1
|
Klein C, Ramminger I, Bai S, Steinberg T, Tomakidi P. Impairment of Intermediate Filament Expression Reveals Impact on Cell Functions Independent from Keratinocyte Transformation. Cells 2024; 13:1960. [PMID: 39682709 DOI: 10.3390/cells13231960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Although cytoplasmic intermediate filaments (cIFs) are essential for cell physiology, the molecular and cell functional consequences of cIF disturbances are poorly understood. Identifying defaults in cell function-controlled tissue homeostasis and understanding the interrelationship between specific cIFs and distinct cell functions remain key challenges. Using an RNAi-based mechanistic approach, we connected the impairment of cell-inherent cIFs with molecular and cell functional consequences, such as proliferation and differentiation. To investigate cIF disruption consequences in the oral epithelium, different cell transformation stages, originating from alcohol-treated oral gingival keratinocytes, were used. We found that impairment of keratin (KRT) KRT5, KRT14 and vimentin (VIM) affects proliferation and differentiation, and modulates the chromatin status. Furthermore, cIF impairment reduces the expression of nuclear integrity participant lamin B1 and the terminal keratinocyte differentiation marker involucrin (IVL). Conversely, impairment of IVL reduces cIF expression levels, functionally suggesting a regulatory interaction between cIFs and IVL. The findings demonstrate that the impairment of cIFs leads to imbalances in proliferation and differentiation, both of which are essential for tissue homeostasis. Thus, targeted impairment of cIFs appears promising to investigate the functional role of cIFs on cell-dependent tissue physiology at the molecular level and identifies putative interactions of cIFs with epithelial differentiation.
Collapse
Affiliation(s)
- Charlotte Klein
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Imke Ramminger
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Shuoqiu Bai
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| |
Collapse
|
2
|
Andrei D, Bremer J, Kramer D, Nijenhuis AM, van der Molen M, Diercks GFH, van den Akker PC, Vermeer MCSC, van der Meer P, Bolling MC. Epidermal growth factor receptor inhibition leads to cellular phenotype correction of DSP-mutated keratinocytes. Exp Dermatol 2024; 33:e15046. [PMID: 38509711 DOI: 10.1111/exd.15046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2023] [Revised: 01/27/2024] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
Desmoplakin (DSP) is a desmosomal component expressed in skin and heart, essential for desmosome stability and intermediate filament connection. Pathogenic variants in the DSP gene encoding DSP, lead to heterogeneous skin, adnexa and heart-related phenotypes, including skin fragility, woolly hair (WH), palmoplantar keratoderma (PPK) and arrhythmogenic/dilated cardiomyopathy (ACM/DCM). The ambiguity of computer-based prediction analysis of pathogenicity and effect of DSP variants, indicates a necessity for functional analysis. Here, we report a heterozygous DSP variant that was not previously described, NM_004415.4:c.3337C>T (NM_004415.4(NP_004406.2):p.(Arg1113*)) in a patient with PPK, WH and ACM. RNA and protein analysis revealed ~50% reduction of DSP mRNA and protein expression. Patient's keratinocytes showed fragile cell-cell connections and perinuclear retracted intermediate filaments. Epidermal growth factor receptor (EGFR) is a transmembrane protein expressed in the basal epidermal layer involved in proliferation and differentiation, processes that are disrupted in the development of PPK, and in the regulation of the desmosome. In skin of the abovementioned patient, evident EGFR upregulation was observed. EGFR inhibition in patient's keratinocytes strongly increased DSP expression at the plasma membrane, improved intermediate filament connection with the membrane edges and reduced the cell-cell fragility. This cell phenotypic recovery was due to a translocation of DSP to the plasma membrane together with an increased number of desmosomes. These results indicate a therapeutic potential of EGFR inhibitors for disorders caused by DSP haploinsufficiency.
Collapse
Affiliation(s)
- Daniela Andrei
- Department of Dermatology, Expertise Center for Blistering Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jeroen Bremer
- Department of Dermatology, Expertise Center for Blistering Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Duco Kramer
- Department of Dermatology, Expertise Center for Blistering Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albertine M Nijenhuis
- Department of Dermatology, Expertise Center for Blistering Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marije van der Molen
- Department of Dermatology, Expertise Center for Blistering Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gilles F H Diercks
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter C van den Akker
- Department of Genetics, Expertise Center for Blistering Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mathilde C S C Vermeer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maria C Bolling
- Department of Dermatology, Expertise Center for Blistering Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Towards a Better Understanding of Genotype-Phenotype Correlations and Therapeutic Targets for Cardiocutaneous Genes: The Importance of Functional Studies above Prediction. Int J Mol Sci 2022; 23:ijms231810765. [PMID: 36142674 PMCID: PMC9503274 DOI: 10.3390/ijms231810765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Genetic variants in gene-encoding proteins involved in cell−cell connecting structures, such as desmosomes and gap junctions, may cause a skin and/or cardiac phenotype, of which the combination is called cardiocutaneous syndrome. The cardiac phenotype is characterized by cardiomyopathy and/or arrhythmias, while the skin particularly displays phenotypes such as keratoderma, hair abnormalities and skin fragility. The reported variants associated with cardiocutaneous syndrome, in genes DSP, JUP, DSC2, KLHL24, GJA1, are classified by interpretation guidelines from the American College of Medical Genetics and Genomics. The genotype−phenotype correlation, however, remains poorly understood. By providing an overview of variants that are assessed for a functional protein pathology, we show that this number (n = 115) is low compared to the number of variants that are assessed by in silico algorithms (>5000). As expected, there is a mismatch between the prediction of variant pathogenicity and the prediction of the functional effect compared to the real functional evidence. Aiding to improve genotype−phenotype correlations, we separate variants into ‘protein reducing’ or ‘altered protein’ variants and provide general conclusions about the skin and heart phenotype involved. We conclude by stipulating that adequate prognoses can only be given, and targeted therapies can only be designed, upon full knowledge of the protein pathology through functional investigation.
Collapse
|
4
|
Vermeer MCSC, Andrei D, Kramer D, Nijenhuis AM, Hoedemaekers YM, Westers H, Jongbloed JDH, Pas HH, van den Berg MP, Silljé HHW, van der Meer P, Bolling MC. Functional investigation of two simultaneous or separately segregating DSP variants within a single family support the theory of a dose-dependent disease severity. Exp Dermatol 2022; 31:970-979. [PMID: 35325485 PMCID: PMC9322008 DOI: 10.1111/exd.14571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2021] [Revised: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 11/30/2022]
Abstract
Desmoplakin (DP) is an important component of desmosomes, essential in cell–cell connecting structures in stress‐bearing tissues. Over the years, many hundreds of pathogenic variants in DSP have been associated with different cutaneous and cardiac phenotypes or a combination, known as a cardiocutaneous syndrome. Of less than 5% of the reported DSP variants, the effect on the protein has been investigated. Here, we describe and have performed RNA, protein and tissue analysis in a large family where DSPc.273+5G>A/c.6687delA segregated with palmoplantar keratoderma (PPK), woolly hair and lethal cardiomyopathy, while DSPWT/c.6687delA segregated with PPK and milder cardiomyopathy. hiPSC‐derived cardiomyocytes and primary keratinocytes from carriers were obtained for analysis. Unlike the previously reported nonsense variants in the last exon of DSP that bypassed the nonsense‐mediated mRNA surveillance system leading to protein truncation, variant c.6687delA was shown to cause the loss of protein expression. Patients carrying both variants and having a considerably more severe phenotype were shown to have 70% DP protein reduction, while patients carrying only c.6687delA had 50% protein reduction and a milder phenotype. The analysis of RNA from patient cells did not show any splicing effect of the c.273+5G>A variant. However, a minigene splicing assay clearly showed alternative spliced transcripts originating from this variant. This study shows the importance of RNA and protein analyses to pinpoint the exact effect of DSP variants instead of solely relying on predictions. In addition, the particular pattern of inheritance, with simultaneous or separately segregating DSP variants within the same family, strongly supports the theory of a dose‐dependent disease severity.
