1
|
Lin BJ, Fujie H, Yamazaki M, Sakamoto N. The dual effect of fiber density and matrix stiffness on A549 tumor multicellular migration. Biochem Biophys Res Commun 2024; 741:151018. [PMID: 39579534 DOI: 10.1016/j.bbrc.2024.151018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
The tumor microenvironment features dynamic biomechanical interactions between extracellular matrix physics and tumor progression. Tumor growth compresses the supportive matrix, and the stiffness-gradient guides tumor invasion. From the mechanical perspective, the complexity of the matrix topology involving durotaxis-driven metastasis remains lacking in a comprehensive description. In this study, A549 adenocarcinoma spheroids were exposed to a stiffness-and fiber-adjusted collagen matrix to examine the influence of collective motility. Centrifugated compression on the collagen constructs was adopted to mimic the matrix deformation in response to solid tumor development. Centrifugated compression physically stiffened and condensed collagen constructs simultaneously. Cultured with A549 spheroids for 7 days, compressed collagen constructs disadvantaged spheroid expansion without the effect of tumor proliferation potency but promoted matrix metalloproteinase activity corresponding to softened rigidity. Results suggested that the fibrous structure may counterbalance the matrix stiffness-induced motility.
Collapse
Affiliation(s)
- Bo-Jiang Lin
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 1920397, Japan.
| | - Hiromichi Fujie
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 1920397, Japan; Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 1920397, Japan.
| | - Masashi Yamazaki
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 1920397, Japan; Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 1920397, Japan.
| | - Naoya Sakamoto
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 1920397, Japan; Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 1920397, Japan.
| |
Collapse
|
2
|
Norollahi SE, Yousefi B, Nejatifar F, Yousefzadeh-Chabok S, Rashidy-Pour A, Samadani AA. Practical immunomodulatory landscape of glioblastoma multiforme (GBM) therapy. J Egypt Natl Canc Inst 2024; 36:33. [PMID: 39465481 DOI: 10.1186/s43046-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/21/2024] [Indexed: 10/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common harmful high-grade brain tumor with high mortality and low survival rate. Importantly, besides routine diagnostic and therapeutic methods, modern and useful practical techniques are urgently needed for this serious malignancy. Correspondingly, the translational medicine focusing on genetic and epigenetic profiles of glioblastoma, as well as the immune framework and brain microenvironment, based on these challenging findings, indicates that key clinical interventions include immunotherapy, such as immunoassay, oncolytic viral therapy, and chimeric antigen receptor T (CAR T) cell therapy, which are of great importance in both diagnosis and therapy. Relatively, vaccine therapy reflects the untapped confidence to enhance GBM outcomes. Ongoing advances in immunotherapy, which utilizes different methods to regenerate or modify the resistant body for cancer therapy, have revealed serious results with many different problems and difficulties for patients. Safe checkpoint inhibitors, adoptive cellular treatment, cellular and peptide antibodies, and other innovations give researchers an endless cluster of instruments to plan profoundly in personalized medicine and the potential for combination techniques. In this way, antibodies that block immune checkpoints, particularly those that target the program death 1 (PD-1)/PD-1 (PD-L1) ligand pathway, have improved prognosis in a wide range of diseases. However, its use in combination with chemotherapy, radiation therapy, or monotherapy is ineffective in treating GBM. The purpose of this review is to provide an up-to-date overview of the translational elements concentrating on the immunotherapeutic field of GBM alongside describing the molecular mechanism involved in GBM and related signaling pathways, presenting both historical perspectives and future directions underlying basic and clinical practice.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nejatifar
- Department of Hematology and Oncology, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shahrokh Yousefzadeh-Chabok
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- , Rasht, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
3
|
Rodriguez SMB, Tataranu LG, Kamel A, Turliuc S, Rizea RE, Dricu A. Glioblastoma and Immune Checkpoint Inhibitors: A Glance at Available Treatment Options and Future Directions. Int J Mol Sci 2024; 25:10765. [PMID: 39409094 PMCID: PMC11477435 DOI: 10.3390/ijms251910765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma is known to be one of the most aggressive and fatal human cancers, with a poor prognosis and resistance to standard treatments. In the last few years, many solid tumor treatments have been revolutionized with the help of immunotherapy. However, this type of treatment has failed to improve the results in glioblastoma patients. Effective immunotherapeutic strategies may be developed after understanding how glioblastoma achieves tumor-mediated immune suppression in both local and systemic landscapes. Biomarkers may help identify patients most likely to benefit from this type of treatment. In this review, we discuss the use of immunotherapy in glioblastoma, with an emphasis on immune checkpoint inhibitors and the factors that influence clinical response. A Pubmed data search was performed for all existing information regarding immune checkpoint inhibitors used for the treatment of glioblastoma. All data evaluating the ongoing clinical trials involving the use of ICIs either as monotherapy or in combination with other drugs was compiled and analyzed.
Collapse
Affiliation(s)
- Silvia Mara Baez Rodriguez
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
- Neurosurgical Department, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania
| | - Amira Kamel
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
| | - Serban Turliuc
- Medical Department, University of Medicine and Pharmacy “G. T. Popa”, 700115 Iasi, Romania;
| | - Radu Eugen Rizea
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
- Neurosurgical Department, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania
| | - Anica Dricu
- Biochemistry Department, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania;
| |
Collapse
|
4
|
Kaminuma Y, Nakai T, Aokage K, Taki T, Miyoshi T, Tane K, Samejima J, Miyazaki S, Sakamoto N, Sakashita S, Kojima M, Watanabe R, Tsuboi M, Ishii G. Prognostic significance of micronest in cancer stroma in resected lung squamous cell carcinoma. Hum Pathol 2024; 150:20-28. [PMID: 38914166 DOI: 10.1016/j.humpath.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Tumor budding in the cancer stroma has been reported to be a prognostic factor in non-small cell lung cancer. Micronest in cancer stroma (MICS) is often observed as a formation that is larger and more conspicuous than budding, but its clinicopathologic significance is unclear. In this study, we aimed to examine the clinicopathological significance of MICS in lung squamous cell carcinoma (LSqCC). A total of 198 consecutive patients with pathologically diagnosed LSqCC (anyT N0-1M0) were enrolled in this study. MICS were defined as those that met the following criteria: (1) consisting of 5-200 tumor cells or less than 200 μm in diameter and (2) more than 200 μm away from the adjacent main lesion. The prognostic impact of the presence or absence of MICS and the characteristics of MICS-forming cancer cells were evaluated by immunohistochemistry (IHC). MICS was observed in 57 patients (28.8%), and overall survival (OS) and recurrence-free survival (RFS) were significantly shorter in the MICS-positive group (OS: 44.4% vs. 84.4%, p < 0.001; RFS: 30.0% vs. 82.6%, p < 0.001). Univariate and multivariate analyses revealed that the presence of MICS was an independent poor prognostic factor for OS (hazard ratio [HR] 3.54, p < 0.001) and RFS (HR 4.99, p < 0.001). Immunohistochemistry showed that the expression levels of the cell-cell adhesion molecule E-cadherin and hypoxia-induced protein GLUT-1 were significantly decreased in cancer cells forming MICS lesions compared to the tumor component excluding MICS within the same tumor (non-MICS lesions). Our data show that MICS is a distinct morphological feature with important biological and prognostic significance.
Collapse
Affiliation(s)
- Yasunori Kaminuma
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan; Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan; Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Tokiko Nakai
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.
| | - Keiju Aokage
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.
| | - Tetsuro Taki
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.
| | - Tomohiro Miyoshi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.
| | - Kenta Tane
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.
| | - Joji Samejima
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.
| | - Saori Miyazaki
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.
| | - Naoya Sakamoto
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan; Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan.
| | - Shingo Sakashita
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan; Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan.
| | - Motohiro Kojima
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan; Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan.
| | - Reiko Watanabe
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.
| | - Genichiro Ishii
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan; Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan; Division of Innovative Pathology and Laboratory Medicine, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan.
| |
Collapse
|
5
|
Salvato I, Marchini A. Immunotherapeutic Strategies for the Treatment of Glioblastoma: Current Challenges and Future Perspectives. Cancers (Basel) 2024; 16:1276. [PMID: 38610954 PMCID: PMC11010873 DOI: 10.3390/cancers16071276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Despite decades of research and the best up-to-date treatments, grade 4 Glioblastoma (GBM) remains uniformly fatal with a patient median overall survival of less than 2 years. Recent advances in immunotherapy have reignited interest in utilizing immunological approaches to fight cancer. However, current immunotherapies have so far not met the anticipated expectations, achieving modest results in their journey from bench to bedside for the treatment of GBM. Understanding the intrinsic features of GBM is of crucial importance for the development of effective antitumoral strategies to improve patient life expectancy and conditions. In this review, we provide a comprehensive overview of the distinctive characteristics of GBM that significantly influence current conventional therapies and immune-based approaches. Moreover, we present an overview of the immunotherapeutic strategies currently undergoing clinical evaluation for GBM treatment, with a specific emphasis on those advancing to phase 3 clinical studies. These encompass immune checkpoint inhibitors, adoptive T cell therapies, vaccination strategies (i.e., RNA-, DNA-, and peptide-based vaccines), and virus-based approaches. Finally, we explore novel innovative strategies and future prospects in the field of immunotherapy for GBM.
Collapse
Affiliation(s)
- Ilaria Salvato
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg;
- Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Wang X, Liu J, Azoitei A, Eiseler T, Meessen S, Jiang W, Zheng X, Makori AW, Eckstein M, Hartmann A, Stilgenbauer S, Elati M, Hohwieler M, Kleger A, John A, Zengerling F, Wezel F, Bolenz C, Günes C. Loss of ORP3 induces aneuploidy and promotes bladder cancer cell invasion through deregulated microtubule and actin dynamics. Cell Mol Life Sci 2023; 80:299. [PMID: 37740130 PMCID: PMC10516806 DOI: 10.1007/s00018-023-04959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
We have recently shown that loss of ORP3 leads to aneuploidy induction and promotes tumor formation. However, the specific mechanisms by which ORP3 contributes to ploidy-control and cancer initiation and progression is still unknown. Here, we report that ORP3 is highly expressed in ureter and bladder epithelium while its expression is downregulated in invasive bladder cancer cell lines and during tumor progression, both in human and in mouse bladder cancer. Moreover, we observed an increase in the incidence of N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced invasive bladder carcinoma in the tissue-specific Orp3 knockout mice. Experimental data demonstrate that ORP3 protein interacts with γ-tubulin at the centrosomes and with components of actin cytoskeleton. Altering the expression of ORP3 induces aneuploidy and genomic instability in telomerase-immortalized urothelial cells with a stable karyotype and influences the migration and invasive capacity of bladder cancer cell lines. These findings demonstrate a crucial role of ORP3 in ploidy-control and indicate that ORP3 is a bona fide tumor suppressor protein. Of note, the presented data indicate that ORP3 affects both cell invasion and migration as well as genome stability through interactions with cytoskeletal components, providing a molecular link between aneuploidy and cell invasion and migration, two crucial characteristics of metastatic cells.
