1
|
Dabla PK, Gupta S, Singh S, Viswas A, Yadav M, Sonkar SC, Koner BC. Sodium channel mutation SCN1A T875M, D188V and associated dysfunction with drug resistant epilepsy. World J Psychiatry 2025; 15:100738. [PMID: 39974498 PMCID: PMC11758033 DOI: 10.5498/wjp.v15.i2.100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/30/2024] [Accepted: 12/20/2024] [Indexed: 01/14/2025] Open
Abstract
BACKGROUND The NaV1.1 sodium channel alpha subunit, encoded by SCN1A, is crucial for initiating and propagating action potentials in neurons. SCN1A gene has long been an established target in the etiology and therapy of epilepsy. However, very few studies have investigated the relevance of genetic variations in epilepsy and anti-epileptic drug resistance. AIM To investigate associations between polymorphisms, rs121917953 T/A and rs121918623 C/T, and drug resistance in epilepsy patients in the north Indian population. METHODS A total of 100 age- and sex-matched epilepsy patients (50 drug responsive and 50 drug resistant subjects) were recruited and SCN1A rs121918623 C/T* and rs121917953 T/A* polymorphisms were analyzed by the allele specific-PCR technique. χ 2 and Fisher's exact test were used to estimate differences between the distribution of SCN1A rs121918623 and rs121917953 gene polymorphisms among various groups. The association between distinct rs121917953 genotypes and drug resistance was analyzed using logistic regression analysis. RESULTS For the SCN1A rs121917953 T/A* (D188V) polymorphism, a significantly higher proportion of individuals with AT genotype were observed in the drug-resistant group as compared to the drug-responsive group. Additionally, a higher risk association was exhibited by AT genotype for drug resistance with an odds ratio of 3.51 and P value = 0.017. For the SCN1A rs121918623 C/T* (T875M) polymorphism, no significant difference in genotype distribution was observed between the drug-resistant and drug-sensitive groups. CONCLUSION Our findings indicate that the SCN1A polymorphism D188V is associated with a higher risk of drug resistance for the AT variant as compared to the homozygous TT wild-type. Further research is needed at the functional level and in larger cohorts to determine the potential of these genes as a therapeutic target in epilepsy subjects.
Collapse
Affiliation(s)
- Pradeep Kumar Dabla
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi 110002, Delhi, India
| | - Swapan Gupta
- Department of Neurology, Govind Ballabh Pant Institute of Postgraduate Medical Education & Research, New Delhi 110002, Delhi, India
| | - Swati Singh
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education & Research, New Delhi 110002, Delhi, India
| | - Aroop Viswas
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi 110002, Delhi, India
| | - Manisha Yadav
- Multi-disciplinary Research Unit, Maulana Azad Medical College, New Delhi 110002, Delhi, India
| | - Subash Chandra Sonkar
- Multi-disciplinary Research Unit, Maulana Azad Medical College, New Delhi 110002, Delhi, India
| | - Bidhan Chandra Koner
- Multi-disciplinary Research Unit, Maulana Azad Medical College, New Delhi 110002, Delhi, India
- Department of Biochemistry, Maulana Azad Medical College, New Delhi 110002, Delhi, India
| |
Collapse
|
2
|
Viswas A, Dabla PK, Gupta S, Yadav M, Tanwar A, Upreti K, Koner BC. SCN1A Genetic Alterations and Oxidative Stress in Idiopathic Generalized Epilepsy Patients: A Causative Analysis in Refractory Cases. Indian J Clin Biochem 2025; 40:105-110. [PMID: 39835235 PMCID: PMC11741965 DOI: 10.1007/s12291-023-01164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/09/2023] [Indexed: 08/27/2024]
Abstract
Single Nucleotide Polymorphisms (SNPs) have found it be associated with drug resistance in epilepsy. The purpose of this study was to determine the role of SCN1A gene polymorphism in developing drug resistance in idiopathic generalized epilepsy (IGE) patients, along with increased oxidative stress. The study was conducted at a tertiary care hospital in Delhi, India. We recruited 100 patients diagnosed with IGE patients, grouped as drug-resistant and drug-responsive, and then further compared the SCN1A SNP rs10167228 A*/T analysis between the two groups. We utilized the PCR-RFLP technique to investigate the association between polymorphisms and refractory epilepsy. Serum HMGB1 levels were estimated using the ELISA technique to analyze oxidative stress in both groups. rs10167228 A*/T polymorphism genotypes AT and AA genotypes are significantly associated with an increased risk of developing drug resistance. Serum HMGB1, IL-1β, and IL-6 levels were significantly higher in drug-resistant cases, compared to the drug-responsive group. The association of SCN1A gene polymorphisms, in conjunction with raised oxidative stress, may be predictive of the development of drug-resistant epilepsy. The AT and AA genotypes of rs10167228 may pose a risk factor for developing drug-resistant epilepsy.
Collapse
Affiliation(s)
- Aroop Viswas
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Pradeep Kumar Dabla
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Swapan Gupta
- Department of Neurology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Manisha Yadav
- Multi-disciplinary Research Unit, Maulana Azad Medical College, New Delhi, India
| | - Alokit Tanwar
- Multi-disciplinary Research Unit, Maulana Azad Medical College, New Delhi, India
- Manav Rachna International Institute of Research and Studies, Faridabad, Haryana India
| | - Kamal Upreti
- Department of Computer Science, CHRIST (Deemed to be University), Ghaziabad, Delhi NCR India
| | - B C Koner
- Multi-disciplinary Research Unit, Maulana Azad Medical College, New Delhi, India
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
3
|
Lin CH, Ho CJ, Chen SY, Lu YT, Tsai MH. Review of pharmacogenetics of antiseizure medications: focusing on genetic variants of mechanistic targets. Front Pharmacol 2024; 15:1411487. [PMID: 39228521 PMCID: PMC11368862 DOI: 10.3389/fphar.2024.1411487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024] Open
Abstract
Antiseizure medications (ASMs) play a central role in seizure management, however, unpredictability in the response to treatment persists, even among patients with similar seizure manifestations and clinical backgrounds. An objective biomarker capable of reliably predicting the response to ASMs would profoundly impact epilepsy treatment. Presently, clinicians rely on a trial-and-error approach when selecting ASMs, a time-consuming process that can result in delays in receiving alternative non-pharmacological therapies such as a ketogenetic diet, epilepsy surgery, and neuromodulation therapies. Pharmacogenetic studies investigating the correlation between ASMs and genetic variants regarding their mechanistic targets offer promise in predicting the response to treatment. Sodium channel subunit genes have been extensively studied along with other ion channels and receptors as targets, however, the results have been conflicting, possibly due to methodological disparities including inconsistent definitions of drug response, variations in ASM combinations, and diversity of genetic variants/genes studied. Nonetheless, these studies underscore the potential effect of genetic variants on the mechanism of ASMs and consequently the prediction of treatment response. Recent advances in sequencing technology have led to the generation of large genetic datasets, which may be able to enhance the predictive accuracy of the response to ASMs.
Collapse
Affiliation(s)
- Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Ying Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Zhou Z, Wu S, Zou X, Gu S. Association between SCN1A polymorphism and risk of epilepsy in children: A systematic review and meta-analysis. Seizure 2023; 112:40-47. [PMID: 37741152 DOI: 10.1016/j.seizure.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
Epilepsy is a common neurological disorder in children. Numerous studies have demonstrated the association between SCN1A polymorphisms and risk of epilepsy in adults, but their role in epilepsy in children has just gained traction and results have remained inconsistent. In this work, we performed a systematic review and meta-analysis to assess the association between SCN1A polymorphisms and risk for epilepsy in children. A systematic literature search was performed in PubMed, Scopus, Web of Science, China National Knowledge Internet, Wanfang and VIP databases to identify eligible studies up to June 2023. Quantitative data synthesis was then performed under five genetic models: dominant, recessive, homozygous, heterozygous, and allele. Five studies involving 1380 subjects were included in the meta-analysis. Among many SCN1A polymorphisms reported, only rs2298771 was repeatedly studied in these reports. Pooled analysis demonstrated that there was no significant association between the polymorphism and risk of epilepsy in children (P>0.05). In conclusion, SCN1A rs2298771 polymorphism was not significantly associated with the risk of epilepsy in children.
Collapse
Affiliation(s)
- Zhihong Zhou
- School of Nursing, Hebi Polytechnic, Hebi, 458030, China; SeHan University, Yeongam-gun, Jeollanam-do, 58447, Republic of Korea.
| | - Shuihua Wu
- Department of Neurosurgery, Hunan Children's Hospital, Changsha City, 410006, China
| | - Xin Zou
- Department of Neurosurgery, Hunan Children's Hospital, Changsha City, 410006, China
| | - Shuo Gu
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou City, 570102, China
| |
Collapse
|
5
|
Guin D, Hasija Y, Kukreti R. Assessment of clinically actionable pharmacogenetic markers to stratify anti-seizure medications. THE PHARMACOGENOMICS JOURNAL 2023; 23:149-160. [PMID: 37626111 DOI: 10.1038/s41397-023-00313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Epilepsy treatment is challenging due to heterogeneous syndromes, different seizure types and higher inter-individual variability. Identification of genetic variants predicting drug efficacy, tolerability and risk of adverse-effects for anti-seizure medications (ASMs) is essential. Here, we assessed the clinical actionability of known genetic variants, based on their functional and clinical significance and estimated their diagnostic predictability. We performed a systematic PubMed search to identify articles with pharmacogenomic (PGx) information for forty known ASMs. Functional annotation of the identified genetic variants was performed using different in silico tools, and their clinical significance was assessed using the American College of Medical Genetics (ACMG) guidelines for variant pathogenicity, level of evidence (LOE) from PharmGKB and the United States-Food and drug administration (US- FDA) drug labelling with PGx information. Diagnostic predictability of the replicated genetic variants was evaluated by calculating their accuracy. A total of 270 articles were retrieved with PGx evidence associated with 19 ASMs including 178 variants across 93 genes, classifying 26 genetic variants as benign/ likely benign, fourteen as drug response markers and three as risk factors for drug response. Only seventeen of these were replicated, with accuracy (up to 95%) in predicting PGx outcomes specific to six ASMs. Eight out of seventeen variants have FDA-approved PGx drug labelling for clinical implementation. Therefore, the remaining nine variants promise for potential clinical actionability and can be improvised with additional experimental evidence for clinical utility.
Collapse
Affiliation(s)
- Debleena Guin
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, 110007, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Polymorphisms of the sodium voltage-gated channel, alpha subunit 1 (SCN1A -A3184G) gene among children with non-lesional epilepsy: a case-control study. Ital J Pediatr 2022; 48:157. [PMID: 36056404 PMCID: PMC9438243 DOI: 10.1186/s13052-022-01350-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Background Mutations in the neuronal sodium voltage-gated channel, alpha subunit 1 (SCN1A) gene have been associated with epilepsy. We investigated the SCN1A-A3184G polymorphism among Egyptian children and adolescents with non-lesional epilepsy. Methods A prospective case – control observational study was done in Mansoura University Children’s Hospital, Egypt including 326 children with non-lesional epilepsy (163 antiepileptic drugs (AEDs) resistant cases & 163 AEDs responders) and 163 healthy controls. One step real time polymerase chain reaction (PCR) was used for the molecular analysis. Student’s t-test, and Monto Carlo, chi-square and Mann–Whitney tests were used for the statistical analysis. Results All study participants were matched as regards the age, sex and body weight (p = 0.07, 0.347 and 0.462, respectively). They had the (AA) and (AG) genotypes but not the (GG) variant. No significant differences were found between cases and controls regarding (AG) and (AA) genotypes and A- and G-alleles (p = 0.09 and 0.3, respectively). We did not find significant differences between AEDs responders and resistant cases regarding the studied genotypes and alleles (p = 0.61 and 0.746, respectively). In the resistant group, we observed significant associations between the (AG) genotype and seizure frequency (p = 0.05), the tonic-clonic seizure (p < 0.001), the younger age of first seizure attack (p = 0.03), abnormal electroencephalogram (EEG) (p < 0.001), the positive family history of epilepsy (p = 0.006), topiramate (p = 0.03) and valproic acid (p < 0.001), while the (AA) genotype was associated with carbamazepine (p = 0.03). While in AEDs responders, there were significant associations between the AG genotype and the abnormal EEG activity, levetiracetam and carbamazepine (p = 0.016, 0.028 and 0.02). Conclusions The SCN1A-A3184G genotypes and alleles were not associated with the epilepsy risk among Egyptian children. Significant associations were reported between the AG genotype and some predictors of refractory epilepsy.