Collapse
Affiliation(s)
- Mathilde C S C Vermeer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Daniela Andrei
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Duco Kramer
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albertine M Nijenhuis
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yvonne M Hoedemaekers
- Department of Genetics, Radboud University Nijmegen, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helga Westers
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan D H Jongbloed
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hendri H Pas
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten P van den Berg
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maria C Bolling
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Abstract
Keratin intermediate filaments form dynamic polymer networks that organize in specific ways dependent on the cell type, the stage of the cell cycle, and the state of the cell. In differentiated cells of the epidermis, they are organized by desmosomes, cell–cell adhesion complexes that provide essential mechanical integrity to this tissue. Despite this, we know little about how keratin organization is controlled and whether desmosomes locally regulate keratin dynamics in addition to binding preassembled filaments. Ndel1 is a desmosome-associated protein in the differentiated epidermis, though its function at these structures has not been examined. Here, we show that Ndel1 binds directly to keratin subunits through a motif conserved in all intermediate filament proteins. Further, Ndel1 was necessary for robust desmosome–keratin association and sufficient to reorganize keratins at distinct cellular sites. Lis1, a Ndel1 binding protein, was required for desmosomal localization of Ndel1, but not for its effects on keratin filaments. Finally, we use mouse genetics to demonstrate that loss of Ndel1 results in desmosome defects in the epidermis. Our data thus identify Ndel1 as a desmosome-associated protein that promotes local assembly/reorganization of keratin filaments and is essential for robust desmosome formation.
Collapse
Affiliation(s)
- Yong-Bae Kim
- Dept. of Cell Biology, Duke University Medical Center, Durham, NC 27710; USA.,Present Address - Institute of Immuno-Metabolic Disorders, ReCerise Therapeutics Inc., Seoul 07573, Republic of Korea
| | - Daniel Hlavaty
- Dept. of Cell Biology, Duke University Medical Center, Durham, NC 27710; USA.,Dept. of Dermatology, Duke University Medical Center, Durham, NC 27710; USA
| | - Jeff Maycock
- Dept. of Cell Biology, Duke University Medical Center, Durham, NC 27710; USA
| | - Terry Lechler
- Dept. of Cell Biology, Duke University Medical Center, Durham, NC 27710; USA.,Dept. of Dermatology, Duke University Medical Center, Durham, NC 27710; USA
| |
Collapse
|
6
|
Politiek K, Loman L, Pas HH, Diercks GFH, Lemmink HH, Jan SZ, van den Akker PC, Bolling MC, Schuttelaar MLA. Hyperkeratotic hand eczema: Eczema or not? Contact Dermatitis 2020; 83:196-205. [PMID: 32333380 PMCID: PMC7496397 DOI: 10.1111/cod.13572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/26/2019] [Revised: 03/25/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Background Hyperkeratotic hand eczema (HHE) is a typical clinical hand eczema subtype with a largely unknown pathophysiology. Objective To investigate histopathology, expression of keratins (K), epidermal barrier proteins, and adhesion molecules in HHE. Methods Palmar skin biopsies (lesional and perilesional) were obtained from seven HHE patients and two healthy controls. Moreover, 135 candidate genes associated with palmoplantar keratoderma were screened for mutations. Results Immunofluorescence staining showed a significant reduction of K9 and K14 in lesional skin. Upregulation was found for K5, K6, K16, and K17 in lesional skin compared with perilesional and healthy palmar skin. Further, upregulation of involucrin and alternating loricrin staining, both in an extracellular staining pattern, was found. Filaggrin expression was similar in lesional, perilesional, and control skin. No monogenetic mutations were found. Conclusion Currently, the phenotype of HHE is included in the hand eczema classification system; however, it can be argued whether this is justified. The evident expression of filaggrin and involucrin in lesional skin does not support a pathogenesis of atopic eczema. The upregulation of K6, K16, and K17 and reduction of K9 and K14 might contribute to the underlying pathogenesis. Unfortunately, comparison with hand eczema studies is not possible yet, because similar protein expression studies are lacking.
Collapse
Affiliation(s)
- Klaziena Politiek
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Laura Loman
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hendri H Pas
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gilles F H Diercks
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Henny H Lemmink
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Sabrina Z Jan
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter C van den Akker
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Maria C Bolling
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marie L A Schuttelaar
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Kaplan N, Wang J, Wray B, Patel P, Yang W, Peng H, Lavker RM. Single-Cell RNA Transcriptome Helps Define the Limbal/Corneal Epithelial Stem/Early Transit Amplifying Cells and How Autophagy Affects This Population. Invest Ophthalmol Vis Sci 2019; 60:3570-3583. [PMID: 31419300 PMCID: PMC6701873 DOI: 10.1167/iovs.19-27656] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Single-cell RNA-sequencing (scRNA-seq) was used to interrogate the relatively rare stem (SC) and early transit amplifying (TA) cell populations in limbal/corneal epithelia from wild-type and autophagy-compromised mice. Methods We conducted scRNA-seq on ocular anterior segmental tissue from wild-type and beclin 1–deficient (beclin1+/−) mice, using a 10X Gemomics pipeline. Cell populations were distinguished by t-distributed stochastic neighbor embedding. Seurat analysis was conducted to compare gene expression profiles between these two groups of mice. Differential protein expression patterns were validated by immunofluorescence staining and immunoblotting. Results Unbiased clustering detected 10 distinct populations: three clusters of mesenchymal and seven clusters of epithelial cells, based on their unique molecular signatures. A discrete group of mesenchymal cells expressed genes associated with corneal stromal SCs. We identified three limbal/corneal epithelial cell subpopulations designated as stem/early TA, mature TA, and differentiated corneal epithelial cells. Thioredoxin-interacting protein and PDZ-binding kinase (PBK) were identified as novel regulators of stem/early TA cell quiescence. PBK arrested corneal epithelial cells in G2/M phase of the cell cycle. Beclin1+/− mice displayed a decrease in proliferation-associated (Ki67, Lrig1) and stress-response (H2ax) genes. The most increased gene in beclin1+/− mice was transcription factor ATF3, which negatively regulates limbal epithelial cell proliferation. Conclusions Establishment of a comprehensive atlas of genes expressed by stromal and epithelial cells from limbus and cornea forms the foundation for unraveling regulatory networks among these distinct tissues. Similarly, scRNA-seq profiling of the anterior segmental epithelia from wild-type and autophagy-deficient mice provides new insights into how autophagy influences proliferation in these tissues.