Collapse
Affiliation(s)
- Xue Wang
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Junnan Liu
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Anca Azoitei
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, University Hospital, Ulm, Germany
| | - Sabine Meessen
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Division of Hepatology, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Wencheng Jiang
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Xi Zheng
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Department of Urology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
- Institute of Urology, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Arika W Makori
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Markus Eckstein
- Institute of Pathology, Friedrich-Alexander University, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University, Erlangen, Germany
| | | | - Mohamed Elati
- CANTHER, ONCOLille Institute, University of Lille, CNRS UMR 1277, Inserm U9020, 59045, Lille Cedex, France
| | - Meike Hohwieler
- Institute of Mol. Oncology and Stem Cell Biology, University Hospital, Ulm, Germany
| | - Alexander Kleger
- Institute of Mol. Oncology and Stem Cell Biology, University Hospital, Ulm, Germany
| | - Axel John
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Friedemann Zengerling
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Felix Wezel
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Cagatay Günes
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany.
| |
Collapse
|
7
|
Giverso C, Jankowiak G, Preziosi L, Schmeiser C. The Influence of Nucleus Mechanics in Modelling Adhesion-independent Cell Migration in Structured and Confined Environments. Bull Math Biol 2023; 85:88. [PMID: 37626216 PMCID: PMC10457269 DOI: 10.1007/s11538-023-01187-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 07/17/2023] [Indexed: 08/27/2023]
Abstract
Recent biological experiments (Lämmermann et al. in Nature 453(7191):51-55, 2008; Reversat et al. in Nature 7813:582-585, 2020; Balzer et al. in ASEB J Off Publ Fed Am Soc Exp Biol 26(10):4045-4056, 2012) have shown that certain types of cells are able to move in structured and confined environments even without the activation of focal adhesion. Focusing on this particular phenomenon and based on previous works (Jankowiak et al. in Math Models Methods Appl Sci 30(03):513-537, 2020), we derive a novel two-dimensional mechanical model, which relies on the following physical ingredients: the asymmetrical renewal of the actin cortex supporting the membrane, resulting in a backward flow of material; the mechanical description of the nuclear membrane and the inner nuclear material; the microtubule network guiding nucleus location; the contact interactions between the cell and the external environment. The resulting fourth order system of partial differential equations is then solved numerically to conduct a study of the qualitative effects of the model parameters, mainly those governing the mechanical properties of the nucleus and the geometry of the confining structure. Coherently with biological observations, we find that cells characterized by a stiff nucleus are unable to migrate in channels that can be crossed by cells with a softer nucleus. Regarding the geometry, cell velocity and ability to migrate are influenced by the width of the channel and the wavelength of the external structure. Even though still preliminary, these results may be potentially useful in determining the physical limit of cell migration in confined environments and in designing scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Chiara Giverso
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Gaspard Jankowiak
- Department of Mathematics and Statistics, University of Konstanz, 78457 Constance, Germany
| | - Luigi Preziosi
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Christian Schmeiser
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern Platz 1, 1090 Wien, Austria
| |
Collapse
|
8
|
Pol M, Gao H, Zhang H, George OJ, Fox JM, Jia X. Dynamic modulation of matrix adhesiveness induces epithelial-to-mesenchymal transition in prostate cancer cells in 3D. Biomaterials 2023; 299:122180. [PMID: 37267701 PMCID: PMC10330660 DOI: 10.1016/j.biomaterials.2023.122180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
Synthetic matrices with dynamic presentation of cell guidance cues are needed for the development of physiologically relevant in vitro tumor models. Towards the goal of mimicking prostate cancer progression and metastasis, we engineered a tunable hyaluronic acid-based hydrogel platform with protease degradable and cell adhesive properties employing bioorthogonal tetrazine ligation with strained alkenes. The synthetic matrix was first fabricated via a slow tetrazine-norbornene reaction, then temporally modified via a diffusion-controlled method using trans-cyclooctene, a fierce dienophile that reacts with tetrazine with an unusually fast rate. The encapsulated DU145 prostate cancer single cells spontaneously formed multicellular tumoroids after 7 days of culture. In situ modification of the synthetic matrix via covalent tagging of cell adhesive RGD peptide induced tumoroid decompaction and the development of cellular protrusions. RGD tagging did not compromise the overall cell viability, nor did it induce cell apoptosis. In response to increased matrix adhesiveness, DU145 cells dynamically loosen cell-cell adhesion and strengthen cell-matrix interactions to promote an invasive phenotype. Characterization of the 3D cultures by immunocytochemistry and gene expression analyses demonstrated that cells invaded into the matrix via a mesenchymal like migration, with upregulation of major mesenchymal markers, and down regulation of epithelial markers. The tumoroids formed cortactin positive invadopodia like structures, indicating active matrix remodeling. Overall, the engineered tumor model can be utilized to identify potential molecular targets and test pharmacological inhibitors, thereby accelerating the design of innovative strategies for cancer therapeutics.
Collapse
Affiliation(s)
- Mugdha Pol
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Hanyuan Gao
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - He Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Olivia J George
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Joseph M Fox
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA; Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Xinqiao Jia
- Department of Biological Sciences, University of Delaware, Newark, DE, USA; Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE, USA; Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.
| |
Collapse
|
9
|
Song L, Xiong P, Zhang W, Hu H, Tang S, Jia B, Huang W. Mechanism of Citri Reticulatae Pericarpium as an Anticancer Agent from the Perspective of Flavonoids: A Review. Molecules 2022; 27:molecules27175622. [PMID: 36080397 PMCID: PMC9458152 DOI: 10.3390/molecules27175622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022] Open
Abstract
Citri Reticulatae Pericarpium (CRP), also known as “chenpi”, is the most common qi-regulating drug in traditional Chinese medicine. It is often used to treat cough and indigestion, but in recent years, it has been found to have multi-faceted anti-cancer effects. This article reviews the pharmacology of CRP and the mechanism of the action of flavonoids, the key components of CRP, against cancers including breast cancer, lung cancer, prostate cancer, hepatic carcinoma, gastric cancer, colorectal cancer, esophageal cancer, cervical cancer, bladder cancer and other cancers with a high diagnosis rate. Finally, the specific roles of CRP in important phenotypes such as cell proliferation, apoptosis, autophagy and migration–invasion in cancer were analyzed, and the possible prospects and deficiencies of CRP as an anticancer agent were evaluated.
Collapse
Affiliation(s)
- Li Song
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Peiyu Xiong
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Wei Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Hengchang Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Songqi Tang
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China
| | - Bo Jia
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Wei Huang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
- Correspondence:
| |
Collapse
|
10
|
Tulchinsky M, Weihs D. Computational modeling reveals a vital role for proximity-driven additive and synergistic cell-cell interactions in increasing cancer invasiveness. Acta Biomater 2022; 163:392-399. [PMID: 35367632 DOI: 10.1016/j.actbio.2022.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/24/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Solid-tumor cell invasion typically occurs by collective migration of attached cell-cohorts, yet we show here that indirect cell-interactions through the substrate can also drive invasiveness. We have previously shown that well-spaced, invasive cancer cells push-into and indent gels to depths of 10 µm, while closely adjacent, non-contacting cancer cells may reach up to 18 µm, potentially relying on cell-cell interactions through the gel-substrate. To test that, we developed finite element models of indenting cells, using experimental gel mechanics, cell mechanostructure, and force magnitudes. We show that under 50-350 nN of combined traction and normal forces, a stiff nucleus-region is essential in facilitating 5-10 µm single-cell indentations, while uniformly soft cells attain 1.6-fold smaller indentations. We observe that indentation depths of cells in close proximity (0.5-50 µm distance) increase relative to well-spaced cells, due to additive, continuum mechanics-driven contributions. Specifically, 2-3 cells applying 220 nN normal forces gained up to 3% in depth, which interestingly increased to 7.8% when two cells, 10 µm apart, applied unequal force-magnitudes (i.e., 220 and 350 nN). Such additive, energy-free contributions can reduce cell mechanical energy -output required for invasiveness, yet the experimentally observed 10-18 µm depths likely necessitate synergistic, mechanobiological changes, which may be mechanically triggered. We note that nucleus stiffening or cytoplasm softening by 25-50% increased indentation depths by only 1-7%, while depths increase nearly linearly with force-magnitude even to two-fold levels. Hence, cell-proximity triggered, synergistic and additive cell-interactions through the substrate can drive collective cancer-cell invasiveness, even without direct cell-cell interactions. STATEMENT OF SIGNIFICANCE: Metastatic cancer invasion typically occurs collectively in attached cell-cohorts. We have previously shown increased invasiveness in closely adjacent cancer cells that are able to push-into and indent soft-gels more deeply than single, well-spaced cells. Using finite element models, we reveal mechanisms of cell-proximity driven invasiveness, demonstrating an important role for the stiff nucleus. Cell-proximity can additively induce small increase in indentation depth via continuum mechanics contributions, especially when adjacent cells apply unequal forces, and without requiring increased cell-mechanical-energy-output. Concurrently, proximity-triggered synergistic interactions that produce changes in cell mechanics or capacity for increased force-levels can facilitate deep invasive-indentations. Thus, we reveal concurrent additive and synergistic mechanisms to drive collective cancer-cell invasiveness even without direct cell-cell interactions.
Collapse
Affiliation(s)
- Marina Tulchinsky
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Daphne Weihs
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
11
|
Mousson A, Legrand M, Steffan T, Vauchelles R, Carl P, Gies JP, Lehmann M, Zuber G, De Mey J, Dujardin D, Sick E, Rondé P. Inhibiting FAK-Paxillin Interaction Reduces Migration and Invadopodia-Mediated Matrix Degradation in Metastatic Melanoma Cells. Cancers (Basel) 2021; 13:cancers13081871. [PMID: 33919725 PMCID: PMC8070677 DOI: 10.3390/cancers13081871] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary The focal adhesion kinase (FAK) is over-expressed in a variety of human tumors and is involved in many aspects of the metastatic process. This has led to the development of small inhibitors of FAK kinase function which are currently evaluated in clinical trials. We demonstrate here that this class of inhibitors, while decreasing melanoma cell migration, increases invadopodia activity in metastatic melanoma cells. Searching for an alternative strategy to inhibit the oncogenic activity of FAK, we show that inhibiting FAK scaffolding function using a small peptide altering FAK–paxillin interactions reduces both migration and invadopodia-mediated matrix degradation in metastatic melanoma cells. Abstract The nonreceptor tyrosine kinase FAK is a promising target for solid tumor treatment because it promotes invasion, tumor progression, and drug resistance when overexpressed. Investigating the role of FAK in human melanoma cells, we found that both in situ and metastatic melanoma cells strongly express FAK, where it controls tumor cells’ invasiveness by regulating focal adhesion-mediated cell motility. Inhibiting FAK in human metastatic melanoma cells with either siRNA or a small inhibitor targeting the kinase domain impaired migration but led to increased invadopodia formation and extracellular matrix degradation. Using FAK mutated at Y397, we found that this unexpected increase in invadopodia activity is due to the lack of phosphorylation at this residue. To preserve FAK–Src interaction while inhibiting pro-migratory functions of FAK, we found that altering FAK–paxillin interaction, with either FAK mutation in the focal adhesion targeting (FAT) domain or a competitive inhibitor peptide mimicking paxillin LD domains drastically reduces cell migration and matrix degradation by preserving FAK activity in the cytoplasm. In conclusion, our data show that targeting FAK–paxillin interactions could be a potential therapeutic strategy to prevent metastasis formation, and molecules targeting this interface could be alternative to inhibitors of FAK kinase activity which display unexpected effects.
Collapse
Affiliation(s)
- Antoine Mousson
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Marlène Legrand
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Tania Steffan
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Romain Vauchelles
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Plateforme PIQ, Faculté de Pharmacie, 67401 Illkirch, France;
| | - Philippe Carl
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Jean-Pierre Gies
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Maxime Lehmann
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Guy Zuber
- Université de Strasbourg, CNRS UMR7242, Intervention Chémobiologique, ESBS, 67412 Illkirch, France;
| | - Jan De Mey
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Denis Dujardin
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Emilie Sick
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Philippe Rondé
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
- Correspondence: ; Tel.: +33-3-6885-4184
| |
Collapse
|
12
|
Pietrovito L, Comito G, Parri M, Giannoni E, Chiarugi P, Taddei ML. Zoledronic Acid Inhibits the RhoA-mediated Amoeboid Motility of Prostate Cancer Cells. Curr Cancer Drug Targets 2020; 19:807-816. [PMID: 30648509 DOI: 10.2174/1568009619666190115142858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/22/2018] [Accepted: 01/04/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The bisphosphonate Zoledronic acid (ZA) is a potent osteoclast inhibitor currently used in the clinic to reduce osteoporosis and cancer-induced osteolysis. Moreover, ZA exerts an anti-tumor effect in several tumors. Despite this evidence, the relevance of ZA in prostate cancer (PCa) is not completely understood. OBJECTIVE To investigate the effect of ZA administration on the invasive properties of PC3 cells, which are characterised by RhoA-dependent amoeboid motility. METHODS The effect of ZA administration on the in vitro invasive properties of PC3 cells was evaluated by cell migration in 3D collagen matrices, immunofluorescence and Boyden assays or transendothelial migration. Lung retention and colonization assays were performed to assess the efficacy of ZA administration in vivo. RESULTS PC3 cells are characterised by RhoA-dependent amoeboid motility. We now report a clear inhibition of in vitro PC3 cell invasion and RhoA activity upon ZA treatment. Moreover, to confirm a specific role of ZA in the inhibition of amoeboid motility of PC3 cells, we demonstrate that ZA interferes only partially with PC3 cells showing a mesenchymal phenotype due to both treatment with conditioned medium of cancer associated fibroblasts or to the acquisition of chemoresistance. Furthermore, we demonstrate that ZA impairs adhesion to endothelial cells and the trans-endothelial cell migration, two essential properties characterising amoeboid motility and PC3 metastatic dissemination. In vivo experiments prove the ability of ZA to inhibit the metastatic process of PC3 cells as shown by the decrease in lung colonization. CONCLUSION This study demonstrates that ZA inhibits Rho-dependent amoeboid motility of PC3 cells, thus suggesting ZA as a potential therapy to impede the metastatic dissemination of PC3 cells.
