1
|
Abad-Santos F, Aliño SF, Borobia AM, García-Martín E, Gassó P, Maroñas O, Agúndez JAG. Developments in pharmacogenetics, pharmacogenomics, and personalized medicine. Pharmacol Res 2024; 200:107061. [PMID: 38199278 DOI: 10.1016/j.phrs.2024.107061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
The development of Pharmacogenetics and Pharmacogenomics in Western Europe is highly relevant in the worldwide scenario. Despite the usually low institutional support, many research groups, composed of basic and clinical researchers, have been actively working for decades in this field. Their contributions made an international impact and paved the way for further studies and pharmacogenomics implementation in clinical practice. In this manuscript, that makes part of the Special Issue entitled Spanish Pharmacology, we present an analysis of the state of the art of Pharmacogenetics and Pharmacogenomics research in Europe, we compare it with the developments in Spain, and we summarize the most salient contributions since 1988 to the present, as well as recent developments in the clinical application of pharmacogenomics knowledge. Finally, we present some considerations on how we could improve translation to clinical practice in this specific scenario.
Collapse
Affiliation(s)
- Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM), CIBEREHD, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.
| | - Salvador F Aliño
- Gene Therapy and Pharmacogenomics Group, Department of Pharmacology, Faculty of Medicine, Universitat de València, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Alberto M Borobia
- Clinical Pharmacology Department, La Paz University Hospital, School of Medicine, Universidad Autónoma de Madrid (UAM), IdiPAZ, Madrid, Spain
| | - Elena García-Martín
- Department of Pharmacology, Universidad de Extremadura, Avda de la Universidad s/n, 10071 Cáceres, Spain
| | - Patricia Gassó
- Basic Clinical Practice Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona Clínic Schizophrenia Unit (BCSU), IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Olalla Maroñas
- Public Foundation of Genomic Medicine, Santiago University Hospital, Genomic Medicine group, Pharmacogenetics and Drug Discovery (GenDeM), CIBERER, Santiago Health Research Institute (IDIS), Galicia, Spain
| | - José A G Agúndez
- Universidad de Extremadura. University Institute of Molecular Pathology Biomarkers, Avda de las Ciencias s/n, 10071 Cáceres, Spain.
| |
Collapse
|
2
|
Lapetina DL, Yang EH, Henriques BC, Aitchison KJ. Pharmacogenomics and Psychopharmacology. SEMINARS IN CLINICAL PSYCHOPHARMACOLOGY 2020:151-202. [DOI: 10.1017/9781911623465.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Abstract
This article will review the various agents affecting the central nervous system (CNS) such as the analgesics, antidepressants, anticonvulsants, antipsychotics, and benzodiazepines. Most of the research in pharmacogenetics with the CNS agents have been conducted in the antidepressants. The cytochrome 450 IID6 isozyme system has been shown to influence the disposition of the antidepressants and antipsychotics. Amitriptyline metabolism to nortriptyline and nortriptyline conversion to its 10-OH metabolite were shown to be influenced by the IID6 isozyme. Interestingly, imipramine metabolism to desipramine is only partially related to the IID6 isozyme. Biotransformation of imipramine to its 2-OH metabolite was shown to be affected by the IID6 isozyme, but its metabolism to the 10-OH remains to be investigated. Of the antipsychotic drugs, haloperidol and thioridazine are two agents most studied. Haloperidol is converted to a reduced metabolite via a ketone reductase enzyme. The reduced metabolite is oxidized back to Haloperidol. This oxidation pathway was reported to be affected by the IID6 isozyme. Thioridazine metabolism to mesoridazine and conversion of codeine to morphine appear to be also influenced by CP-450 IID6. Other 450 isozymes are reported to be involved with other CNS agents.
Collapse
Affiliation(s)
- Michael W. Jann
- From the Southern School of Pharmacy, Mercer University, Atlanta, GA
| | - Sara R. Grimsley
- From the Southern School of Pharmacy, Mercer University, Atlanta, GA
| |
Collapse
|
4
|
Severe adverse drug events under combination of nortriptyline and melperone due to pharmacokinetic interaction. J Clin Psychopharmacol 2014; 34:394-6. [PMID: 24743723 DOI: 10.1097/jcp.0000000000000127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Piatkov I, Jones T. Pharmacogenetics and gender association with psychotic episodes on nortriptyline lower doses: patient cases. ISRN PHARMACEUTICS 2011; 2011:805983. [PMID: 22389859 PMCID: PMC3263719 DOI: 10.5402/2011/805983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/20/2011] [Indexed: 11/23/2022]
Abstract
The variation in individual responses to psychotropic drug treatment remains a critical problem in the management of psychotic disorders. Although most patients will experience remission, some patients may develop drug-induced adverse effects that may range from troublesome to life threatening. Antidepressants are freely prescribed by general practitioners, and there should be constant awareness in the medical community about possible serious side effects. We describe two cases of adverse drug reactions on low dosage treatment that led to extreme psychotic episodes as examples of the potential for dangerous side effects. The patients developed adverse reactions on the normal recommended dosage of nortriptyline, a tricyclics antidepressant (TCA). Both were females, with no history of antidepressant treatment, unsocial behaviour, nor any family history of psychosis, but both experienced severe psychiatric symptoms. Pharmacogenetic tests can easily be performed and interpreted according to the likelihood of adverse reactions and should be included in toxicity interpretation.
Collapse
Affiliation(s)
- Irina Piatkov
- Diversity Health Institute, Western Sydney Local Health District, North Parramatta, NSW 2151, Australia
| | | |
Collapse
|
6
|
Halling J, Weihe P, Brosen K. The CYP2D6 polymorphism in relation to the metabolism of amitriptyline and nortriptyline in the Faroese population. Br J Clin Pharmacol 2007; 65:134-8. [PMID: 17764479 PMCID: PMC2291274 DOI: 10.1111/j.1365-2125.2007.02969.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIM To determine the frequency of CYP2D6 poor metabolizers (PMs) in a Faroese patient group medicated with amitriptyline (AT) and to investigate plasma concentrations of AT and metabolites in relation to CYP2D6. METHODS CYP2D6 phenotype and genotype were determined in 23 Faroese patients treated with AT. Plasma concentrations of AT and metabolites were determined by high-performance liquid chromatography and investigated in relation to CYP2D6 activity. RESULTS Of the 23 patients phenotyped and genotyped, five (22%) (95% confidence interval 7.5, 43.7) were CYP2D6 PMs. No difference was found in AT daily dosage between PMs (median 25 mg day(-1); range 5-80) and extensive metabolizers (EMs) (median 27.5 mg day(-1); range 10-100). The (E)-10-OH-nortriptyline (NT)/dose concentrations were higher in EMs than in PMs and the NT/(E)-10-OH-NT and AT/(E)-10-OH-AT ratios were higher in PMs compared with EMs. The log sparteine metabolic ratio correlated positively with the NT/(E)-10-OH-NT ratio (r(s) = 0.821; P < 0.0005) and the AT/(E)-10-OH-AT ratio (r(s) = 0.605; P < 0.006). CONCLUSION A high proportion of CYP2D6 PMs was found in a Faroese patient group medicated with AT. However, similar doses of AT and concentrations of AT and NT were noted in EMs and PMs, probably due to varying doses and indications for AT treatment.
Collapse
Affiliation(s)
- Jónrit Halling
- Institute of Public Health, Clinical Pharmacology, University of Southern Denmark, Odense, Denmark.
| | | | | |
Collapse
|
7
|
Gardiner SJ, Begg EJ. Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol Rev 2006; 58:521-90. [PMID: 16968950 DOI: 10.1124/pr.58.3.6] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The application of pharmacogenetics holds great promise for individualized therapy. However, it has little clinical reality at present, despite many claims. The main problem is that the evidence base supporting genetic testing before therapy is weak. The pharmacology of the drugs subject to inherited variability in metabolism is often complex. Few have simple or single pathways of elimination. Some have active metabolites or enantiomers with different activities and pathways of elimination. Drug dosing is likely to be influenced only if the aggregate molar activity of all active moieties at the site of action is predictably affected by genotype or phenotype. Variation in drug concentration must be significant enough to provide "signal" over and above normal variation, and there must be a genuine concentration-effect relationship. The therapeutic index of the drug will also influence test utility. After considering all of these factors, the benefits of prospective testing need to be weighed against the costs and against other endpoints of effect. It is not surprising that few drugs satisfy these requirements. Drugs (and enzymes) for which there is a reasonable evidence base supporting genotyping or phenotyping include suxamethonium/mivacurium (butyrylcholinesterase), and azathioprine/6-mercaptopurine (thiopurine methyltransferase). Drugs for which there is a potential case for prospective testing include warfarin (CYP2C9), perhexiline (CYP2D6), and perhaps the proton pump inhibitors (CYP2C19). No other drugs have an evidence base that is sufficient to justify prospective testing at present, although some warrant further evaluation. In this review we summarize the current evidence base for pharmacogenetics in relation to drug-metabolizing enzymes.