Collapse
Affiliation(s)
- Nihal Kaplan
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Junyi Wang
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States.,Department of Ophthalmology, Ophthalmology and Visual Science Key Lab of PLA, Chinese PLA General Hospital, Beijing, China
| | - Brian Wray
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Priyam Patel
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Wending Yang
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Han Peng
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Robert M Lavker
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
8
|
Dedeić Z, Sutendra G, Hu Y, Chung K, Slee EA, White MJ, Zhou FY, Goldin RD, Ferguson DJP, McAndrew D, Schneider JE, Lu X. Cell autonomous role of iASPP deficiency in causing cardiocutaneous disorders. Cell Death Differ 2018; 25:1289-1303. [PMID: 29352264 DOI: 10.1038/s41418-017-0039-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
Desmosome components are frequently mutated in cardiac and cutaneous disorders in animals and humans and enhanced inflammation is a common feature of these diseases. Previous studies showed that inhibitor of Apoptosis Stimulating p53 Protein (iASPP) regulates desmosome integrity at cell-cell junctions and transcription in the nucleus, and its deficiency causes cardiocutaneous disorder in mice, cattle, and humans. As iASPP is a ubiquitously expressed shuttling protein with multiple functions, a key question is whether the observed cardiocutaneous phenotypes are caused by loss of a cell autonomous role of iASPP in cardiomyocytes and keratinocytes specifically or by a loss of iASPP in other cell types such as immune cells. To address this, we developed cardiomyocyte-specific and keratinocyte-specific iASPP-deficient mouse models and show that the cell-type specific loss of iASPP in cardiomyocytes or keratinocytes is sufficient to induce cardiac or cutaneous disorders, respectively. Additionally, keratinocyte-specific iASPP-deficient mice have delayed eyelid development and wound healing. In keratinocytes, junctional iASPP is critical for stabilizing desmosomes and iASPP deficiency results in increased and disorganized cell migration, as well as impaired cell adhesion, consistent with delayed wound healing. The identification of a cell autonomous role of iASPP deficiency in causing cardiocutaneous syndrome, impaired eyelid development and wound healing suggests that variants in the iASPP gene also may contribute to polygenic heart and skin diseases.
Collapse
Affiliation(s)
- Zinaida Dedeić
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Gopinath Sutendra
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.,Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2B7, Canada
| | - Ying Hu
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.,The School of Life Science and Technology, Harbin Institute of Technology, Harbin, 1500080, China
| | - Kathryn Chung
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Elizabeth A Slee
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Michael J White
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Felix Y Zhou
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Robert D Goldin
- Centre for Pathology, St. Mary's Hospital, Imperial College, London, W2 1NY, UK
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, Oxford, OX3 9DU, UK
| | - Debra McAndrew
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Jurgen E Schneider
- Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
9
|
Hatzfeld M, Keil R, Magin TM. Desmosomes and Intermediate Filaments: Their Consequences for Tissue Mechanics. Cold Spring Harb Perspect Biol 2017; 9:a029157. [PMID: 28096266 PMCID: PMC5453391 DOI: 10.1101/cshperspect.a029157] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
Abstract
Adherens junctions (AJs) and desmosomes connect the actin and keratin filament networks of adjacent cells into a mechanical unit. Whereas AJs function in mechanosensing and in transducing mechanical forces between the plasma membrane and the actomyosin cytoskeleton, desmosomes and intermediate filaments (IFs) provide mechanical stability required to maintain tissue architecture and integrity when the tissues are exposed to mechanical stress. Desmosomes are essential for stable intercellular cohesion, whereas keratins determine cell mechanics but are not involved in generating tension. Here, we summarize the current knowledge of the role of IFs and desmosomes in tissue mechanics and discuss whether the desmosome-keratin scaffold might be actively involved in mechanosensing and in the conversion of chemical signals into mechanical strength.
Collapse
Affiliation(s)
- Mechthild Hatzfeld
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - René Keil
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Thomas M Magin
- Institute of Biology, Division of Cell and Developmental Biology and Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
10
|
Ho J, Bhawan J. Mimickers of classic acantholytic diseases. J Dermatol 2017; 44:232-242. [DOI: 10.1111/1346-8138.13769] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Jonathan Ho
- Department of Dermatology and Section of Dermatopathology; Boston University School of Medicine; Boston Massachusetts USA
| | - Jag Bhawan
- Department of Dermatology and Section of Dermatopathology; Boston University School of Medicine; Boston Massachusetts USA
| |
Collapse
|
11
|
Hepatocyte growth factor activator inhibitor type 1 maintains the assembly of keratin into desmosomes in keratinocytes by regulating protease-activated receptor 2-dependent p38 signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1610-23. [PMID: 25842366 DOI: 10.1016/j.ajpath.2015.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/03/2014] [Revised: 01/26/2015] [Accepted: 02/03/2015] [Indexed: 11/23/2022]
Abstract
Hepatocyte growth factor activator inhibitor type 1 (HAI-1; official symbol SPINT1) is a membrane-associated serine proteinase inhibitor abundantly expressed in epithelial tissues. Genetically engineered mouse models demonstrated that HAI-1 is critical for epidermal function, possibly through direct and indirect regulation of cell surface proteases, such as matriptase and prostasin. To obtain a better understanding of the role of HAI-1 in maintaining epidermal integrity, we performed ultrastructural analysis of Spint1-deleted mouse epidermis and organotypic culture of an HAI-1 knockdown (KD) human keratinocyte cell line, HaCaT. We found that the aggregation of tonofilaments to desmosomes was significantly reduced in HAI-1-deficient mouse epidermis with decreased desmosome number. Similar findings were observed in HAI-1 KD HaCaT organotypic cultures. Immunoblot and immunohistochemical analyses revealed that p38 mitogen-activated protein kinase was activated in response to HAI-1 insufficiency. Treatment of HAI-1 KD HaCaT cells with a p38 inhibitor abrogated the above-observed ultrastructural abnormalities. The activation of p38 induced by the loss of HAI-1 likely resulted from enhanced signaling of protease-activated receptor-2 (PAR-2), because its silencing abrogated the enhanced activation of p38. Consequently, treatment of HAI-1 KD HaCaT cells with a serine protease inhibitor, aprotinin, or PAR-2 antagonist alleviated the abnormal ultrastructural phenotype in organotypic culture. These results suggest that HAI-1 may have a critical role in maintaining normal keratinocyte morphology through regulation of PAR-2-dependent p38 mitogen-activated protein kinase signaling.
Collapse
|
12
|
Lettner T, Lang R, Klausegger A, Hainzl S, Bauer JW, Wally V. MMP-9 and CXCL8/IL-8 are potential therapeutic targets in epidermolysis bullosa simplex. PLoS One 2013; 8:e70123. [PMID: 23894602 PMCID: PMC3716611 DOI: 10.1371/journal.pone.0070123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2013] [Accepted: 06/15/2013] [Indexed: 11/30/2022] Open
Abstract
Epidermolysis bullosa refers to a group of genodermatoses that affects the integrity of epithelial layers, phenotypically resulting in severe skin blistering. Dowling-Meara, the major subtype of epidermolysis bullosa simplex, is inherited in an autosomal dominant manner and can be caused by mutations in either the keratin-5 (K5) or the keratin-14 (K14) gene. Currently, no therapeutic approach is known, and the main objective of this study was to identify novel therapeutic targets. We used microarray analysis, semi-quantitative real-time PCR, western blot and ELISA to identify differentially regulated genes in two K14 mutant cell lines carrying the mutations K14 R125P and K14 R125H, respectively. We found kallikrein-related peptidases and matrix metalloproteinases to be upregulated. We also found elevated expression of chemokines, and we observed deregulation of the Cdc42 pathway as well as aberrant expression of cytokeratins and junction proteins. We further demonstrated, that expression of these genes is dependent on interleukin-1 β signaling. To evaluate these data in vivo we analysed the blister fluids of epidermolysis bullosa simplex patients vs. healthy controls and identified matrix metalloproteinase-9 and the chemokine CXCL8/IL-8 as potential therapeutic targets.