Collapse
Affiliation(s)
- Laura Pietrovito
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Universita degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy
| | - Giuseppina Comito
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Universita degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy
| | - Matteo Parri
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Universita degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy
| | - Elisa Giannoni
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Universita degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy
| | - Paola Chiarugi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Universita degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy
| | - Maria Letizia Taddei
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Universita degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy.,Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy.,Tuscany Tumor Institute and "Center for Research, Transfer and High Education DenoTHE", 50134 Florence, Italy
| |
Collapse
|
13
|
Jaeschke A, Jacobi A, Lawrence M, Risbridger G, Frydenberg M, Williams E, Vela I, Hutmacher D, Bray L, Taubenberger A. Cancer-associated fibroblasts of the prostate promote a compliant and more invasive phenotype in benign prostate epithelial cells. Mater Today Bio 2020; 8:100073. [PMID: 32984808 PMCID: PMC7498830 DOI: 10.1016/j.mtbio.2020.100073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/30/2020] [Accepted: 08/07/2020] [Indexed: 01/04/2023] Open
Abstract
Reciprocal interactions between prostate epithelial cells and their adjacent stromal microenvironment not only are essential for tissue homeostasis but also play a key role in tumor development and progression. Malignant transformation is associated with the formation of a reactive stroma where cancer-associated fibroblasts (CAFs) induce matrix remodeling and thereby provide atypical biochemical and biomechanical signals to epithelial cells. Previous work has been focused on the cellular and molecular phenotype as well as on matrix stiffness and remodeling, providing potential targets for cancer therapeutics. So far, biomechanical changes in CAFs and adjacent epithelial cells of the prostate have not been explored. Here, we compared the mechanical properties of primary prostatic CAFs and patient-matched non-malignant prostate tissue fibroblasts (NPFs) using atomic force microscopy (AFM) and real-time deformability cytometry (RT-FDC). It was found that CAFs exhibit an increased apparent Young's modulus, coinciding with an altered architecture of the cytoskeleton compared with NPFs. In contrast, co-cultures of benign prostate epithelial (BPH-1) cells with CAFs resulted in a decreased stiffness of the epithelial cells, as well as an elongated morphological phenotype, when compared with co-cultures with NPFs. Moreover, the presence of CAFs increased proliferation and invasion of epithelial cells, features typically associated with tumor progression. Altogether, this study provides novel insights into the mechanical interactions between epithelial cells with the malignant prostate microenvironment, which could potentially be explored for new diagnostic approaches.
Collapse
Affiliation(s)
- A. Jaeschke
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Australia
| | - A. Jacobi
- Biotechnology Center, Technische Universität Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - M.G. Lawrence
- Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - G.P. Risbridger
- Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - M. Frydenberg
- Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Australian Urology Associates, Melbourne, Victoria, Australia
- Department of Urology, Cabrini Health, Malvern, Victoria, Australia
| | - E.D. Williams
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia
- Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology (QUT), Kelvin Grove, Australia
- Translational Research Institute, Woolloongabba, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - I. Vela
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia
- Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology (QUT), Kelvin Grove, Australia
- Translational Research Institute, Woolloongabba, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
- Department of Urology, Princess Alexandra Hospital, Woolloongabba, Australia
| | - D.W. Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - L.J. Bray
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Australia
| | - A. Taubenberger
- Biotechnology Center, Technische Universität Dresden, Germany
| |
Collapse
|
14
|
Emad A, Ray T, Jensen TW, Parat M, Natrajan R, Sinha S, Ray PS. Superior breast cancer metastasis risk stratification using an epithelial-mesenchymal-amoeboid transition gene signature. Breast Cancer Res 2020; 22:74. [PMID: 32641077 PMCID: PMC7341640 DOI: 10.1186/s13058-020-01304-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/01/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Cancer cells are known to display varying degrees of metastatic propensity, but the molecular basis underlying such heterogeneity remains unclear. Our aims in this study were to (i) elucidate prognostic subtypes in primary tumors based on an epithelial-to-mesenchymal-to-amoeboid transition (EMAT) continuum that captures the heterogeneity of metastatic propensity and (ii) to more comprehensively define biologically informed subtypes predictive of breast cancer metastasis and survival in lymph node-negative (LNN) patients. METHODS We constructed a novel metastasis biology-based gene signature (EMAT) derived exclusively from cancer cells induced to undergo either epithelial-to-mesenchymal transition (EMT) or mesenchymal-to-amoeboid transition (MAT) to gauge their metastatic potential. Genome-wide gene expression data obtained from 913 primary tumors of lymph node-negative breast cancer (LNNBC) patients were analyzed. EMAT gene signature-based prognostic stratification of patients was performed to identify biologically relevant subtypes associated with distinct metastatic propensity. RESULTS Delineated EMAT subtypes display a biologic range from less stem-like to more stem-like cell states and from less invasive to more invasive modes of cancer progression. Consideration of EMAT subtypes in combination with standard clinical parameters significantly improved survival prediction. EMAT subtypes outperformed prognosis accuracy of receptor or PAM50-based BC intrinsic subtypes even after adjusting for treatment variables in 3 independent, LNNBC cohorts including a treatment-naïve patient cohort. CONCLUSIONS EMAT classification is a biologically informed method that provides prognostic information beyond that which can be provided by traditional cancer staging or PAM50 molecular subtype status and may improve metastasis risk assessment in early stage, LNNBC patients, who may otherwise be perceived to be at low metastasis risk.
Collapse
Affiliation(s)
- Amin Emad
- Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec, Canada
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Tania Ray
- Onconostic Technologies Inc., Champaign, Illinois, USA
| | - Tor W Jensen
- Illinois Health Sciences Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Meera Parat
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Saurabh Sinha
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA.
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA.
| | - Partha S Ray
- Onconostic Technologies Inc., Champaign, Illinois, USA.
| |
Collapse
|
15
|
Vollmann-Zwerenz A, Leidgens V, Feliciello G, Klein CA, Hau P. Tumor Cell Invasion in Glioblastoma. Int J Mol Sci 2020; 21:E1932. [PMID: 32178267 PMCID: PMC7139341 DOI: 10.3390/ijms21061932] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is a particularly devastating tumor with a median survival of about 16 months. Recent research has revealed novel insights into the outstanding heterogeneity of this type of brain cancer. However, all GBM subtypes share the hallmark feature of aggressive invasion into the surrounding tissue. Invasive glioblastoma cells escape surgery and focal therapies and thus represent a major obstacle for curative therapy. This review aims to provide a comprehensive understanding of glioma invasion mechanisms with respect to tumor-cell-intrinsic properties as well as cues provided by the microenvironment. We discuss genetic programs that may influence the dissemination and plasticity of GBM cells as well as their different invasion patterns. We also review how tumor cells shape their microenvironment and how, vice versa, components of the extracellular matrix and factors from non-neoplastic cells influence tumor cell motility. We further discuss different research platforms for modeling invasion. Finally, we highlight the importance of accounting for the complex interplay between tumor cell invasion and treatment resistance in glioblastoma when considering new therapeutic approaches.
Collapse
Affiliation(s)
- Arabel Vollmann-Zwerenz
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, 93053 Regensburg, Germany; (A.V.-Z.); (V.L.)
| | - Verena Leidgens
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, 93053 Regensburg, Germany; (A.V.-Z.); (V.L.)
| | - Giancarlo Feliciello
- Fraunhofer-Institute for Toxicology and Experimental Medicine, Division of Personalized Tumor Therapy, 93053 Regensburg, Germany; (G.F.); (C.A.K.)
| | - Christoph A. Klein
- Fraunhofer-Institute for Toxicology and Experimental Medicine, Division of Personalized Tumor Therapy, 93053 Regensburg, Germany; (G.F.); (C.A.K.)
- Experimental Medicine and Therapy Research, University of Regensburg, 93053 Regensburg, Germany
| | - Peter Hau
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, 93053 Regensburg, Germany; (A.V.-Z.); (V.L.)
| |
Collapse
|
16
|
Nobili S, Lapucci A, Landini I, Coronnello M, Roviello G, Mini E. Role of ATP-binding cassette transporters in cancer initiation and progression. Semin Cancer Biol 2020; 60:72-95. [PMID: 31412294 DOI: 10.1016/j.semcancer.2019.08.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
|
17
|
Singh V, Jha KK, M JK, Kumar RV, Raghunathan V, Bhat R. Iduronate-2-Sulfatase-Regulated Dermatan Sulfate Levels Potentiate the Invasion of Breast Cancer Epithelia through Collagen Matrix. J Clin Med 2019; 8:jcm8101562. [PMID: 31574977 PMCID: PMC6832158 DOI: 10.3390/jcm8101562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer epithelia show elevation in levels of sulfated proteoglycans including dermatan sulfates (DS). The effect of increased DS on cancer cell behavior is still unclear. We hypothesized that decreased expression of the enzyme Iduronate-2-sulfatase (IDS) can lead to increased DS levels, which would enhance the invasion of cancer cells. Breast cancer sections shows depleted IDS levels in tumor epithelia, when compared with adjacent untransformed breast tissues. IDS signals showed a progressive decrease in the non-transformed HMLE, transformed but non-invasive MCF-7 and transformed and invasive MDA-MB-231 cells, respectively, when cultured on Type 1 collagen scaffolds. DS levels measured by ELISA increased in an inverse-association with IDS levels. Knockdown of IDS in MCF-7 epithelia also increased the levels of DS. MCF-7 cells with depleted IDS expression, when imaged using two photon-excited fluorescence and second harmonic generation microscopy, exhibited a mesenchymal morphology with multiple cytoplasmic projections compared with epithelioid control cells, interacted with their surrounding matrix, and showed increased invasion through Type 1 collagen matrices. Both these traits were phenocopied when control MCF-7 cells were cultivated on Type 1 collagen gels polymerized in the presence of DS. In monolayer cultures, DS had no effect on MCF-7 migration. In the context of our demonstration that DS enhances the elastic modulus of Type 1 collagen gels, we propose that a decrease of IDS expression leads to accumulation within cancer epithelia of DS: the latter remodels the collagen around cancer cells leading to changes in cell shape and invasiveness through fibrillar matrix milieu.
Collapse
Affiliation(s)
- Vishal Singh
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Keshav Kumar Jha
- Department of Electrical Communications and Engineering, Indian Institute of Science, Bangalore 560012 India
| | - Jyothsna K M
- Department of Electrical Communications and Engineering, Indian Institute of Science, Bangalore 560012 India
| | - Rekha V Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore 560029, India
| | - Varun Raghunathan
- Department of Electrical Communications and Engineering, Indian Institute of Science, Bangalore 560012 India
| | - Ramray Bhat
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
18
|
Mishra AK, Mondo JA, Campanale JP, Montell DJ. Coordination of protrusion dynamics within and between collectively migrating border cells by myosin II. Mol Biol Cell 2019; 30:2490-2502. [PMID: 31390285 PMCID: PMC6743363 DOI: 10.1091/mbc.e19-02-0124] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Collective cell migration is emerging as a major driver of embryonic development, organogenesis, tissue homeostasis, and tumor dissemination. In contrast to individually migrating cells, collectively migrating cells maintain cell–cell adhesions and coordinate direction-sensing as they move. While nonmuscle myosin II has been studied extensively in the context of cells migrating individually in vitro, its roles in cells migrating collectively in three-dimensional, native environments are not fully understood. Here we use genetics, Airyscan microscopy, live imaging, optogenetics, and Förster resonance energy transfer to probe the localization, dynamics, and functions of myosin II in migrating border cells of the Drosophila ovary. We find that myosin accumulates transiently at the base of protrusions, where it functions to retract them. E-cadherin and myosin colocalize at border cell-border cell contacts and cooperate to transmit directional information. A phosphomimetic form of myosin is sufficient to convert border cells to a round morphology and blebbing migration mode. Together these studies demonstrate that distinct and dynamic pools of myosin II regulate protrusion dynamics within and between collectively migrating cells and suggest a new model for the role of protrusions in collective direction sensing in vivo.