Collapse
Affiliation(s)
- Sharon J Gardiner
- Department of Medicine, Christchurch School of Medicine, Private Bag 4345, Christchurch, New Zealand.
| | | |
Collapse
|
8
|
Thuerauf N, Lunkenheimer J. The impact of the CYP2D6-polymorphism on dose recommendations for current antidepressants. Eur Arch Psychiatry Clin Neurosci 2006; 256:287-93. [PMID: 16783493 DOI: 10.1007/s00406-006-0663-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cytochrome P450 CYP2D6 represents an extensively characterized polymorphic drug-metabolizing enzyme. The CYP2D6-gene is highly polymorphic and more than 70 different alleles are known currently. The activity of the enzyme markedly varies among individuals from poor to intermediate and extensive up to ultrarapid metabolism on the basis of the polymorphism of the CYP2D6 gene. Association studies provide growing evidence for the clinical importance of the CYP2D6 polymorphism investigating whether the CYP2D6 genotype distribution differs from that of the normal population either in patients with marked adverse effects or in nonresponders during treatment with CYP2D6 substrates. However, these scientifically important studies present less information for dose adjustments necessary to individualize pharmacotherapy in a given clinical case. With respect to psychopharmacological drug metabolism several antidepressants were characterized as being CYP2D6 substrates. Thus, this review summarizes dose recommendations of current antidepressants.
Collapse
Affiliation(s)
- Norbert Thuerauf
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Univeristy of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | | |
Collapse
|
9
|
Yu AM, Idle JR, Gonzalez FJ. Polymorphic cytochrome P450 2D6: humanized mouse model and endogenous substrates. Drug Metab Rev 2004; 36:243-77. [PMID: 15237854 DOI: 10.1081/dmr-120034000] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cytochrome P450 2D6 (CYP2D6) is the first well-characterized polymorphic phase I drug-metabolizing enzyme, and more than 80 allelic variants have been identified for the CYP2D6 gene, located on human chromosome 22q13.1. Human debrisoquine and sparteine metabolism is subdivided into two principal phenotypes--extensive metabolizer and poor metabolizer--that arise from variant CYP2D6 genotypes. It has been estimated that CYP2D6 is involved in the metabolism and disposition of more than 20% of prescribed drugs, and most of them act in the central nervous system or on the heart. These drug substrates are characterized as organic bases containing one nitrogen atom with a distance about 5, 7, or 10 A from the oxidation site. Aspartic acid 301 and glutamic acid 216 were determined as the key acidic residues for substrate-enzyme binding through electrostatic interactions. CYP2D6 transgenic mice, generated using a lambda phage clone containing the complete wild-type CYP2D6 gene, exhibits enhanced metabolism and disposition of debrisoquine. This transgenic mouse line and its wild-type control are models for human extensive metabolizers and poor metabolizers, respectively, and would have broad application in the study of CYP2D6 polymorphism in drug discovery and development, and in clinical practice toward individualized drug therapy. Endogenous 5-methoxyindole- thylamines derived from 5-hydroxytryptamine were identified as high-affinity substrates of CYP2D6 that catalyzes their O-demethylations with high enzymatic capacity and specificity. Thus, polymorphic CYP2D6 may play an important role in the interconversions of these psychoactive tryptamines, including a crucial step in a serotonin-melatonin cycle.
Collapse
Affiliation(s)
- Ai-Ming Yu
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
10
|
Shimoda K, Someya T, Yokono A, Morita S, Hirokane G, Takahashi S, Okawa M. The impact of CYP2C19 and CYP2D6 genotypes on metabolism of amitriptyline in Japanese psychiatric patients. J Clin Psychopharmacol 2002; 22:371-8. [PMID: 12172336 DOI: 10.1097/00004714-200208000-00007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated the effect of the CYP2C19 and CYP2D6 genotypes on the metabolism of amitriptyline (AT) in Japanese psychiatric patients. Steady-state concentrations of AT and its metabolites (nortriptyline [NT], trans-10-hydroxy-nortriptyline [EHNT], cis-10-hydroxy-nortriptyline [ZHNT], trans-10-hydroxy-amitriptyline [EHAT], and cis-10-hydroxy-amitriptyline [ZHAT]) in 50 patients were determined by high-performance liquid chromatography. Significantly higher plasma concentrations of AT corrected for dose and body weight in the subjects with two mutated alleles of CYP2C19 than in those with no mutated alleles of CYP2C19 were observed (no mutated alleles vs. two mutated alleles: 36.0 +/- 18.2 vs. 64.0 +/- 25.2 ng/mL/mg/kg, p = 0.025). A significantly higher AT/NT ratio was seen in the subjects with two mutated alleles of CYP2C19 than in those with no mutated alleles of CYP2C19 (no mutated alleles vs. two mutated alleles: 1.27 +/- 0.59 vs. 3.40 +/- 1.02, p = 0.001). A trend for higher NT/EHNT ratio in the subjects with two mutated alleles of CYP2D6 than in those with no mutated alleles of CYP2D6 was observed (no mutated alleles vs. two mutated alleles: 0.73 +/- 0.39 vs. 1.31 +/- 0.81, p = 0.068). A trend for higher plasma concentrations of total hydroxylated metabolites of AT (EHAT + ZHAT) corrected for dose and body weight in the subjects with two mutated alleles of CYP2C19 than in those with no mutated alleles of CYP2C19 was found (no mutated alleles vs. two mutated alleles: 9.5 +/- 5.8 vs. 17.8 +/- 8.9, p = 0.051). Therefore, the genotype of CYP2C19 is one of the important determinants of the plasma concentrations of AT and the capacity to desmethylate AT. Mother compound AT is shunted via hydroxylation pathways from AT to EHAT and ZHAT in the subjects with homozygotes of mutated alleles of CYP2C19 in order to compensate for the decreased capacity to desmethylate AT.
Collapse
Affiliation(s)
- Kazutaka Shimoda
- Department of Psychiatry, Shiga University of Medical Science, Shiga, Japan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Otani K, Mihara K, Yasui-Furukori N, Suzuki A, Kondo T, Kaneko S. Clinical implications of pharmacogenetics of antidepressants. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0531-5131(02)00534-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Marcucci KA, Pearce RE, Crespi C, Steimel DT, Leeder JS, Gaedigk A. Characterization of cytochrome P450 2D6.1 (CYP2D6.1), CYP2D6.2, and CYP2D6.17 activities toward model CYP2D6 substrates dextromethorphan, bufuralol, and debrisoquine. Drug Metab Dispos 2002; 30:595-601. [PMID: 11950793 DOI: 10.1124/dmd.30.5.595] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Over 50 allelic variants of cytochrome P450 2D6 (CYP2D6) encoding fully functional, reduced-activity, or nonfunctional proteins have been described. Compared with Caucasians, studies in black populations demonstrate a tendency toward slower CYP2D6 activity, attributed in part to the presence of a variant allele associated with reduced activity, the CYP2D6*17 allele. To investigate the kinetic characteristics of this variant protein, expression constructs coding for CYP2D6.1, CYP2D6.2, and CYP2D6.17 gene products were prepared and transfected into mammalian COS-7 and insect (Trichoplusia ni) cells for expression. Microsomal fractions containing the expressed proteins were used to determine the kinetic parameters K(m), V(max), and intrinsic clearance (Cl(int)) for the model substrates dextromethorphan, bufuralol, and debrisoquine. Relative to the wild-type CYP2D6.1 protein expressed in COS-7 cells, CYP2D6.17 exhibited a 2-fold higher K(m) and a 50% reduction in V(max) using dextromethorphan as the substrate. In contrast, no appreciable change in bufuralol K(m) was observed with CYP2D6.17 whereas V(max) was decreased by 50%. When expressed in the baculovirus expression system, CYP2D6.17 exhibited a 6-fold increase in K(m) but no change in V(max) with dextromethorphan as the substrate, a 2-fold higher K(m) and 50% reduction in V(max) with bufuralol, and a 3-fold increase in K(m) and no change in V(max) with debrisoquine relative to CYP2D6.1. These data indicate that CYP2D6.17 exhibits reduced metabolic activity toward all three commonly used CYP2D6 substrates, although specific effects on substrate affinity and turnover demonstrate some substrate dependence.