Collapse
Affiliation(s)
- Thomas Lettner
- Division of Experimental Dermatology and EB House Austria, Salzburg, Austria.
| | | | | | | | | | | |
Collapse
|
13
|
Verdolini R, Clayton N, Arkoumani E. Striate palmar keratoderma and antiretroviral treatment for human immunodeficiency virus infection: not just a coincidence. Clin Exp Dermatol 2013; 38:556-8. [PMID: 23777500 DOI: 10.1111/ced.12005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
|
14
|
Harmon RM, Simpson CL, Johnson JL, Koetsier JL, Dubash AD, Najor NA, Sarig O, Sprecher E, Green KJ. Desmoglein-1/Erbin interaction suppresses ERK activation to support epidermal differentiation. J Clin Invest 2013; 123:1556-70. [PMID: 23524970 DOI: 10.1172/jci65220] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2012] [Accepted: 01/17/2013] [Indexed: 01/27/2023] Open
Abstract
Genetic disorders of the Ras/MAPK pathway, termed RASopathies, produce numerous abnormalities, including cutaneous keratodermas. The desmosomal cadherin, desmoglein-1 (DSG1), promotes keratinocyte differentiation by attenuating MAPK/ERK signaling and is linked to striate palmoplantar keratoderma (SPPK). This raises the possibility that cutaneous defects associated with SPPK and RASopathies share certain molecular faults. To identify intermediates responsible for executing the inhibition of ERK by DSG1, we conducted a yeast 2-hybrid screen. The screen revealed that Erbin (also known as ERBB2IP), a known ERK regulator, binds DSG1. Erbin silencing disrupted keratinocyte differentiation in culture, mimicking aspects of DSG1 deficiency. Furthermore, ERK inhibition and the induction of differentiation markers by DSG1 required both Erbin and DSG1 domains that participate in binding Erbin. Erbin blocks ERK signaling by interacting with and disrupting Ras-Raf scaffolds mediated by SHOC2, a protein genetically linked to the RASopathy, Noonan-like syndrome with loose anagen hair (NS/LAH). DSG1 overexpression enhanced this inhibitory function, increasing Erbin-SHOC2 interactions and decreasing Ras-SHOC2 interactions. Conversely, analysis of epidermis from DSG1-deficient patients with SPPK demonstrated increased Ras-SHOC2 colocalization and decreased Erbin-SHOC2 colocalization, offering a possible explanation for the observed epidermal defects. These findings suggest a mechanism by which DSG1 and Erbin cooperate to repress MAPK signaling and promote keratinocyte differentiation.
Collapse
Affiliation(s)
- Robert M Harmon
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Desmoglein-1 (DSG1), a desmosomal protein, maintains the structure of epidermis through its adhesive function. However, heterozygous mutations in DSG1 in humans result in abnormal differentiation, as does downregulation of DSG1 in human skin organ culture, suggesting that it may have important signaling functions. In this issue of the JCI, Harmon et al. elucidate how the binding of the DSG1 cytoplasmic tail to the scaffolding protein Erbin decreases signaling through the Ras-Raf pathway to promote stratification and differentiation of keratinocytes in the epidermis.
Collapse
Affiliation(s)
- Christoph M Hammers
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
16
|
Abstract
The tight control of cell-cell connectivity mediated by cadherins is a key issue in human health and disease. The human genome contains over 115 genes encoding cadherins and cadherin-like proteins. Defects in about 21 of these proteins (8 classical, 5 desmosomal, 8 atypical cadherins) have been linked to inherited disorders in humans, including skin and hair disorders, cardiomyopathies, sensory defects associated with deafness and blindness, and psychiatric disorders. With the advent of exome and genome sequencing techniques, we can anticipate the discovery of yet more evidence for the involvement of additional cadherins. Elucidation of the related physiopathological mechanisms underlying these conditions should help to clarify the roles played by these cadherins in tissues and the ways in which defects in different cadherins cause such a wide spectrum of associated phenotypes. These disorders also constitute disparate model systems for investigations of the relative contributions of mechanical adhesive strength and intracellular signaling pathways to the pathogenic process for a given cadherin.
Collapse
|
17
|
Pohler E, Mamai O, Hirst J, Zamiri M, Horn H, Nomura T, Irvine AD, Moran B, Wilson NJ, Smith FJD, Goh CSM, Sandilands A, Cole C, Barton GJ, Evans AT, Shimizu H, Akiyama M, Suehiro M, Konohana I, Shboul M, Teissier S, Boussofara L, Denguezli M, Saad A, Gribaa M, Dopping-Hepenstal PJ, McGrath JA, Brown SJ, Goudie DR, Reversade B, Munro CS, McLean WHI. Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma. Nat Genet 2012; 44:1272-6. [PMID: 23064416 PMCID: PMC3836166 DOI: 10.1038/ng.2444] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2012] [Accepted: 09/21/2012] [Indexed: 01/28/2023]
Abstract
Palmoplantar keratodermas (PPKs) are a group of disorders that are diagnostically and therapeutically problematic in dermatogenetics. Punctate PPKs are characterized by circumscribed hyperkeratotic lesions on the palms and soles with considerable heterogeneity. In 18 families with autosomal dominant punctate PPK, we report heterozygous loss-of-function mutations in AAGAB, encoding α- and γ-adaptin-binding protein p34, located at a previously linked locus at 15q22. α- and γ-adaptin-binding protein p34, a cytosolic protein with a Rab-like GTPase domain, was shown to bind both clathrin adaptor protein complexes, indicating a role in membrane trafficking. Ultrastructurally, lesional epidermis showed abnormalities in intracellular vesicle biology. Immunohistochemistry showed hyperproliferation within the punctate lesions. Knockdown of AAGAB in keratinocytes led to increased cell division, which was linked to greatly elevated epidermal growth factor receptor (EGFR) protein expression and tyrosine phosphorylation. We hypothesize that p34 deficiency may impair endocytic recycling of growth factor receptors such as EGFR, leading to increased signaling and cellular proliferation.
Collapse
Affiliation(s)
- Elizabeth Pohler
- Centre for Dermatology and Genetic Medicine, College of Life Sciences and College of Medicine, Dentistry & Nursing, University of Dundee, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
microRNA-31/factor-inhibiting hypoxia-inducible factor 1 nexus regulates keratinocyte differentiation. Proc Natl Acad Sci U S A 2012; 109:14030-4. [PMID: 22891326 DOI: 10.1073/pnas.1111292109] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023] Open
Abstract
Notch plays a critical role in the transition from proliferation to differentiation in the epidermis and corneal epithelium. Furthermore, aberrant Notch signaling is a feature of diseases like psoriasis, eczema, nonmelanoma skin cancer, and melanoma where differentiation and proliferation are impaired. Whereas much is known about the downstream events following Notch signaling, factors responsible for negatively regulating Notch receptor signaling after ligand activation are incompletely understood. Notch can undergo hydroxylation by factor-inhibiting hypoxia-inducible factor 1 (FIH-1); however, the biological significance of this phenomenon is unclear. Here we show that FIH-1 expression is up-regulated in diseased epidermis and corneal epithelium. Elevating FIH-1 levels in primary human epidermal keratinocytes (HEKs) and human corneal epithelial keratinocytes (HCEKs) impairs differentiation in submerged cultures and in a "three-dimensional" organotypic raft model of human epidermis, in part, via a coordinate decrease in Notch signaling. Knockdown of FIH-1 enhances keratinocyte differentiation. Loss of FIH-1 in vivo increased Notch activity in the limbal epithelium, resulting in a more differentiated phenotype. microRNA-31 (miR-31) is an endogenous negative regulator of FIH-1 expression that results in keratinocyte differentiation, mediated by Notch activation. Ectopically expressing miR-31 in an undifferentiated corneal epithelial cell line promotes differentiation and recapitulates a corneal epithelium in a three-dimensional raft culture model. Our results define a previously unknown mechanism for keratinocyte fate decisions where Notch signaling potential is, in part, controlled through a miR-31/FIH-1 nexus.
