Biosciences Institute, University of California, Berkeley, California 94720 Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720
| | - Jane Glazebrook
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
27
|
Kelloniemi J, Trouvelot S, Héloir MC, Simon A, Dalmais B, Frettinger P, Cimerman A, Fermaud M, Roudet J, Baulande S, Bruel C, Choquer M, Couvelard L, Duthieuw M, Ferrarini A, Flors V, Le Pêcheur P, Loisel E, Morgant G, Poussereau N, Pradier JM, Rascle C, Trdá L, Poinssot B, Viaud M. Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1167-80. [PMID: 26267356 DOI: 10.1094/mpmi-02-15-0039-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mature grapevine berries at the harvesting stage (MB) are very susceptible to the gray mold fungus Botrytis cinerea, while veraison berries (VB) are not. We conducted simultaneous microscopic and transcriptomic analyses of the pathogen and the host to investigate the infection process developed by B. cinerea on MB versus VB, and the plant defense mechanisms deployed to stop the fungus spreading. On the pathogen side, our genome-wide transcriptomic data revealed that B. cinerea genes upregulated during infection of MB are enriched in functional categories related to necrotrophy, such as degradation of the plant cell wall, proteolysis, membrane transport, reactive oxygen species (ROS) generation, and detoxification. Quantitative-polymerase chain reaction on a set of representative genes related to virulence and microscopic observations further demonstrated that the infection is also initiated on VB but is stopped at the penetration stage. On the plant side, genome-wide transcriptomic analysis and metabolic data revealed a defense pathway switch during berry ripening. In response to B. cinerea inoculation, VB activated a burst of ROS, the salicylate-dependent defense pathway, the synthesis of the resveratrol phytoalexin, and cell-wall strengthening. On the contrary, in infected MB, the jasmonate-dependent pathway was activated, which did not stop the fungal necrotrophic process.
Collapse
Affiliation(s)
- Jani Kelloniemi
- 1 Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes-ERL CNRS 6300, 17 rue Sully, 21000 Dijon, France
| | - Sophie Trouvelot
- 1 Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes-ERL CNRS 6300, 17 rue Sully, 21000 Dijon, France
| | - Marie-Claire Héloir
- 1 Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes-ERL CNRS 6300, 17 rue Sully, 21000 Dijon, France
| | - Adeline Simon
- 2 INRA, UMR 1290 BIOGER, Avenue Lucien Brétignières, 78850 Grignon, France
| | - Bérengère Dalmais
- 2 INRA, UMR 1290 BIOGER, Avenue Lucien Brétignières, 78850 Grignon, France
| | - Patrick Frettinger
- 1 Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes-ERL CNRS 6300, 17 rue Sully, 21000 Dijon, France
- 3 UMR 5240 MAP, Université Lyon 1-CNRS-Bayer CropScience, Villeurbanne, France
| | - Agnès Cimerman
- 2 INRA, UMR 1290 BIOGER, Avenue Lucien Brétignières, 78850 Grignon, France
| | - Marc Fermaud
- 4 INRA, UMR 1065 Santé et Agroécologie du Vignoble, 33882 Villenave d'Ornon, France
| | - Jean Roudet
- 4 INRA, UMR 1065 Santé et Agroécologie du Vignoble, 33882 Villenave d'Ornon, France
| | | | - Christophe Bruel
- 3 UMR 5240 MAP, Université Lyon 1-CNRS-Bayer CropScience, Villeurbanne, France
| | - Mathias Choquer
- 3 UMR 5240 MAP, Université Lyon 1-CNRS-Bayer CropScience, Villeurbanne, France
| | | | | | - Alberto Ferrarini
- 6 Università degli Studi di Verona, Dipartimento di Biotecnologie, Strada Le Grazie 15, 37134 Verona, Italy
| | - Victor Flors
- 7 University of Jaume I, Plant Physiology Section, CAMN, Castellón, 12071, Spain
| | - Pascal Le Pêcheur
- 2 INRA, UMR 1290 BIOGER, Avenue Lucien Brétignières, 78850 Grignon, France
| | - Elise Loisel
- 4 INRA, UMR 1065 Santé et Agroécologie du Vignoble, 33882 Villenave d'Ornon, France
| | - Guillaume Morgant
- 2 INRA, UMR 1290 BIOGER, Avenue Lucien Brétignières, 78850 Grignon, France