Collapse
|
7
|
Drug-Targeted Genomes: Mutability of Ion Channels and GPCRs. Biomedicines 2022; 10:biomedicines10030594. [PMID: 35327396 PMCID: PMC8945769 DOI: 10.3390/biomedicines10030594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Mutations of ion channels and G-protein-coupled receptors (GPCRs) are not uncommon and can lead to cardiovascular diseases. Given previously reported multiple factors associated with high mutation rates, we sorted the relative mutability of multiple human genes by (i) proximity to telomeres and/or (ii) high adenine and thymine (A+T) content. We extracted genomic information using the genome data viewer and examined the mutability of 118 ion channel and 143 GPCR genes based on their association with factors (i) and (ii). We then assessed these two factors with 31 genes encoding ion channels or GPCRs that are targeted by the United States Food and Drug Administration (FDA)-approved drugs. Out of the 118 ion channel genes studied, 80 met either factor (i) or (ii), resulting in a 68% match. In contrast, a 78% match was found for the 143 GPCR genes. We also found that the GPCR genes (n = 20) targeted by FDA-approved drugs have a relatively lower mutability than those genes encoding ion channels (n = 11), where targeted genes encoding GPCRs were shorter in length. The result of this study suggests that the use of matching rate analysis on factor-druggable genome is feasible to systematically compare the relative mutability of GPCRs and ion channels. The analysis on chromosomes by two factors identified a unique characteristic of GPCRs, which have a significant relationship between their nucleotide sizes and proximity to telomeres, unlike most genetic loci susceptible to human diseases.
Collapse
|
8
|
Hui JB, Silva JCH, Pelaez MC, Sévigny M, Venkatasubramani JP, Plumereau Q, Chahine M, Proulx CD, Sephton CF, Dutchak PA. NPRL2 Inhibition of mTORC1 Controls Sodium Channel Expression and Brain Amino Acid Homeostasis. eNeuro 2022; 9:ENEURO.0317-21.2022. [PMID: 35165201 PMCID: PMC8896560 DOI: 10.1523/eneuro.0317-21.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/19/2022] Open
Abstract
Genetic mutations in nitrogen permease regulator-like 2 (NPRL2) are associated with a wide spectrum of familial focal epilepsies, autism, and sudden unexpected death of epileptics (SUDEP), but the mechanisms by which NPRL2 contributes to these effects are not well known. NPRL2 is a requisite subunit of the GAP activity toward Rags 1 (GATOR1) complex, which functions as a negative regulator of mammalian target of rapamycin complex 1 (mTORC1) kinase when intracellular amino acids are low. Here, we show that loss of NPRL2 expression in mouse excitatory glutamatergic neurons causes seizures before death, consistent with SUDEP in humans with epilepsy. Additionally, the absence of NPRL2 expression increases mTORC1-dependent signal transduction and significantly alters amino acid homeostasis in the brain. Loss of NPRL2 reduces dendritic branching and increases the strength of electrically stimulated action potentials (APs) in neurons. The increased AP strength is consistent with elevated expression of epilepsy-linked, voltage-gated sodium channels in the NPRL2-deficient brain. Targeted deletion of NPRL2 in primary neurons increases the expression of sodium channel Scn1A, whereas treatment with the pharmacological mTORC1 inhibitor called rapamycin prevents Scn1A upregulation. These studies demonstrate a novel role of NPRL2 and mTORC1 signaling in the regulation of sodium channels, which can contribute to seizures and early lethality.
Collapse
Affiliation(s)
- Jeremy B Hui
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, Quebec G1J 2G3, Canada
| | - Jose Cesar Hernandez Silva
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, Quebec G1J 2G3, Canada
| | - Mari Carmen Pelaez
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, Quebec G1J 2G3, Canada
| | - Myriam Sévigny
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, Quebec G1J 2G3, Canada
| | - Janani Priya Venkatasubramani
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, Quebec G1J 2G3, Canada
| | - Quentin Plumereau
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, Quebec G1J 2G3, Canada
| | - Mohamed Chahine
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, Quebec G1J 2G3, Canada
| | - Christophe D Proulx
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, Quebec G1J 2G3, Canada
| | - Chantelle F Sephton
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, Quebec G1J 2G3, Canada
| | - Paul A Dutchak
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, Quebec G1J 2G3, Canada
| |
Collapse
|
9
|
Genetic Analysis of Sodium Channel Genes in Pediatric Epilepsy Patients of Pakistan. Genet Res (Camb) 2022; 2022:1168703. [PMID: 35136380 PMCID: PMC8817870 DOI: 10.1155/2022/1168703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 11/18/2022] Open
Abstract
Epilepsy affects millions of people worldwide. Although antiepileptic drugs work for the majority of epileptic patients, these drugs do not work for some of the patients, subjecting them to drug-resistant epilepsy (DRE). Voltage-gated sodium channels act as targets for a number of antiepileptic drugs, and the genes encoding these channels can play a crucial role in developing drug-resistant epilepsy. This case-control (100 control: 101patients) study evaluated the association of sodium channel genes SCN1A and SCN2A with drug-resistant epilepsy. The cases were further accounted in two categories, drug-resistant and drug-responsive epileptic patients. The polymorphic sites rs794726754, rs1057518252, rs121918809, rs12191792, rs121917932, c.730 G > T, c.735 G > T, c.736 A > T, rs10167228, and rs2298771 of the SCN1A gene and rs17183814 of SCN2A gene were selected for mutational analysis. The DNA was isolated, amplified by PCR, and then, was run through 1% agarose gel. The sequencing was performed, and the sequences were observed through BioEdit software for any change in DNA sequence. In our study, no polymorphism was observed in the studied SNPs except for rs2298771. For rs2298771, a significant difference existed in the distribution of genotypic and allelic frequencies (p < 0.01) among the case and control group. Furthermore, the genotypic and allelic frequencies of the two categories of cases (drug responder drug resistant) were calculated. The genotypic and allelic frequencies of drug-responsive and drug-resistant epileptic patients did not differ significantly (p > 0.01). Our study indicated that the rs2298771 polymorphism of SCN1A may not be associated with chance of developing DRE in the Pakistani population.
Collapse
|
10
|
Fricke-Galindo I, Jung-Cook H, Martínez-Juárez IE, Monroy-Jaramillo N, Ortega-Vázquez A, Rojas-Tomé IS, Dorado P, Peñas-Lledó E, Llerena A, López-López M. Relevance of NR1I2 variants on carbamazepine therapy in Mexican Mestizos with epilepsy at a tertiary-care hospital. Pharmacogenomics 2021; 22:983-996. [PMID: 34612084 DOI: 10.2217/pgs-2021-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We evaluated the potential influence of genetic (CYP3A5, EPHX1, NR1I2, HNF4A, ABCC2, RALBP1, SCN1A, SCN2A and GABRA1) and nongenetic factors on carbamazepine (CBZ) response, adverse drug reactions and CBZ plasma concentrations in 126 Mexican Mestizos (MM) with epilepsy. Subjects & methods: Patients were genotyped for 27 variants using TaqMan® assays. Results: CBZ response was associated with NR1I2 variants and lamotrigine cotreatment. CBZ-induced adverse drug reactions were related to antiepileptic polytherapy and SCN1A rs2298771/rs3812718 haplotype. CBZ plasma concentrations were influenced by NR1I2-rs2276707 and -rs3814058, and by phenytoin cotreatment. CBZ daily dose was also influenced by NR1I2-rs3814055 and EPHX1-rs1051740. Conclusion: Interindividual variability in CBZ treatment was partly explained by NR1I2, EPHX1 and SCN1A variants, as well as antiepileptic cotreatment in MM with epilepsy.
Collapse
Affiliation(s)
- Ingrid Fricke-Galindo
- Metropolitan Autonomous University, Campus Xochimilco, Calzada del Hueso 1100, Villa Quietud, 04960, Coyoacán, Mexico City, Mexico
| | - Helgi Jung-Cook
- National Institute of Neurology & Neurosurgery, Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269, Tlalpan, Mexico City, Mexico.,National Autonomous University of Mexico, Mexico City, Mexico, Av. Universidad 3000, C.U., 04510, Coyoacán, Mexico City, Mexico
| | - Iris E Martínez-Juárez
- National Institute of Neurology & Neurosurgery, Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269, Tlalpan, Mexico City, Mexico
| | - Nancy Monroy-Jaramillo
- National Institute of Neurology & Neurosurgery, Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269, Tlalpan, Mexico City, Mexico
| | - Alberto Ortega-Vázquez
- Metropolitan Autonomous University, Campus Xochimilco, Calzada del Hueso 1100, Villa Quietud, 04960, Coyoacán, Mexico City, Mexico
| | - Irma S Rojas-Tomé
- National Institute of Neurology & Neurosurgery, Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269, Tlalpan, Mexico City, Mexico
| | - Pedro Dorado
- Biosanitary Research Institute, INUBE Extremadura University, Avda. de Elvas, Badajoz, 06006, Spain.,Department of Medical-Surgery Therapeutics, University of Extremadura, Avda. Virgen del Puerto, Plasencia, 10600, Spain
| | - Eva Peñas-Lledó
- Biosanitary Research Institute, INUBE Extremadura University, Avda. de Elvas, Badajoz, 06006, Spain.,Faculty of Medicine, University of Extremadura, Av. de Elvas, s/n, Badajoz, 06006, Spain
| | - Adrián Llerena
- Biosanitary Research Institute, INUBE Extremadura University, Avda. de Elvas, Badajoz, 06006, Spain.,Faculty of Medicine, University of Extremadura, Av. de Elvas, s/n, Badajoz, 06006, Spain.,CICAB Clinical Research Center, Extremadura University Hospital, Campus Universitario, Av. de Elvas, s/n, Badajoz, 06080, Spain
| | - Marisol López-López
- Metropolitan Autonomous University, Campus Xochimilco, Calzada del Hueso 1100, Villa Quietud, 04960, Coyoacán, Mexico City, Mexico
| |
Collapse
|
11
|
Lin CH, Ho CJ, Lu YT, Tsai MH. Response to Sodium Channel blocking Antiseizure medications and coding polymorphisms of Sodium Channel genes in Taiwanese epilepsy patients. BMC Neurol 2021; 21:367. [PMID: 34556045 PMCID: PMC8459515 DOI: 10.1186/s12883-021-02395-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background Many antiseizure medications (ASMs) control seizures by blocking voltage-dependent sodium channels. Polymorphisms of sodium channel genes may affect the response to ASMs due to altering the effect of ASMs on blocking sodium channels. Methods We conducted a retrospective study of epilepsy patients followed up at the Neurological Department of Kaohsiung Chang Gung Memorial Hospital, Taiwan between January 2010 and December 2018. We categorized the patients into response, partial response, and failure to sodium channel blocking ASM groups. Sodium channel blocking ASMs included phenytoin, carbamazepine, lamotrigine, oxcarbazepine, lacosamide, zonisamide, topiramate, and valproic acid. A subgroup of predominant sodium channel blocking ASMs included phenytoin, carbamazepine, lamotrigine, oxcarbazepine, and lacosamide. Associations between the response of ASMs and single-nucleotide polymorphisms of SCN1A, SCN1B, SCN2A, and SCN9A were analyzed. Results Two hundred Taiwanese patients and 21 single-nucleotide polymorphisms among SCN1A, SCN1B, SCN2A, and SCN9A were evaluated. We found allele C of rs55742440 in SCN1B was statistically significantly associated with not achieving seizure-free with sodium channel blocking ASMs. For the predominant sodium channel blocking ASMs group, no SNPs were associated with the response of ASMs. Conclusion Single-nucleotide polymorphism in SCN1B was associated with the response to sodium channel blocking ASMs. This highlights the possibility that beta subunits may affect the function of sodium channels and resulted in different responsiveness to ASMs. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02395-2.