Collapse
|
19
|
Cabral RM, Tattersall D, Patel V, McPhail GD, Hatzimasoura E, Abrams DJ, South AP, Kelsell DP. The DSPII splice variant is crucial for desmosome-mediated adhesion in HaCaT keratinocytes. J Cell Sci 2012; 125:2853-61. [PMID: 22454510 DOI: 10.1242/jcs.084152] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Desmosomes are intercellular junctions specialised for strong adhesion that are prominent in the epidermis and heart muscle. Defective desmosomal function due to inherited mutations in the constitutive desmosomal gene desmoplakin (DSP) causes skin or heart disorders and in some instances both. Different mutations have different disease-causing molecular mechanisms as evidenced by the varying phenotypes resulting from mutations affecting different domains of the same protein, but the majority of these mechanisms remain to be determined. Here, we studied two mutations in DSP that lead to different dosages of the two major DSP splice variants, DSPI and DSPII, and compared their molecular mechanisms. One of the mutations results in total DSP haploinsufficiency and is associated with autosomal dominant striate palmoplantar keratoderma (PPK). The other leads to complete absence of DSPI and the minor isoform DSPIa but normal levels of DSPII, and is associated with autosomal recessive epidermolytic PPK, woolly hair and severe arrhythmogenic dilated cardiomyopathy. Using siRNA treatments to mimic these two mutations and additionally a DSPII-specific siRNA, we found striking differences between DSP isoforms with respect to keratinocyte adhesion upon cellular stress with DSPII being the key component in intermediate filament (IF) stability and desmosome-mediated adhesion. In addition, reduction in DSP expression reduced the amount of plakophilin 1, desmocollin (DSC) 2 and DSC3 with DSPI having a greater influence than DSPII on the expression levels of DSC3. These results suggest that the two major DSP splice variants are not completely redundant in function and that DSPII dosage is particularly important for desmosomal adhesion in the skin.
Collapse
Affiliation(s)
- Rita M Cabral
- Centre for Cutaneous Research, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Windoffer R, Beil M, Magin TM, Leube RE. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. ACTA ACUST UNITED AC 2012; 194:669-78. [PMID: 21893596 PMCID: PMC3171125 DOI: 10.1083/jcb.201008095] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type–specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis–independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function.
Collapse
Affiliation(s)
- Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52057 Aachen, Germany
| | | | | | | |
Collapse
|
21
|
Abreu-Velez AM, Howard MS, Jiao Z, Gao W, Yi H, Grossniklaus HE, Duque-Ramírez M, Dudley SC. Cardiac autoantibodies from patients affected by a new variant of endemic pemphigus foliaceus in Colombia, South America. J Clin Immunol 2011; 31:985-97. [PMID: 21796504 PMCID: PMC3380437 DOI: 10.1007/s10875-011-9574-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022]
Abstract
Several patients affected by a new variant of endemic pemphigus foliaceus in El Bagre, Colombia (El Bagre-EPF) have experienced a sudden death syndrome, including persons below the age of 50. El Bagre-EPF patients share several autoantigens with paraneoplastic pemphigus patients, such as reactivity to plakins. Further, paraneoplastic pemphigus patients have autoantibodies to the heart. Therefore, we tested 15 El Bagre-EPF patients and 15 controls from the endemic area for autoreactivity to heart tissue using direct and indirect immunofluorescence, confocal microscopy, immunohistochemistry, immunoblotting, and immunoelectron microscopy utilizing heart extracts as antigens. We found that 7 of 15 El Bagre patients exhibited a polyclonal immune response to several cell junctions of the heart, often colocalizing with known markers. These colocalizing markers included those for the area composita of the heart, such as anti-desmoplakins I and II; markers for gap junctions, such as connexin 43; markers for tight junctions, such as ezrin and junctional adhesion molecule A; and adherens junctions, such pan-cadherin. We also detected colocalization of the patient antibodies within blood vessels, Purkinje fibers, and cardiac sarcomeres. We conclude that El Bagre-EPF patients display autoreactivity to multiple cardiac epitopes, that this disease may resemble what is found in patients with rheumatic carditis, and further, that the cardiac pathophysiology of this disorder warrants further evaluation.
Collapse
|
22
|
Involvement of corneodesmosome degradation and lamellar granule transportation in the desquamation process. Med Mol Morphol 2011; 44:1-6. [DOI: 10.1007/s00795-010-0513-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2010] [Accepted: 04/26/2010] [Indexed: 12/13/2022]
|
23
|
Simpson CL, Kojima SI, Cooper-Whitehair V, Getsios S, Green KJ. Plakoglobin rescues adhesive defects induced by ectodomain truncation of the desmosomal cadherin desmoglein 1: implications for exfoliative toxin-mediated skin blistering. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2921-37. [PMID: 21075858 DOI: 10.2353/ajpath.2010.100397] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Desmoglein 1 (Dsg1) is a desmosomal cadherin that is essential to epidermal integrity. In the blistering diseases bullous impetigo and staphylococcal scalded-skin syndrome, pathogenesis depends on cleavage of Dsg1 by a bacterial protease, exfoliative toxin A, which removes residues 1 to 381 of the Dsg1 ectodomain. However, the cellular responses to Dsg1 cleavage that precipitate keratinocyte separation to induce blister formation are unknown. Here, we show that ectodomain-deleted Dsg1 (Δ381-Dsg1) mimics the toxin-cleaved cadherin, disrupts desmosomes, and reduces the mechanical integrity of keratinocyte sheets. In addition, we demonstrate that truncated Dsg1 remains associated with its catenin partner, plakoglobin, and causes a reduction in the levels of endogenous desmosomal cadherins in a dose-dependent manner, leading us to hypothesize that plakoglobin sequestration by truncated Dsg1 destabilizes other cadherins. Accordingly, a triple-point mutant of the ectodomain-deleted cadherin, which is uncoupled from plakoglobin, does not impair adhesion, indicating that this interaction is essential to the pathogenic potential of truncated Dsg1. Moreover, we demonstrate that increasing plakoglobin levels rescues cadherin expression, desmosome organization, and functional adhesion in cells expressing Δ381-Dsg1 or treated with exfoliative toxin A. Finally, we report that histone deacetylase inhibition up-regulates desmosomal cadherins and prevents the loss of adhesion induced by Dsg1 truncation. These findings further our understanding of the mechanism of exfoliative toxin-induced pathology and suggest novel strategies to suppress blistering in bulbous impetigo and staphylococcal scalded-skin syndrome.
Collapse
Affiliation(s)
- Cory L Simpson
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
The 6-billion human population provides a vast reservoir of mutations, which, in addition to the opportunity of detecting very subtle defects, including specific cognitive dysfunctions as well as late appearing disorders, offers a unique background in which to investigate the roles of cell-cell adhesion proteins. Here we focus on inherited human disorders involving members of the cadherin superfamily. Most of the advances concern monogenic disorders. Yet, with the development of single nucleotide polymorphism (SNP) association studies, cadherin genes are emerging as susceptibility genes in multifactorial disorders. Various skin and heart disorders revealed the critical role played by desmosomal cadherins in epidermis, hairs, and myocardium, which experience high mechanical stress. Of particular interest in that respect is the study of Usher syndrome type 1 (USH1), a hereditary syndromic form of deafness. Studies of USH1 brought to light the crucial role of transient fibrous links formed by cadherin 23 and protocadherin 15 in the cohesion of the developing hair bundle, the mechanoreceptive structure of the auditory sensory cells, as well as the involvement of these cadherins in the formation of the tip-link, a key component of the mechano-electrical transduction machinery. Finally, in line with the well-established role of cadherins in synaptic formation, maintenance, strength, and plasticity, a growing number of cadherin family members, especially protocadherins, have been found to be involved in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Aziz El-Amraoui
- Institut Pasteur, Unité de Génétique et Physiologie de l'Audition, 25 Rue du Dr Roux, 75015 Paris, France.