Collapse
Affiliation(s)
- Kenda A Marcucci
- Section of Developmental Pharmacology and Experimental Therapeutics, Division of Pediatric Clinical Pharmacology and Toxicology, Children's Mercy Hospital and Clinics, Kansas City, Missouri 64108, USA
| | | | | | | | | | | |
Collapse
|
13
|
Kvist EE, Al-Shurbaji A, Dahl ML, Nordin C, Alván G, Ståhle L. Quantitative pharmacogenetics of nortriptyline: a novel approach. Clin Pharmacokinet 2002; 40:869-77. [PMID: 11735606 DOI: 10.2165/00003088-200140110-00005] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVE To quantitatively model nortriptyline clearance as a function of the cytochrome P450 (CYP) 2D6 genotype and to estimate the contribution of genotype to the interindividual variability in steady-state plasma concentration and metabolic clearance. DESIGN Modelling study using data from two previously published studies. PARTICIPANTS 20 healthy volunteers receiving single oral doses of nortriptyline and 20 patients with depression on steady-state oral treatment. METHODS A total of 275 nortriptyline plasma concentrations were analysed by standard nonlinear regression and nonlinear mixed effect models. The pharmacokinetic model was a 1-compartment model with first order absorption and elimination. All participants had previously been genotyped with respect to the CYP2D6 polymorphism. RESULTS A model in which the intrinsic clearance is a linear function of the number of functional CYP2D6 genes and hepatic blood flow is fixed to 60 L/h gave the closest fit of the pharmacokinetic model to the data. Stable estimates were obtained for population pharmacokinetic parameters and interindividual variances. Assuming 100% absorption, the model allows systemic clearance and bioavailability to be estimated. Bioavailability was found to vary between 0.17 and 0.71, depending on the genotype. Using the frequency distribution of CYP2D6 genotype with the above results we estimate that, in compliant Swedish individuals on nortriptyline monotherapy, the number of functional CYP2D6 genes could explain 21% of the total interindividual variance in oral clearance of nortriptyline and 34% of that in steady-state plasma concentrations. CONCLUSION Nonlinear mixed-effects modelling can be used to quantify the influence of the number of functional CYP2D6 genes on the metabolic clearance and plasma concentration of drugs metabolised by this enzyme. Gene dose has a significant impact on drug pharmacokinetics and prior knowledge of it may aid in predicting plasma concentration of the drug and thus tailoring patient-specific dosage regimens.
Collapse
Affiliation(s)
- E E Kvist
- Department of Medical Laboratory Sciences and Technology, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
14
|
Kirchheiner J, Brøsen K, Dahl ML, Gram LF, Kasper S, Roots I, Sjöqvist F, Spina E, Brockmöller J. CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 2001; 104:173-92. [PMID: 11531654 DOI: 10.1034/j.1600-0447.2001.00299.x] [Citation(s) in RCA: 247] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE This review aimed to provide distinct dose recommendations for antidepressants based on the genotypes of cytochrome P450 enzymes CYP2D6 and CYP2C19. This approach may be a useful complementation to clinical monitoring and therapeutic drug monitoring. METHOD Our literature search covered 32 antidepressants marketed in Europe, Canada, and the United States. We evaluated studies which had compared pharmacokinetic parameters of antidepressants among poor, intermediate, extensive and ultrarapid metabolizers. RESULTS For 14 antidepressants, distinct dose recommendations for extensive, intermediate and poor metabolizers of either CYP2D6 or CYP2C19 were given. For the tricyclic antidepressants, dose reductions around 50% were generally recommended for poor metabolizers of substrates of CYP2D6 or CYP2C19, whereas differences were smaller for the selective serotonin reuptake inhibitors. CONCLUSION We have provided preliminary average dose suggestions based on the phenotype or genotype. This is a first attempt to apply the new pharmacogenetics to suggest dose-regimens that take the differences in drug metabolic capacity into account.
Collapse
Affiliation(s)
- J Kirchheiner
- Institute of Clinical Pharmacology, Charité, Humboldt University of Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Haritos VS, Ghabrial H, Ahokas JT, Ching MS. Role of cytochrome P450 2D6 (CYP2D6) in the stereospecific metabolism of E- and Z-doxepin. PHARMACOGENETICS 2000; 10:591-603. [PMID: 11037801 DOI: 10.1097/00008571-200010000-00003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The tricyclic antidepressant, doxepin, is formulated as an irrational mixture of E (trans) and Z (cis) stereoisomers (85%: 15%). We examined the stereoselective metabolism of doxepin in vitro, with the use of human liver microsomes, recombinant CYP2D6 and gas chromatography-mass spectrometry. In human liver microsomes over the concentration range 5-1500 microM, the rate of Z-doxepin N-demethylation exceeded that of E-doxepin above 100 microM in two of three livers. Eadie-Hofstee plots were curvilinear indicating the involvement of several enzymes in N-demethylation. Coincubation of doxepin with 7,8-naphthoflavone and ketoconazole reduced the rates of N-demethylation of E- and Z-doxepin by 30-50% and 40-60%, respectively, suggesting the involvement of CYP1A and CYP3A4, whilst quinidine had little effect on N-demethylation. In contrast, doxepin hydroxylation was exclusively stereo-specific; E-doxepin and E-N-desmethyldoxepin were hydroxylated with high affinity in liver microsomes and by recombinant CYP2D6 (Km in the range of 5-8 microM), but there was no evidence of Z-doxepin hydroxylation. In 'metabolic consumption' experiments with liver microsomes (having measurable CYP2D6 activity) and initial substrate concentration of 1 microM, the consumption of E-doxepin was greater (P < 0.05, n = 5) than that of Z-doxepin. Quinidine inhibited the consumption of E-doxepin but did not affect the consumption of Z-doxepin. With N-desmethyldoxepin, quinidine inhibited the consumption of E-N-desmethyl-doxepin whereas Z-N-desmethyldoxepin appeared to be a terminal oxidative metabolite. In summary, CYP2D6 is a major oxidative enzyme in doxepin metabolism; predominantly catalysing hydroxylation with an exclusive preference for the E-isomers. The relatively more rapid metabolism of E-isomeric forms, and the limited metabolic pathways for the Z-isomers may explain the apparent enrichment of Z-N-desmethyldoxepin that is observed in vivo.
Collapse
Affiliation(s)
- V S Haritos
- Key Centre for Applied and Nutritional Toxicology, RMIT-University, Victoria, Australia
| | | | | | | |
Collapse
|
16
|
Jann MW, Cohen LJ. The influence of ethnicity and antidepressant pharmacogenetics in the treatment of depression. DRUG METABOLISM AND DRUG INTERACTIONS 2000; 16:39-67. [PMID: 10820582 DOI: 10.1515/dmdi.2000.16.1.39] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Antidepressant disposition can be influenced by a variety of CYP isozymes and their effects in the treatment of depression are reviewed. The CYP isozymes 2D6, 3A4, 1A2 and 2C are discussed in regard to antidepressant drug pharmacokinetics, clinical relevance and variability in activity for each isozyme. Polymorphism has been identified with CYP 2D6 and 2C19. Disposition of antidepressants which are substrates of these two isozymes can also be influenced and contributes towards the wide interpatient and interethnic variability found with these drugs. Antidepressants (especially SSRIs) can be CYP isozyme inhibitors and produce significant drug-drug interactions.
Collapse
Affiliation(s)
- M W Jann
- Department of Pharmacy Practice and Pharmaceutical Sciences, Mercer University, Southern School of Pharmacy, Atlanta, GA 30341-4155, USA
| | | |
Collapse
|
17
|
Morita S, Shimoda K, Someya T, Yoshimura Y, Kamijima K, Kato N. Steady-state plasma levels of nortriptyline and its hydroxylated metabolites in Japanese patients: impact of CYP2D6 genotype on the hydroxylation of nortriptyline. J Clin Psychopharmacol 2000; 20:141-9. [PMID: 10770451 DOI: 10.1097/00004714-200004000-00005] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The authors investigated the impact of the CYP2D6 genotype on steady-state concentrations of nortriptyline (NT) and its metabolites, trans-10-hydroxynortriptyline (EHNT) and cis-10-hydroxynortriptyline in a Japanese population of psychiatric patients. Forty-one patients (20 men and 21 women) were orally administered nortriptyline hydrochloride. The allele frequencies of the CYP2D6*5 and CYP2D6*10 were 4.9% and 34.1%, respectively. Significant differences in NT concentrations corrected for dose and weight were observed between the subjects with no mutated alleles and those with one mutated allele (mean +/- SD for no mutated alleles vs. one mutated allele: 70.3 +/- 25.4 vs. 98.4 +/- 36.6 ng/mL x mg(-1) x kg(-1); t = 2.54, dcf = 33, p < 0.05) and between the subjects with no mutated alleles and two mutated alleles (no mutated alleles vs. two mutated alleles: 70.3 +/- 25.4 vs. 147 +/- 31.1 ng/mL x mg(-1) x kg(-1); t = 5.87, df = 19, p < 0.0001). Also, a significant difference in the NT/EHNT ratio, which is representative of the hydroxylation ratio of NT, was observed between the subjects with no mutated alleles and those with two mutated alleles (no mutated alleles vs. two mutated alleles: 0.82 +/- 0.30 vs. 2.71 +/- 0.84; t = 7.86, df = 19, p < 0.0001). Multiple regression analysis showed that the number of mutated alleles of CYP2D6, which was the only significant factor, accounted for 41% and 48% of the variability in log(NT corrected for dose and weight) and log(NT/EHNT), respectively.