Collapse
Affiliation(s)
- Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Colleague of Medicine, Chang Gung University, Kaohsiung, Kaohsiung City, 83301, Taiwan
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Colleague of Medicine, Chang Gung University, Kaohsiung, Kaohsiung City, 83301, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Colleague of Medicine, Chang Gung University, Kaohsiung, Kaohsiung City, 83301, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Colleague of Medicine, Chang Gung University, Kaohsiung, Kaohsiung City, 83301, Taiwan. .,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
12
|
Integrated Bioinformatics Analysis to Identify Alternative Therapeutic Targets for Alzheimer's Disease: Insights from a Synaptic Machinery Perspective. J Mol Neurosci 2021; 72:273-286. [PMID: 34414562 DOI: 10.1007/s12031-021-01893-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD), the most common type of dementia, is a serious neurodegenerative disease that has no cure yet, but whose symptoms can be alleviated with available medications. Therefore, early and accurate diagnosis of the disease and elucidation of the molecular mechanisms involved in the progression of pathogenesis are critically important. This study aimed to identify dysregulated miRNAs and their target mRNAs through the integrated analysis of miRNA and mRNA expression profiling in AD patients versus unaffected controls. Expression profiles in postmortem brain samples from AD patients and healthy individuals were extracted from the Gene Expression Omnibus database and were analyzed using bioinformatics approaches to identify gene ontologies, pathways, and networks. Finally, the module analysis of the PPI network and hub gene selection was carried out. A total of five differentially expressed miRNAs were extracted from the miRNA dataset, and 4312 differentially expressed mRNAs were obtained from the mRNA dataset. By comparing the DEGs and the putative targets of the altered miRNAs, 116 (3 upregulated and 113 downregulated) coordinated genes were determined. Also, six hub genes (SNAP25, GRIN2A, GRIN2B, DLG2, ATP2B2, and SCN2A) were identified by constructing a PPI network. The results of the present study provide insight into mechanisms such as synaptic machinery and neuronal communication underlying AD pathogenesis, specifically concerning miRNAs.
Collapse
|
13
|
Yang R, Qian R, Chen K, Yi W, Sima X. Genetic polymorphisms in SCN2A are not associated with epilepsy risk and AEDs response: evidence from a meta-analysis. Neurol Sci 2021; 42:2705-2711. [PMID: 33914194 DOI: 10.1007/s10072-021-05242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/09/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Previous studies have investigated the association between rs2304016 and rs17183814 polymorphisms in sodium voltage-gated channel alpha subunit 2 (SCN2A) and epilepsy risk and responsiveness to antiepileptic drugs (AEDs) but with conflicting results. Our aim was to reevaluate the relationship by performing a systematic review and meta-analysis. METHODS By searching PubMed, Medline, and CNKI, 14 studies were selected. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were computed to measure the association between rs17183814 and rs2304016 polymorphisms and the risk of epilepsy and AEDs response using the fixed-effects model or the random-effects model. RESULTS No significant association between the rs17183814 in SCN2A and the risk of epilepsy was observed (heterozygous comparison: OR = 0.78, 95% CI: 0.61-1.00; homozygous comparison: OR = 1.34, 95% CI: 0.63-2.86; dominant model: OR = 0.82, 95% CI: 0.64-1.04; recessive model: OR = 1.44, 95% CI: 0.68-3.05; allele comparison: OR = 0.88, 95%CI: 0.71-1.10). Moreover, neither the rs17183814 nor the rs2304016 was associated with AEDs response. CONCLUSION This meta-analysis suggests that the rs17183814 and rs2304016 polymorphisms in SCN2A are not associated with the risk of epilepsy and response to AEDs.
Collapse
Affiliation(s)
- Ruiqing Yang
- West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ruiyi Qian
- West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kerun Chen
- West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Yi
- West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiutian Sima
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
14
|
Zhao GX, Zhang Z, Cai WK, Shen ML, Wang P, He GH. Associations between CYP3A4, CYP3A5 and SCN1A polymorphisms and carbamazepine metabolism in epilepsy: A meta-analysis. Epilepsy Res 2021; 173:106615. [PMID: 33756436 DOI: 10.1016/j.eplepsyres.2021.106615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/03/2021] [Accepted: 03/10/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVE CYP3A4 (rs2242480), CYP3A5 (rs776746) and SCN1A (rs3812718 and rs2298771) gene polymorphisms were previously indicated to be associated with carbamazepine (CBZ) metabolism and resistance in epilepsy. However, previous studies regarding the effects of these polymorphisms still remain controversial. Therefore, we performed a meta-analysis to evaluate whether the four polymorphisms are associated with CBZ metabolism and resistance. METHODS The PubMed, EMBASE, Cochrane library, Chinese National Knowledge Infrastructure, Chinese Science and Technique Journals Database, China Biology Medicine disc and Wan Fang Database were searched up to January 2021 for appropriate studies regarding the association of rs2242480, rs776746, rs3812718 and rs2234922 polymorphisms with CBZ metabolism and resistance. The meta-analysis was conducted by Review Manager 5.3 software. RESULTS Eighteen studies involving 2546 related epilepsy patients were included. We found that the G allele of CYP3A4 rs2242480 markedly decreased the plasma CBZ concentration in epilepsy. For CYP3A5 rs776746 polymorphism, the GG genotype (homozygote codominant model: GG vs. AA) and GG + GA genotype (dominant model: GG + GA vs. AA and recessive model: GG vs. GA + AA) were respectively found to be significantly associated with increased CBZ plasma concentration. Additionally, it was also found that the SCN1A rs3812718 A allele was significantly associated with decreased CBZ plasma concentration and increased CBZ resistance. However, no association was observed between SCN1A rs2298771 polymorphism and CBZ metabolism and resistance. CONCLUSION The CYP3A4 rs2242480, CYP3A5 rs776746 and SCN1A rs3812718 polymorphisms may play important roles in CBZ metabolism and resistance, while SCN1A rs2298771 polymorphism is not associated with CBZ in epilepsy. These findings would improve the individualized therapy of epileptic patients in clinics.
Collapse
Affiliation(s)
- Gui-Xin Zhao
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, 650032, China; Kunming Medical University, Kunming, 650500, China; Research Center of Clinical Pharmacology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, 650021, China
| | - Zheng Zhang
- Medical Engineering Section, The 306th Hospital of PLA, Beijing, 100101, China
| | - Wen-Ke Cai
- Department of Cardio-Thoracic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, 650032, China
| | - Ming-Li Shen
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, 650032, China
| | - Ping Wang
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, 650032, China
| | - Gong-Hao He
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, 650032, China; Research Center of Clinical Pharmacology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, 650021, China.
| |
Collapse
|
15
|
Li M, Zhong R, Lu Y, Zhao Q, Li G, Lin W. Association Between SCN1A rs2298771, SCN1A rs10188577, SCN2A rs17183814, and SCN2A rs2304016 Polymorphisms and Responsiveness to Antiepileptic Drugs: A Meta-Analysis. Front Neurol 2021; 11:591828. [PMID: 33519675 PMCID: PMC7840883 DOI: 10.3389/fneur.2020.591828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Background:SCN1A and SCN2A genes have been reported to be associated with the efficacy of single and combined antiepileptic therapy, but the results remain contradictory. Previous meta-analyses on this topic mainly focused on the SCN1A rs3812718 polymorphism. However, meta-analyses focused on SCN1A rs2298771, SCN1A rs10188577, SCN2A rs17183814, or SCN2A rs2304016 polymorphisms are scarce or non-existent. Objective: We aimed to conduct a meta-analysis to determine the effects of SCN1A rs2298771, SCN1A rs10188577, SCN2A rs17183814, and SCN2A rs2304016 polymorphisms on resistance to antiepileptic drugs (AEDs). Methods: We searched the PubMed, Embase, Cochrane Library, WANFANG, and CNKI databases up to June 2020 to collect studies on the association of SCN1A and SCN2A polymorphisms with reactivity to AEDs. We calculated the pooled odds ratios (ORs) under the allelic, homozygous, heterozygous, dominant, and recessive genetic models to identify the association between the four single-nucleotide polymorphisms (SNPs) and resistance to AEDs. Results: Our meta-analysis included 19 eligible studies. The results showed that the SCN1A rs2298771 polymorphism was related to AED resistance in the allelic, homozygous, and recessive genetic models (G vs. A: OR = 1.20, 95% CI: 1.012–1.424; GG vs. AA: OR = 1.567, 95% CI: 1.147–2.142; GG vs. AA + AG: OR = 1.408, 95% CI: 1.053–1.882). The homozygous model remained significant after Bonferroni correction (P < 0.0125). Further subgroup analyses demonstrated the significance of the correlation in the dominant model in Caucasians (South Asians) after Bonferroni correction (GG + GA vs. AA: OR = 1.620, 95% CI: 1.165–2.252). However, no association between SCN1A rs2298771 polymorphism and resistance to AEDs was found in Asians or Caucasians (non-South Asians). For SCN1A rs10188577, SCN2A rs17183814, and SCN2A rs2304016 polymorphisms, the correlations with responsiveness to AEDs were not significant in the overall population nor in any subgroup after conducting the Bonferroni correction. The results for SCN1A rs2298771, SCN1A rs10188577, and SCN2A rs2304016 polymorphisms were stable and reliable according to sensitivity analysis and Begg and Egger tests. However, the results for SCN2A rs17183814 polymorphism have to be treated cautiously owing to the significant publication bias revealed by Begg and Egger tests. Conclusions: The present meta-analysis indicated that SCN1A rs2298771 polymorphism significantly affects resistance to AEDs in the overall population and Caucasians (South Asians). There were no significant correlations between SCN1A rs10188577, SCN2A rs17183814, and SCN2A rs2304016 polymorphisms and resistance to AEDs.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Rui Zhong
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yingxue Lu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Qian Zhao
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Guangjian Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Weihong Lin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Juvale IIA, Che Has AT. Possible interplay between the theories of pharmacoresistant epilepsy. Eur J Neurosci 2020; 53:1998-2026. [PMID: 33306252 DOI: 10.1111/ejn.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is one of the oldest known neurological disorders and is characterized by recurrent seizure activity. It has a high incidence rate, affecting a broad demographic in both developed and developing countries. Comorbid conditions are frequent in patients with epilepsy and have detrimental effects on their quality of life. Current management options for epilepsy include the use of anti-epileptic drugs, surgery, or a ketogenic diet. However, more than 30% of patients diagnosed with epilepsy exhibit drug resistance to anti-epileptic drugs. Further, surgery and ketogenic diets do little to alleviate the symptoms of patients with pharmacoresistant epilepsy. Thus, there is an urgent need to understand the underlying mechanisms of pharmacoresistant epilepsy to design newer and more effective anti-epileptic drugs. Several theories of pharmacoresistant epilepsy have been suggested over the years, the most common being the gene variant hypothesis, network hypothesis, multidrug transporter hypothesis, and target hypothesis. In our review, we discuss the main theories of pharmacoresistant epilepsy and highlight a possible interconnection between their mechanisms that could lead to the development of novel therapies for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
17
|
The Sodium Channel B4-Subunits are Dysregulated in Temporal Lobe Epilepsy Drug-Resistant Patients. Int J Mol Sci 2020; 21:ijms21082955. [PMID: 32331418 PMCID: PMC7216270 DOI: 10.3390/ijms21082955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 01/09/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common type of partial epilepsy referred for surgery due to antiepileptic drug (AED) resistance. A common molecular target for many of these drugs is the voltage-gated sodium channel (VGSC). The VGSC consists of four domains of pore-forming α-subunits and two auxiliary β-subunits, several of which have been well studied in epileptic conditions. However, despite the β4-subunits' role having been reported in some neurological conditions, there is little research investigating its potential significance in epilepsy. Therefore, the purpose of this work was to assess the role of SCN4β in epilepsy by using a combination of molecular and bioinformatics approaches. We first demonstrated that there was a reduction in the relative expression of SCN4B in the drug-resistant TLE patients compared to non-epileptic control specimens, both at the mRNA and protein levels. By analyzing a co-expression network in the neighborhood of SCN4B we then discovered a linkage between the expression of this gene and K+ channels activated by Ca2+, or K+ two-pore domain channels. Our approach also inferred several potential effector functions linked to variation in the expression of SCN4B. These observations support the hypothesis that SCN4B is a key factor in AED-resistant TLE, which could help direct both the drug selection of TLE treatments and the development of future AEDs.
Collapse
|
18
|
Esposito M, Lagorio I, Peroni D, Bonuccelli A, Orsini A, Striano P. Genomic sequencing in severe epilepsy: a step closer to precision medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1732203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mariagrazia Esposito
- Pediatric Neurology Unit, “A.O.U. Pisana” University Hospital of Pisa, Pisa, Italy
| | - Ilaria Lagorio
- Department of Neurology, University of Siena, Siena, Italy
| | - Diego Peroni
- Pediatric Department, “A.O.U. Pisana”, University Hospital of Pisa, Pisa, Italy
| | - Alice Bonuccelli
- Pediatric Neurology Unit, “A.O.U. Pisana” University Hospital of Pisa, Pisa, Italy
| | - Alessandro Orsini
- Pediatric Neurology Unit, “A.O.U. Pisana” University Hospital of Pisa, Pisa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS “G. Gaslini” Institute, Genova, Italy
- Department Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health University of Genoa, Genova, Italy
| |
Collapse
|
19
|
Cárdenas-Rodríguez N, Carmona-Aparicio L, Pérez-Lozano DL, Ortega-Cuellar D, Gómez-Manzo S, Ignacio-Mejía I. Genetic variations associated with pharmacoresistant epilepsy (Review). Mol Med Rep 2020; 21:1685-1701. [PMID: 32319641 PMCID: PMC7057824 DOI: 10.3892/mmr.2020.10999] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a common, serious neurological disorder worldwide. Although this disease can be successfully treated in most cases, not all patients respond favorably to medical treatments, which can lead to pharmacoresistant epilepsy. Drug-resistant epilepsy can be caused by a number of mechanisms that may involve environmental and genetic factors, as well as disease- and drug-related factors. In recent years, numerous studies have demonstrated that genetic variation is involved in the drug resistance of epilepsy, especially genetic variations found in drug resistance-related genes, including the voltage-dependent sodium and potassium channels genes, and the metabolizer of endogenous and xenobiotic substances genes. The present review aimed to highlight the genetic variants that are involved in the regulation of drug resistance in epilepsy; a comprehensive understanding of the role of genetic variation in drug resistance will help us develop improved strategies to regulate drug resistance efficiently and determine the pathophysiological processes that underlie this common human neurological disease.