| | | |
Collapse
|
25
|
|
26
|
Bergman R, Hershkovitz D, Fuchs D, Indelman M, Gadot Y, Sprecher E. Disadhesion of epidermal keratinocytes: a histologic clue to palmoplantar keratodermas caused by DSG1 mutations. J Am Acad Dermatol 2010; 62:107-113. [PMID: 20082890 DOI: 10.1016/j.jaad.2009.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2009] [Revised: 05/12/2009] [Accepted: 05/14/2009] [Indexed: 01/14/2023]
Abstract
BACKGROUND Recent developments in molecular genetics may lead to re-examination of the histopathology of inherited palmoplantar keratodermas (PPKs) based on more precise groupings of the various entities and syndromes. OBJECTIVE We sought to characterize the histopathological findings in PPKs associated with mutations in DSG1, which encodes desmoglein 1. METHODS We studied the histopathology of 3 cases of keratosis palmoplantaris striata type I and one case of diffuse PPK, all associated with autosomal-dominant mutations in DSG1. Our cases for comparison included 4 cases with Mal de Meleda PPK associated with autosomal-recessive SLURP1 mutations, one case with pachyonychia congenita type II PPK associated with an autosomal-dominant KRT17 mutation, and one case with focal PPK associated with an autosomal-dominant KRT16 mutation. RESULTS The distinguishing histopathological features of the 3 keratosis palmoplantaris striata type I cases and the diffuse PPK case associated with DSG1 mutation were: varying degrees of widening of the intercellular spaces and partial disadhesion of keratinocytes in the mid and upper epidermal spinous cell layers, often extending to the granular cell layer. These findings, which are associated with haploinsufficiency of desmoglein 1, were not observed in any of the other 6 PPK cases. Mild perinuclear eosinophilic condensations and cytoplasmic vacuolizations were observed in the spinous cell layer keratinocytes of the pachyonychia congenita type II PPK and the nonspecified focal PPK cases. LIMITATIONS There were a limited number of patients and control patients with hereditary PPKs. CONCLUSION Widening of the intercellular spaces and disadhesion of epidermal keratinocytes may serve as a histologic clue to PPKs caused by DSG1 mutations.
Collapse
Affiliation(s)
- Reuven Bergman
- Department of Dermatology, Rambam Medical Center, Haifa, Israel.
| | - Dov Hershkovitz
- Department of Pathology, Rambam Medical Center, Haifa, Israel
| | - Dana Fuchs
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Yael Gadot
- Department of Dermatology, Rambam Medical Center, Haifa, Israel
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
27
|
Zamiri M, Smith F, Campbell L, Tetley L, Eady R, Hodgins M, McLean W, Munro C. Mutation inDSG1causing autosomal dominant striate palmoplantar keratoderma. Br J Dermatol 2009; 161:692-4. [DOI: 10.1111/j.1365-2133.2009.09316.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
|
28
|
Getsios S, Simpson CL, Kojima SI, Harmon R, Sheu LJ, Dusek RL, Cornwell M, Green KJ. Desmoglein 1-dependent suppression of EGFR signaling promotes epidermal differentiation and morphogenesis. ACTA ACUST UNITED AC 2009; 185:1243-58. [PMID: 19546243 PMCID: PMC2712955 DOI: 10.1083/jcb.200809044] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Abstract
Dsg1 (desmoglein 1) is a member of the cadherin family of Ca2+-dependent cell adhesion molecules that is first expressed in the epidermis as keratinocytes transit out of the basal layer and becomes concentrated in the uppermost cell layers of this stratified epithelium. In this study, we show that Dsg1 is not only required for maintaining epidermal tissue integrity in the superficial layers but also supports keratinocyte differentiation and suprabasal morphogenesis. Dsg1 lacking N-terminal ectodomain residues required for adhesion remained capable of promoting keratinocyte differentiation. Moreover, this capability did not depend on cytodomain interactions with the armadillo protein plakoglobin or coexpression of its companion suprabasal cadherin, Dsc1 (desmocollin 1). Instead, Dsg1 was required for suppression of epidermal growth factor receptor–Erk1/2 (extracellular signal-regulated kinase 1/2) signaling, thereby facilitating keratinocyte progression through a terminal differentiation program. In addition to serving as a rigid anchor between adjacent cells, this study implicates desmosomal cadherins as key components of a signaling axis governing epithelial morphogenesis.
Collapse
Affiliation(s)
- Spiro Getsios
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Nuclear staining and relative distance for quantifying epidermal differentiation in biomarker expression profiling. BMC Bioinformatics 2008; 9:473. [PMID: 18990218 PMCID: PMC2615451 DOI: 10.1186/1471-2105-9-473] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2008] [Accepted: 11/06/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The epidermal physiology results from a complex regulated homeostasis of keratinocyte proliferation, differentiation and death and is tightly regulated by a specific protein expression during cellular maturation. Cellular in silico models are considered a promising and inevitable tool for the understanding of this complex system. Hence, we need to incorporate the information of the differentiation dependent protein expression in cell based systems biological models of tissue homeostasis. Such methods require measuring tissue differentiation quantitatively while correlating it with biomarker expression intensities. RESULTS Differentiation of a keratinocyte is characterized by its continuously changing morphology concomitant with its movement from the basal layer to the surface, leading to a decreased average nuclei density throughout the tissue. Based thereon, we designed and evaluated three different mathematical measures (nuclei based, distance based, and joint approach) for quantifying differentiation in epidermal keratinocytes. We integrated them with an immunofluorescent staining and image analysis method for tissue sections, automatically quantifying epidermal differentiation and measuring the corresponding expression of biomarkers. When studying five well-known differentiation related biomarkers in an epidermal neck sample only the resulting biomarker profiles incorporating the relative distance information of cells to the tissue borders (distance based and joint approach) provided a high-resolution view on the whole process of keratinocyte differentiation. By contrast, the inverse nuclei density approach led to an increased resolution at early but heavily decreased resolution at late differentiation. This effect results from the heavy non-linear decay of DAPI intensity per area, probably caused by cytoplasmic growth and chromatin decondensation. In the joint approach this effect could be compensated again by incorporating distance information. CONCLUSION We suppose that key mechanisms regulating tissue homeostasis probably depend more on distance information rather than on nuclei reorganization. Concluding, the distance approach appears well suited for comprehensively observing keratinocyte differentiation.
Collapse
|
30
|
Hershkovitz D, Lugassy J, Indelman M, Bergman R, Sprecher E. Novel mutations in DSG1 causing striate palmoplantar keratoderma. Clin Exp Dermatol 2008; 34:224-8. [PMID: 19018793 DOI: 10.1111/j.1365-2230.2008.02733.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Striate palmoplantar keratoderma (SPPK) has been shown to be caused by mutations in at least three genes: DSG1, DSP and KRT1. METHODS Three families with nine affected members were assessed using a candidate gene-based screening approach. RESULTS In all three families, new heterozygous mutations were found in DSG1. CONCLUSION Direct sequencing of cDNA derived from affected skin in one patient failed to reveal a pathogenic mutation, suggesting that SPPK results from haploinsufficiency for DSG1.
Collapse
Affiliation(s)
- D Hershkovitz
- Department of Dermatology and Laboratory of Molecular Dermatology, Rambam Health Care Campus, Haifa, Israel
| | | | | | | | | |
Collapse
|
31
|
Nakai K, Yoneda K, Moriue T, Kubota Y. Striate palmoplantar keratoderma in a patient with Rubinstein-Taybi syndrome. J Eur Acad Dermatol Venereol 2008; 23:333-5. [PMID: 18637050 DOI: 10.1111/j.1468-3083.2008.02852.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
|
32
|
Abstract
Desmosomes are patch-like intercellular adhering junctions ("maculae adherentes"), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca(2+)-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required.