Collapse
Affiliation(s)
- S Morita
- Department of Psychiatry, Shiga University of Medical Science, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
PURPOSE This review of drug interactions in palliative care examines the relevant literature in this area and summarizes the information on interactions of drugs, nutrients, and natural products that are used in the palliative care setting. Particular emphasis is placed on describing the newer information on the cytochrome P450 (CYP) system and the interactions of opioids, antidepressants, and the antitussive, dextromethorphan. METHODS We performed a search of the MEDLINE database of the time period from 1966 until April 1998, using medical subject headings such as the names of selective serotonin reuptake inhibitors and other relevant medications in palliative care. Literature reviewed included both human and animal articles as well as non-English literature. Bibliographies of these articles and the personal libraries of several palliative care specialists were reviewed. Software developed by The Medical Letter-The Drug Interaction Program was also used. RESULTS Drug interactions can be categorized in several ways. Drug-drug interactions are the most well known and can be kinetic, dynamic, or pharmaceutical. Pharmacokinetic interactions can involve CYP 2D6, which acts on drugs such as codeine and is responsible for its conversion to morphine. Poor metabolizers, either genotypic or due to phenocopying, are at risk for undertreatment if not recognized. Pharmacodynamic interactions with dextromethorphan may produce serotonin syndrome. CONCLUSION Drug interactions are important in palliative care as in other aspects of medicine. These interactions are similar to those seen in other areas of medical care but have significant consequences in pain management. Failure to recognize these interactions can lead to either overdosing or undertreatment.
Collapse
Affiliation(s)
- S A Bernard
- Division of Hematology/Medical Oncology, University of North Carolina, Chapel Hill, NC, USA
| | | |
Collapse
|
19
|
Abstract
1. Despite the considerable advances in the treatments available for mood disorders over the past generation, tricyclic antidepressants (TCAs) remain an important option for the pharmacotherapy of depression. 2. The pharmacokinetics of TCAs are characterized by substantial presystemic first-pass metabolism, a large volume of distribution, extensive protein binding, and an elimination half-life averaging about 1 day (up to 3 days for protriptyline). 3. Clearance of tricyclics is dependent primarily on hepatic cytochrome P450 (CYP) oxidative enzymes. Although the activities of some P450 isoenzymes are largely under genetic control, they may be influenced by external factors, such as the concomitant use of other medications or substances. Patient variables, such as ethnicity and age, also affect TCA metabolism. The impact of gender and related reproductive issues is coming under increased scrutiny. 4. Metabolism of TCAs, especially their hydroxylation, results in the formation of active metabolites, which contribute to both the therapeutic and the adverse effects of these compounds. 5. Renal clearance of the polar metabolites of TCAs is reduced by normal aging, accounting for much of the increased risk of toxicity in older patients. 6. Knowledge of factors affecting the metabolism of TCAs can further the development and understanding of newer antidepressant medications.
Collapse
Affiliation(s)
- M V Rudorfer
- Division of Services and Intervention Research, National Institute of Mental Health, Bethesda, Maryland 20892-9635, USA
| | | |
Collapse
|
20
|
Brynne N, Böttiger Y, Hallén B, Bertilsson L. Tolterodine does not affect the human in vivo metabolism of the probe drugs caffeine, debrisoquine and omeprazole. Br J Clin Pharmacol 1999; 47:145-50. [PMID: 10190648 PMCID: PMC2014166 DOI: 10.1046/j.1365-2125.1999.00865.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AIM To investigate the in vivo effect of treatment with tolterodine on debrisoquine 4-hydroxylation (an index of CYP2D6 activity), omeprazole 5-hydroxylation (CYP2C19), omeprazole sulphoxidation (CYP3A4) and caffeine N3-demethylation (CYP1A2). METHODS Twelve healthy male volunteers (eight extensive metabolisers [EMs] and four poor metabolisers [PMs] with respect to CYP2D6) received 4 mg tolterodine L-tartrate orally twice daily for 6 days. All subjects were EMs with respect to CYP2C19. The subjects received single oral doses of debrisoquine (10 mg), omeprazole (20 mg) and caffeine (100 mg) for determination of the appropriate metabolic ratios (MR). The drugs were given on separate consecutive days, before, during and after the co-administration of tolterodine. RESULTS Mean serum tolterodine concentrations were 5-10 times higher in PMs than in EMs. Serum concentrations of the active 5-hydroxymethyl metabolite of tolterodine, 5-HM, were not quantifiable in PMs. The mean MR of debrisoquine (95% confidence interval) during tolterodine treatment was 0.50 (0.25-0.99) and did not differ statistically from the values before [0.49 (0.20-1.2)] and after tolterodine administration [0.46 (0.14-1.6)] in EMs. The mean MR of omeprazole hydroxylation and sulphoxidation or caffeine metabolism were not changed in the presence of tolterodine in either EMs or PMs. Debrisoquine and caffeine had no significant effect on the AUC(1,3 h) of either tolterodine or 5-HM, but during omeprazole administration small decreases (13-19%) in these parameters were seen. CONCLUSIONS Tolterodine, administered at twice the expected therapeutic dosage, did not change the disposition of the probe drugs debrisoquine, omeprazole and caffeine and thus had no detectable effect on the activities of CYPs 2D6, 2C19, 3A4 and 1A2. Alteration of the metabolism of substrates of these enzymes by tolterodine is unlikely to occur.
Collapse
Affiliation(s)
- N Brynne
- Department of Clinical Pharmacology, Pharmacia & Upjohn AB, Stockholm, Sweden
| | | | | | | |
Collapse
|
21
|
Wormhoudt LW, Commandeur JN, Vermeulen NP. Genetic polymorphisms of human N-acetyltransferase, cytochrome P450, glutathione-S-transferase, and epoxide hydrolase enzymes: relevance to xenobiotic metabolism and toxicity. Crit Rev Toxicol 1999; 29:59-124. [PMID: 10066160 DOI: 10.1080/10408449991349186] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this review, an overview is presented of the current knowledge of genetic polymorphisms of four of the most important enzyme families involved in the metabolism of xenobiotics, that is, the N-acetyltransferase (NAT), cytochrome P450 (P450), glutathione-S-transferase (GST), and microsomal epoxide hydrolase (mEH) enzymes. The emphasis is on two main topics, the molecular genetics of the polymorphisms and the consequences for xenobiotic metabolism and toxicity. Studies are described in which wild-type and mutant alleles of biotransformation enzymes have been expressed in heterologous systems to study the molecular genetics and the metabolism and pharmacological or toxicological effects of xenobiotics. Furthermore, studies are described that have investigated the effects of genetic polymorphisms of biotransformation enzymes on the metabolism of drugs in humans and on the metabolism of genotoxic compounds in vivo as well. The effects of the polymorphisms are highly dependent on the enzyme systems involved and the compounds being metabolized. Several polymorphisms are described that also clearly influence the metabolism and effects of drugs and toxic compounds, in vivo in humans. Future perspectives in studies on genetic polymorphisms of biotransformation enzymes are also discussed. It is concluded that genetic polymorphisms of biotransformation enzymes are in a number of cases a major factor involved in the interindividual variability in xenobiotic metabolism and toxicity. This may lead to interindividual variability in efficacy of drugs and disease susceptibility.
Collapse
Affiliation(s)
- L W Wormhoudt
- Leiden Amsterdam Center for Drug Research, Vrije Universiteit, Department of Pharmacochemistry, The Netherlands
| | | | | |
Collapse
|
22
|
Yue QY, Zhong ZH, Tybring G, Dalén P, Dahl ML, Bertilsson L, Sjöqvist F. Pharmacokinetics of nortriptyline and its 10-hydroxy metabolite in Chinese subjects of different CYP2D6 genotypes. Clin Pharmacol Ther 1998; 64:384-90. [PMID: 9797795 DOI: 10.1016/s0009-9236(98)90069-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES To study the impact of the CYP2D6*10 allele on the disposition of nortriptyline in Chinese subjects. METHODS A single dose of 25 mg nortriptyline was given orally to 15 healthy Chinese volunteers who were classified as extensive metabolizers after phenotyping with debrisoquin (INN, debrisoquine) and who were genotyped by allele-specific polymerase chain reaction. Five subjects were homozygous for CYP2D6*1, 5 subjects were homozygous for CYP2D6*10, and 5 subjects were heterozygous for these 2 alleles. Plasma concentrations of nortriptyline and its main metabolite 10-hydroxynortriptyline were measured by liquid chromatography-mass spectrometry, and the pharmacokinetics were studied during 168 hours after the dose. RESULTS Subjects who were homozygous for CYP2D6*10 had significantly higher total areas under the plasma concentration-time curve (AUC), lower apparent oral clearances, and longer mean plasma half-life of nortriptyline than subjects in the CYP2D6*1/*1 and the heterozygous groups. For 10-hydroxynortriptyline, the AUC was lower and the plasma half-life was longer in subjects who were homozygous for CYP2D6*10 than in subjects in the other 2 groups. CONCLUSION The CYP2D6*10 allele in Chinese subjects was associated with significantly higher plasma levels of nortriptyline compared with the CYP2D6*1 allele because of an impaired metabolism of nortriptyline to 10-hydroxynortriptyline, particularly in the subjects with the CYP2D6*10/*10 genotype. The results suggest that genotyping of CYP2D6 may be a useful tool in predicting the pharmacokinetics of nortriptyline.