Collapse
Affiliation(s)
- Abhinava K Mishra
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - James A Mondo
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Joseph P Campanale
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106
| |
Collapse
|
19
|
Numerical Simulation of a Multiscale Cell Motility Model Based on the Kinetic Theory of Active Particles. Symmetry (Basel) 2019. [DOI: 10.3390/sym11081003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this work, we deal with a kinetic model of cell movement that takes into consideration the structure of the extracellular matrix, considering cell membrane reactions, haptotaxis, and chemotaxis, which plays a key role in a number of biological processes such as wound healing and tumor cell invasion. The modeling is performed at a microscopic scale, and then, a scaling limit is performed to derive the macroscopic model. We run some selected numerical experiments aimed at understanding cell movement and adhesion under certain documented situations, and we measure the alignment of the cells and compare it with the pathways determined by the extracellular matrix by introducing new alignment operators.
Collapse
|
20
|
Gerashchenko TS, Novikov NM, Krakhmal NV, Zolotaryova SY, Zavyalova MV, Cherdyntseva NV, Denisov EV, Perelmuter VM. Markers of Cancer Cell Invasion: Are They Good Enough? J Clin Med 2019; 8:E1092. [PMID: 31344926 PMCID: PMC6723901 DOI: 10.3390/jcm8081092] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Invasion, or directed migration of tumor cells into adjacent tissues, is one of the hallmarks of cancer and the first step towards metastasis. Penetrating to adjacent tissues, tumor cells form the so-called invasive front/edge. The cellular plasticity afforded by different kinds of phenotypic transitions (epithelial-mesenchymal, collective-amoeboid, mesenchymal-amoeboid, and vice versa) significantly contributes to the diversity of cancer cell invasion patterns and mechanisms. Nevertheless, despite the advances in the understanding of invasion, it is problematic to identify tumor cells with the motile phenotype in cancer tissue specimens due to the absence of reliable and acceptable molecular markers. In this review, we summarize the current information about molecules such as extracellular matrix components, factors of epithelial-mesenchymal transition, proteases, cell adhesion, and actin cytoskeleton proteins involved in cell migration and invasion that could be used as invasive markers and discuss their advantages and limitations. Based on the reviewed data, we conclude that future studies focused on the identification of specific invasive markers should use new models one of which may be the intratumor morphological heterogeneity in breast cancer reflecting different patterns of cancer cell invasion.
Collapse
Affiliation(s)
- Tatiana S Gerashchenko
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia.
| | - Nikita M Novikov
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia
- Department of Cytology and Genetics, Tomsk State University, 634050 Tomsk, Russia
| | - Nadezhda V Krakhmal
- Department of Pathological Anatomy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Sofia Y Zolotaryova
- Department of Cytology and Genetics, Tomsk State University, 634050 Tomsk, Russia
| | - Marina V Zavyalova
- Department of Pathological Anatomy, Siberian State Medical University, 634050 Tomsk, Russia
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia
| | - Nadezhda V Cherdyntseva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 634050 Tomsk, Russia
| | - Evgeny V Denisov
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia
- Department of Organic Chemistry, Tomsk State University, 634050 Tomsk, Russia
| | - Vladimir M Perelmuter
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia
| |
Collapse
|
21
|
Miyazaki M, Aoki M, Okado Y, Koga K, Hamasaki M, Kiyomi F, Sakata T, Nakagawa T, Nabeshima K. Poorly Differentiated Clusters Predict a Poor Prognosis for External Auditory Canal Carcinoma. Head Neck Pathol 2019; 13:198-207. [PMID: 29846906 PMCID: PMC6513932 DOI: 10.1007/s12105-018-0939-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/24/2018] [Indexed: 01/23/2023]
Abstract
Squamous cell carcinoma (SCC) of the external auditory canal (EAC) is rare and offers a poor prognosis; more accurate prognostic biomarkers are required. Our laboratory recently demonstrated that tumor budding, characterized by tumor cell clusters (< 5 cells), and laminin 5-γ2 staining of SCC of the EAC are associated with shorter survival. However, clusters composed of ≥ 5 tumor cells are also found in the stroma. Previous reports of colorectal cancer suggest that poorly differentiated clusters (PDCs) are a negative prognostic indicator. Here, we report on the association between PDCs and prognosis in SCC of the EAC. PDCs and tumor budding were histopathologically and immunohistochemically (cytokeratin AE1/AE3) analyzed in 31 cases of pre-treatment biopsy SCC of the EAC. Clusters in the stroma composed of < or ≥ 5 cancer cells were defined as tumor budding or PDCs, respectively. Entire tumors were initially scanned to identify greatest PDC density. Tumors with low or high PDC density were classified as low- and high-grade, respectively. Patients with high-grade PDCs had a significantly poorer outcome than those with low-grade. Even in cases of low-grade tumor budding, those with high-grade PDCs had a poor prognosis. Multivariate analysis results indicated that high-grade PDCs were associated with poor prognosis. PDC grade can provide a more accurate prognosis than tumor budding in SCC of the EAC.
Collapse
Affiliation(s)
- Masaru Miyazaki
- Department of Pathology, Fukuoka University Hospital and School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
- Department of Otorhinolaryngology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Mikiko Aoki
- Department of Pathology, Fukuoka University Hospital and School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Yasuko Okado
- Department of Pathology, Fukuoka University Hospital and School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
- Department of Otorhinolaryngology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Kaori Koga
- Department of Pathology, Fukuoka University Hospital and School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Makoto Hamasaki
- Department of Pathology, Fukuoka University Hospital and School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Fumiaki Kiyomi
- Academia, Industry and Government Collaborative Research Institute of Translational Medicine for Life Innovation, Fukuoka University, Fukuoka, Japan
| | - Toshifumi Sakata
- Department of Otorhinolaryngology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Takashi Nakagawa
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuki Nabeshima
- Department of Pathology, Fukuoka University Hospital and School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
22
|
Holenstein CN, Horvath A, Schär B, Schoenenberger AD, Bollhalder M, Goedecke N, Bartalena G, Otto O, Herbig M, Guck J, Müller DA, Snedeker JG, Silvan U. The relationship between metastatic potential and in vitro mechanical properties of osteosarcoma cells. Mol Biol Cell 2019; 30:887-898. [PMID: 30785850 PMCID: PMC6589788 DOI: 10.1091/mbc.e18-08-0545] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma is the most frequent primary tumor of bone and is characterized by its high tendency to metastasize in lungs. Although treatment in cases of early diagnosis results in a 5-yr survival rate of nearly 60%, the prognosis for patients with secondary lesions at diagnosis is poor, and their 5-yr survival rate remains below 30%. In the present work, we have used a number of analytical methods to investigate the impact of increased metastatic potential on the biophysical properties and force generation of osteosarcoma cells. With that aim, we used two paired osteosarcoma cell lines, with each one comprising a parental line with low metastatic potential and its experimentally selected, highly metastatic form. Mechanical characterization was performed by means of atomic force microscopy, tensile biaxial deformation, and real-time deformability, and cell traction was measured using two-dimensional and micropost-based traction force microscopy. Our results reveal that the low metastatic osteosarcoma cells display larger spreading sizes and generate higher forces than the experimentally selected, highly malignant variants. In turn, the outcome of cell stiffness measurements strongly depends on the method used and the state of the probed cell, indicating that only a set of phenotyping methods provides the full picture of cell mechanics.
Collapse
Affiliation(s)
- Claude N Holenstein
- Biomechanics Laboratory, University Hospital Balgrist, University of Zürich, 8008 Zürich, Switzerland.,Institute for Biomechanics, ETH Zurich, 8008 Zürich, Switzerland
| | - Aron Horvath
- Biomechanics Laboratory, University Hospital Balgrist, University of Zürich, 8008 Zürich, Switzerland.,Institute for Biomechanics, ETH Zurich, 8008 Zürich, Switzerland
| | - Barbara Schär
- Biomechanics Laboratory, University Hospital Balgrist, University of Zürich, 8008 Zürich, Switzerland.,Institute for Biomechanics, ETH Zurich, 8008 Zürich, Switzerland
| | - Angelina D Schoenenberger
- Biomechanics Laboratory, University Hospital Balgrist, University of Zürich, 8008 Zürich, Switzerland.,Institute for Biomechanics, ETH Zurich, 8008 Zürich, Switzerland
| | - Maja Bollhalder
- Biomechanics Laboratory, University Hospital Balgrist, University of Zürich, 8008 Zürich, Switzerland.,Institute for Biomechanics, ETH Zurich, 8008 Zürich, Switzerland
| | - Nils Goedecke
- Institute for Biomechanics, ETH Zurich, 8008 Zürich, Switzerland
| | - Guido Bartalena
- Institute for Biomechanics, ETH Zurich, 8008 Zürich, Switzerland
| | - Oliver Otto
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany.,Zentrum für Innovationskompetenz, Universität Greifswald, 17489 Greifswald, Germany
| | - Maik Herbig
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Daniel A Müller
- Biomechanics Laboratory, University Hospital Balgrist, University of Zürich, 8008 Zürich, Switzerland
| | - Jess G Snedeker
- Biomechanics Laboratory, University Hospital Balgrist, University of Zürich, 8008 Zürich, Switzerland.,Institute for Biomechanics, ETH Zurich, 8008 Zürich, Switzerland
| | - Unai Silvan
- Biomechanics Laboratory, University Hospital Balgrist, University of Zürich, 8008 Zürich, Switzerland.,Institute for Biomechanics, ETH Zurich, 8008 Zürich, Switzerland
| |
Collapse
|
23
|
Ortiz-Montero P, Liu-Bordes WY, Londoño-Vallejo A, Vernot JP. CD24 expression and stem-associated features define tumor cell heterogeneity and tumorigenic capacities in a model of carcinogenesis. Cancer Manag Res 2018; 10:5767-5784. [PMID: 30510447 PMCID: PMC6248383 DOI: 10.2147/cmar.s176654] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Most carcinomas are composed of heterogeneous populations of tumor cells with distinct and apparently stable phenotypic characteristics. Methods Using an in vitro model of carcinogenesis we aimed at experimentally elucidating the significance of heterogeneity in the expression of CD24, a marker frequently overexpressed in various cancers and correlated with poor prognosis. Results We show that CD24Neg and CD24Pos cells issued from the same tumorigenic cell line display striking differences in stem-related properties, expression of epithelial-mesenchymal transition/mesenchymal-epithelial transition markers, and tumorigenic capacity. Indeed, while CD24Neg cells were as tumorigenic as the parental cell line, CD24Pos cells, although unable to form tumors, were unexpectedly more mesenchymal, displayed enhanced stemness-related properties, and expressed a proinflammatory signature. Conclusion Our findings support the view that acquisition of stem-like cell, CD24-associated, attributes like migration, invasion, and plasticity by a tumor subpopulation is not necessarily related to local tumor growth but may be required for escaping the niche and colonizing distant sites.