Collapse
Affiliation(s)
- Jens Waschke
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr. 6, 97070, Würzburg, Germany.
| |
Collapse
|
33
|
Stojadinovic O, Pastar I, Vukelic S, Mahoney MG, Brennan D, Krzyzanowska A, Golinko M, Brem H, Tomic-Canic M. Deregulation of keratinocyte differentiation and activation: a hallmark of venous ulcers. J Cell Mol Med 2008; 12:2675-90. [PMID: 18373736 PMCID: PMC3828883 DOI: 10.1111/j.1582-4934.2008.00321.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023] Open
Abstract
Epidermal morphology of chronic wounds differs from that of normal epidermis. Biopsies of non-healing edges obtained from patients with venous ulcers show thick and hyperproliferative epidermis with mitosis present in suprabasal layers. This epidermis is also hyper-keratotic and parakeratotic. This suggests incomplete activation and differentiation of keratinocytes. To identify molecular changes that lead to pathogenic alterations in keratinocyte activation and differentiation pathways we isolated mRNA from non-healing edges deriving from venous ulcers patients and determined transcriptional profiles using Affymetrix chips. Obtained transcriptional profiles were compared to those from healthy, unwounded skin. As previously indicated by histology, we found deregulation of differentiation and activation markers. We also found differential regulation of signalling molecules that regulate these two processes. Early differentiation markers, keratins K1/K10 and a subset of small proline-rich proteins, along with the late differentiation marker filaggrin were suppressed, whereas late differentiation markers involucrin, transgultaminase 1 and another subset of small proline-rich proteins were induced in ulcers when compared to healthy skin. Surprisingly, desomosomal and tight junction components were also deregulated. Keratinocyte activation markers keratins K6/K16/K17 were induced. We conclude that keratinocytes at the non-healing edges of venous ulcers do not execute either activation or differentiation pathway, resulting in thick callus-like formation at the edge of a venous ulcers.
Collapse
Affiliation(s)
- Olivera Stojadinovic
- Hospital for Special Surgery of the Weill Cornell Medical College, Tissue Repair Lab, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dermatopathology and molecular genetics. J Am Acad Dermatol 2008; 58:452-7. [DOI: 10.1016/j.jaad.2007.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/14/2007] [Revised: 12/11/2007] [Accepted: 12/12/2007] [Indexed: 11/20/2022]
|
35
|
Queratodermia palmoplantar varians (striata et areata) tipo acroqueratosis esencial crónica de Degos. ACTAS DERMO-SIFILIOGRAFICAS 2008. [DOI: 10.1016/s0001-7310(08)74635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022] Open
|
36
|
Wilanowski T, Caddy J, Ting SB, Hislop NR, Cerruti L, Auden A, Zhao LL, Asquith S, Ellis S, Sinclair R, Cunningham JM, Jane SM. Perturbed desmosomal cadherin expression in grainy head-like 1-null mice. EMBO J 2008; 27:886-97. [PMID: 18288204 DOI: 10.1038/emboj.2008.24] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2007] [Accepted: 01/31/2008] [Indexed: 11/09/2022] Open
Abstract
In Drosophila, the grainy head (grh) gene plays a range of key developmental roles through the regulation of members of the cadherin gene family. We now report that mice lacking the grh homologue grainy head-like 1 (Grhl1) exhibit hair and skin phenotypes consistent with a reduction in expression of the genes encoding the desmosomal cadherin, desmoglein 1 (Dsg1). Grhl1-null mice show an initial delay in coat growth, and older mice exhibit hair loss as a result of poor anchoring of the hair shaft in the follicle. The mice also develop palmoplantar keratoderma, analogous to humans with DSG1 mutations. Sequence analysis, DNA binding, and chromatin immunoprecipitation experiments demonstrate that the human and mouse Dsg1 promoters are direct targets of GRHL1. Ultrastructural analysis reveals reduced numbers of abnormal desmosomes in the interfollicular epidermis. These findings establish GRHL1 as an important regulator of the Dsg1 genes in the context of hair anchorage and epidermal differentiation, and suggest that cadherin family genes are key targets of the grainy head-like genes across 700 million years of evolution.
Collapse
Affiliation(s)
- Tomasz Wilanowski
- Rotary Bone Marrow Research Laboratories, Melbourne Health Research Directorate, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Keratoderma Palmoplantaris Varians (Striata et Areata). A Form of Chronic Idiopathic Acrokeratosis Described by Degos. ACTAS DERMO-SIFILIOGRAFICAS 2008. [DOI: 10.1016/s1578-2190(08)70213-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
|
38
|
Grabe N, Pommerencke T, Steinberg T, Dickhaus H, Tomakidi P. Reconstructing protein networks of epithelial differentiation from histological sections. Bioinformatics 2007; 23:3200-8. [PMID: 18042556 DOI: 10.1093/bioinformatics/btm504] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023] Open
Abstract
MOTIVATION For systems biology of complex stratified epithelia like human epidermis, it will be of particular importance to reconstruct the spatiotemporal gene and protein networks regulating keratinocyte differentiation and homeostasis. RESULTS Inside the epidermis, the differentiation state of individual keratinocytes is correlated with their respective distance from the connective tissue. We here present a novel method to profile this correlation for multiple epithelial protein biomarkers in the form of quantitative spatial profiles. Profiles were computed by applying image processing algorithms to histological sections stained with tri-color indirect immunofluorescence. From the quantitative spatial profiles, reflecting the spatiotemporal changes of protein expression during cellular differentiation, graphs of protein networks were reconstructed. CONCLUSION Spatiotemporal networks can be used as a means for comparing and interpreting quantitative spatial protein expression profiles obtained from different tissue samples. In combination with automated microscopes, our new method supports the large-scale systems biological analysis of stratified epithelial tissues.
Collapse
Affiliation(s)
- Niels Grabe
- Hamamatsu Tissue Imaging and Analysis (TIGA) Center, BIOQUANT, University Heidelberg, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
39
|
Abstract
Desmosomes are prominent adhesion sites that are tightly associated with the cytoplasmic intermediate filament cytoskeleton providing mechanical stability in epithelia and also in several nonepithelial tissues such as cardiac muscle and meninges. They are unique in terms of ultrastructural appearance and molecular composition with cell type-specific variations. The dynamic assembly properties of desmosomes are important prerequisites for the acquisition and maintenance of tissue homeostasis. Disturbance of this equilibrium therefore not only compromises mechanical resilience but also affects many other tissue functions as becomes evident in various experimental scenarios and multiple diseases.
Collapse
Affiliation(s)
- Bastian Holthöfer
- Department of Anatomy and Cell Biology, Johannes Gutenberg University, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
40
|
Abstract
Tight junctions, gap junctions, adherens junctions, and desmosomes represent intricate structural intercellular channels and bridges that are present in several tissues, including epidermis. Clues to the important function of these units in epithelial cell biology have been gleaned from a variety of studies including naturally occurring and engineered mutations, animal models and other in vitro experiments. In this review, we focus on mutations that have been detected in human diseases. These observations provide intriguing insight into the biological complexities of cell-cell contact and intercellular communication as well as demonstrating the spectrum of inherited human diseases that are associated with mutations in genes encoding the component proteins. Over the last decade or so, human gene mutations have been reported in four tight junction proteins (claudin 1, 14, 16, and zona occludens 2), nine gap junction proteins (connexin 26, 30, 30.3, 31, 32, 40, 43, 46, and 50), one adherens junction protein (P-cadherin) and eight components of desmosomes (plakophilin (PKP) 1 and 2, desmoplakin, plakoglobin--which is also present in adherens junctions, desmoglein (DSG) 1, 2, 4, and corneodesmosin). These discoveries have often highlighted novel or unusual phenotypes, including abnormal skin barrier function, alterations in epidermal differentiation, and developmental anomalies of various ectodermal appendages, especially hair, as well as a range of extracutaneous pathologies. However, this review focuses mainly on inherited disorders of junctions that have an abnormal skin phenotype.