Collapse
Affiliation(s)
- Q Y Yue
- Department of Medical Laboratory Sciences and Technology, Karolinska Institute, Huddinge University Hospital, Sweden
| | | | | | | | | | | | | |
Collapse
|
23
|
Dalén P, Dahl ML, Bernal Ruiz ML, Nordin J, Bertilsson L. 10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther 1998; 63:444-52. [PMID: 9585799 DOI: 10.1016/s0009-9236(98)90040-6] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the disposition and effects of nortriptyline and its major metabolite 10-hydroxy-nortriptyline line in panels of white subjects with different CYP2D6 genotypes, including those with duplicated and multiduplicated CYP2D6*2 genes and to evaluate the contribution of the number of functional C gamma P2D6 alleles to the metabolism of nortriptyline, used here as a model drug for CYP2D6 substrates. METHODS Oral single doses of 25 to 50 mg nortriptyline were given to five poor metabolizers of debrisoquin (INN; debrisoquine) with no functional CYP2D6 gene, five extensive metabolizers with one functional CY2D6 gene, five extensive metabolizers with two functional CYP2D6 genes, five ultrarapid metabolizers with duplicated CYP2D6*2 genes, and one ultrarapid metabolizer with 13 copies of the CYP2D6*2 gene. Plasma kinetics of nortriptyline and 10-hydroxynortriptyline were analyzed. Anticholinergic effects (inhibition of salivation and accommodation disturbances), sedation, blood pressure, and effect on supine and erect pulse rate were measured. RESULTS There was a clear relation between the C gamma P2D6 genotype and the plasma kinetics of nortriptyline and 10-hydroxynortriptyline. The proportion between the apparent oral clearances of nortriptyline in the groups with 0, 1, 2, 3, and 13 functional genes was 1:1:4:5:17. The proportions between AUC(nortriptyline) to AUC(10-hydroxynortriptyline) ratios in the groups with 0, 1, 2, 3, and 13 functional genes were 36:25:10:4:1. Oral plasma clearance of nortriptyline and AUC(nortriptyline) to AUC(10-hydroxynortriptyline) ratio both correlated significantly with the debrisoquin metabolic ratio (rS = -0.89, p = 0.0001; rS = 0.92, p = 0.0001). Although ultrarapid metabolizer subjects were given double the nortriptyline dose (50 mg), inhibition of salivation was not more pronounced compared with the other genotype groups given 25 mg nortriptyline. CONCLUSION The results of this study show the quantitative importance of the CYP2D6 genotype, especially the presence of multiple functional CYP2D6 genes for the pharmacokinetics of nortriptyline and 10-hydroxynortriptyline. Genotyping of subjects with multiple copies of functional genes may be of great value for differentiating ultrarapid metabolizers from patients who do not comply with the prescription and for assuring adequate drug choice and dosage for these patients.
Collapse
Affiliation(s)
- P Dalén
- Department of Medical Laboratory Sciences and Technology, Karolinska Institute, Huddinge University Hospital, Sweden.
| | | | | | | | | |
Collapse
|
24
|
Venkatakrishnan K, Greenblatt DJ, von Moltke LL, Schmider J, Harmatz JS, Shader RI. Five distinct human cytochromes mediate amitriptyline N-demethylation in vitro: dominance of CYP 2C19 and 3A4. J Clin Pharmacol 1998; 38:112-21. [PMID: 9549641 DOI: 10.1002/j.1552-4604.1998.tb04399.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The human cytochromes P450 (CYPs) mediating amitriptyline N-demethylation have been identified using a combination of enzyme kinetic and chemical inhibition studies. Amitriptyline was N-demethylated to nortriptyline by microsomes from cDNA transfected human lymphoblastoid cells expressing human CYPs 1A2, 2C9, 2C19, 2D6, and 3A4. CYP 2E1 showed no detectable activity. While CYP 2C19 and CYP 2D6 showed high affinity, CYP 3A4 showed low affinity; CYP 2C9 and 1A2 showed intermediate affinities. Based on these kinetic parameters and estimated relative abundance of the different CYPs in human liver, CYP 2C19 was identified as the major amitriptyline N-demethylase at low (therapeutically relevant) amitriptyline concentrations, whereas CYP 3A4 may be more important at higher amitriptyline concentrations. Chemical inhibition studies with ketoconazole and omeprazole indicate that CYP 3A4 is the major amitriptyline N-demethylase at 100 mumol/L amitriptyline, while CYP 2C19 is equally important at a substrate concentration of 5 mumol/L. The CYP 1A2 inhibitor alpha-naphthoflavone and the CYP 2C9 inhibitor sulfaphenazole produced much less inhibition of amitriptyline N-demethylation at both substrate concentrations. Quinidine produced no detectable inhibition. The kinetics of amitriptyline N-demethylation by human liver microsomes were consistent with a two enzyme model, with the high affinity component exhibiting Michaelis Menten kinetics and the low affinity component exhibiting Hill enzyme kinetics. No difference was apparent in the kinetics of amitriptyline N-demethylation in two liver samples with low levels of CYP 2C19 activity compared with two other samples with relatively normal 2C19 activity. This may reflect the importance of higher substrate concentration values in estimation of kinetic parameters in vitro.
Collapse
Affiliation(s)
- K Venkatakrishnan
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Recognition of the role of active metabolites in mediating therapeutic and/or adverse effects of many antidepressants is an important part of understanding the mechanisms of action of these medications. While virtually all antidepressants except lithium undergo extensive hepatic metabolism, the profile of activity of the resulting breakdown products varies considerably.The metabolites of some antidepressants share the primary biochemical actions of their parent compounds and appear to contribute to the therapeutic efficacy of those medications. Examples of this are the tricyclic antidepressant (TCA) nor-triptyline, the selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor (SSRI) fluoxetine and the serotonin-noradrenaline (norepinephrine) reuptake inhibitor venlafaxine. Less commonly, the activity of the primary metabolite may differ from that of the parent drug. An example is clomipramine. This drug is a potent serotonin reuptake blocking TCA, but its demethyl-metabolites are noradrenaline reuptake inhibitors. On the other hand, a number of effective anti-depressants, including most of the SSRIs other than fluoxetine, lack active metabolites.On the negative side, antidepressant metabolites may add to the adverse effect burden presented by their drugs of origin. At sufficiently high doses, the amphetamines resulting from the metabolism of some monoamine oxidase inhibitors, e.g. selegiline (deprenyl), may directly produce toxicity from the pharmacodynamic interaction with the parent antidepressant. While hydroxy-nortriptyline produces lesser anticholinergic effects than its parent compound, this metabolite may block the therapeutic action of nortriptyline when present in high concentrations. Excessive plasma concentrations of the major metabolite of amfebutamone (bupropion) have been associated with nonresponse and clinical worsening in some patients.Amfebutamone also illustrates the importance of pharmacokinetic factors in determining the magnitude of the influence of metabolites on antidepressant action. Active metabolites that have long elimination half-lives may predominate over the parent compound in plasma and CSF, exerting considerable clinical impact. With several of the newer drugs, notably amfebutamone, venlafaxine and nefazodone, the presence of active metabolites with half-lives approaching 1 day suggests that once-daily administration may be sufficient.The formation of most antidepressant metabolites is under strong genetic control and the metabolites themselves often exert effects on hepatic enzyme systems. This can lead to the possibility of drug-drug interactions. A key example is norfluoxetine, which is associated with potent inhibition of the cytochrome P450 isozyme 2D6 (and, consequently, reduced metabolism of drugs such as TCAs). This effect lasts for weeks even after fluoxetine discontinuation, due to the fact that norfluoxetine has a half-life of up to 2 weeks.The clearance of most antidepressant metabolites is ultimately dependent on elimination by the kidneys. Therefore, these substances tend to accumulate in states of reduced renal function, including normal aging. The relative increase in TCA hydroxy-metabolite concentrations in the elderly may contribute to the cardiovascular and other toxicities of these antidepressants in this vulnerable patient population.Attention to the existence and implications of active metabolites from the earliest stages of antidepressant drug development may help optimise the benefit: risk ratio of this valuable class of psychotropic medications.
Collapse
Affiliation(s)
- M V Rudorfer
- Clinical Treatment Research Branch, Division of Clinical and Treatment Research, National Institute of Mental Health, 5600 Fishers Lane, Room 18-105, Rockville, Maryland, MD 20857, USA
| | - W Z Potter
- Section on Clinical Pharmacology, Experimental Therapeutics Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Abstract
Plasma concentrations and response to antidepressants vary considerably between patients treated with similar dosages. Most antidepressants and also antipsychotics are metabolized by the polymorphic debrisoquine/sparteine hydroxylase, i.e., cytochrome P450 (CYP)2D6. About 7% of Caucasians are poor metabolizers (PM), and such patients might develop adverse drug reactions when treated with recommended doses of, for example, tricyclic antidepressants. In contrast, ultrarapid metabolizers with multiple CYP2D6 genes might require high doses of such drugs for optimal therapy. The mean CYP2D6 activity is lower in Oriental than in Caucasian populations, because of a frequent mutation causing decreased enzyme activity. Drugs metabolized by the same enzyme may interact with each other. For example, the potent CYP2D6 inhibitor fluoxetine increases the plasma concentrations of tricyclic antidepressants. Another enzyme catalyzing the metabolism of antidepressants is the polymorphic S-mephenytoin hydroxylase. CYP2C19, which catalyses the metabolism of, for example, citalopram, clomipramine and moclobemide. Various probe drugs may be used for phenotyping CYP2D6 (debrisoquine, dextromethorphan and sparteine) and CYP2C19 (mephenytoin and omeprazole). Allele-specific polymerase chain reaction (PCR)-based methods are now available for genotyping using leukocyte DNA. A major advantage of genotyping compared with phenotyping is that the former may be performed in blood samples from patients irrespective of treatment.