| | - Nathalie Poussereau
- 3 UMR 5240 MAP, Université Lyon 1-CNRS-Bayer CropScience, Villeurbanne, France
| | - Jean-Marc Pradier
- 2 INRA, UMR 1290 BIOGER, Avenue Lucien Brétignières, 78850 Grignon, France
| | - Christine Rascle
- 3 UMR 5240 MAP, Université Lyon 1-CNRS-Bayer CropScience, Villeurbanne, France
| | - Lucie Trdá
- 1 Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes-ERL CNRS 6300, 17 rue Sully, 21000 Dijon, France
| | - Benoit Poinssot
- 1 Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes-ERL CNRS 6300, 17 rue Sully, 21000 Dijon, France
| | - Muriel Viaud
- 2 INRA, UMR 1290 BIOGER, Avenue Lucien Brétignières, 78850 Grignon, France
| |
Collapse
|
28
|
Khosravi C, Benocci T, Battaglia E, Benoit I, de Vries RP. Sugar catabolism in Aspergillus and other fungi related to the utilization of plant biomass. ADVANCES IN APPLIED MICROBIOLOGY 2015; 90:1-28. [PMID: 25596028 DOI: 10.1016/bs.aambs.2014.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fungi are found in all natural and artificial biotopes and can use highly diverse carbon sources. They play a major role in the global carbon cycle by decomposing plant biomass and this biomass is the main carbon source for many fungi. Plant biomass is composed of cell wall polysaccharides (cellulose, hemicellulose, pectin) and lignin. To degrade cell wall polysaccharides to different monosaccharides, fungi produce a broad range of enzymes with a large variety in activities. Through a series of enzymatic reactions, sugar-specific and central metabolic pathways convert these monosaccharides into energy or metabolic precursors needed for the biosynthesis of biomolecules. This chapter describes the carbon catabolic pathways that are required to efficiently use plant biomass as a carbon source. It will give an overview of the known metabolic pathways in fungi, their interconnections, and the differences between fungal species.
Collapse
|
29
|
Zhang L, Hua C, Stassen JHM, Chatterjee S, Cornelissen M, van Kan JAL. Genome-wide analysis of pectate-induced gene expression in Botrytis cinerea: identification and functional analysis of putative d-galacturonate transporters. Fungal Genet Biol 2014; 72:182-191. [PMID: 24140151 DOI: 10.1016/j.fgb.2013.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 10/03/2013] [Indexed: 11/22/2022]
Abstract
The fungal plant pathogen Botrytis cinerea produces a spectrum of cell wall degrading enzymes for the decomposition of host cell wall polysaccharides and the consumption of the monosaccharides that are released. Especially pectin is an abundant cell wall component, and the decomposition of pectin by B. cinerea has been extensively studied. An effective concerted action of the appropriate pectin depolymerising enzymes, monosaccharide transporters and catabolic enzymes is important for complete d-galacturonic acid utilization by B. cinerea. In this study, we performed RNA sequencing to compare genome-wide transcriptional profiles between B. cinerea cultures grown in media containing pectate or glucose as sole carbon source. Transcript levels of 32 genes that are induced by pectate were further examined in cultures grown on six different monosaccharides, by means of quantitative RT-PCR, leading to the identification of 8 genes that are exclusively induced by d-galacturonic acid. Among these, the hexose transporter encoding genes Bchxt15 and Bchxt19 were functionally characterised. The subcellular location was studied of BcHXT15-GFP and BcHXT19-GFP fusion proteins expressed under control of their native promoter, in a B. cinerea wild-type strain. Both genes are expressed during growth on d-galacturonic acid and the fusion proteins are localized in plasma membranes and intracellular vesicles. Target gene knockout analysis revealed that BcHXT15 contributes to d-galacturonic acid uptake at pH 5∼5.6. The virulence of all B. cinerea hexose transporter mutants tested was unaltered on tomato and Nicotiana benthamiana leaves.