Collapse
Affiliation(s)
- Joey E Lai-Cheong
- King's College London, The Guy's, King's College and St Thomas' School of Medicine, Genetic Skin Disease Group, Division of Genetics and Molecular Medicine, St John's Institute of Dermatology, London, UK
| | | | | |
Collapse
|
41
|
Uitto J, Richard G, McGrath JA. Diseases of epidermal keratins and their linker proteins. Exp Cell Res 2007; 313:1995-2009. [PMID: 17531221 PMCID: PMC2578874 DOI: 10.1016/j.yexcr.2007.03.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2007] [Revised: 03/07/2007] [Accepted: 03/12/2007] [Indexed: 12/01/2022]
Abstract
Epidermal keratins, a diverse group of structural proteins, form intermediate filament networks responsible for the structural integrity of keratinocytes. The networks extend from the nucleus of the epidermal cells to the plasma membrane where the keratins attach to linker proteins which are part of desmosomal and hemidesmosomal attachment complexes. The expression of specific keratin genes is regulated by differentiation of the epidermal cells within the stratifying squamous epithelium. Progress in molecular characterization of the epidermal keratins and their linker proteins has formed the basis to identify mutations which are associated with distinct cutaneous manifestations in patients with genodermatoses. The precise phenotype of each disease apparently reflects the spatial level of expression of the mutated genes, as well as the types and positions of the mutations and their consequences at mRNA and protein levels. Identification of specific mutations in keratinization disorders has provided the basis for improved diagnosis and subclassification with prognostic implications and has formed the platform for prenatal testing and preimplantation genetic diagnosis. Finally, precise knowledge of the mutations is a prerequisite for development of gene therapy approaches to counteract, and potentially cure, these often devastating and currently intractable diseases.
Collapse
Affiliation(s)
- Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
42
|
Wan H, South AP, Hart IR. Increased keratinocyte proliferation initiated through downregulation of desmoplakin by RNA interference. Exp Cell Res 2007; 313:2336-44. [PMID: 17475244 DOI: 10.1016/j.yexcr.2007.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/20/2006] [Revised: 12/19/2006] [Accepted: 01/14/2007] [Indexed: 12/12/2022]
Abstract
The intercellular adhesive junction desmosomes are essential for the maintenance of tissue structure and integrity in skin. Desmoplakin (Dp) is a major obligate plaque protein which plays a fundamental role in anchoring intermediate filaments to desmosomal cadherins. Evidence from hereditary human disease caused by mutations in the gene encoding Dp, e.g. Dp haploinsufficiency, suggests that alterations in Dp expression result not only in the disruption of tissue structure and integrity but also could evoke changes in keratinocyte proliferation. We have used transient RNA interference (RNAi) to downregulate Dp specifically in HaCaT keratinocytes. We showed that this Dp downregulation also caused reduced expression of several other desmosomal proteins. Increased cell proliferation and enhanced G(1)-to-S-phase entry in the cell cycle, as monitored by colonial cellular density and BrdU incorporation, were seen in Dp RNAi-treated cells. These proliferative changes were associated with elevated phospho-ERK1/2 and phospho-Akt levels. Furthermore, this increase in phospho-ERK/1/2 and phospho-Akt levels was sustained in Dp RNAi-treated cells at confluence whereas in control cells there was a significant reduction in phosphorylation of ERK1/2. This study indicates that Dp may participate in the regulation of keratinocyte cell proliferation by, in part at least, regulating cell cycle progression.
Collapse
Affiliation(s)
- Hong Wan
- Centre for Tumour Biology, Institute of Cancer and CR-UK Clinical Centre, Barts and The London, Queen Mary's School of Medicine and Dentistry, John Vane Science Centre, Charterhouse Square, London, UK.
| | | | | |
Collapse
|
43
|
Marques MR, Ihrie RA, Horner JS, Attardi LD. The requirement for perp in postnatal viability and epithelial integrity reflects an intrinsic role in stratified epithelia. J Invest Dermatol 2006; 126:69-73. [PMID: 16417219 PMCID: PMC2879258 DOI: 10.1038/sj.jid.5700032] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
Mice lacking the desmosome protein Perp exhibit blistering in their stratified epithelia and display postnatal lethality. However, it is unclear if these phenotypes are strictly related to Perp function in stratified epithelia, as Perp expression is not restricted to these tissues during embryogenesis, and certain desmosomal blistering diseases such as pemphigus vulgaris and pemphigus foliaceus have non-cell-intrinsic bases. Furthermore, we show here that Perp is expressed in the heart, raising the possibility that defects in heart function could account for lethality in the Perp-deficient mice. To determine conclusively if Perp function in stratified epithelia is crucial for postnatal survival and epithelial adhesion, we specifically ablated Perp in stratified epithelia by breeding conditional Perp knockout mice to keratin 5 (K5)-Cre transgenic mice. We found that the majority of mice lacking Perp in stratified epithelia die within 10 days after birth, accompanied by blistering and hyperproliferation in the epithelia, similar to the constitutive Perp null mice. Together, these findings indicate that Perp's requirement for both viability and epithelial integrity reflects a role in the stratified epithelial compartment.
Collapse
Affiliation(s)
- Michelle R. Marques
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Rebecca A. Ihrie
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Jennifer S. Horner
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Laura D. Attardi
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
44
|
Mahoney MG, Hu Y, Brennan D, Bazzi H, Christiano AM, Wahl JK. Delineation of diversified desmoglein distribution in stratified squamous epithelia: implications in diseases. Exp Dermatol 2006; 15:101-9. [PMID: 16433681 DOI: 10.1111/j.1600-0625.2006.00391.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
Desmogleins play critical roles in cell adhesion and skin blistering diseases, as they are the target antigens of autoimmune antibodies and bacterial toxins. We recently cloned several novel members of the desmoglein gene family, bringing the number of desmogleins to four in the rat and human genomes and six in the mouse. Here, we have produced a monoclonal antibody to a cytoplasmic epitope of Dsg4, assessed its specificity and compared it to several existing Dsg1-3 antibodies. We also demonstrated cross-reactivity of commercially available and often used Dsg1 antibodies. Using these tools, we delineated the unique expression patterns of each desmoglein isoform in various human and mouse stratified squamous epithelia, including skin, hair, palm, and oral mucosa. Interestingly, in the epidermis, the expression of each desmoglein correlates with their gene arrangement in the cadherin locus. In human, Dsg4 was detected primarily in the granular and cornified cell layers of the epidermis, while present throughout all differentiated layers of the oral mucosa and palm, and in the matrix cells of anagen hair bulb. Similar pattern of expression for Dsg4 was observed in mouse, with the exception that it was expressed at significantly lower levels in the mouse epidermis. These results demonstrate the complexity of desmoglein gene expression and provide additional insights into the correlation between tissue expression patterns and disease phenotypes.
Collapse
Affiliation(s)
- My G Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
In recent years, the genes responsible for many hereditary skin diseases have been discovered. These genes encode different proteins that participate in the terminal differentiation of the epidermis, so their alteration or absence causes a keratinization disorder and/or an increase in skin fragility. Thanks to genetic analyses, we have been able to understand the physiopathology of numerous genodermatoses and we have become closer to diagnosing many others. In the not-too-distant future, biomolecular techniques may foreseeably help us prevent and treat these processes, which include skin diseases as serious as epidermolysis bullosa or epidermolytic hyperkeratosis. In this article, we will study the most recent biomolecular findings referring to keratinization and epidermal disorders, mentioning the altered genes and/ or the defective proteins that cause them.
Collapse
|