Collapse
Affiliation(s)
- L Bertilsson
- Department of Medical Laboratory Sciences and Technology, Karolinska Institute, Huddinge University Hospital, Sweden
| | | | | |
Collapse
|
27
|
Spina E, Gitto C, Avenoso A, Campo GM, Caputi AP, Perucca E. Relationship between plasma desipramine levels, CYP2D6 phenotype and clinical response to desipramine: a prospective study. Eur J Clin Pharmacol 1997; 51:395-8. [PMID: 9049581 DOI: 10.1007/s002280050220] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The clinical relevance of the CYP2D6 oxidation polymorphism in the treatment of depression with desipramine (DMI) was studied prospectively in depressed outpatients. METHODS After CYP2D6 phenotype determination with dextromethorphan, 31 patients were treated with oral DMI at a dosage of 100 mg per day for 3 weeks. At the end of the 3rd week of treatment, severity of depressive symptoms was assessed by the Hamilton Depression Rating Scale and steady-state plasma concentrations of DMI and its metabolite 2-hydroxydesipramine (2-OH-DMI) were measured by high-performance liquid chromatography (HPLC). RESULTS Plasma DMI levels were significantly correlated with dextromethorphan metabolic ratio. The two patients with the poor metabolizer phenotype showed the highest plasma concentrations of DMI and complained of severe adverse effects, requiring dosage reduction. No significant correlation was found between plasma levels of either DMI or DMI plus 2-OH-DMI and antidepressant effect. CONCLUSION These findings indicate that the dextromethorphan metabolic ratio has a great impact on steady-state plasma levels of DMI in depressed patients and may identify subjects at risk for severe concentration-dependent adverse effects. On the other hand, this index of CYP2D6 activity does not seem to predict the degree of clinical amelioration.
Collapse
Affiliation(s)
- E Spina
- Institute of Pharmacology, University of Messina, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Dahl ML, Bertilsson L, Nordin C. Steady-state plasma levels of nortriptyline and its 10-hydroxy metabolite: relationship to the CYP2D6 genotype. Psychopharmacology (Berl) 1996; 123:315-9. [PMID: 8867869 DOI: 10.1007/bf02246640] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The relationship between the CYP2D6 genotype and the steady state plasma levels of nortriptyline (NT), its main active metabolite 10-hydroxynortriptyline (10-OH-NT) and the NT/10-OH-NT ratio were studied in 21 Caucasian depressed patients treated with 100-150 mg NT daily. The patients had participated in a previously published study investigating the role of NT and 10-OH-NT for the therapeutic effect of NT, and the plasma level data were from that study. In the present follow-up study, the patients were genotyped with respect to the polymorphic CYP2D6 by allele-specific PCR amplification and EcoRI RFLP. One poor metabolizer (PM) was identified and she had the highest plasma concentration of NT. Among the 20 extensive metabolizers (EM), the genotype (homozygous versus heterozygous EM) alone was not found to explain the variance in dose-corrected NT concentrations, but contributed significantly when gender was also taken into account. Together, these factors accounted for 59% of the variability in NT levels. Female patients had higher plasma levels of NT than male patients. 10-OH-NT levels were influenced by genotype, and NT/10-OH-NT ratio by genotype and gender. The present follow-up study confirms a relationship between the CYP2D6 genotype and the plasma levels of NT and its active metabolite. Identification of PM by genotyping should be of value for the prediction of the plasma levels and, consequently, the lower than average dose of NT required for optimal therapy. Also among EM, the genotype contributes to the variability in NT and 10-OH-NT levels but alone is of limited practical value for the prediction of optimal dosage.
Collapse
Affiliation(s)
- M L Dahl
- Department of Medical Laboratory Sciences and Technology, Karolinska Institutet, Huddinge University Hospital, Sweden
| | | | | |
Collapse
|
29
|
Shimoda K, Noguchi T, Morita S, Ozeki Y, Shibasaki M, Someya T, Takahashi S. Interindividual variations of desmethylation and hydroxylation of amitriptyline in a Japanese psychiatric population. J Clin Psychopharmacol 1995; 15:175-81. [PMID: 7635994 DOI: 10.1097/00004714-199506000-00005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We measured the concentrations in plasma of amitriptyline and its metabolites, nortriptyline and geometric isomers of 10-hydroxynortriptyline and 10-hydroxyamitriptyline, in 73 Japanese psychiatric patients receiving amitriptyline hydrochloride (Tryptanol; Banyu Pharmaceutical Co. Ltd., Tokyo, Japan) by high-performance liquid chromatography. Although there were large interindividual variations of total drug concentrations and concentrations of parent or intermediate metabolic compounds in plasma, significant positive correlations were observed between these drug concentrations and daily doses of amitriptyline hydrochloride (milligrams per kilogram of body weight). The metabolic ratios for both hydroxylation and desmethylation varied substantially with approximately 8- to 19-fold interindividual variations. Frequency distribution histograms and probit analyses of these parameters identified neither definite poor hydroxylators nor poor desmethylators of amitriptyline.
Collapse
Affiliation(s)
- K Shimoda
- Department of Psychiatry, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Kroemer HK, Eichelbaum M. "It's the genes, stupid". Molecular bases and clinical consequences of genetic cytochrome P450 2D6 polymorphism. Life Sci 1995; 56:2285-98. [PMID: 7791516 DOI: 10.1016/0024-3205(95)00223-s] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this review we highlight the information available on the genetic polymorphism of cytochrome P4502D6 expression in man. An absent function of this enzyme is observed in 7-10 percent of the Caucasian population which are referred to as Poor metabolizers as opposed to the remainder of the population (Extensive Metabolizers). More than 30 widely used drugs have been identified as substrates for CYP2D6. Disposition and action of these compounds depend on the individual phenotype. Both the molecular bases of the variable enzyme activity and the consequences for drug therapy are outlined. While mutations on the DNA level have been investigated in great detail larger scale clinical trials are lacking and information on therapeutic consequences of CYP2D6 mediated polymorphic drug oxidation is restricted to case reports. Besides these implications for drug metabolism several lines of evidence indicate that CYP2D6 could be involved in biotransformation of endogenous compounds.
Collapse
Affiliation(s)
- H K Kroemer
- Dr. Margarete Fischer Bosch Institut für Klinische Pharmakologie, Stuttgart, Germany
| | | |
Collapse
|
31
|
Nordin C, Bertilsson L. Active hydroxymetabolites of antidepressants. Emphasis on E-10-hydroxy-nortriptyline. Clin Pharmacokinet 1995; 28:26-40. [PMID: 7712660 DOI: 10.2165/00003088-199528010-00004] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hydroxymetabolites of the antidepressants nortriptyline and desipramine, like the parent drugs, inhibit neuronal uptake of noradrenaline (norepinephrine). In both plasma and cerebrospinal fluid (CSF), the concentrations of the 10-hydroxymetabolites of nortriptyline (10-OH-NT) are usually higher than those of the parent drugs, but there is a pronounced interindividual variation in the plasma concentrations. This shows that during treatment with nortriptyline, hydroxymetabolites exert, at least in some patients, major effects on brain noradrenaline neurons. Hydroxymetabolites of antidepressants are formed by the polymorphic cytochrome P450 enzyme CYP2D6. Nortriptyline is hydroxylated by this enzyme in a highly stereospecific way to the (-)-enantiomer of E-10-OH-NT. Among Caucasians, 7% are poor metabolisers of the CYP2D6 probe drug debrisoquine. These patients will form very little hydroxymetabolite. The affinity of E-10-OH-NT for muscarinic acetylcholine receptors in vitro was only one-eighteenth of the affinity of nortriptyline for these receptors. In healthy individuals, nortriptyline decreased saliva flow to a significantly greater extent than either E-10-OH-NT or placebo. In an ultrarapid hydroxylator of nortriptyline treated with very high doses of nortriptyline, the plasma concentration of unconjugated 10-OH-NT was very high without any sign of anticholinergic adverse effects. These results show that hydroxymetabolites of nortriptyline have much less anticholinergic effect than the parent drug. When racemic E-10-OH-NT per se was given to healthy individuals, the plasma concentration of the (-)-enantiomer was 5-fold higher than that of (+)-E-10-OH-NT. The 2 enantiomers were eliminated in parallel with an elimination half-life of 8 to 10 hours. A combined in vitro and in vivo investigation showed that a mean of 64% of (+)-E-10-OH-NT was glucuronidated in the liver and subsequently eliminated in urine. Of the administered (-)-enantiomer, a mean of 36% was eliminated as glucuronide formed in the intestine and 35% was actively secreted as unchanged form in urine. Plasma protein binding, determined by ultrafiltration, of the (+)- and (-)-enantiomers of E-10-OH-NT was 54 and 69%, respectively, which is less than that of nortriptyline (92%). The concentration of E-10-OH-NT in CSF was 50% of the concentration of unbound in plasma. There seems to be a stereoselective active transport of E-10-OH-NT from the CSF to blood. We administered racemic E-10-OH-NT to 5 patients during a major depressive episode.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C Nordin
- Department of Clinical Neurosciences and Family Medicine, Karolinska Institute, Huddinge University Hospital, Sweden
| | | |
Collapse
|
32
|
Spina E, Caputi AP. Pharmacogenetic aspects in the metabolism of psychotropic drugs: pharmacokinetic and clinical implications. Pharmacol Res 1994; 29:121-37. [PMID: 8058586 DOI: 10.1016/1043-6618(94)80036-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- E Spina
- Institute of Pharmacology, University of Messina, Italy
| | | |
Collapse
|
33
|
Furlanut M, Benetello P, Spina E. Pharmacokinetic optimisation of tricyclic antidepressant therapy. Clin Pharmacokinet 1993; 24:301-18. [PMID: 8491058 DOI: 10.2165/00003088-199324040-00004] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pharmacokinetics has greatly contributed to the elucidation of the variability in clinical response to antidepressants in terms of differences in plasma concentrations due to genetic constitution, age, associated diseases and drug interactions. Despite no general agreement, therapeutic and toxic concentrations have been suggested for some tricyclic antidepressants (TCAs) [amitriptyline, nortriptyline, imipramine, desipramine]. Predictive techniques may be implemented on the basis of which starting TCA dosages may be selected to reach more rapidly those concentrations at which efficacy is more probable. Therapeutic drug monitoring may thereafter assist the clinician in refining the individualisation of the dosage regimen.