Collapse
Affiliation(s)
- Noemí Cárdenas-Rodríguez
- Laboratory of Neuroscience, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Liliana Carmona-Aparicio
- Laboratory of Neuroscience, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Diana L Pérez-Lozano
- Laboratory of Neuroscience, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Daniel Ortega-Cuellar
- Laboratory of Experimental Nutrition, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Saúl Gómez-Manzo
- Laboratory of Genetic Biochemistry, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Iván Ignacio-Mejía
- Laboratory of Translational Medicine, Military School of Health Graduates, Lomas de Sotelo, Militar, Mexico City 11200, Mexico
| |
Collapse
|
20
|
Billakota S, Devinsky O, Kim KW. Why we urgently need improved epilepsy therapies for adult patients. Neuropharmacology 2019; 170:107855. [PMID: 31751547 DOI: 10.1016/j.neuropharm.2019.107855] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE Up to a third of patients with epilepsy suffer from recurrent seizures despite therapeutic advances. RESULTS Current epilepsy treatments are limited by experiential data from treating different types of epilepsy. For example, we lack evidence-based approaches to efficacious multi-drug therapies or identifying potentially serious or disabling adverse events before medications are initiated. Despite advances in neuroscience and genetics, our understanding of epilepsy pathogenesis and mechanisms of treatment-resistance remains limited. For most patients with epilepsy, precision medicine for improved seizure control and reduced toxicity remains a future goal. CONCLUSION A third of epilepsy patients suffer from ongoing seizures and even more suffer from adverse effects of treatment. There is a critical need for more effective and safer therapies for epilepsy patients with frequent comorbitidies, including depression, anxiety, migraine, and cognitive impairments, as well as special populations (e.g., women, elderly). Advances from genomic sequencing techniques may identify new genes and regulatory elements that influence both the depth of the epilepsies' roots within brain circuitry as well as ASD resistance. Improved understanding of epilepsy mechanisms, identification of potential new therapeutic targets, and their assessment in randomized controlled trials are needed to reduce the burden of refractory epilepsy. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Santoshi Billakota
- NYU Langone Comprehensive Epilepsy Center and NYU Langone School of Medicine, New York, NY, USA.
| | - Orrin Devinsky
- NYU Langone Comprehensive Epilepsy Center and Professor of Neurology, Neurosurgery, and Psychiatry at NYU Langone School of Medicine, New York, NY, USA; Saint Barnabas Institute of Neurology and Neurosurgery, Livingston, NJ, USA
| | - Kyung-Wha Kim
- NYU Langone Comprehensive Epilepsy Center and NYU Langone School of Medicine, New York, NY, USA
| |
Collapse
|
21
|
Khalyfa A, Sanz-Rubio D. Genetics and Extracellular Vesicles of Pediatrics Sleep Disordered Breathing and Epilepsy. Int J Mol Sci 2019; 20:ijms20215483. [PMID: 31689970 PMCID: PMC6862182 DOI: 10.3390/ijms20215483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022] Open
Abstract
Sleep remains one of the least understood phenomena in biology, and sleep disturbances are one of the most common behavioral problems in childhood. The etiology of sleep disorders is complex and involves both genetic and environmental factors. Epilepsy is the most popular childhood neurological condition and is characterized by an enduring predisposition to generate epileptic seizures, and the neurobiological, cognitive, psychological, and social consequences of this condition. Sleep and epilepsy are interrelated, and the importance of sleep in epilepsy is less known. The state of sleep also influences whether a seizure will occur at a given time, and this differs considerably for various epilepsy syndromes. The development of epilepsy has been associated with single or multiple gene variants. The genetics of epilepsy is complex and disorders exhibit significant genetic heterogeneity and variability in the expressivity of seizures. Phenobarbital (PhB) is the most widely used antiepileptic drug. With its principal mechanism of action to prolong the opening time of the γ-aminobutyric acid (GABA)-A receptor-associated chloride channel, it enhances chloride anion influx into neurons, with subsequent hyperpolarization, thereby reducing excitability. Enzymes that metabolize pharmaceuticals including PhB are well known for having genetic polymorphisms that contribute to adverse drug–drug interactions. PhB metabolism is highly dependent upon the cytochrome P450 (CYP450) and genetic polymorphisms can lead to variability in active drug levels. The highly polymorphic CYP2C19 isozymes are responsible for metabolizing a large portion of routinely prescribed drugs and variants contribute significantly to adverse drug reactions and therapeutic failures. A limited number of CYP2C19 single nucleotide polymorphisms (SNPs) are involved in drug metabolism. Extracellular vesicles (EVs) are circular membrane fragments released from the endosomal compartment as exosomes are shed from the surfaces of the membranes of most cell types. Increasing evidence indicated that EVs play a pivotal role in cell-to-cell communication. Theses EVs may play an important role between sleep, epilepsy, and treatments. The discovery of exosomes provides potential strategies for the diagnosis and treatment of many diseases including neurocognitive deficit. The aim of this study is to better understand and provide further knowledge about the metabolism and interactions between phenobarbital and CYP2C19 polymorphisms in children with epilepsy, interplay between sleep, and EVs. Understanding this interplay between epilepsy and sleep is helpful in the optimal treatment of all patients with epileptic seizures. The use of genetics and extracellular vesicles as precision medicine for the diagnosis and treatment of children with sleep disorder will improve the prognosis and the quality of life in patients with epilepsy.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Pediatrics, Section of Sleep Medicine, The University of Chicago, Chicago, IL 60637, USA.
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA.
| | - David Sanz-Rubio
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA.
| |
Collapse
|
22
|
Pejanovic-Skobic N, Markovic I, Bozina N, Basic S. Lack of association of SCN2A rs17183814 polymorphism with the efficacy of lamotrigine monotherapy in patients with focal epilepsy from Herzegovina area, Bosnia and Herzegovina. Epilepsy Res 2019; 158:106221. [PMID: 31707316 DOI: 10.1016/j.eplepsyres.2019.106221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/12/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE We assessed the influence of the SCN2A gene polymorphism c.56 G > A rs17183814 on the response to lamotrigine monotherapy in patients with focal epilepsy in Herzegovina area, Bosnia and Herzegovina. MATERIAL AND METHODS For SCN2A polymorphism c.56 G > A rs17183814, one hundred patients with epilepsy who were receiving lamotrigine in monotherapy and seventy-one age and sex matched healthy controls were genotyped using TaqMan assay. All patients were Caucasians from the region of Herzegovina, Bosnia and Herzegovina. Genotyping was conducted using a polymerase chain reaction in real time. Patients were divided into two groups: responders and non-responders. RESULTS Of all patients with epilepsy, 33% were non-responders, and 67% were responders. The mean age of non-responders was 38.8 vs. group of responders in which it was 35.2. Mean age of onset of seizures in epilepsy patients was 26.7 for non-responders and 25.4 for responders. In patients with epilepsy, the mean age of seizure onset was 26.7 for non-responders and 25.4 for responders. For SCN2A c.56 G > A gene polymorphism, we did not observe any significant differences in genotypic or allelic frequency between patients with epilepsy and healthy controls. Genotype or allelic frequencies of SCN2A c.56 G > A gene polymorphism did not significantly differ for AG or GG genotypes in the non-responders vs. responders. CONCLUSION There was no significant association in patients with focal epilepsy between studied genotypes and response to lamotrigine monotherapy in Herzegovina patients with focal epilepsy. However, we need studies in a bigger cohort of patients with epilepsy to be assessed in the future.
Collapse
Affiliation(s)
- Natasa Pejanovic-Skobic
- Clinic of Neurology, University Clinical Hospital Mostar, 88000 Mostar, Bosnia and Herzegovina.
| | - Ivana Markovic
- Clinic of Neurology, Clinical Hospital Dubrava, 10000 Zagreb, Croatia
| | - Nada Bozina
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Silvio Basic
- Clinic of Neurology, Clinical Hospital Dubrava, 10000 Zagreb, Croatia
| |
Collapse
|
23
|
Gogou M, Pavlou E. Efficacy of antiepileptic drugs in the era of pharmacogenomics: A focus on childhood. Eur J Paediatr Neurol 2019; 23:674-684. [PMID: 31280948 DOI: 10.1016/j.ejpn.2019.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/23/2019] [Accepted: 06/24/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND In recent years advances in the field of pharmacogenomics have expanded the concept for more individualized treatments. Our aim is to provide literature data about the relationship between genetic polymorphisms and efficacy of antiepileptic drugs in children. METHODS Pubmed was used as the main medical database source. Only original research papers were considered. No year-of-publication restriction was placed. Quality of evidence was assessed according to American Academy of Neurology guidelines. RESULTS A total of 12 cross-sectional and case-control studies fulfilled our selection criteria. ABCB1 gene was associated with drug responsiveness in 2 out of 6 studies and ABCC2 gene in 1 out of 1 studies. SCN1A gene was also associated with seizure control in 4 out of 5 studies. Cytochrome P450 genes were found to significantly affect drug responsiveness in 2 out of 4 studies, while polymorphisms of uridinediphosphateglucuronosyltransferaseUGT2B7 gene predisposed to drug-resistance in 1 out of 2 studies. CONCLUSION Variability in genes coding for sodium channels, drug transporters and cytochrome P450 enzymes can have a significant impact on response to antiepileptic drugs. Larger prospective studies with better stratification of samples are needed to shed light on these associations.
Collapse
Affiliation(s)
- Maria Gogou
- 2nd Department of Pediatrics, University General Hospital AHEPA, Thessaloniki, Greece.
| | - Evangelos Pavlou
- 2nd Department of Pediatrics, University General Hospital AHEPA, Thessaloniki, Greece
| |
Collapse
|
24
|
Naimo GD, Guarnaccia M, Sprovieri T, Ungaro C, Conforti FL, Andò S, Cavallaro S. A Systems Biology Approach for Personalized Medicine in Refractory Epilepsy. Int J Mol Sci 2019; 20:E3717. [PMID: 31366017 PMCID: PMC6695675 DOI: 10.3390/ijms20153717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 02/01/2023] Open
Abstract
Epilepsy refers to a common chronic neurological disorder that affects all age groups. Unfortunately, antiepileptic drugs are ineffective in about one-third of patients. The complex interindividual variability influences the response to drug treatment rendering the therapeutic failure one of the most relevant problems in clinical practice also for increased hospitalizations and healthcare costs. Recent advances in the genetics and neurobiology of epilepsies are laying the groundwork for a new personalized medicine, focused on the reversal or avoidance of the pathophysiological effects of specific gene mutations. This could lead to a significant improvement in the efficacy and safety of treatments for epilepsy, targeting the biological mechanisms responsible for epilepsy in each individual. In this review article, we focus on the mechanism of the epilepsy pharmacoresistance and highlight the use of a systems biology approach for personalized medicine in refractory epilepsy.
