Quiding-Järbrink M, Lakew M, Nordström I, Banchereau J, Butcher E, Holmgren J, Czerkinsky C. Human circulating specific antibody-forming cells after systemic and mucosal immunizations: differential homing commitments and cell surface differentiation markers.
Eur J Immunol 1995;
25:322-7. [PMID:
7533081 DOI:
10.1002/eji.1830250203]
[Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Circulating spontaneous antibody-secreting cells (ASC) induced by mucosal and systemic immunizations in human volunteers have been characterized with respect to differentiation stage and homing commitments. Irrespective of the immunization route, the large majority of ASC co-expressed CD19 and HLA-DR, which are normally lost during the transition of plasmablasts to plasmocytes, as well as CD38, a marker of activated B cell blasts, expressed also by plasmocytes. However, these cells expressed neither CD28, a molecule acquired by plasmocytes, nor CD22 and CD37, which are lost during the transition of plasmablasts to plasmocytes. Therefore, the large majority of ASC found in peripheral blood after oral and parenteral immunizations are terminally differentiated B cells, but not fully differentiated plasmocytes. As a whole, the mucosally derived ASC population seemed to be more homogenously differentiated. CD25 was detected on few ASC, whereas ASC expressing CD71 were more numerous, especially among systemically derived ASC. Almost all ASC expressed the adhesion molecules CD44 and alpha 4-integrins, irrespective of immunization route. However, virtually all systemically derived ASC expressed L-selectin, recognizing the peripheral lymph node addressin, whereas only a minority of mucosally induced blood ASC expressed L-selectin. These studies are the first to demonstrate in humans that circulating precursors of mucosal B cell immunoblasts utilize organ-specific recognition mechanisms distinct from those of corresponding systemic B cells and appear to be more advanced in the B lineage maturation pathway. Specialization of receptor expression could explain both the unification of immune responses in diverse mucosal sites and the physiologic segregation of mucosal from non-mucosal immune mechanisms in humans.
Collapse