Collapse
Affiliation(s)
- Paola Ortiz-Montero
- Cellular and Molecular Physiology Group, Faculty of Medicine, Department of Physiological Sciences, National University of Colombia, Bogotá, Colombia,
| | - Win-Yan Liu-Bordes
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR3244 Telomere and Cancer Lab, Paris, France
| | - Arturo Londoño-Vallejo
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR3244 Telomere and Cancer Lab, Paris, France
| | - Jean-Paul Vernot
- Cellular and Molecular Physiology Group, Faculty of Medicine, Department of Physiological Sciences, National University of Colombia, Bogotá, Colombia, .,Biomedical Research Institute, Faculty of Medicine, National University of Colombia, Bogotá, Colombia,
| |
Collapse
|
24
|
Gulvady AC, Dubois F, Deakin NO, Goreczny GJ, Turner CE. Hic-5 expression is a major indicator of cancer cell morphology, migration, and plasticity in three-dimensional matrices. Mol Biol Cell 2018; 29:1704-1717. [PMID: 29771639 PMCID: PMC6080706 DOI: 10.1091/mbc.e18-02-0092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The focal adhesion proteins Hic-5 and paxillin have been previously identified as key regulators of MDA-MB-231 breast cancer cell migration and morphologic mesenchymal-amoeboid plasticity in three-dimensional (3D) extracellular matrices (ECMs). However, their respective roles in other cancer cell types have not been evaluated. Herein, utilizing 3D cell-derived matrices and fibronectin-coated one-dimensional substrates, we show that across a variety of cancer cell lines, the level of Hic-5 expression serves as the major indicator of the cells primary morphology, plasticity, and in vitro invasiveness. Domain mapping studies reveal sites critical to the functions of both Hic-5 and paxillin in regulating phenotype, while ectopic expression of Hic-5 in cell lines with low endogenous levels of the protein is sufficient to induce a Rac1-dependent mesenchymal phenotype and, in turn, increase amoeboid-mesenchymal plasticity and invasion. We show that the activity of vinculin, when coupled to the expression of Hic-5 is required for the mesenchymal morphology in the 3D ECM. Taken together, our results identify Hic-5 as a critical modulator of tumor cell phenotype that could be utilized in predicting tumor cell migratory and invasive behavior in vivo.
Collapse
Affiliation(s)
- Anushree C Gulvady
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Fatemeh Dubois
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Nicholas O Deakin
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Gregory J Goreczny
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
25
|
Okolicsanyi RK, Oikari LE, Yu C, Griffiths LR, Haupt LM. Heparan Sulfate Proteoglycans as Drivers of Neural Progenitors Derived From Human Mesenchymal Stem Cells. Front Mol Neurosci 2018; 11:134. [PMID: 29740281 PMCID: PMC5928449 DOI: 10.3389/fnmol.2018.00134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/03/2018] [Indexed: 01/19/2023] Open
Abstract
Background: Due to their relative ease of isolation and their high ex vivo and in vitro expansive potential, human mesenchymal stem cells (hMSCs) are an attractive candidate for therapeutic applications in the treatment of brain injury and neurological diseases. Heparan sulfate proteoglycans (HSPGs) are a family of ubiquitous proteins involved in a number of vital cellular processes including proliferation and stem cell lineage differentiation. Methods: Following the determination that hMSCs maintain neural potential throughout extended in vitro expansion, we examined the role of HSPGs in mediating the neural potential of hMSCs. hMSCs cultured in basal conditions (undifferentiated monolayer cultures) were found to co-express neural markers and HSPGs throughout expansion with modulation of the in vitro niche through the addition of exogenous HS influencing cellular HSPG and neural marker expression. Results: Conversion of hMSCs into hMSC Induced Neurospheres (hMSC IN) identified distinctly localized HSPG staining within the spheres along with altered gene expression of HSPG core protein and biosynthetic enzymes when compared to undifferentiated hMSCs. Conclusion: Comparison of markers of pluripotency, neural self-renewal and neural lineage specification between hMSC IN, hMSC and human neural stem cell (hNSC H9) cultures suggest that in vitro generated hMSC IN may represent an intermediary neurogenic cell type, similar to a common neural progenitor cell. In addition, this data demonstrates HSPGs and their biosynthesis machinery, are associated with hMSC IN formation. The identification of specific HSPGs driving hMSC lineage-specification will likely provide new markers to allow better use of hMSCs in therapeutic applications and improve our understanding of human neurogenesis.
Collapse
Affiliation(s)
- Rachel K Okolicsanyi
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lotta E Oikari
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Chieh Yu
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Larisa M Haupt
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
26
|
Nuhn JAM, Perez AM, Schneider IC. Contact guidance diversity in rotationally aligned collagen matrices. Acta Biomater 2018; 66:248-257. [PMID: 29196116 PMCID: PMC5750117 DOI: 10.1016/j.actbio.2017.11.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022]
Abstract
Cancer cell metastasis is responsible for approximately 90% of deaths related to cancer. The migration of cancer cells away from the primary tumor and into healthy tissue is driven in part by contact guidance, or directed migration in response to aligned extracellular matrix. While contact guidance has been a focus of many studies, much of this research has explored environments that present 2D contact guidance structures. Contact guidance environments in 3D more closely resemble in vivo conditions and model cell-ECM interactions better than 2D environments. While most cells engage in directed migration on potent 2D contact guidance cues, there is diversity in response to contact guidance cues based on whether the cell migrates with a mesenchymal or amoeboid migration mode. In this paper, rotational alignment of collagen gels was used to study the differences in contact guidance between MDA-MB-231 (mesenchymal) and MTLn3 (amoeboid) cells. MDA-MB-231 cells migrate with high directional fidelity in aligned collagen gels, while MTLn3 cells show no directional migration. The collagen stiffness was increased through glycation, resulting in decreased MDA-MB-231 directionality in aligned collagen gels. Interestingly, partial inhibition of cell contractility dramatically decreased directionality in MDA-MB-231 cells. The directionality of MDA-MB-231 cells was most sensitive to ROCK inhibition, but unlike in 2D contact guidance environments, cell directionality and speed are more tightly coupled. Modulation of the contractile apparatus appears to more potently affect contact guidance than modulation of extracellular mechanical properties of the contact guidance cue. STATEMENT OF SIGNIFICANCE Collagen fiber alignment in the tumor microenvironment directs migration, a process called contact guidance, enhancing the efficiency of cancer invasion and metastasis. 3D systems that assess contact guidance by locally orienting collagen fiber alignment are lacking. Furthermore, cell type differences and the role of extracellular matrix stiffness in tuning contact guidance fidelity are not well characterized. In this paper rotational alignment of collagen fibers is used as a 3D contact guidance cue to illuminate cell type differences and the role of extracellular matrix stiffness in guiding cell migration along aligned fibers of collagen. This local alignment offers a simple approach by which to couple collagen alignment with gradients in other directional cues in devices such as microfluidic chambers.
Collapse
Affiliation(s)
- Jacob A M Nuhn
- Department of Chemical and Biological Engineering, Iowa State University, United States
| | - Anai M Perez
- Department of Chemistry and Physics, Grand View University, United States
| | - Ian C Schneider
- Department of Chemical and Biological Engineering, Iowa State University, United States; Department of Genetics, Development and Cell Biology, Iowa State University, United States.
| |
Collapse
|
27
|
Tornin J, Hermida-Prado F, Padda RS, Gonzalez MV, Alvarez-Fernandez C, Rey V, Martinez-Cruzado L, Estupiñan O, Menendez ST, Fernandez-Nevado L, Astudillo A, Rodrigo JP, Lucien F, Kim Y, Leong HS, Garcia-Pedrero JM, Rodriguez R. FUS-CHOP Promotes Invasion in Myxoid Liposarcoma through a SRC/FAK/RHO/ROCK-Dependent Pathway. Neoplasia 2017; 20:44-56. [PMID: 29190494 PMCID: PMC5747526 DOI: 10.1016/j.neo.2017.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 01/13/2023] Open
Abstract
Deregulated SRC/FAK signaling leads to enhanced migration and invasion in many types of tumors. In myxoid and round cell liposarcoma (MRCLS), an adipocytic tumor characterized by the expression of the fusion oncogene FUS-CHOP, SRC have been found as one of the most activated kinases. Here we used a cell-of-origin model of MRCLS and an MRCLS cell line to thoroughly characterize the mechanisms of cell invasion induced by FUS-CHOP using in vitro (3D spheroid invasion assays) and in vivo (chicken chorioallantoic membrane model) approaches. FUS-CHOP expression activated SRC-FAK signaling and increased the invasive ability of MRCLS cells. In addition, FAK expression was found to significantly correlate with tumor aggressiveness in sarcoma patient samples. The involvement of SRC/FAK activation in FUS-CHOP-mediated invasion was further confirmed using the SRC inhibitor dasatinib, the specific FAK inhibitor PF-573228, and FAK siRNA. Notably, dasatinib and PF573228 could also efficiently block the invasion of cancer stem cell subpopulations. Downstream of SRC/FAK signaling, we found that FUS-CHOP expression increases the levels of the RHO/ROCK downstream effector phospho-MLC2 (T18/S19) and that this activation was prevented by dasatinib or PF573228. Moreover, the ROCK inhibitor RKI-1447 was able to completely abolish invasion in FUS-CHOP-expressing cells. These data uncover the involvement of SRC/FAK/RHO/ROCK signaling axis in FUS-CHOP-mediated invasion, thus providing a rationale for testing inhibitors of this pathway as potential novel antimetastatic agents for MRCLS treatment.
Collapse
Affiliation(s)
- Juan Tornin
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Francisco Hermida-Prado
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | - Ranjit Singh Padda
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, ON, Canada
| | - M Victoria Gonzalez
- CIBER de Cáncer (CIBERONC), Madrid, Spain; Departamento de Cirugía, Universidad de Oviedo and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | | | - Veronica Rey
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Lucia Martinez-Cruzado
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Oscar Estupiñan
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Sofia T Menendez
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | - Lucia Fernandez-Nevado
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Aurora Astudillo
- Servicio de Anatomía Patológica, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juan P Rodrigo
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | | | - Yohan Kim
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, ON, Canada; Department of Urology, Mayo Clinic, Rochester, MN
| | - Hon S Leong
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, ON, Canada; Department of Urology, Mayo Clinic, Rochester, MN
| | - Juana Maria Garcia-Pedrero
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain.
| | - Rene Rodriguez
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
28
|
Zhang Y, Zhou N, Yu X, Zhang X, Li S, Lei Z, Hu R, Li H, Mao Y, Wang X, Zhang J, Li Y, Guo H, Irwin DM, Niu G, Tan H. Tumacrophage: macrophages transformed into tumor stem-like cells by virulent genetic material from tumor cells. Oncotarget 2017; 8:82326-82343. [PMID: 29137267 PMCID: PMC5669893 DOI: 10.18632/oncotarget.19320] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023] Open
Abstract
Tumor-associated macrophages are regarded as tumor-enhancers as they have key roles in the subversion of adaptive immunity and in inflammatory circuits that promote tumor progression. Here, we show that cancer cells can subvert macrophages yielding cells that have gained pro-tumor functions. When macrophages isolated from mice or humans are co-cultured with dead cancer cell line cells, induced to undergo apoptosis to mimic chemotherapy, up-regulation of pro-tumor gene expression was identified. Phagocytosis of apoptotic cancer cells by macrophages resulted in their transformation into tumor stem (initiating)-like cells, as indicated by the expression of epithelial markers (e.g., cytokeratin) and stem cell markers (e.g., Oct4) and their capability to differentiate in vitro and self-renew in serum-free media. Moreover, we identified a subset of monocytes/macrophages cells in the blood of cancer (breast, ovarian and colorectal) patients undergoing chemotherapy that harbor tumor transcripts. Our findings uncover a new role for macrophages in tumor development, where they can be transformed into tumor-like cells, potentially by horizontal gene transfer of tumor-derived genes, thus, by taking advantage of chemotherapy, these transformed macrophages promote tumor metastasis by escaping immune surveillance.