Collapse
Affiliation(s)
- Giuseppina Daniela Naimo
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Teresa Sprovieri
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Carmine Ungaro
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
- Centro Sanitario, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy.
| |
Collapse
|
25
|
AL-Eitan LN, Al-Dalalah IM, Aljamal HA. Effects of GRM4, SCN2A and SCN3B polymorphisms on antiepileptic drugs responsiveness and epilepsy susceptibility. Saudi Pharm J 2019; 27:731-737. [PMID: 31297029 PMCID: PMC6598501 DOI: 10.1016/j.jsps.2019.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/19/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pharmacotherapy of epilepsy including antiepileptic drugs (AEDs) is one of the main treatment approaches. As a biological target, sodium channels (Nav channels) and glutamate receptor genes are playing a major role in the etiology and treatment of epilepsy. OBJECTIVE This study aims to investigate the genetic associations of certain genetic polymorphisms with increased risk of epilepsy susceptibility and variability in response to AEDs treatment in a Jordanian Arab population. METHOD A pharmacogenetics and case-control study on 296 unrelated epileptic Jordanian patients recruited from the pediatric neurology clinic at the Queen Rania Al-Abdullah Hospital (QRAH) in Amman, Jordan and 299 healthy individuals was conducted. Children up to 15 years old which receiving AEDs for at least three months were scanned for genetic association of 7 single nucleotide polymorphisms (SNPs) within three candidate genes (SCN2A, SCN3B and GRM4) with epilepsy susceptibility. RESULTS SCN2A rs2304016 (P = 0.04) and GRM4 rs2499697 (P = 0.031) were statistically significant with generalized epilepsy. Haplotype of CAACG GRM4 was genetically associated with epilepsy and partial epilepsy (P = 0.036; P = 0.024, respectively). This study also found that TGTAA genetic haplotype formed within GRM4 gene was associated with generalized epilepsy susceptibility (P = 0.006). While, no significant linkage of SCN3B rs3851100 to either disease susceptibility or drug responsiveness was found. CONCLUSION This study identified no significant associations of allelic or genotypic SNPs with the susceptibility of epilepsy and medication response with an exception of rs2304016 and rs2499697 SNPs that were associated with the generalized type of epilepsy among Jordanian population. Further studies are required in different populations to confirm our results and identify genetic factors that involved in susceptibility and treatment response.
Collapse
Affiliation(s)
- Laith N. AL-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Islam M. Al-Dalalah
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Hanan A. Aljamal
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
26
|
Yang X, Yan Y, Fang S, Zeng S, Ma H, Qian L, Chen X, Wei J, Gong Z, Xu Z. Comparison of oxcarbazepine efficacy and MHD concentrations relative to age and BMI: Associations among ABCB1, ABCC2, UGT2B7, and SCN2A polymorphisms. Medicine (Baltimore) 2019; 98:e14908. [PMID: 30896644 PMCID: PMC6708905 DOI: 10.1097/md.0000000000014908] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 02/05/2023] Open
Abstract
Genetic polymorphisms are related to the concentration and efficacy of oxcarbazepine (OXC). 10-Hydroxycarbazepine (MHD) is the major pharmacologically active metabolite of OXC, and it exerts an antiepileptic effect. This study aimed to explore the connection between the MHD concentration and genes such as ATP-binding cassette B1 (ABCB1), ATP-binding cassette C2 (ABCC2), UDP-glucuronosyltransferase-2B7 and sodium voltage-gated channel alpha subunit 2 (SCN2A), which participate in the antiepileptic function of OXC.Total 218 Chinese epileptic patients, were stratified into different groups according to their age, body mass index (BMI) and OXC efficacy. The genotypes of 7 single nucleotide polymorphisms in all subjects were determined by polymerase chain reaction-improved multiple ligase detection reaction assay. The MHD plasma concentration was detected by high-performance liquid chromatography and then standardized through dosage and body weight.In general, the ABCC2 rs2273697 mutant (P = .026) required a significantly higher standardized MHD concentration. For age groups, carriers of the ABCC2 rs2273697 mutant showed a significantly higher standardized MHD concentration than noncarriers in the juvenile group (P = .033). In terms of BMI, a significantly higher standardized MHD concentration was found in the ABCB1 rs2032582 mutant of the normal weight group (P = .026). The SCN2A rs17183814 mutant required a significantly higher OXC maintenance (P = .014) in the low-weight group, while lower OXC maintenance dose (P = .044) and higher standardized MHD concentration (P = .007) in the overweight group.The ABCC2 rs2273697 polymorphism was significantly associated with MHD plasma concentration in the whole patient cohort and in patients stratified by different ages, this finding provides potential theoretical guidance for the rational and safe clinical use of OXC.
Collapse
Affiliation(s)
- Xue Yang
- Department of Pharmacy
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders
| | - Yuanliang Yan
- Department of Pharmacy
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders
| | - Shu Fang
- Department of Pharmacy
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders
| | - Shuangshuang Zeng
- Department of Pharmacy
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders
| | | | - Long Qian
- Department of Pharmacy
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders
| | - Xi Chen
- Department of Pharmacy
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders
| | - Jie Wei
- Department of Pharmacy
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders
| | - Zhicheng Gong
- Department of Pharmacy
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, China
| |
Collapse
|
27
|
Nazish HR, Ali N, Ullah S. The possible effect of SCN1A and SCN2A genetic variants on carbamazepine response among Khyber Pakhtunkhwa epileptic patients, Pakistan. Ther Clin Risk Manag 2018; 14:2305-2313. [PMID: 30538486 PMCID: PMC6254658 DOI: 10.2147/tcrm.s180827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE SCN1A (3184 A>G) and SCN2A (56G>A) gene encodes α subunit of the neuronal voltage-gated sodium channel, which is a target for carbamazepine (CBZ). Recent studies have demonstrated that polymorphism of SCN1A (3184 A>G) and SCN2A (56G>A) was associated with use of CBZ. However, it has not been determined whether the polymorphism affects CBZ or other antiepileptic drug responsiveness. The aim of the study was to establish whether the SCN1A (3184 A>G) and SCN2A (56G>A) polymorphisms of the SCN1A and SCN2A genes affect responsiveness to CBZ. METHODS SCN1A (3184 A>G) and SCN2A (56G>A) gene polymorphisms were genotyped in 93 Khyber Pakhtunkhwa epileptic patients treated with CBZ. The association between CBZ responsiveness and the polymorphism was estimated by adjusting for clinical factors affecting the outcome of therapy. The number of seizure episodes was documented at baseline, and the therapy of each of the 93 patients was followed up. The plasma level of CBZ was determined using reverse-phase high-performance liquid chromatography. SCN1A and SCN2A genes were genotyped using RFLP. Data were analyzed using Graph Pad Prism 6. RESULTS Mean age of the patients was 18.6±9.3 at the 3rd month and 18.7±9.5 at the 6th month. The baseline dose of CBZ was 468±19.8 mg/d and titrated at the rate of 48±1.4 and 4.0±0.2 mg/d. The difference in plasma level of CBZ was significant (P=0.004) between 3rd and 6th month among different genotypes of SCN1A gene in nonresponder and responder patients. At the 3rd month of the therapy, the poor responders were more likely (P=0.003 and P=0.01) to have variants (3184AG and 3184GG) of SCN1A gene. Similarly, poor responsders were more likely (P=0.0007 and P=0.001) to have variant genotypes (56GA, 56AA) of SCN2A gene at the 3rd month of the therapy. CONCLUSION This study demonstrated a significant association between the SCN1A (3184 AG and GG) and SCN2A (56GA and AA) genotype with CBZ-nonresponsive epilepsy.
Collapse
Affiliation(s)
- Haleema Rehana Nazish
- Institute of Basic Medical Science, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan,
| | - Niaz Ali
- Institute of Basic Medical Science, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan,
| | - Shakir Ullah
- Institute of Basic Medical Science, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan,
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China,
| |
Collapse
|
28
|
Association of GABAA Receptor Gene with Epilepsy Syndromes. J Mol Neurosci 2018; 65:141-153. [PMID: 29785705 DOI: 10.1007/s12031-018-1081-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022]
Abstract
GABA has always been an inviting target in the etiology and treatment of epilepsy. The GABRA1, GABRG2, and GABRD genes provide instructions for making α1, ϒ2, and δ subunits of GABAA receptor protein respectively. GABAA is considered as one of the most important proteins and has found to play an important role in many neurological disorders. We explored the association of GABAA receptor gene mutation/SNPs in JME and LGS patients in Indian population. A total of 100 epilepsy syndrome patients (50 JME and 50 LGS) and 100 healthy control subjects were recruited and analyzed by AS-PCR and RFLP-PCR techniques. In our study, GABRA1 965 C > A mutation and 15 A > G polymorphism gene may play an important role in modulating the drug efficacy in LGS patients. The GABRA1 15 A > G polymorphism may also play an important role in the susceptibility of LGS and the inheritance of GG genotype of this polymorphism may provide an increased risk of development of LGS. The GABRG2 588 C > T polymorphism may decrease the duration of seizures in JME patients. The GABRD 659 G > A polymorphism may play an important role in the susceptibility of JME and LGS and this polymorphism may also increase the duration of postictal period in JME patients but may decrease the duration of seizure in LGS patients.
Collapse
|
29
|
|
30
|
Bertok S, Dolžan V, Goričar K, Podkrajšek KT, Battelino T, Rener-Primec Z. The association of SCN1A p.Thr1067Ala polymorphism with epilepsy risk and the response to antiepileptic drugs in Slovenian children and adolescents with epilepsy. Seizure 2017; 51:9-13. [PMID: 28753467 DOI: 10.1016/j.seizure.2017.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 12/23/2022] Open
Abstract
PURPOSE The voltage-gated sodium channel SCN1A mutations are involved in epileptogenesis and may be associated with different epilepsy phenotypes. The SCN1A channel is also an important antiepileptic drug (AED) target. The aim of this study was to investigate if the SCN1A c.3184A>G/p.Thr1067Ala polymorphism modifies the epilepsy risk or is associated with the responsiveness to AEDs in Slovenian children and adolescents with epilepsy. METHODS In total, 216 paediatric patients with epilepsy were consecutively recruited during routine outpatient follow-up visits between January 2011 and December 2014. All patients and 95 healthy controls, all Central European Caucasians, were genotyped for the SCN1A c.3184A>G/p.Thr1067Ala polymorphism. Clinical data on all patients were collected retrospectively. The response to AEDs was classified as seizure remission (a minimum of one year of seizure freedom before inclusion) or no remission. Univariate and multivariate logistic regression was used to determine the association of genotypes with binary outcomes. RESULTS 114 patients (52.8%) had achieved remission, while 102 (47.2%) had failed to do so. Carriers of at least one polymorphic SCN1A c.3184A>G/p.Thr1067Ala G allele tended to have a lower epilepsy risk (OR=0.38, 95% CI=0.18-0.79, P=0.010) and were significantly more likely to achieve remission (OR=2.00, 95% CI=1.16-3.46, P=0.013). Girls were less likely to achieve remission (P=0.055). Patients in remission tended to be older at first seizure in comparison to the group failing to achieve remission (OR=1.06, 95% CI=0.99-1.14, P=0.099), but this association did not reach statistical significance. CONCLUSION The polymorphic SCN1A c.3184A>G/p.Thr1067Ala G allele was associated with a lower risk of epilepsy and a higher remission rate in Slovenian children and adolescents with epilepsy.
Collapse
Affiliation(s)
- Sara Bertok
- Centre for Medical Genetics, University Medical Centre, University Children's Hospital, Ljubljana, Slovenia; Department of Paediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Katarina Trebušak Podkrajšek
- Centre for Medical Genetics, University Medical Centre, University Children's Hospital, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Paediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Slovenia
| | - Zvonka Rener-Primec
- Faculty of Medicine, University of Ljubljana, Slovenia; Department of Child, Adolescent and Developmental Neurology, Children's Hospital, University Medical Centre Ljubljana, Bohoričeva 20, 1000 Ljubljana, Slovenia.
| |
Collapse
|
31
|
Tang F, Hartz AMS, Bauer B. Drug-Resistant Epilepsy: Multiple Hypotheses, Few Answers. Front Neurol 2017; 8:301. [PMID: 28729850 PMCID: PMC5498483 DOI: 10.3389/fneur.2017.00301] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/12/2017] [Indexed: 01/16/2023] Open
Abstract
Epilepsy is a common neurological disorder that affects over 70 million people worldwide. Despite the recent introduction of new antiseizure drugs (ASDs), about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Early identification of patients who will become refractory to ASDs could help direct such patients to appropriate non-pharmacological treatment, but the complexity in the temporal patterns of epilepsy could make such identification difficult. The target hypothesis and transporter hypothesis are the most cited theories trying to explain refractory epilepsy, but neither theory alone fully explains the neurobiological basis of pharmacoresistance. This review summarizes evidence for and against several major theories, including the pharmacokinetic hypothesis, neural network hypothesis, intrinsic severity hypothesis, gene variant hypothesis, target hypothesis, and transporter hypothesis. The discussion is mainly focused on the transporter hypothesis, where clinical and experimental data are discussed on multidrug transporter overexpression, substrate profiles of ASDs, mechanism of transporter upregulation, polymorphisms of transporters, and the use of transporter inhibitors. Finally, future perspectives are presented for the improvement of current hypotheses and the development of treatment strategies as guided by the current understanding of refractory epilepsy.