Collapse
Affiliation(s)
- M Furlanut
- Chair of Special Pharmacology, Faculty of Medicine, University of Udine, Italy
| | | | | |
Collapse
|
34
|
Spina E, Martines C, Caputi AP, Cobaleda J, Piñas B, Carrillo JA, Benitez J. Debrisoquine oxidation phenotype during neuroleptic monotherapy. Eur J Clin Pharmacol 1991; 41:467-70. [PMID: 1684751 DOI: 10.1007/bf00626371] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The debrisoquine oxidation phenotype was determined in 91 schizophrenic patients on monotherapy with different neuroleptics and in 67 untreated healthy volunteers. The prevalence of poor metabolizers of debrisoquine was significantly higher in the patients (46.2%) than in the healthy subjects (7.5%). Treatment with phenothiazine antipsychotics (chlorpromazine, levomepromazine and thioridazine) was associated with a higher debrisoquine metabolic ratio than treatment with haloperidol. On the other hand, treatment with clothiapine appeared not to interfere with debrisoquine oxidation. Oral administration of 50 mg thioridazine daily to 8 healthy subjects resulted in a marked increase in the debrisoquine metabolic ratio and 4 of them were transformed into phenotypically poor metabolizers. The results confirm the fact that phenothiazines, and to a lesser extent haloperidol, inhibit the oxidative metabolism of debrisoquine. They show also that clothiapine administration does not disturb the debrisoquine metabolic ratio.
Collapse
Affiliation(s)
- E Spina
- Institute of Pharmacology, School of Medicine, University of Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Kallio J, Huupponen R, Seppälä M, Säkö E, Iisalo E. The effects of beta-adrenoceptor antagonists and levomepromazine on the metabolic ratio of debrisoquine. Br J Clin Pharmacol 1990; 30:638-43. [PMID: 1981321 PMCID: PMC1368259 DOI: 10.1111/j.1365-2125.1990.tb03827.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The in vivo inhibitory effect of five beta-adrenoceptor antagonists and levomepromazine on debrisoquine metabolism was assessed in 37 subjects. The debrisoquine phenotyping test was performed before and after 7 days' treatment with oxprenolol (40 mg three times daily), propranolol (20 mg three times daily), timolol (10 mg twice daily), pindolol (5 mg twice daily), metoprolol (50 mg twice daily) or levomepromazine (10 mg daily), each of which was given to six-seven subjects. No clear change in the urinary metabolic ratio of debrisoquine/4-OH-debrisoquine (MR) was seen with any of the single beta-adrenoceptor antagonist treatments, but the MR value increased significantly when all beta-adrenoceptor blocker treatments were considered together. Debrisoquine metabolism was clearly impaired after levomepromazine 10 mg daily for 7 days; the mean MR increased from 1.24 +/- 1.6 to 4.70 +/- 5.23 (P = 0.018) and the excretion of 4-hydroxydebrisoquine decreased from 0.92 +/- 0.46 mg to 0.31 +/- 0.19 mg (P = 0.043). Thus, levomepromazine changes MRs towards those characteristic of phenotypically poor metabolizers, but beta-adrenoceptor antagonists at the doses examined have only a marginal effect.
Collapse
Affiliation(s)
- J Kallio
- Department of Clinical Pharmacology, University of Turku, Finland
| | | | | | | | | |
Collapse
|
36
|
Abstract
The pharmacokinetics of imipramine and desipramine have been extensively investigated with recent studies designed to understand sources of intersubject variability and to study discrete clinical populations rather than healthy volunteers. Sources of intersubject variability in pharmacokinetics are both genetic (oxidative phenotype) and environmental. Oxidative phenotype has an important impact on first-pass metabolism. In individuals with poor metabolism, systemic availability for imipramine is increased. Intrinsic clearance of desipramine is reduced 4-fold in individuals with poor metabolism. Recent pharmacokinetic studies in diverse patient populations such as the depressed elderly, children and alcoholics have revealed decreased clearance of imipramine in the elderly and increased clearance of both imipramine and desipramine in chronic alcoholics. In at least a third of the population, nonlinear pharmacokinetics of desipramine may be observed at steady-state plasma concentrations above 150 micrograms/L. These nonlinear changes in desipramine pharmacokinetics are not associated with age or sex, but are associated with higher desipramine 2-hydroxydesipramine concentration ratios. Hydroxylated metabolites of imipramine and desipramine may possess both antidepressants and cardiotoxic activity but their formation is rate limited and plasma concentrations tend to follow the parent compound with little accumulation. The potent cardiovascular effects of the hydroxymetabolites may be particularly relevant for the elderly and in acute overdose.
Collapse
Affiliation(s)
- F R Sallee
- Department of Psychiatry, Medical University of South Carolina, Charleston
| | | |
Collapse
|
37
|
Eichelbaum M, Gross AS. The genetic polymorphism of debrisoquine/sparteine metabolism--clinical aspects. Pharmacol Ther 1990; 46:377-94. [PMID: 2188269 DOI: 10.1016/0163-7258(90)90025-w] [Citation(s) in RCA: 243] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It has been established that the metabolism of more than twenty drugs, including antiarrhythmics, beta-adrenoceptor antagonists, antidepressants, opiates and neuroleptics is catalyzed by cytochrome P-450dbl. The activity of this P-450 isozyme is under genetic rather than environmental control. This article discusses the therapeutic implications for each of the classes of drugs affected by this genetic polymorphism in drug metabolism. Not only are the problems associated with poor metabolizers who are unable to metabolize the compounds discussed, but it is also emphasized that it is difficult to attain therapeutic plasma concentrations for some drugs in high activity extensive metabolizers.
Collapse
Affiliation(s)
- M Eichelbaum
- Dr Margarete Fischer-Bosch-Institut für Klinische Pharmakologie, Stuttgart, F.R.G
| | | |
Collapse
|
38
|
Brøsen K, Gram LF. Clinical significance of the sparteine/debrisoquine oxidation polymorphism. Eur J Clin Pharmacol 1989; 36:537-47. [PMID: 2570698 DOI: 10.1007/bf00637732] [Citation(s) in RCA: 226] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The sparteine/debrisoquine oxidation polymorphism results from differences in the activity of one isozyme of cytochrome P450, the P450db1 (P450 IID1). The oxidation of more than 20 clinically useful drugs has now been shown to be under similar genetic control to that of sparteine/debrisoquine. The clinical significance of this polymorphism may be defined by the value of phenotyping patients before treatment. The clinical significance of such polymorphic elimination of a particular drug can be analyzed in three steps: first, does the kinetics of active principle of a drug depend significantly on P450db1?; second, is the resulting pharmacokinetic variability of any clinical importance?; and third, can the variation in response be assessed by direct clinical or paraclinical measurements? It is concluded from such an analysis that, in general, the sparteine/debrisoquine oxidation polymorphism is of significance in patient management only for those drugs for which plasma concentration measurements are considered useful and for which the elimination of the drug and/or its active metabolite is mainly determined by P450db1. At present, this applies to tricyclic antidepressants and to certain neuroleptics (e.g. perphenazine and thioridazine) and antiarrhythmics (e.g. propafenone and flecainide). Phenotyping should be introduced in to clinical routine under strictly controlled conditions to afford a better understanding of its potentials and limitations. The increasing knowledge of specific substrates and inhibitors of P450db1 allows precise predictions of drug-drug interactions. At present, the strong inhibitory effect of neuroleptics on the metabolism of tricyclic antidepressants represents the best clinically documented and most relevant example of such an interaction.