Collapse
Affiliation(s)
- Yizhuang Zhang
- Department of Pharmacology, Peking University, Beijing, China
| | - Na Zhou
- Department of Pharmacology, Peking University, Beijing, China
| | - Xiuyan Yu
- Department of Pharmacology, Peking University, Beijing, China
| | - Xuehui Zhang
- Department of Pharmacology, Peking University, Beijing, China
| | - Shanxin Li
- Department of Pharmacology, Peking University, Beijing, China
| | - Zhen Lei
- N & N Genetech Company, Ltd., Beijing, China
| | - Ruobi Hu
- Department of Pharmacology, Peking University, Beijing, China
| | - Hui Li
- Department of Pharmacology, Peking University, Beijing, China
| | - Yiqing Mao
- Department of Pharmacology, Peking University, Beijing, China
| | - Xi Wang
- Department of Pharmacology, Peking University, Beijing, China
| | - Jinshu Zhang
- Department of Clinical Laboratory, The 305 Hospital of People’s Liberation Army, Beijing, China
| | - Yuan Li
- Department of Gynaecology and Obstetrics, Peking University Third Hospital, Beijing, China
| | - Hongyan Guo
- Department of Gynaecology and Obstetrics, Peking University Third Hospital, Beijing, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Gang Niu
- N & N Genetech Company, Ltd., Beijing, China
| | - Huanran Tan
- Department of Pharmacology, Peking University, Beijing, China
| |
Collapse
|
29
|
Deveraux S, Allena R, Aubry D. A numerical model suggests the interplay between nuclear plasticity and stiffness during a perfusion assay. J Theor Biol 2017; 435:62-77. [PMID: 28919399 DOI: 10.1016/j.jtbi.2017.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022]
Abstract
Cell deformability is a necessary condition for a cell to be able to migrate, an ability that is vital both for healthy and diseased organisms. The nucleus being the largest and stiffest organelle, it often is a barrier to cell migration. It is thus essential to characterize its mechanical behaviour. First, we numerically investigate the visco-elasto-plastic properties of the isolated nucleus during a compression test. This simulation highlights the impact of the mechanical behaviour of the nuclear lamina and the nucleoplasm on the overall plasticity. Second, a whole cell model is developed to simulate a perfusion experiment to study the possible interactions between the cytoplasm and the nucleus. We analyze and discuss the role of the lamina for a wild-type cell model, and a lamin-deficient one, in which the Young's modulus of the lamina is set to 1% of its nominal value. This simulation suggests an interplay between the cytoplasm and the nucleoplasm, especially in the lamin-deficient cell, showing the need of a stiffer nucleoplasm to maintain nuclear plasticity.
Collapse
Affiliation(s)
- Solenne Deveraux
- Laboratoire MSSMat UMR CNRS 8579, CentraleSupelec, Université Paris-Saclay, Grande Voie des Vignes, Châtenay-Malabry 92290 France.
| | - Rachele Allena
- Arts et Metiers ParisTech, LBM/Institut de Biomécanique Humaine Georges Charpak, 151 bd de l'Hôpital, Paris 75013 France
| | - Denis Aubry
- Laboratoire MSSMat UMR CNRS 8579, CentraleSupelec, Université Paris-Saclay, Grande Voie des Vignes, Châtenay-Malabry 92290 France
| |
Collapse
|
30
|
Lee J, Park HY, Kim WW, Lee SJ, Jeong JH, Kang SH, Jung JH, Chae YS. Biological function of long noncoding RNA snaR in HER2-positive breast cancer cells. Tumour Biol 2017; 39:1010428317707374. [PMID: 28653903 DOI: 10.1177/1010428317707374] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Long noncoding RNA, snaR (small NF90-associated RNA), has been reported to be upregulated in various cancer cell lines. We evaluated the additional role of snaR in HER2-positive breast cancer cell lines. METHODS We explored changes of expression of snaR among the selected long noncoding RNAs which have a potential in cancer proliferation or progression. The proliferation, migration, and invasion of HER2-positive breast cancer cells (SK-BR3) were evaluated by snaR with RNA interruption in 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide, wound-healing assay, and Transwell assay. RESULTS The expression of snaR was remarkably upregulated in SK-BR3 cell lines together with ANRIL, while the SFMBT2 was downregulated in SK-BR3 cell lines. Although Nespas, 7SK, PSF inhibiting RNA, mascRNA, Hoxa11as, NRON, AK023948, MER11C, p53 mRNA, CAR Intergenic 10, HUC 1 and 2, ZFAS1, SCA8, and SNHG5 were also upregulated and UCA1 was downregulated, the differences were not dominent. Based on the expression result, we explored the functional role of snaR in HER2-positive breast cancer. Downregulation of snaR with small interfering RNA was identified to significanlty inhibit migration as well as proliferation of SK-BR3 cells. CONCLUSION In this study, snaR was identified as upregulated and to play a role in cancer progression of HER2-positive breast cancer cells. These results suggest snaR as a potential biomarker for HER2-positive breast cancer.
Collapse
Affiliation(s)
- Jeeyeon Lee
- 1 Department of Surgery, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Ho Yong Park
- 1 Department of Surgery, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Wan Wook Kim
- 1 Department of Surgery, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Soo Jung Lee
- 2 Department of Hemato-Oncology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jae-Hwan Jeong
- 3 Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seung Hee Kang
- 3 Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jin Hyang Jung
- 1 Department of Surgery, Kyungpook National University School of Medicine, Daegu, Republic of Korea.,4 Breast Cancer Center, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Yee Soo Chae
- 2 Department of Hemato-Oncology, Kyungpook National University School of Medicine, Daegu, Republic of Korea.,4 Breast Cancer Center, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
31
|
Schillaci O, Fontana S, Monteleone F, Taverna S, Di Bella MA, Di Vizio D, Alessandro R. Exosomes from metastatic cancer cells transfer amoeboid phenotype to non-metastatic cells and increase endothelial permeability: their emerging role in tumor heterogeneity. Sci Rep 2017; 7:4711. [PMID: 28680152 PMCID: PMC5498501 DOI: 10.1038/s41598-017-05002-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/23/2017] [Indexed: 01/03/2023] Open
Abstract
The goal of this study was to understand if exosomes derived from high-metastatic cells may influence the behavior of less aggressive cancer cells and the properties of the endothelium. We found that metastatic colon cancer cells are able to transfer their amoeboid phenotype to isogenic primary cancer cells through exosomes, and that this morphological transition is associated with the acquisition of a more aggressive behavior. Moreover, exosomes from the metastatic line (SW620Exos) exhibited higher ability to cause endothelial hyperpermeability than exosomes from the non metastatic line (SW480Exos). SWATH-based quantitative proteomic analysis highlighted that SW620Exos are significantly enriched in cytoskeletal-associated proteins including proteins activating the RhoA/ROCK pathway, known to induce amoeboid properties and destabilization of endothelial junctions. In particular, thrombin was identified as a key mediator of the effects induced by SW620Exos in target cells, in which we also found a significant increase of RhoA activity. Overall, our results demonstrate that in a heterogeneous context exosomes released by aggressive sub-clones can contribute to accelerate tumor progression by spreading malignant properties that affect both the tumor cell plasticity and the endothelial cell behavior.
Collapse
Affiliation(s)
- Odessa Schillaci
- Department of Biopathology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Simona Fontana
- Department of Biopathology and Medical Biotechnologies, University of Palermo, Palermo, Italy.
| | - Francesca Monteleone
- Department of Biopathology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Simona Taverna
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| | | | - Dolores Di Vizio
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Riccardo Alessandro
- Department of Biopathology and Medical Biotechnologies, University of Palermo, Palermo, Italy
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| |
Collapse
|
32
|
Cadherin composition and multicellular aggregate invasion in organotypic models of epithelial ovarian cancer intraperitoneal metastasis. Oncogene 2017. [PMID: 28628116 PMCID: PMC5648607 DOI: 10.1038/onc.2017.171] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During epithelial ovarian cancer (EOC) progression, intraperitoneally disseminating tumor cells and multi-cellular aggregates (MCAs) present in ascites fluid adhere to the peritoneum and induce retraction of the peritoneal mesothelial monolayer prior to invasion of the collagen-rich sub-mesothelial matrix and proliferation into macro-metastases. Clinical studies have shown heterogeneity among EOC metastatic units with respect to cadherin expression profiles and invasive behavior, however the impact of distinct cadherin profiles on peritoneal anchoring of metastatic lesions remains poorly understood. In the current study, we demonstrate that metastasis-associated behaviors of ovarian cancer cells and MCAs are influenced by cellular cadherin composition. Our results show that mesenchymal N-cadherin expressing (Ncad+) cells and MCAs invade much more efficiently than E-cadherin expressing (Ecad+) cells. Ncad+ MCAs exhibit rapid lateral dispersal prior to penetration of three-dimensional collagen matrices. When seeded as individual cells, lateral migration and cell-cell junction formation precede matrix invasion. Neutralizing the Ncad extracellular domain with the monoclonal antibody GC-4 suppresses lateral dispersal and cell penetration of collagen gels. In contrast, use of a broad spectrum matrix metalloproteinase (MMP) inhibitor (GM6001) to block endogenous membrane type 1 matrix metalloproteinase (MT1-MMP) activity does not fully inhibit cell invasion. Using intact tissue explants, Ncad+ MCAs were also shown to efficiently rupture peritoneal mesothelial cells, exposing the sub-mesothelial collagen matrix. Acquisition of Ncad by E-cadherin expressing cells (Ecad+) increased mesothelial clearance activity, but was not sufficient to induce matrix invasion. Furthermore, co-culture of Ncad+ with Ecad+ cells did not promote a “leader-follower” mode of collective cell invasion, demonstrating that matrix remodeling and creation of invasive micro-tracks are not sufficient for cell penetration of collagen matrices in the absence of Ncad. Collectively, our data emphasize the role of Ncad in intraperitoneal seeding of EOC and provide the rationale for future studies targeting Ncad+ in pre-clinical models of EOC metastasis.
Collapse
|
33
|
Moncayo G, Lin D, McCarthy MT, Watson AA, O'Callaghan CA. MICA Expression Is Regulated by Cell Adhesion and Contact in a FAK/Src-Dependent Manner. Front Immunol 2017; 7:687. [PMID: 28154561 PMCID: PMC5243850 DOI: 10.3389/fimmu.2016.00687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/23/2016] [Indexed: 11/13/2022] Open
Abstract
MICA is a major ligand for the NKG2D immune receptor, which plays a key role in activating natural killer (NK) cells and cytotoxic T cells. We analyzed NKG2D ligand expression on a range of cell types and could demonstrate that MICA expression levels were closely linked to cellular growth mode. While the expression of other NKG2D ligands was largely independent of cell growth mode, MICA expression was mainly found on cells cultured as adherent cells. In addition, MICA surface expression was reduced through increase in cell-cell contact or loss of cell-matrix adherence. Furthermore, we found that the reduction in MICA expression was modulated by focal adhesion kinase (FAK)/Src signaling and associated with increased susceptibility to NK cell-mediated killing. While the mechanisms of tumor immune evasion are not fully understood, the reduction of MICA expression following loss of attachment poises a potential way by which metastasizing tumor cells avoid immune detection. The role of FAK/Src in this process indicates a potential therapeutic approach to modulate MICA expression and immune recognition of tumor cells during metastasis.
Collapse
Affiliation(s)
- Gerald Moncayo
- Henry Wellcome Building for Molecular Physiology, University of Oxford , Oxford , UK
| | - Da Lin
- Henry Wellcome Building for Molecular Physiology, University of Oxford , Oxford , UK
| | - Michael T McCarthy
- Henry Wellcome Building for Molecular Physiology, University of Oxford , Oxford , UK
| | - Aleksandra A Watson
- Henry Wellcome Building for Molecular Physiology, University of Oxford , Oxford , UK
| | | |
Collapse
|
34
|
Wu JS, Sheng SR, Liang XH, Tang YL. The role of tumor microenvironment in collective tumor cell invasion. Future Oncol 2017; 13:991-1002. [PMID: 28075171 DOI: 10.2217/fon-2016-0501] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
For many cancer types, cancer cells invade into surrounding tissues by collective movement of cell groups that remain connected via cell-cell junctions. This migration is completely distinguished from single-cell migration, in which cancer cells disrupt the tight intercellular junctions and gain a mesenchymal phenotype. Recently, emerging evidence has revealed that collective cell invasion depends on not only cell-intrinsic mechanisms but also on extracellular mechanisms by bidirectional interplay between the tumor cell and the tumor environment. Herein, in this review we discuss the role and underline mechanisms of tumor microenvironment in collective tumor cell invasion, particularly focusing on extracellular matrix remodeling and cross-talk between tumor and stromal cells.