Collapse
Affiliation(s)
- Lisha Zhang
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany.
| | - Chenlei Hua
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Joost H M Stassen
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
| | - Sayantani Chatterjee
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Maxim Cornelissen
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
30
|
Terhem RB, van Kan JAL. Functional analysis of hydrophobin genes in sexual development of Botrytis cinerea. Fungal Genet Biol 2014; 71:42-51. [PMID: 25181040 DOI: 10.1016/j.fgb.2014.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/03/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
Abstract
Hydrophobins are small secreted fungal proteins that play roles in growth and development of filamentous fungi, i.e. in the formation of aerial structures and the attachment of hyphae to hydrophobic surfaces. In Botrytis cinerea, three hydrophobin genes have been identified. Studies by Mosbach et al. (2011) showed that hydrophobins are neither involved in conferring surface hydrophobicity to conidia and aerial hyphae of B. cinerea, nor are they required for virulence. The present study investigated the role of hydrophobins in sclerotium and apothecium development. Expression analysis revealed high expression of the Bhp1 gene during different stages of apothecium development. Two Bhp1 splice variants were detected that differ by an internal stretch of 13 amino acid residues. Seven different mutants in which either a single, two or three hydrophobin genes were knocked out, as well as two wild type strains of opposite mating types, were characterized for sclerotium and apothecium development. No aberrant morphology was observed in sclerotium development when single deletion mutants in hydrophobin genes were analyzed. Sclerotia of double knock out mutant ΔBhp1/ΔBhp3 and the triple knock out mutant, however, showed easily wettable phenotypes. For analyzing apothecium development, a reciprocal crossing scheme was setup. Morphological aberrations were observed in crosses with two hydrophobin mutants. When the double knock out mutant ΔBhp1/ΔBhp2 and the triple knock out mutant were used as the maternal parent (sclerotia), and fertilized with wild type microconidia, the resulting apothecia were swollen, dark brown in color and had a blotched surface. After initially growing upwards toward the light source, the apothecia in many cases collapsed due to loss of structural integrity. Aberrant apothecium development was not observed in the reciprocal cross, when these same mutants were used as the paternal parent (microconidia). These results indicate that the presence of hydrophobins in maternal tissue is important for normal development of apothecia of B. cinerea.
Collapse
Affiliation(s)
- Razak B Terhem
- Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia, 43400 Serdang, Malaysia; Wageningen University, Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jan A L van Kan
- Wageningen University, Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
31
|
Nafisi M, Stranne M, Zhang L, van Kan JAL, Sakuragi Y. The endo-arabinanase BcAra1 is a novel host-specific virulence factor of the necrotic fungal phytopathogen Botrytis cinerea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:781-92. [PMID: 24725206 DOI: 10.1094/mpmi-02-14-0036-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The plant cell wall is one of the first physical interfaces encountered by plant pathogens and consists of polysaccharides, of which arabinan is an important constituent. During infection, the necrotrophic plant pathogen Botrytis cinerea secretes a cocktail of plant cell-wall-degrading enzymes, including endo-arabinanase activity, which carries out the breakdown of arabinan. The roles of arabinan and endo-arabinanases during microbial infection were thus far elusive. In this study, the gene Bcara1 encoding for a novel α-1,5-L-endo-arabinanase was identified and the heterologously expressed BcAra1 protein was shown to hydrolyze linear arabinan with high efficiency whereas little or no activity was observed against the other oligo- and polysaccharides tested. The Bcara1 knockout mutants displayed reduced arabinanase activity in vitro and severe retardation in secondary lesion formation during infection of Arabidopsis leaves. These results indicate that BcAra1 is a novel endo-arabinanase and plays an important role during the infection of Arabidopsis. Interestingly, the level of Bcara1 transcript was considerably lower during the infection of Nicotiana benthamiana compared with Arabidopsis and, consequently, the ΔBcara1 mutants showed the wild-type level of virulence on N. benthamiana leaves. These results support the conclusion that the expression of Bcara1 is host dependent and is a key determinant of the disease outcome.