Collapse
Affiliation(s)
- K Brøsen
- Department of Clinical Pharmacology, Odense University, Denmark
| | | |
Collapse
|
39
|
Derenne F, Joanne C, Vandel S, Bertschy G, Volmat R, Bechtel P. Debrisoquine oxidative phenotyping and psychiatric drug treatment. Eur J Clin Pharmacol 1989; 36:53-8. [PMID: 2563689 DOI: 10.1007/bf00561023] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The debrisoquine/sparteine phenotype was determined in 51 patients with depression, who were subdivided into 3 groups in terms of their drug treatment. Log (MR) for each group was compared. Patients treated with benzodiazepines had the same distribution of log (MR) as the healthy population, but the distribution was shifted towards higher values in patients treated with neuroleptics and antidepressants. It appears that the phenotypic expression of debrisoquine oxidation may be modified by drugs whose metabolism follows the same route as debrisoquine. The debrisoquine test must be carefully interpreted in patients receiving several drugs in the same time.
Collapse
Affiliation(s)
- F Derenne
- Département de Pharmacologie Clinique, Centre Hospitalier Universitaire, Besancon, France
| | | | | | | | | | | |
Collapse
|
40
|
Benítez J, Piñas B, García MA, Martínez C, Llerena A, Cobaleda J. Debrisoquine oxidation phenotype in psychiatric patients. PSYCHOPHARMACOLOGY SERIES 1989; 7:206-10. [PMID: 2594729 DOI: 10.1007/978-3-642-74430-3_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- J Benítez
- Department of Pharmacology and Psychiatry, Medical School, University of Extremadura, Badajoz, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Baumann P, Jonzier-Perey M. GC and GC-MS procedures for simultaneous phenotyping with dextromethorphan and mephenytoin. Clin Chim Acta 1988; 171:211-22. [PMID: 3370821 DOI: 10.1016/0009-8981(88)90146-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A genetic deficiency in the metabolism of dextromethorphan and mephenytoin may be revealed by the excretion pattern of dextromethorphan and its metabolite dextrorphan, and mephenytoin, 4-OH-mephenytoin, respectively, after a single dose of the test drugs. Existing methods were modified for determining the compounds in 0.1-0.5 ml urine samples. No prior derivatization of the compounds was necessary before their gaschromatographic or mass-spectrometric analysis by using crosslinked 5% phenylmethyl silicone fused silica columns. Seven healthy volunteers were phenotyped at weekly intervals with either 25 mg dextromethorphan or 100 mg mephenytoin, or both drugs. One subject was a poor metabolizer of mephenytoin, while all subjects were extensive metabolizers of dextromethorphan. Neither a pharmacokinetic nor an analytical interference was observed when the results of the single test were compared with those of the combined test. The results of the mephenytoin test were also tentatively given in form of metabolic ratios. The GC-MS assay was designed for clinical studies so that patients treated with other drugs could be phenotyped.
Collapse
Affiliation(s)
- P Baumann
- Clinique psychiatrique universitaire de Lausanne, Hôpital de Cery, Prilly, Switzerland
| | | |
Collapse
|
42
|
Abstract
Five unsolved problems in the pharmacotherapy of depression are discussed: (a) it is not possible to differentiate endogenous and nonendogenous depression; (b) a selective efficacy of serotonin and noradrenaline reuptake inhibitors cannot be demonstrated; (c) the relationship between plasma levels and antidepressant effect is still unclear: plasma levels are influenced by pharmacogenetic factors, age, route of application, and concomitant treatment with other drugs; (d) evidence is growing for the development of tolerance towards therapeutic effects of antidepressants; (e) no pretreatment variable allows prediction of treatment response: the best predictor is the initial response to treatment.
Collapse
Affiliation(s)
- B Woggon
- Psychiatric University Hospital, Research Department, Zürich, Switzerland
| |
Collapse
|
43
|
Brøsen K, Gram LF, Haghfelt T, Bertilsson L. Extensive metabolizers of debrisoquine become poor metabolizers during quinidine treatment. PHARMACOLOGY & TOXICOLOGY 1987; 60:312-4. [PMID: 3588528 DOI: 10.1111/j.1600-0773.1987.tb01758.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Seven male patients (age 55-75 years) were debrisoquine-tested immediately before and after one week of treatment with quinidine sulphate (200 mg X 3-4 day-1). Before quinidine all patients were classified as extensive metabolizers (metabolic ratio 0.1-3.6). During quinidine the formation of 4-OH-debrisoquine was practically abolished and the phenotype of the patients was altered to PM (metabolic ratio 15-51). This is probably due to an inhibition of debrisoquine hydroxylation by quinidine. Inhibition of 4-OH-debrisoquine formation was associated with a disproportionate increase in debrisoquine excretion.
Collapse
|
44
|
Genetic Variation in the Hepatic Cytochrome P-450 System. Hum Genet 1987. [DOI: 10.1007/978-3-642-71635-5_67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
45
|
Abstract
Studies in rodents indicate that the cytochrome P-450 system consists of a superfamily of heme proteins, produced by clusters of structural genes on different chromosomes. Equivalent P-450s of different species show more homologies than members of different P-450 families within a species. The Ah receptor serves the induction of members of one of the cytochrome families. The human structural gene for the methylcholanthrene-inducible P1-450 is located on Chromosome 15. This gene has been completely sequenced. The human Ah receptor is also measurable. New methods to measure inducibility in man involve new lymphocyte bioassays and mRNA determinations, while in vivo biotransformation studies of caffeine allow estimates of the state of induction. Structural genes for phenobarbital-inducible cytochromes have been localized to Chromosome 19. The deficiency of biotransformation of debrisoquine and sparteine continues to be explored intensely. Linkage studies indicate the gene for the variable cytochrome P-450 to be located on Chromosome 22. The deficiency is more likely due to structural variation than absence of the cytochrome. Inhibiting drugs can mimic the genetic defect. Many pharmacological and toxicological consequences of the deficiency have been defined. The main characteristics of the genetic deficiencies affecting the metabolisms of mephenytoin, phenytoin, tolbutamide, nifedipine and of methyl cysteine were outlined briefly.
Collapse
|
46
|
Brinn R, Brøsen K, Gram LF, Haghfelt T, Otton SV. Sparteine oxidation is practically abolished in quinidine-treated patients. Br J Clin Pharmacol 1986; 22:194-7. [PMID: 3756067 PMCID: PMC1401116 DOI: 10.1111/j.1365-2125.1986.tb05250.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In eight patients a sparteine-test was carried out immediately before and after 1 week of treatment with quinidine 600-800 mg day-1. Before treatment one patient was classified as a poor metaboliser (metabolic ratio: greater than or equal to 20), and seven patients as extensive metabolisers. During quinidine treatment, the formation of sparteine metabolites (2- and 5-dehydrosparteine) was practically abolished. Patients initially classified as extensive metabolisers thus exhibited the phenotype of poor metabolisers during quinidine treatment.
Collapse
|
47
|
Brøsen K, Klysner R, Gram LF, Otton SV, Bech P, Bertilsson L. Steady-state concentrations of imipramine and its metabolites in relation to the sparteine/debrisoquine polymorphism. Eur J Clin Pharmacol 1986; 30:679-84. [PMID: 3533565 DOI: 10.1007/bf00608215] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Thirty-five imipramine treated patients were phenotyped with regard to polymorphic drug oxidation using sparteine and/or debrisoquine. During treatment with 100 mg imipramine per day the mean steady-state concentrations and ratios in 28 extensive metabolizers were: imipramine 169 nmol/l; desipramine 212 nmol/l; 2-OH-imipramine/imipramine 0.25; 2-OH-desipramine/desipramine 0.57. The corresponding values in two poor metabolizers were: imipramine 455 and 302 nmol/l; desipramine 1148 and 1721 nmol/l; 2-OH-imipramine/imipramine 0.06 and 0.05; 2-OH-desipramine/desipramine: 0.09 and 0.04 respectively. The metabolic ratios (MR) sparteine/dehydrosparteine and debrisoquine/4-OH-debrisoquine (% of dose in 12-h urine samples) correlated poorly with the imipramine steady-state concentrations during administration of 100 mg per day, but quite well with the desipramine steady-state concentrations. Significant negative correlations were found between sparteine and debrisoquine MR and the 2-OH-imipramine/imipramine and 2-OH-desipramine/desipramine ratios. In most patients the initial dose was changed to obtain concentrations in the therapeutic range, and concentrations for imipramine + desipramine of (mean +/- SD) 713 +/- 132 nmol/l were achieved in 33 patients. The therapeutic dose was 50 mg per day in one poor metabolizer and ranged from 50-400 mg per day in 32 extensive metabolizers. There was a weak negative correlation between sparteine MR and daily dose. Treatment with imipramine inhibited metabolism of both sparteine and debrisoquine (MR values about doubled), but did not affect the interpatient correlations.
Collapse
|