Collapse
Affiliation(s)
- Fei Tang
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States.,Epilepsy Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
32
|
Angelopoulou C, Veletza S, Heliopoulos I, Vadikolias K, Tripsianis G, Stathi C, Piperidou C. Association of SCN1A gene polymorphism with antiepileptic drug responsiveness in the population of Thrace, Greece. Arch Med Sci 2017; 13:138-147. [PMID: 28144265 PMCID: PMC5206360 DOI: 10.5114/aoms.2016.59737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/13/2015] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The aim was to examine the influence of the SCN1A gene polymorphism IVS5-91 rs3812718 G>A on the response to antiepileptic drugs (AEDs) in monotherapy or polytherapy. MATERIAL AND METHODS Two hundred epilepsy patients and 200 healthy subjects were genotyped for SCN1A IVS5-91 rs3812718 G>A polymorphism using TaqMan assay. Patients were divided into drug-responsive and drug-resistant patients. The drug-responsive group was further studied, comparing monotherapy in maximum and minimum doses and monotherapy-responsive and -resistant groups. RESULTS There were no statistically significant differences in the allelic frequencies and genotype distributions between patients and controls (p = 0.178). The distribution of SCN1A IVS5-91 rs3812718 G>A genotypes was similar between drug-responsive and drug-resistant patients (p = 0.463). The differences in genotype distributions (A/A or A/G vs. G/G) between monotherapy-responsive and -resistant groups were statistically significant (p = 0.021). Within the monotherapy-responsive group, patients with the A/A or A/G genotype needed higher dose AEDs than patients with the G/G genotype (p = 0.032). The relative risk for generalized epilepsy due to A-containing genotypes was of marginal statistical significance when compared with the G/G genotype (p = 0.05). CONCLUSIONS Overall, our findings demonstrate an association of SCN1A IVS5-91 rs3812718 G>A polymorphism with AED responsiveness in monotherapy without evidence of an effect on drug-resistant epilepsy.
Collapse
Affiliation(s)
| | - Stavroula Veletza
- Department of Neurology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Heliopoulos
- Department of Neurology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Grigorios Tripsianis
- Department of Neurology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Chrysa Stathi
- Department of Neurology, Democritus University of Thrace, Alexandroupolis, Greece
| | | |
Collapse
|
33
|
Fricke-Galindo I, Ortega-Vázquez A, Monroy-Jaramillo N, Dorado P, Jung-Cook H, Peñas-Lledó E, LLerena A, López-López M. Allele and genotype frequencies of genes relevant to anti-epileptic drug therapy in Mexican-Mestizo healthy volunteers. Pharmacogenomics 2016; 17:1913-1930. [PMID: 27790929 DOI: 10.2217/pgs-2016-0078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM To determine allele and genotype frequencies of genes influencing anti-epileptic drug therapy in Mexican-Mestizo (MM) healthy volunteers, and to evaluate whether these are different from those reported for other populations. SUBJECTS & METHODS Thirty-nine variants of CYP3A5, EPHX1, NR1I2, HNF4A, UGT1A1, UGT2B7, ABCC2, RALBP1, SCN1A, SCN2A and GABRA1 were genotyped in 300 MM healthy volunteers. RESULTS All studied alleles were presented in MM, except for seven UGT1A1 variants (*6-8, 14, 15, 27 and 29). Allele and genotype frequencies showed interethnic variations when compared with European, Asian and African populations. Allele frequencies of greater than 30% were observed in ten genes. CONCLUSION The results presented regarding the frequencies and interethnic differences of these polymorphisms should be taken into account for future pharmacogenetic studies of anti-epileptic drugs in MM patients with epilepsy.
Collapse
Affiliation(s)
- Ingrid Fricke-Galindo
- Doctorate in Biological & Health Sciences, Metropolitan Autonomous University, Campus Xochimilco, Mexico City, Mexico
| | - Alberto Ortega-Vázquez
- Department of Biological Systems, Metropolitan Autonomous University, Campus Xochimilco, Mexico City, Mexico
| | - Nancy Monroy-Jaramillo
- Department of Neurogenetics & Molecular Biology, National Institute of Neurology & Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | - Pedro Dorado
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Servicio Extremeño de Salud, Badajoz, Spain
| | - Helgi Jung-Cook
- Department of Pharmacy, Chemistry Faculty, National Autonomous University of Mexico, Mexico City, Mexico.,Department of Neuropharmacology, National Institute of Neurology & Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | - Eva Peñas-Lledó
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Servicio Extremeño de Salud, Badajoz, Spain
| | - Adrián LLerena
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Servicio Extremeño de Salud, Badajoz, Spain
| | - Marisol López-López
- Department of Biological Systems, Metropolitan Autonomous University, Campus Xochimilco, Mexico City, Mexico
| |
Collapse
|
34
|
Abo El Fotoh WMM, Abd El Naby SAA, Habib MSED, ALrefai AA, Kasemy ZA. The potential implication of SCN1A and CYP3A5 genetic variants on antiepileptic drug resistance among Egyptian epileptic children. Seizure 2016; 41:75-80. [PMID: 27498208 DOI: 10.1016/j.seizure.2016.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/09/2016] [Accepted: 07/14/2016] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Despite the advances in the pharmacological treatment of epilepsy, pharmacoresistance still remains challenging. Understanding of the pharmacogenetic causes is critical to predict drug response hence providing a basis for personalized medications. Genetic alteration in activity of drug target and drug metabolizing proteins could explain the development of pharmacoresistant epilepsy. So the aim of this study was to explore whether SCN1A c.3184 A/G (rs2298771) and CYP3A5*3 (rs776746) polymorphisms could serve as genetic based biomarkers to predict pharmacoresistance among Egyptian epileptic children. METHODS Genotyping of SCN1A c.3184 A/G and CYP3A5*3 polymorphisms using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was performed in 65 healthy control subjects and 130 patients with epilepsy, of whom 50 were drug resistant and 80 were drug responsive. RESULTS There was a significant higher frequency of the AG genotype (p=0.001) and G allele (p=0.006) of SCN1A polymorphism in epileptic patients than in controls. Also their frequency was significantly higher in drug resistant patients in comparison with drug responders (p=0.005 and 0.054 respectively). No significant association between CYP3A5*3 polymorphism and drug-resistance was found. CONCLUSIONS Overall, results confirmed the claimed role of SCN1A c.3184 A/G polymorphism in epilepsy and moreover in development of pharmacoresistance among Egyptian epileptic children. CYP3A5*3 variants have no contributing effect on pharmacoresistance among Egyptian epileptic children.
Collapse
Affiliation(s)
| | | | | | - Abeer Ahmed ALrefai
- Lecturer of Medical Biochemistry, Faculty of Medicine, Menoufia University, Egypt.
| | - Zeinab A Kasemy
- Lecturer of Public Health and Community Medicine, Faculty of Medicine, Menoufia University, Egypt.
| |
Collapse
|
35
|
Saitoh M, Kobayashi K, Ohmori I, Tanaka Y, Tanaka K, Inoue T, Horino A, Ohmura K, Kumakura A, Takei Y, Hirabayashi S, Kajimoto M, Uchida T, Yamazaki S, Shiihara T, Kumagai T, Kasai M, Terashima H, Kubota M, Mizuguchi M. Cytokine-related and sodium channel polymorphism as candidate predisposing factors for childhood encephalopathy FIRES/AERRPS. J Neurol Sci 2016; 368:272-6. [PMID: 27538648 DOI: 10.1016/j.jns.2016.07.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 11/15/2022]
Abstract
Febrile infection-related epilepsy syndrome (FIRES), or acute encephalitis with refractory, repetitive partial seizures (AERRPS), is an epileptic encephalopathy beginning with fever-mediated seizures. The etiology remains unclear. To elucidate the genetic background of FIRES/AERRPS (hereafter FIRES), we recruited 19 Japanese patients, genotyped polymorphisms of the IL1B, IL6, IL10, TNFA, IL1RN, SCN1A and SCN2A genes, and compared their frequency between the patients and controls. For IL1RN, the frequency of a variable number of tandem repeat (VNTR) allele, RN2, was significantly higher in the patients than in controls (p=0.0067), and A allele at rs4251981 in 5' upstream of IL1RN with borderline significance (p=0.015). Haplotype containing RN2 was associated with an increased risk of FIRES (OR 3.88, 95%CI 1.40-10.8, p=0.0057). For SCN1A, no polymorphisms showed a significant association, whereas a missense mutation, R1575C, was found in two patients. For SCN2A, the minor allele frequency of G allele at rs1864885 was higher in patients with borderline significance (p=0.011). We demonstrated the association of IL1RN haplotype containing RN2 with FIRES, and showed a possible association of IL1RN rs4251981 G>A and SCN2A rs1864885 A>G, in Japanese patients. These preliminary findings suggest the involvement of multiple genetic factors in FIRES, which needs to be confirmed by future studies in a larger number of FIRES cases.
Collapse
Affiliation(s)
- M Saitoh
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Japan.
| | - K Kobayashi
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - I Ohmori
- Department of Special Needs Education, Graduate School of Education, Okayama University, Japan
| | - Y Tanaka
- Department of Pediatrics, Ohta Nishinouchi General Hospital, Japan
| | - K Tanaka
- Department of Pediatrics, Ohta Nishinouchi General Hospital, Japan
| | - T Inoue
- Department of Pediatrics, Child Medical Center, Osaka City General Hospital, Japan
| | - A Horino
- Department of Pediatrics, Child Medical Center, Osaka City General Hospital, Japan
| | - K Ohmura
- Department of Pediatrics, Kishiwada City Hospital, Japan
| | - A Kumakura
- Department of Pediatrics, Kitano Hospital, Japan
| | - Y Takei
- Division of Neurology, Nagano Childrens' Hospital, Japan
| | - S Hirabayashi
- Division of Neurology, Nagano Childrens' Hospital, Japan
| | - M Kajimoto
- Department of Pediatrics, Yamaguchi University, Japan
| | - T Uchida
- Department of Pediatrics, Sendai City, Hospital, Japan
| | - S Yamazaki
- Department of Pediatrics, Niigata City Hospital, Japan
| | - T Shiihara
- Department of Neurology, Gunma Children's Medical Center, Japan
| | - T Kumagai
- Division of Neurology, National Center for Child Health and Development, Japan
| | - M Kasai
- Division of Neurology, National Center for Child Health and Development, Japan
| | - H Terashima
- Division of Neurology, National Center for Child Health and Development, Japan
| | - M Kubota
- Division of Neurology, National Center for Child Health and Development, Japan
| | - M Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
36
|
Baghel R, Grover S, Kaur H, Jajodia A, Rawat C, Srivastava A, Kushwaha S, Agarwal R, Sharma S, Kukreti R. Evaluating the Role of Genetic Variants on first-line antiepileptic drug response in North India: Significance of SCN1A and GABRA1 Gene Variants in Phenytoin Monotherapy and its Serum Drug Levels. CNS Neurosci Ther 2016; 22:740-57. [PMID: 27245092 DOI: 10.1111/cns.12570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/18/2022] Open
Abstract
AIM The present study aimed to evaluate association of genetic variants on drug response and therapy optimization parameters in patients treated with first-line antiepileptic drugs (AEDs). Genetic variants from ion channels, their functionally related genes, and synaptic vesicle cycle (SVC) genes with a potential role in epilepsy pathophysiology were thus prioritized. METHODS A total of 12 genes from ion channels and related gene set and seven genes from SVC comprising 155 SNPs were genotyped and evaluated with drug response, dose levels, and drug levels in 408 patients with epilepsy. RESULTS Both GABRA1 and SCN1A variants showed haplotypic and diplotypic associations in response to phenytoin (PHT). Diplotype analysis of GABRA1 variants revealed association of rs12658835|rs7735530 (AG/AG) (P-valuecorrected = 0.034, OR = 3.75, 95% CI = 1.36-11.05) and rs12658835|rs7735530|rs7732641|rs2279020 (AGCA/AGCA) (P-valuecorrected = 0.035, OR = 2.48, 95% CI = 0.96-6.41) with recurrent seizures. SCN1A haplotype rs6432860|rs3812718 (AC: P-valuecorrected = 0.022, OR = 2.72, 95% CI = 1.39-5.35) and diplotype (AC/AC: P-valuecorrected = 0.034, OR = 6.42, 95% CI = 1.10-65.76) were further observed to be associated with recurrent seizures. With respect to therapy optimization parameters, we observed significantly lower dose-adjusted drug levels at maximum dose of PHT in patients carrying AC/AC diplotype (P-value = 0.021). CONCLUSION The results further substantiate the role of GABRA1 in PHT mode of action and contribution of SCN1A in response and therapy optimization with PHT monotherapy.