Collapse
|
32
|
Blanco-Ulate B, Morales-Cruz A, Amrine KCH, Labavitch JM, Powell ALT, Cantu D. Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts. FRONTIERS IN PLANT SCIENCE 2014; 5:435. [PMID: 25232357 PMCID: PMC4153048 DOI: 10.3389/fpls.2014.00435] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/15/2014] [Indexed: 05/19/2023]
Abstract
Cell walls are barriers that impair colonization of host tissues, but also are important reservoirs of energy-rich sugars. Growing hyphae of necrotrophic fungal pathogens, such as Botrytis cinerea (Botrytis, henceforth), secrete enzymes that disassemble cell wall polysaccharides. In this work we describe the annotation of 275 putative secreted Carbohydrate-Active enZymes (CAZymes) identified in the Botrytis B05.10 genome. Using RNAseq we determined which Botrytis CAZymes were expressed during infections of lettuce leaves, ripe tomato fruit, and grape berries. On the three hosts, Botrytis expressed a common group of 229 potentially secreted CAZymes, including 28 pectin backbone-modifying enzymes, 21 hemicellulose-modifying proteins, 18 enzymes that might target pectin and hemicellulose side-branches, and 16 enzymes predicted to degrade cellulose. The diversity of the Botrytis CAZymes may be partly responsible for its wide host range. Thirty-six candidate CAZymes with secretion signals were found exclusively when Botrytis interacted with ripe tomato fruit and grape berries. Pectin polysaccharides are notably abundant in grape and tomato cell walls, but lettuce leaf walls have less pectin and are richer in hemicelluloses and cellulose. The results of this study not only suggest that Botrytis targets similar wall polysaccharide networks on fruit and leaves, but also that it may selectively attack host wall polysaccharide substrates depending on the host tissue.
Collapse
Affiliation(s)
- Barbara Blanco-Ulate
- Department of Viticulture and Enology, University of California, DavisDavis, CA, USA
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Abraham Morales-Cruz
- Department of Viticulture and Enology, University of California, DavisDavis, CA, USA
| | | | - John M. Labavitch
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Ann L. T. Powell
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, DavisDavis, CA, USA
- *Correspondence: Dario Cantu, Department of Viticulture and Enology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA e-mail:
| |
Collapse
|
33
|
Zhang L, Kars I, Essenstam B, Liebrand TW, Wagemakers L, Elberse J, Tagkalaki P, Tjoitang D, van den Ackerveken G, van Kan JA. Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. PLANT PHYSIOLOGY 2014; 164:352-64. [PMID: 24259685 PMCID: PMC3875813 DOI: 10.1104/pp.113.230698] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/19/2013] [Indexed: 05/18/2023]
Abstract
Plants perceive microbial invaders using pattern recognition receptors that recognize microbe-associated molecular patterns. In this study, we identified RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1 (RBPG1), an Arabidopsis (Arabidopsis thaliana) leucine-rich repeat receptor-like protein, AtRLP42, that recognizes fungal endopolygalacturonases (PGs) and acts as a novel microbe-associated molecular pattern receptor. RBPG1 recognizes several PGs from the plant pathogen Botrytis cinerea as well as one from the saprotroph Aspergillus niger. Infiltration of B. cinerea PGs into Arabidopsis accession Columbia induced a necrotic response, whereas accession Brno (Br-0) showed no symptoms. A map-based cloning strategy, combined with comparative and functional genomics, led to the identification of the Columbia RBPG1 gene and showed that this gene is essential for the responsiveness of Arabidopsis to the PGs. Transformation of RBPG1 into accession Br-0 resulted in a gain of PG responsiveness. Transgenic Br-0 plants expressing RBPG1 were equally susceptible as the recipient Br-0 to the necrotroph B. cinerea and to the biotroph Hyaloperonospora arabidopsidis. Pretreating leaves of the transgenic plants with a PG resulted in increased resistance to H. arabidopsidis. Coimmunoprecipitation experiments demonstrated that RBPG1 and PG form a complex in Nicotiana benthamiana, which also involves the Arabidopsis leucine-rich repeat receptor-like protein SOBIR1 (for SUPPRESSOR OF BIR1). sobir1 mutant plants did not induce necrosis in response to PGs and were compromised in PG-induced resistance to H. arabidopsidis.