Collapse
Affiliation(s)
- Jia-Shun Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China.,Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China
| | - Su-Rui Sheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China.,Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China.,Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China.,Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China
| |
Collapse
|
35
|
Li J, Kwiatkowska B, Lu H, Voglstätter M, Ueda E, Grunze M, Sleeman J, Levkin PA, Nazarenko I. Collaborative Action of Surface Chemistry and Topography in the Regulation of Mesenchymal and Epithelial Markers and the Shape of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28554-28565. [PMID: 27731629 DOI: 10.1021/acsami.6b11338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Malignant transformation is associated with enhancement of cell plasticity, which allows cancer cells to survive under different conditions by adapting to their microenvironment during growth and metastatic spread. Much effort has been devoted to understanding the molecular mechanisms of these processes. Although the importance of the extracellular matrix and of surface properties in these mechanisms is evident, the direct impact of distinct physical and chemical surfaces characteristics on cell fate remains unclear. Here, we have addressed this question using HT1080 fibrosarcoma cells as a model. To examine the relationship between surface topography, chemistry, and cell behavior, hydrophobic poly(butyl methacrylate-co-ethylene dimethacrylate) (BMA-EDMA) and hydrophilic poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) (HEMA-EDMA) surfaces with three different topographies (microporous, nanoporous, and nonporous) were generated. These surfaces were then modified by photoinitiated grafting of three different methacrylate monomers to create surface chemistry gradients of either negatively (AMPS) or positively (META) charged or zwitterionic (MDSA) functionalities. Our results show that AMPS promotes cell spreading, but that META abolishes cell growth. META and MDSA grafted on microporous BMA-EDMA produced superhydrophilic surfaces with high globularity and elasticity, which modified the cell phenotype by inhibiting cell spreading, followed by loss of mesenchymal characteristics and a reduction in protein levels of the mesenchymal markers N-cadherin, beta-catenin, p120 catenin, and also of the adaptor proteins vinculin and paxillin that are associated with adhesion and cancer cell invasion. The effect was strengthened along the gradient, suggesting that the density of the functional groups plays a role in this process. On the nanoporous surface, only MDSA grafting resulted in a significant increase in cell number, a reduction in N-cadherin expression, increased beta-catenin and p120 catenin levels, as well as the appearance of the epithelial marker E-cadherin. This indicates that the cancer cells have a high plasticity that is triggered by the collaborative effect of physical and chemical surface properties.
Collapse
Affiliation(s)
- Junsheng Li
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , 76021 Karlsruhe, Germany
- Applied Physical Chemistry, University of Heidelberg , 69120 Heidelberg, Germany
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology , Wuhan 430070, China
| | - Barbara Kwiatkowska
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , 76021 Karlsruhe, Germany
| | - Hao Lu
- Applied Physical Chemistry, University of Heidelberg , 69120 Heidelberg, Germany
| | - Maren Voglstätter
- Institute of Environmental Health Sciences and Hospital Infection Control, Medical Center, University of Freiburg , 79106 Freiburg, Germany
| | - Erika Ueda
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , 76021 Karlsruhe, Germany
| | - Michael Grunze
- Applied Physical Chemistry, University of Heidelberg , 69120 Heidelberg, Germany
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT) , Germany
| | - Jonathan Sleeman
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , 76021 Karlsruhe, Germany
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), University Medicine Mannheim and University of Heidelberg , D-68167 Mannheim, Germany
| | - Pavel A Levkin
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , 76021 Karlsruhe, Germany
- Applied Physical Chemistry, University of Heidelberg , 69120 Heidelberg, Germany
| | - Irina Nazarenko
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , 76021 Karlsruhe, Germany
- Institute of Environmental Health Sciences and Hospital Infection Control, Medical Center, University of Freiburg , 79106 Freiburg, Germany
| |
Collapse
|
36
|
Joddar B, Garcia E, Casas A, Stewart CM. Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies. Sci Rep 2016; 6:32456. [PMID: 27578567 PMCID: PMC5006027 DOI: 10.1038/srep32456] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/05/2016] [Indexed: 12/03/2022] Open
Abstract
Alginate is a hydrogel commonly used for cell culture by ionically crosslinking in the presence of divalent Ca(2+) ions. However these alginate gels are mechanically unstable, not permitting their use as scaffolds to engineer robust biological bone, breast, cardiac or tumor tissues. This issue can be addressed via encapsulation of multi-walled carbon nanotubes (MWCNT) serving as a reinforcing phase while being dispersed in a continuous phase of alginate. We hypothesized that adding functionalized MWCNT to alginate, would yield composite gels with distinctively different mechanical, physical and biological characteristics in comparison to alginate alone. Resultant MWCNT-alginate gels were porous, and showed significantly less degradation after 14 days compared to alginate alone. In vitro cell-studies showed enhanced HeLa cell adhesion and proliferation on the MWCNT-alginate compared to alginate. The extent of cell proliferation was greater when cultured atop 1 and 3 mg/ml MWCNT-alginate; although all MWCNT-alginates lead to enhanced cell cluster formation compared to alginate alone. Among all the MWCNT-alginates, the 1 mg/ml gels showed significantly greater stiffness compared to all other cases. These results provide an important basis for the development of the MWCNT-alginates as novel substrates for cell culture applications, cell therapy and tissue engineering.
Collapse
Affiliation(s)
- Binata Joddar
- Department of Metallurgical, Materials and Biomedical Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| | - Eduardo Garcia
- Department of Mechanical Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| | - Atzimba Casas
- Department of Biological Sciences, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| | - Calvin M. Stewart
- Department of Mechanical Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| |
Collapse
|
37
|
Abstract
Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.
Collapse
Affiliation(s)
- Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom WC1E 6BT; .,Institute for the Physics of Living Systems, University College London, London, United Kingdom, WC1E 6BT
| | - Irene M Aspalter
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom WC1E 6BT; .,Institute for the Physics of Living Systems, University College London, London, United Kingdom, WC1E 6BT
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| |
Collapse
|
38
|
Panagiotakopoulou M, Bergert M, Taubenberger A, Guck J, Poulikakos D, Ferrari A. A Nanoprinted Model of Interstitial Cancer Migration Reveals a Link between Cell Deformability and Proliferation. ACS NANO 2016; 10:6437-48. [PMID: 27268411 DOI: 10.1021/acsnano.5b07406] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Metastatic progression of tumors requires the coordinated dissemination of cancerous cells through interstitial tissues and their replication in distant body locations. Despite their importance in cancer treatment decisions, key factors, such as cell shape adaptation and the role it plays in dense tissue invasion by cancerous cells, are not well understood. Here, we employ a 3D electrohydrodynamic nanoprinting technology to generate vertical arrays of topographical pores that mimic interstitial tissue resistance to the mesenchymal migration of cancerous cells, in order to determine the effect of nuclear size, cell deformability, and cell-to-substrate adhesion on tissue invasion efficiency. The high spatial and temporal resolution of our analysis demonstrates that the ability of cells to deform depends on the cell cycle phase, peaks immediately after mitosis, and is key to the invasion process. Increased pore penetration efficiency by cells in early G1 phase also coincided with their lower nuclear volume and higher cell deformability, compared with the later cell cycle stages. Furthermore, artificial decondensation of chromatin induced an increase in cell and nuclear deformability and improved pore penetration efficiency of cells in G1. Together, these results underline that along the cell cycle cells have different abilities to dynamically remodel their actin cytoskeleton and induce nuclear shape changes, which determines their pore penetration efficiency. Thus, our results support a mechanism in which cell proliferation and pore penetration are functionally linked to favor the interstitial dissemination of metastatic cells.
Collapse
Affiliation(s)
- Magdalini Panagiotakopoulou
- ETH Zurich , Laboratory of Thermodynamics in Emerging Technologies, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | - Martin Bergert
- ETH Zurich , Laboratory of Thermodynamics in Emerging Technologies, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | | | - Jochen Guck
- Biotec, TU Dresden , Am Tatzberg 47-49, 01307 Dresden, Germany
| | - Dimos Poulikakos
- ETH Zurich , Laboratory of Thermodynamics in Emerging Technologies, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | - Aldo Ferrari
- ETH Zurich , Laboratory of Thermodynamics in Emerging Technologies, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| |
Collapse
|
39
|
Swaney KF, Li R. Function and regulation of the Arp2/3 complex during cell migration in diverse environments. Curr Opin Cell Biol 2016; 42:63-72. [PMID: 27164504 DOI: 10.1016/j.ceb.2016.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 02/06/2023]
Abstract
As the first de novo actin nucleator discovered, the Arp2/3 complex has been a central player in models of protrusive force production via the dynamic actin network. Here, we review recent studies on the functional role of the Arp2/3 complex in the migration of diverse cell types in different migratory environments. These findings have revealed an unexpected level of plasticity, both in how cells rely on the Arp2/3 complex for migration and other physiological functions and in the intricate modulation of the Arp2/3 complex by other actin regulators and upstream signaling cascades.
Collapse
Affiliation(s)
- Kristen F Swaney
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 450 Rangos Building, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, 100 Croft Hall, Baltimore, MD 21218, USA.
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 450 Rangos Building, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, 100 Croft Hall, Baltimore, MD 21218, USA
| |
Collapse
|
40
|
Alexandrova AY. Plasticity of tumor cell migration: acquisition of new properties or return to the past? BIOCHEMISTRY (MOSCOW) 2015; 79:947-63. [PMID: 25385021 DOI: 10.1134/s0006297914090107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
During tumor development cancer cells pass through several stages when cell morphology and migration abilities change remarkably. These stages are named epithelial-mesenchymal and mesenchymal-amoeboid transitions. The molecular mechanisms underlying cell motility are changing during these transitions. As result of transitions the cells acquire new characteristics and modes of motility. Cell migration becomes more independent from the environmental conditions, and thus cell dissemination becomes more aggressive, which leads to formation of distant metastases. In this review we discuss the characteristics of each of the transitions, cell morphology, and the specificity of cellular structures responsible for different modes of cell motility as well as molecular mechanisms regulating each transition.
Collapse
Affiliation(s)
- A Y Alexandrova
- Institute of Carcinogenesis, Blokhin Cancer Research Center, Russian Academy of Medical Sciences, Moscow, 115478, Russia.
| |
Collapse
|
41
|
|
42
|
Ovarian Cancer Cell Adhesion/Migration Dynamics on Micro-Structured Laminin Gradients Fabricated by Multiphoton Excited Photochemistry. Bioengineering (Basel) 2015; 2:139-159. [PMID: 28952475 PMCID: PMC5597181 DOI: 10.3390/bioengineering2030139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 07/01/2015] [Accepted: 07/09/2015] [Indexed: 02/02/2023] Open
Abstract
Haptotaxis, i.e., cell migration in response to adhesive gradients, has been previously implicated in cancer metastasis. A better understanding of cell migration dynamics and their regulation could ultimately lead to new drug targets, especially for cancers with poor prognoses, such as ovarian cancer. Haptotaxis has not been well-studied due to the lack of biomimetic, biocompatible models, where, for example, microcontact printing and microfluidics approaches are primarily limited to 2D surfaces and cannot produce the 3D submicron features to which cells respond. Here we used multiphoton excited (MPE) phototochemistry to fabricate nano/microstructured gradients of laminin (LN) as 2.5D models of the ovarian basal lamina to study the haptotaxis dynamics of a series of ovarian cancer cells. Using these models, we found that increased LN concentration increased migration speed and also alignment of the overall cell morphology and their cytoskeleton along the linear axis of the gradients. Both these metrics were enhanced on LN compared to BSA gradients of the same design, demonstrating the importance of both topographic and ECM cues on the adhesion/migration dynamics. Using two different gradient designs, we addressed the question of the roles of local concentration and slope and found that the specific haptotactic response depends on the cell phenotype and not simply the gradient design. Moreover, small changes in concentration strongly affected the migration properties. This work is a necessary step in studying haptotaxis in more complete 3D models of the tumor microenvironment for ovarian and other cancers.