Collapse
Affiliation(s)
- Ruchi Baghel
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Sandeep Grover
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India.,Department of Paediatrics, Division of Pneumonology-Immunology, Charité University Medical Centre, Berlin, Germany
| | - Harpreet Kaur
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ajay Jajodia
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Chitra Rawat
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ankit Srivastava
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Suman Kushwaha
- Institute of Human Behavior & Allied Sciences (IHBAS), Delhi, India
| | - Rachna Agarwal
- Institute of Human Behavior & Allied Sciences (IHBAS), Delhi, India
| | - Sangeeta Sharma
- Institute of Human Behavior & Allied Sciences (IHBAS), Delhi, India
| | - Ritushree Kukreti
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| |
Collapse
|
37
|
Ma CL, Wu XY, Jiao Z, Hong Z, Wu ZY, Zhong MK. SCN1A, ABCC2 and UGT2B7 gene polymorphisms in association with individualized oxcarbazepine therapy. Pharmacogenomics 2016; 16:347-60. [PMID: 25823783 DOI: 10.2217/pgs.14.186] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM Associations between the effects of SCN1A, SCN2A, ABCC2 and UGT2B7 genetic polymorphisms and oxcarbazepine (OXC) maintenance doses in Han Chinese epileptic patients were investigated. PATIENTS & METHODS Genetic polymorphisms were detected in 184 epileptic patients receiving OXC monotherapy by high-resolution melting curve and TaqMan method. RESULTS Carriers of the SCN1A IVS5-91G>A, UGT2B7 c.802T>C and ABCC2 c.1249G>A variant alleles required significantly higher OXC maintenance doses than noncarriers (p < 0.05). Corresponding relative ln (concentration-dose ratios) values for SCN1A IVS5-91 variants differed by the genotypic order GG > GA > AA. CONCLUSION SCN1A, UGT2B7 and ABCC2 genetic polymorphisms are associated with OXC maintenance doses and may be useful for the personalization of OXC therapy in epileptic patients. Further studies are needed. Original submitted 6 June 2014; Revision submitted 5 September 2014.
Collapse
Affiliation(s)
- Chun-Lai Ma
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Wu Lu Mu Qi M Rd, Shanghai 200040, China
| | | | | | | | | | | |
Collapse
|
38
|
Namazi S, Azarpira N, Javidnia K, Emami M, Rahjoo R, Berahmand R, Borhani-Haghighi A. SCN1A and SCN1B gene polymorphisms and their association with plasma concentrations of carbamazepine and carbamazepine 10, 11 epoxide in Iranian epileptic patients. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:1215-20. [PMID: 26877851 PMCID: PMC4744361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE S From a genetic point of view, epilepsy is a polygenic multifactorial syndrome. The SCN1A and B genes belong to a family of genes that provide instructions for making sodium channels. Understanding the relevance of SCN1A and SCN1B gene polymorphisms to plasma concentration of carbamazepine (CBZ) and 'its active metabolite carbamazepine 10, 11 epoxide (CBZE), may shed more light on inter-individual variations in response to CBZ. MATERIALS AND METHODS In this cross-sectional study, genotype distribution and allele frequency of six non-synonymous exonic single nucleotide polymorphisms (SNPs) of the SCN1A and B genes were selected and determined using PCR-RFLP in 70 epileptic patients treated with CBZ for at least 6 months. The patients had no hepatic or renal diseases and received no medications known to have a major interaction with CBZ. Serum concentrations of CBZ and CBZE were measured using High-Performance Liquid Chromatography (HPLC). RESULTS The AA, AG and GG alleles of SCN1A were found in 23, 37 and 10 patients, respectively. There were no statistically significant differences in the mean (± standard deviation) of plasma concentrations of CBZ (P=0.8) and CBZE (P=0.1) among these 3 groups. Likewise, there was no statistically significant relationship between SCN1A polymorphisms and CBZ concentration/dose ratio (P=0.7). A significant association was found between CBZ plasma level and CBZ concentration/dose with CBZ daily dose. All patients had the same genotype of SCN1B gene(CC). and no statistical analysis was performed. CONCLUSION No significant association between SCN1A gene polymorphisms and plasma levels of CBZ and CBZE were found[u1].
Collapse
Affiliation(s)
- Soha Namazi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Department of Pharmacotherapy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Katayoon Javidnia
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Emami
- Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahimeh Rahjoo
- Department of Pharmacotherapy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Berahmand
- Department of Pharmacotherapy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afshin Borhani-Haghighi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Department of Neurology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran,Corresponding author: Afshin Borhani-Haghighi. Department of Neurology Motahhari Clinic Nemazee Square, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
39
|
Daci A, Beretta G, Vllasaliu D, Shala A, Govori V, Norata GD, Krasniqi S. Polymorphic Variants of SCN1A and EPHX1 Influence Plasma Carbamazepine Concentration, Metabolism and Pharmacoresistance in a Population of Kosovar Albanian Epileptic Patients. PLoS One 2015; 10:e0142408. [PMID: 26555147 PMCID: PMC4640545 DOI: 10.1371/journal.pone.0142408] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/20/2015] [Indexed: 12/24/2022] Open
Abstract
Aim The present study aimed to evaluate the effects of gene variants in key genes influencing pharmacokinetic and pharmacodynamic of carbamazepine (CBZ) on the response in patients with epilepsy. Materials & Methods Five SNPs in two candidate genes influencing CBZ transport and metabolism, namely ABCB1 or EPHX1, and CBZ response SCN1A (sodium channel) were genotyped in 145 epileptic patients treated with CBZ as monotherapy and 100 age and sex matched healthy controls. Plasma concentrations of CBZ, carbamazepine-10,11-epoxide (CBZE) and carbamazepine-10,11-trans dihydrodiol (CBZD) were determined by HPLC-UV-DAD and adjusted for CBZ dosage/kg of body weight. Results The presence of the SCN1A IVS5-91G>A variant allele is associated with increased epilepsy susceptibility. Furthermore, carriers of the SCN1A IVS5-91G>A variant or of EPHX1 c.337T>C variant presented significantly lower levels of plasma CBZ compared to carriers of the common alleles (0.71±0.28 vs 1.11±0.69 μg/mL per mg/Kg for SCN1A IVS5-91 AA vs GG and 0.76±0.16 vs 0.94±0.49 μg/mL per mg/Kg for EPHX1 c.337 CC vs TT; P<0.05 for both). Carriers of the EPHX1 c.416A>G showed a reduced microsomal epoxide hydrolase activity as reflected by a significantly decreased ratio of CBZD to CBZ (0.13±0.08 to 0.26±0.17, p<0.05) also of CBZD to CBZE (1.74±1.06 to 3.08±2.90; P<0.05) and CDRCBZD (0.13±0.08 vs 0.24±0.19 μg/mL per mg/Kg; P<0.05). ABCB1 3455C>T SNP and SCN1A 3148A>G variants were not associated with significant changes in CBZ pharmacokinetic. Patients resistant to CBZ treatment showed increased dosage of CBZ (657±285 vs 489±231 mg/day; P<0.001) but also increased plasma levels of CBZ (9.84±4.37 vs 7.41±3.43 μg/mL; P<0.001) compared to patients responsive to CBZ treatment. CBZ resistance was not related to any of the SNPs investigated. Conclusions The SCN1A IVS5-91G>A SNP is associated with susceptibility to epilepsy. SNPs in EPHX1 gene are influencing CBZ metabolism and disposition. CBZ plasma levels are not an indicator of resistance to the therapy.
Collapse
Affiliation(s)
- Armond Daci
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
- Institute of Pharmacology and Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giangiacomo Beretta
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Driton Vllasaliu
- University of Lincoln, School of Pharmacy, Joseph Banks Laboratories, Green Lane, Lincoln, LN6 7DL, United Kingdom
| | - Aida Shala
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Valbona Govori
- Neurology Clinic, University Clinical Center of Kosova, Prishtina, Kosovo
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- Center for the Study of Atherosclerosis, Ospedale Bassini, Cinisello Balsamo, Italy
| | - Shaip Krasniqi
- Institute of Pharmacology and Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
- * E-mail:
| |
Collapse
|
40
|
Incorporating Functional Information in Tests of Excess De Novo Mutational Load. Am J Hum Genet 2015; 97:272-83. [PMID: 26235986 DOI: 10.1016/j.ajhg.2015.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/26/2015] [Indexed: 12/11/2022] Open
Abstract
A number of recent studies have investigated the role of de novo mutations in various neurodevelopmental and neuropsychiatric disorders. These studies attempt to implicate causal genes by looking for an excess load of de novo mutations within those genes. Current statistical methods for assessing this excess are based on the implicit assumption that all qualifying mutations in a gene contribute equally to disease. However, it is well established that different mutations can have radically different effects on the ultimate protein product and, as a result, on disease risk. Here, we propose a method, fitDNM, that incorporates functional information in a test of excess de novo mutational load. Specifically, we derive score statistics from a retrospective likelihood that incorporates the probability of a mutation being damaging to gene function. We show that, under the null, the resulting test statistic is distributed as a weighted sum of Poisson random variables and we implement a saddlepoint approximation of this distribution to obtain accurate p values. Using simulation, we have shown that our method outperforms current methods in terms of statistical power while maintaining validity. We have applied this approach to four de novo mutation datasets of neurodevelopmental and neuropsychiatric disorders: autism spectrum disorder, epileptic encephalopathy, schizophrenia, and severe intellectual disability. Our approach also implicates genes that have been implicated by existing methods. Furthermore, our approach provides strong statistical evidence supporting two potentially causal genes: SUV420H1 in autism spectrum disorder and TRIO in a combined analysis of the four neurodevelopmental and neuropsychiatric disorders investigated here.
Collapse
|
41
|
From focal epilepsy to Dravet syndrome--Heterogeneity of the phenotype due to SCN1A mutations of the p.Arg1596 amino acid residue in the Nav1.1 subunit. Neurol Neurochir Pol 2015; 49:258-66. [PMID: 26188943 DOI: 10.1016/j.pjnns.2015.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/28/2015] [Accepted: 06/11/2015] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The aim of this study was to analyze the intra-/interfamilial phenotypic heterogeneity due to variants at the highly evolutionary conservative p.Arg1596 residue in the Nav1.1 subunit. MATERIALS/PARTICIPANTS Among patients referred for analysis of the SCN1A gene one recurrent, heritable mutation was found in families enrolled into the study. Probands from those families even clinically diagnosed with atypical Dravet syndrome (DS), generalized epilepsy with febrile seizures plus (GEFS+), and focal epilepsy, had heterozygous p.Arg1596 His/Cys missense substitutions, c.4787G>T and c.4786C>T in the SCN1A gene. METHOD Full clinical evaluation, including cognitive development, neurological examination, EEGs, MRI was performed in probands and affected family members in developmental age. The whole SCN1A gene sequencing was performed for all probands. The exon 25, where the identified missense substitutions are localized, was directly analyzed for the other family members. RESULTS Mutation of the SCN1A p.1596Arg was identified in three families, in one case substitution p.Arg1596Cys and in two cases p.Arg1596His. Both mutations were previously described as pathogenic and causative for DS, GEFS+ and focal epilepsy. Spectrum of phenotypes among presented families with p.Arg1596 mutations shows heterogeneity ranged from asymptomatic cases, through FS and FS+ to GEFS+/Panayiotopoulos syndrome and epilepsies with and without febrile seizures, and epileptic encephalopathy such as DS. Phenotypes differ among patients displaying both focal and generalized epilepsies. Some patients demonstrated additionally Asperger syndrome and ataxia. CONCLUSION Clinical picture heterogeneity of the patients carrying mutation of the same residue indicates the involvement of the other factors influencing the SCN1A gene mutations' penetrance.
Collapse
|
42
|
Ma CL, Wu XY, Zheng J, Wu ZY, Hong Z, Zhong MK. Association of SCN1A, SCN2A and ABCC2 gene polymorphisms with the response to antiepileptic drugs in Chinese Han patients with epilepsy. Pharmacogenomics 2015; 15:1323-36. [PMID: 25155934 DOI: 10.2217/pgs.14.89] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM The purpose of this study was to investigate the potential impact of SCN1A, SCN2A and ABCC2 gene polymorphisms on the response to antiepileptic drugs in Chinese Han patients with epilepsy. PATIENTS & METHODS Genetic polymorphisms in the candidate genes were detected in 453 Chinese epileptic patients by high-resolution melting curve and TaqMan methods. RESULTS The SCN1A IVS5-91G>A AA genotype and the ABCC2 c.1249G>A GA genotype were significantly associated with carbamazepine/oxcarbamazepine (CBZ/OXC)-resistant epilepsy (p =0.002 and p = 0.036, respectively). The frequencies of haplotypes AA (SCN1A gene) and AC (ABCC2 gene) in drug-resistant patients were significantly higher than those in responsive patients (p = 0.002 and p = 0.005, respectively). CONCLUSION This study suggested that SCN1A and ABCC2 polymorphisms may be associated with the response to CBZ/OXC in the Chinese Han population, indicating that they could serve as predictors of drug response. Original submitted 29 January 2014; Revision submitted 30 May 2014.