Collapse
Affiliation(s)
| | - Ilona Kars
- Wageningen University, Laboratory of Phytopathology, 6708 PB, Wageningen, The Netherlands (L.Z., I.K., T.W.H.L., L.W., P.T., D.T., J.A.L.v.K.)
- Wageningen University and Research Centre, Unifarm, 6708 PE Wageningen, The Netherlands (B.E.); and
- Utrecht University, Plant-Microbe Interactions Group, 3584 CH Utrecht, The Netherlands (J.E., G.v.d.A.)
| | - Bert Essenstam
- Wageningen University, Laboratory of Phytopathology, 6708 PB, Wageningen, The Netherlands (L.Z., I.K., T.W.H.L., L.W., P.T., D.T., J.A.L.v.K.)
- Wageningen University and Research Centre, Unifarm, 6708 PE Wageningen, The Netherlands (B.E.); and
- Utrecht University, Plant-Microbe Interactions Group, 3584 CH Utrecht, The Netherlands (J.E., G.v.d.A.)
| | - Thomas W.H. Liebrand
- Wageningen University, Laboratory of Phytopathology, 6708 PB, Wageningen, The Netherlands (L.Z., I.K., T.W.H.L., L.W., P.T., D.T., J.A.L.v.K.)
- Wageningen University and Research Centre, Unifarm, 6708 PE Wageningen, The Netherlands (B.E.); and
- Utrecht University, Plant-Microbe Interactions Group, 3584 CH Utrecht, The Netherlands (J.E., G.v.d.A.)
| | | | - Joyce Elberse
- Wageningen University, Laboratory of Phytopathology, 6708 PB, Wageningen, The Netherlands (L.Z., I.K., T.W.H.L., L.W., P.T., D.T., J.A.L.v.K.)
- Wageningen University and Research Centre, Unifarm, 6708 PE Wageningen, The Netherlands (B.E.); and
- Utrecht University, Plant-Microbe Interactions Group, 3584 CH Utrecht, The Netherlands (J.E., G.v.d.A.)
| | - Panagiota Tagkalaki
- Wageningen University, Laboratory of Phytopathology, 6708 PB, Wageningen, The Netherlands (L.Z., I.K., T.W.H.L., L.W., P.T., D.T., J.A.L.v.K.)
- Wageningen University and Research Centre, Unifarm, 6708 PE Wageningen, The Netherlands (B.E.); and
- Utrecht University, Plant-Microbe Interactions Group, 3584 CH Utrecht, The Netherlands (J.E., G.v.d.A.)
| | - Devlin Tjoitang
- Wageningen University, Laboratory of Phytopathology, 6708 PB, Wageningen, The Netherlands (L.Z., I.K., T.W.H.L., L.W., P.T., D.T., J.A.L.v.K.)
- Wageningen University and Research Centre, Unifarm, 6708 PE Wageningen, The Netherlands (B.E.); and
- Utrecht University, Plant-Microbe Interactions Group, 3584 CH Utrecht, The Netherlands (J.E., G.v.d.A.)
| | - Guido van den Ackerveken
- Wageningen University, Laboratory of Phytopathology, 6708 PB, Wageningen, The Netherlands (L.Z., I.K., T.W.H.L., L.W., P.T., D.T., J.A.L.v.K.)
- Wageningen University and Research Centre, Unifarm, 6708 PE Wageningen, The Netherlands (B.E.); and
- Utrecht University, Plant-Microbe Interactions Group, 3584 CH Utrecht, The Netherlands (J.E., G.v.d.A.)
| | | |
Collapse
|