Collapse
|
43
|
Sadok A, McCarthy A, Caldwell J, Collins I, Garrett MD, Yeo M, Hooper S, Sahai E, Kuemper S, Mardakheh FK, Marshall CJ. Rho kinase inhibitors block melanoma cell migration and inhibit metastasis. Cancer Res 2015; 75:2272-84. [PMID: 25840982 DOI: 10.1158/0008-5472.can-14-2156] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 02/23/2015] [Indexed: 11/16/2022]
Abstract
There is an urgent need to identify new therapeutic opportunities for metastatic melanoma. Fragment-based screening has led to the discovery of orally available, ATP-competitive AKT kinase inhibitors, AT13148 and CCT129254. These compounds also inhibit the Rho-kinases ROCK 1 and ROCK 2 and we show they potently inhibit ROCK activity in melanoma cells in culture and in vivo. Treatment of melanoma cells with CCT129254 or AT13148 dramatically reduces cell invasion, impairing both "amoeboid-like" and mesenchymal-like modes of invasion in culture. Intravital imaging shows that CCT129254 or AT13148 treatment reduces the motility of melanoma cells in vivo. CCT129254 inhibits melanoma metastasis when administered 2 days after orthotopic intradermal injection of the cells, or when treatment starts after metastases have arisen. Mechanistically, our data suggest that inhibition of ROCK reduces the ability of melanoma cells to efficiently colonize the lungs. These results suggest that these novel inhibitors of ROCK may be beneficial in the treatment of metastasis.
Collapse
Affiliation(s)
- Amine Sadok
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom.
| | - Afshan McCarthy
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - John Caldwell
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Ian Collins
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Michelle D Garrett
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Maggie Yeo
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Steven Hooper
- Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Erik Sahai
- Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Sandra Kuemper
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Faraz K Mardakheh
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | | |
Collapse
|
44
|
Xu X, Farach-Carson MC, Jia X. Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnol Adv 2014; 32:1256-1268. [PMID: 25116894 PMCID: PMC4171250 DOI: 10.1016/j.biotechadv.2014.07.009] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/20/2014] [Accepted: 07/28/2014] [Indexed: 01/09/2023]
Abstract
Cancer occurs when cells acquire genomic instability and inflammation, produce abnormal levels of epigenetic factors/proteins and tumor suppressors, reprogram the energy metabolism and evade immune destruction, leading to the disruption of cell cycle/normal growth. An early event in carcinogenesis is loss of polarity and detachment from the natural basement membrane, allowing cells to form distinct three-dimensional (3D) structures that interact with each other and with the surrounding microenvironment. Although valuable information has been accumulated from traditional in vitro studies in which cells are grown on flat and hard plastic surfaces (2D culture), this culture condition does not reflect the essential features of tumor tissues. Further, fundamental understanding of cancer metastasis cannot be obtained readily from 2D studies because they lack the complex and dynamic cell-cell communications and cell-matrix interactions that occur during cancer metastasis. These shortcomings, along with lack of spatial depth and cell connectivity, limit the applicability of 2D cultures to accurate testing of pharmacologically active compounds, free or sequestered in nanoparticles. To recapitulate features of native tumor microenvironments, various biomimetic 3D tumor models have been developed to incorporate cancer and stromal cells, relevant matrix components, and biochemical and biophysical cues, into one spatially and temporally integrated system. In this article, we review recent advances in creating 3D tumor models employing tissue engineering principles. We then evaluate the utilities of these novel models for the testing of anticancer drugs and their delivery systems. We highlight the profound differences in responses from 3D in vitro tumors and conventional monolayer cultures. Overall, strategic integration of biological principles and engineering approaches will both improve understanding of tumor progression and invasion and support discovery of more personalized first line treatments for cancer patients.
Collapse
Affiliation(s)
- Xian Xu
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Mary C Farach-Carson
- Departments of Biochemistry and Cell Biology and Bioengineering, Rice University, Houston, TX 77251, USA; Center for Translational Cancer Research, University of Delaware, Newark, DE 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Center for Translational Cancer Research, University of Delaware, Newark, DE 19716, USA; Biomedical Engineering Program, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
45
|
Okolicsanyi RK, van Wijnen AJ, Cool SM, Stein GS, Griffiths LR, Haupt LM. Heparan sulfate proteoglycans and human breast cancer epithelial cell tumorigenicity. J Cell Biochem 2014; 115:967-76. [PMID: 24357546 DOI: 10.1002/jcb.24746] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 01/05/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) are key components of the extracellular matrix that mediate cell proliferation, invasion, and cellular signaling. The biological functions of HSPGs are linked to their co-stimulatory effects on extracellular ligands (e.g., WNTs) and the resulting activation of transcription factors that control mammalian development but also associated with tumorigenesis. We examined the expression profile of HSPG core protein syndecans (SDC1-4) and glypicans (GPC1-6) along with the enzymes that initiate or modify their glycosaminoglycan chains in human breast cancer (HBC) epithelial cells. Gene expression in relation to cell proliferation was examined in the HBC cell lines MCF-7 and MDA-MB-231 following treatment with the HS agonist heparin. Heparin increased gene expression of chain initiation and modification enzymes including EXT1 and NDST1, as well as core proteins SDC2 and GPC6. With HS/Wnt interactions established, we next investigated WNT pathway components and observed that increased proliferation of the more invasive MDA-MB-231 cells is associated with activation of the Wnt signaling pathway. Specifically, there was substantial upregulation (>5-fold) of AXIN1, WNT4A, and MYC in MDA-MB-231 but not in MCF-7 cells. The changes in gene expression observed for HSPG core proteins and related enzymes along with the associated Wnt signaling components suggest coordinated interactions. The influence of HSPGs on cellular proliferation and invasive potential of breast cancer epithelial cells are cell and niche specific. Further studies on the interactions between HSPGs and WNT ligands may yield clinically relevant molecular targets, as well as new biomarkers for characterization of breast cancer progression.
Collapse
Affiliation(s)
- Rachel K Okolicsanyi
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
46
|
Rape AD, Kumar S. A composite hydrogel platform for the dissection of tumor cell migration at tissue interfaces. Biomaterials 2014; 35:8846-8853. [PMID: 25047626 PMCID: PMC4127155 DOI: 10.1016/j.biomaterials.2014.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/01/2014] [Indexed: 11/23/2022]
Abstract
Glioblastoma multiforme (GBM), the most prevalent primary brain cancer, is characterized by diffuse infiltration of tumor cells into brain tissue, which severely complicates surgical resection and contributes to tumor recurrence. The most rapid mode of tissue infiltration occurs along blood vessels or white matter tracts, which represent topological interfaces thought to serve as "tracks" that speed cell migration. Despite this observation, the field lacks experimental paradigms that capture key features of these tissue interfaces and allow reductionist dissection of mechanisms of this interfacial motility. To address this need, we developed a culture system in which tumor cells are sandwiched between a fibronectin-coated ventral surface representing vascular basement membrane and a dorsal hyaluronic acid (HA) surface representing brain parenchyma. We find that inclusion of the dorsal HA surface induces formation of adhesive complexes and significantly slows cell migration relative to a free fibronectin-coated surface. This retardation is amplified by inclusion of integrin binding peptides in the dorsal layer and expression of CD44, suggesting that the dorsal surface slows migration through biochemically specific mechanisms rather than simple steric hindrance. Moreover, both the reduction in migration speed and assembly of dorsal adhesions depend on myosin activation and the stiffness of the ventral layer, implying that mechanochemical feedback directed by the ventral layer can influence adhesive signaling at the dorsal surface.
Collapse
Affiliation(s)
- Andrew D Rape
- Department of Bioengineering, University of California, Berkeley, United States
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, United States.
| |
Collapse
|
47
|
Abstract
The metabolism of cancer cells differs substantially from normal cells, including ion transport. Although this phenomenon has been long recognized, ion transporters have not been viewed as suitable therapeutic targets. However, the acidic pH values present in tumours which are well outside of normal limits are now becoming recognized as an important therapeutic target. Carbonic anhydrase IX (CAIX) is fundamental to tumour pH regulation. CAIX is commonly expressed in cancer, but lowly expressed in normal tissues and that presents an attractive target. Here, we discuss the possibilities of exploiting the acidic, hypoxic tumour environment as possible target for therapy. Additionally, clinical experience with CAIX targeting in cancer patients is discussed.
Collapse
Affiliation(s)
- E Oosterwijk
- Department of Urology, 267 Experimental Urology, Radboud University Medical Center, , PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | | |
Collapse
|
48
|
Abstract
The nucleus is the distinguishing feature of eukaryotic cells. Until recently, it was often considered simply as a unique compartment containing the genetic information of the cell and associated machinery, without much attention to its structure and mechanical properties. This article provides compelling examples that illustrate how specific nuclear structures are associated with important cellular functions, and how defects in nuclear mechanics can cause a multitude of human diseases. During differentiation, embryonic stem cells modify their nuclear envelope composition and chromatin structure, resulting in stiffer nuclei that reflect decreased transcriptional plasticity. In contrast, neutrophils have evolved characteristic lobulated nuclei that increase their physical plasticity, enabling passage through narrow tissue spaces in their response to inflammation. Research on diverse cell types further demonstrates how induced nuclear deformations during cellular compression or stretch can modulate cellular function. Pathological examples of disturbed nuclear mechanics include the many diseases caused by mutations in the nuclear envelope proteins lamin A/C and associated proteins, as well as cancer cells that are often characterized by abnormal nuclear morphology. In this article, we will focus on determining the functional relationship between nuclear mechanics and cellular (dys-)function, describing the molecular changes associated with physiological and pathological examples, the resulting defects in nuclear mechanics, and the effects on cellular function. New insights into the close relationship between nuclear mechanics and cellular organization and function will yield a better understanding of normal biology and will offer new clues into therapeutic approaches to the various diseases associated with defective nuclear mechanics.
Collapse
Affiliation(s)
- Jan Lammerding
- Brigham and Women's Hospital/Harvard Medical School, Cambridge, Massachusetts, USA.
| |
Collapse
|
49
|
Owens MB, Hill AD, Hopkins AM. Ductal barriers in mammary epithelium. Tissue Barriers 2013; 1:e25933. [PMID: 24665412 PMCID: PMC3783220 DOI: 10.4161/tisb.25933] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 12/12/2022] Open
Abstract
Tissue barriers play an integral role in the biology and pathobiology of mammary ductal epithelium. In normal breast physiology, tight and adherens junctions undergo dynamic changes in permeability in response to hormonal and other stimuli, while several of their proteins are directly involved in mammary tumorigenesis. This review describes first the structure of mammary ductal epithelial barriers and their role in normal mammary development, examining the cyclical changes in response to puberty, pregnancy, lactation and involution. It then examines the role of adherens and tight junctions and the participation of their constituent proteins in mammary tumorigenic functions such as migration, invasion and metastasis. Finally, it discusses the potential of these adhesion proteins as both prognostic biomarkers and potential therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Mark B Owens
- Department of Surgery; Royal College of Surgeons in Ireland; Dublin, Ireland
| | - Arnold Dk Hill
- Department of Surgery; Royal College of Surgeons in Ireland; Dublin, Ireland
| | - Ann M Hopkins
- Department of Surgery; Royal College of Surgeons in Ireland; Dublin, Ireland
| |
Collapse
|
50
|
Abstract
Heterogeneous microenvironmental conditions play critical roles in cancer pathogenesis and therapy resistance and arise from changes in tissue dimensionality, cell-extracellular matrix (ECM) interactions, soluble factor signaling, oxygen as well as metabolic gradients, and exogeneous biomechanical cues. Traditional cell culture approaches are restricted in their ability to mimic this complexity with physiological relevance, offering only partial explanation as to why novel therapeutic compounds are frequently efficacious in vitro but disappoint in preclinical and clinical studies. In an effort to overcome these limitations, physical sciences-based strategies have been employed to model specific aspects of the cancer microenvironment. Although these strategies offer promise to reveal the contributions of microenvironmental parameters on tumor initiation, progression, and therapy resistance, they, too, frequently suffer from limitations. This review highlights physicochemical and biological key features of the tumor microenvironment, critically discusses advantages and limitations of current engineering strategies, and provides a perspective on future opportunities for engineered tumor models.
Collapse
Affiliation(s)
- David W Infanger
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|