Collapse
Affiliation(s)
- Chun-Lai Ma
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Wu Lu Mu Qi M Rd, Shanghai, PR China, 200040
| | | | | | | | | | | |
Collapse
|
43
|
Hung CC, Chen PL, Huang WM, Tai JJ, Hsieh TJ, Ding ST, Hsieh YW, Liou HH. Gene-wide tagging study of the effects of common genetic polymorphisms in the α subunits of the GABA(A) receptor on epilepsy treatment response. Pharmacogenomics 2014; 14:1849-56. [PMID: 24236484 DOI: 10.2217/pgs.13.158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM We aimed to identify the effect of SNPs in the α-subunits of GABAA receptors on epilepsy treatment outcomes by using a gene-wide tagging method. MATERIALS & METHODS There were 720 epileptic patients included in the present study. A total of 136 tagging SNPs in GABRA1, GABRA2, GABRA3, GABRA4, GABRA5 and GABRA6 were genotyped by Illumina(®)GoldenGate(®) Genotyping platform. Clinical information, such as prescribed antiepileptic drugs, height, weight, epilepsy syndrome classification, etiology, number of attacks, renal function and liver function were collected. The associations between SNPs and epilepsy treatment outcomes were analyzed using SAS(®) version 9.1.3. Both multivariate logistic regression and multifactor dimensionality reduction analyses were performed. RESULTS The results of single gene effects did not remain significant after Bonferroni's corrections. Further multivariate logistic regression and multifactor dimensionality reduction analyses of interactions between these genes showed that under adjustment of clinical factors, the epilepsy treatment outcomes were significantly associated with the genotype combinations of GABRA1 rs6883877, GABRA2 rs511310 and GABRA3 rs4828696 (p < 0.0001; adjusted r(2) = 0.149). CONCLUSION Our results indicated that genetic variants in the α subunits of GABA(A) receptors may interactively affect the treatment responses of antiepileptic drugs. Further replication using an independent sample collection would be essential to confirm our findings.
Collapse
Affiliation(s)
- Chin-Chuan Hung
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan and Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Haerian BS, Baum L, Kwan P, Tan HJ, Raymond AA, Mohamed Z. SCN1A, SCN2A and SCN3A gene polymorphisms and responsiveness to antiepileptic drugs: a multicenter cohort study and meta-analysis. Pharmacogenomics 2014; 14:1153-66. [PMID: 23859570 DOI: 10.2217/pgs.13.104] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Approximately a third of newly diagnosed epilepsy patients do not respond to antiepileptic drugs (AEDs). Evidence suggests that low penetrance variants in the genes of drug targets such as voltage-gated sodium channels may be involved in drug responsiveness. To examine this hypothesis, we compared data from two epilepsy cohorts from Malaysia and Hong Kong, as well as a meta-analysis from published data. MATERIALS & METHODS Genotype analysis of 39 polymorphisms located in the SCN1A, SCN2A and SCN3A genes was performed on 1504 epilepsy patients from Malaysia and Hong Kong who were receiving AEDs. Meta-analysis was performed for pooled data of SCN1A rs3812718 and rs2298771, and SCN2A rs17183814 polymorphisms. RESULTS Our data from the Hong Kong and Malaysia cohorts showed no significant allele, genotype and haplotype association of polymorphisms in the SCN1A, SCN2A, and SCN3A genes with drug responsiveness in epilepsy. This finding was supported by a meta-analysis for SCN1A rs3812718 and rs2298771, and for SCN2A rs17183814 polymorphisms. CONCLUSION Our comprehensive study suggests that common polymorphisms in SCN1A, SCN2A and SCN3A do not play major roles in influencing response to AEDs. Original submitted 11 March 2013; Revision submitted 31 May 2013.
Collapse
Affiliation(s)
- Batoul Sadat Haerian
- Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | | | | | |
Collapse
|
45
|
Jaramillo NM, Galindo IF, Vázquez AO, Cook HJ, LLerena A, López ML. Pharmacogenetic potential biomarkers for carbamazepine adverse drug reactions and clinical response. ACTA ACUST UNITED AC 2014; 29:67-79. [DOI: 10.1515/dmdi-2013-0046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/18/2013] [Indexed: 11/15/2022]
|
46
|
SCN1A variations and response to multiple antiepileptic drugs. THE PHARMACOGENOMICS JOURNAL 2013; 14:385-9. [PMID: 24342961 DOI: 10.1038/tpj.2013.43] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/04/2013] [Accepted: 11/06/2013] [Indexed: 11/08/2022]
Abstract
In the current study, we have used the haplotype-tagging single-nucleotide polymorphisms (SNPs) to determine associations between genetic variants in SCN1A and treatment response in 519 Caucasian patients with known response status for epilepsy treated with antiepileptic drugs (AEDs) with sodium channel blocking effects. Nine SNPs within SCN1A were genotyped in this cohort. The only association observed was for rs10188577. A greater proportion of drug-resistant patients were heterozygous compared with drug responsive patients (48.3% vs 35.4%, P=0.014). After correction for potential confounding factors, the association for rs10188577 was only marginally significant (P=0.049). In light of our findings, it seems unlikely that rs10188577 could be a major determinant of response to AEDs. However, looking at the influence of rs10188577 on the expressed quantitative trait association patterns within the immediate vicinity of SCN1A, we found significant associations with neighbouring sodium channel genes, SCN7A and SCN9A (P<0.025), which warrants further studies.
Collapse
|
47
|
Xiang J, Jiang Y. Regulation of Cu-Zn superoxide dismutase on SCN2A in SH-SY5Y cells as a potential therapy for temporal lobe epilepsy. Mol Med Rep 2013; 9:16-22. [PMID: 24220630 PMCID: PMC3868489 DOI: 10.3892/mmr.2013.1790] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/10/2013] [Indexed: 01/15/2023] Open
Abstract
In order to evaluate SCN2A as a candidate gene for epileptic susceptibility and the use of a Cu-Zn superoxide dismutase (SOD) supplement as a potential therapy for epilepsy, SCN2A expression in the cortex and the correlation between SCN2A and Cu-Zn SOD in SH-SY5Y cells were examined. SCN2A expression and the concentration of Cu-Zn SOD in the cerebral cortexes of patients with primary and secondary temporal lobe epilepsy and normal brain cortex tissues were detected. By transfecting SH-SY5Y cells, the expression of SCN2A and the concentration of Cu-Zn SOD was analyzed and the single-cell patch clamp technique was employed in order to investigate the changes in sodium ion levels following SCN2A knockdown. SCN2A level restoration was also investigated with a Cu-Zn SOD supplement using an expression study and evaluated the changes in sodium ion levels following SCN2A knockdown. SCN2A expression and Cu-Zn SOD concentration decreased in the epileptic cerebral cortex. Following SCN2A knockdown, the concentration of Cu-Zn SOD declined and the si-SCN2A vector group showed a repeated discharge. Furthermore, the Cu-Zn SOD concentration was capable of restoring the expression of SCN2A following SCN2A knockdown in SH-SY5Y cells and the overexpression of Cu-Zn SOD prevented the repeated discharge caused by si-SCN2A. The results indicated that there is a low expression of SCN2A and Cu-Zn SOD in the epileptic cerebral cortex and provided novel insights into potential therapies for temporal lobe epilepsy.
Collapse
Affiliation(s)
- Jun Xiang
- Department of Neurosurgery, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | | |
Collapse
|
48
|
Gender-specific profiling in SCN1A polymorphisms and time-to-recurrence in patients with stage II/III colorectal cancer treated with adjuvant 5-fluoruracil chemotherapy. THE PHARMACOGENOMICS JOURNAL 2013; 14:135-41. [PMID: 23752739 DOI: 10.1038/tpj.2013.21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/13/2013] [Accepted: 04/26/2013] [Indexed: 02/06/2023]
Abstract
This study was designed to analyze the gender-related association between SCN1A polymorphisms (voltage-gated sodium channels; α-subunit) and time-to-recurrence (TTR) in patients with colorectal cancer (CRC) treated with 5-fluoruracil (5-FU)-based adjuvant chemotherapy. We enrolled from a prospective database patients with stage II and III CRC treated with adjuvant 5-FU-based chemotherapy. Genotypes for SCN1A rs3812718 and rs229877 were determined by direct DNA sequencing. One hundred twenty-seven males and 107 females were included in the study. In the univariate and multivariate analysis, the shortest TTR was associated with female patients carrying the rs3812718-TT genotype (hazard ratio (HR): 2.26 (95% confidence interval (CI): 0.89, 5.70), P=0.039) but with male patients carrying the rs3812718-CC genotype (HR: 0.49 (95% CI: 0.18, 1.38), P=0.048). For rs229877 the CT genotype was associated with a trend for shorter TTR in both gender populations. The study validated gender-dependent association between genomic SCN1A rs3812718 polymorphism and TTR in CRC patients treated with adjuvant 5-FU-based chemotherapy. This study confirms that voltage-gated Na+ channels may be a potential therapeutic target and a useful predictive biomarker before 5-FU infusion.
Collapse
|
49
|
Hung CC, Huang HC, Gao YH, Chang WL, Ho JL, Chiou MH, Hsieh YW, Liou HH. Effects of polymorphisms in six candidate genes on phenytoin maintenance therapy in Han Chinese patients. Pharmacogenomics 2013; 13:1339-49. [PMID: 22966884 DOI: 10.2217/pgs.12.117] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AIM The present study aimed to investigate the associations between variants in pharmacokinetic- and pharmacodynamic-related genes with the dosages, concentrations and concentration-dose ratios (CDRs) of phenytoin (PHT). METHODS & RESULTS Eleven genetic polymorphisms in the six candidate genes were detected in 269 epileptic patients under maintenance PHT monotherapy by real-time PCR and PCR-RFLP. Results of a bivariate analysis demonstrated that among tested polymorphisms, carriers of the variant CYP2C9*3 tended to require significantly lower maintenance PHT dosages than wild-type carriers (p < 0.0001); on the other hand, carriers of the variants CYP2C9*3 or CYP2C19*3 revealed significantly higher CDRs than wild-type carriers (p < 0.004). In a further multivariate analysis, variants in SCN1A, CYP2C9, CYP2C19 and ABCB1 genes were significantly associated with CDRs of PHT under adjustment of age, gender and epilepsy classifications (adjusted r(2) = 20.07%). CONCLUSION The results of present study indicated that polygenic analysis may provide useful information in PHT therapy optimization.
Collapse
Affiliation(s)
- Chin-Chuan Hung
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sodium Channel Gene Mutations in Children with GEFS+ and Dravet Syndrome: A Cross Sectional Study. IRANIAN JOURNAL OF CHILD NEUROLOGY 2013; 7:31-6. [PMID: 24665294 PMCID: PMC3943035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 06/05/2012] [Accepted: 06/25/2012] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Dravet syndrome or severe myoclonic epilepsy of infancy (SMEI) is a baleful epileptic encephalopathy that begins in the first year of life. This syndrome specified by febrile seizures followed by intractable epilepsy, disturbed psychomotor development, and ataxia. Clinical similarities between Dravet syndrome and generalized epilepsy with febrile seizure plus (GEFS+) includes occurrence of febrile seizures and joint molecular genetic etiology. Shared features of these two diseases support the idea that these two disorders represent a severity spectrum of the same illness. Nowadays, more than 60 heterozygous pattern SCN1A mutations, which many are de novo mutations, have been detected in Dravet syndrome. MATERIALS & METHODS From May 2008 to August 2012, 35 patients who referred to Pediatric Neurology Clinic of Mofid Children Hospital in Tehran were enrolled in this study. Entrance criterion of this study was having equal or more than four criteria for Dravet syndrome. We compared clinical features and genetic findings of the patients diagnosed as Dravet syndrome or GEFS+. RESULTS 35 patients (15 girls and 20 boys) underwent genetic testing. Mean age of them was 7.7 years (a range of 13 months to 15 years). Three criteria that were best evident in SCN1A mutation positive patients are as follows: "Normal development before the onset of seizures, onset of seizure before age of one year, and psychomotor retardation after onset of seizures. Our genetic testing showed that 1 of 3 (33.3%) patients with clinical Dravet syndrome and 3 of 20 (15%) patients that diagnosed as GEFS+, had SCN1A mutation. CONCLUSION In this study, normal development before seizure onset, seizures beginning before age of one year and psychomotor retardation after age of two years are the most significant criteria in SCN1A mutation positive patients.
Collapse
|