1
|
Nagata Y. Molecular pathophysiology of germline mutations in acute myeloid leukemia. Int J Hematol 2024; 120:417-426. [PMID: 39150677 DOI: 10.1007/s12185-024-03824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Germline (GL) predisposition to acute myeloid leukemia (AML) has been established as an independent disease entity in the latest World Health Organization classification. Following the American College of Medical Genetics and Genomics guidelines, GL variants were interpreted as causal if they were classified as "pathogenic." GL predisposition can be divided into three groups with different phenotypes, and play an important role in the pathogenesis of adult-onset AML. The clinical course and age of onset of myeloid neoplasms varied considerably for each gene. For example, patients with GATA2 GL variants develop AML before the age of 30 along with bone marrow failure, whereas those with DDX41 GL variants tend to develop AML after the age of 50 without any preceding hematological abnormalities or organ dysfunction. A comprehensive analysis of adult-onset myelodysplastic syndromes in transplant donors showed a 7% frequency of pathogenic GL variants, with DDX41 being the most frequent gene mutation at approximately 3.8%. Future research on GL predisposition at any age of myeloid neoplasm onset will assist in early and accurate diagnosis, development of effective treatment strategies, and selection of suitable donors for stem cell transplantation.
Collapse
Affiliation(s)
- Yasunobu Nagata
- Department of Hematology, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo, 113-8603, Japan.
| |
Collapse
|
2
|
Joshi P, Keyvani Chahi A, Liu L, Moreira S, Vujovic A, Hope KJ. RNA binding protein-directed control of leukemic stem cell evolution and function. Hemasphere 2024; 8:e116. [PMID: 39175825 PMCID: PMC11339706 DOI: 10.1002/hem3.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/06/2024] [Accepted: 05/26/2024] [Indexed: 08/24/2024] Open
Abstract
Strict control over hematopoietic stem cell decision making is essential for healthy life-long blood production and underpins the origins of hematopoietic diseases. Acute myeloid leukemia (AML) in particular is a devastating hematopoietic malignancy that arises from the clonal evolution of disease-initiating primitive cells which acquire compounding genetic changes over time and culminate in the generation of leukemic stem cells (LSCs). Understanding the molecular underpinnings of these driver cells throughout their development will be instrumental in the interception of leukemia, the enabling of effective treatment of pre-leukemic conditions, as well as the development of strategies to target frank AML disease. To this point, a number of precancerous myeloid disorders and age-related alterations are proving as instructive models to gain insights into the initiation of LSCs. Here, we explore this myeloid dysregulation at the level of post-transcriptional control, where RNA-binding proteins (RBPs) function as core effectors. Through regulating the interplay of a myriad of RNA metabolic processes, RBPs orchestrate transcript fates to govern gene expression in health and disease. We describe the expanding appreciation of the role of RBPs and their post-transcriptional networks in sustaining healthy hematopoiesis and their dysregulation in the pathogenesis of clonal myeloid disorders and AML, with a particular emphasis on findings described in human stem cells. Lastly, we discuss key breakthroughs that highlight RBPs and post-transcriptional control as actionable targets for precision therapy of AML.
Collapse
Affiliation(s)
- Pratik Joshi
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Ava Keyvani Chahi
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Lina Liu
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Steven Moreira
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Ana Vujovic
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Kristin J. Hope
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| |
Collapse
|
3
|
Brown A, Batra S. Rare Hematologic Malignancies and Pre-Leukemic Entities in Children and Adolescents Young Adults. Cancers (Basel) 2024; 16:997. [PMID: 38473358 DOI: 10.3390/cancers16050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
There are a variety of rare hematologic malignancies and germline predispositions syndromes that occur in children and adolescent young adults (AYAs). These entities are important to recognize, as an accurate diagnosis is essential for risk assessment, prognostication, and treatment. This descriptive review summarizes rare hematologic malignancies, myelodysplastic neoplasms, and germline predispositions syndromes that occur in children and AYAs. We discuss the unique biology, characteristic genomic aberrations, rare presentations, diagnostic challenges, novel treatments, and outcomes associated with these rare entities.
Collapse
Affiliation(s)
- Amber Brown
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| | - Sandeep Batra
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Khattab A, Patruni S, Patrus G, Samhouri Y, Fazal S, Lister J. Donor Cell Leukemia Following Allogeneic Hematopoietic Stem Cell Transplantation. J Hematol 2023; 12:138-144. [PMID: 37435412 PMCID: PMC10332864 DOI: 10.14740/jh1124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/12/2023] [Indexed: 07/13/2023] Open
Abstract
Approximately 25,000 allogeneic transplants are performed annually worldwide; a figure that has steadily increased over the past three decades. The study of transplant recipient survivorship has become a cogent topic and post-transplant donor cell pathology warrants further study. Donor cell leukemia (DCL) is a rare but serious complication of allogeneic stem cell transplantation (SCT) where the recipient develops a form leukemia originating from the donor cells used for transplantation. Detection of abnormalities predicting donor cell pathology might inform donor selection, and the design of survivorship programs for early detection of these abnormalities might allow therapeutic intervention earlier in the disease course. We present four recipients of allogeneic hematopoietic stem cell transplant (HSCT) from our institution who developed donor cell abnormalities allogeneic SCT, highlighting their clinical characteristics and challenges.
Collapse
Affiliation(s)
- Ahmed Khattab
- Department of Medical Oncology and Hematology, Allegheny Health Network, Pittsburgh, PA, USA
- Division of Hematology and Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
| | - Sunita Patruni
- Department of Medical Oncology and Hematology, Northwell Health, Lake Success, NY, USA
| | - Gina Patrus
- Division of Hematology and Cellular Therapy, Allegheny Health Network, Pittsburgh, PA, USA
| | - Yazan Samhouri
- Division of Hematology and Cellular Therapy, Allegheny Health Network, Pittsburgh, PA, USA
| | - Salman Fazal
- Division of Hematology and Cellular Therapy, Allegheny Health Network, Pittsburgh, PA, USA
| | - John Lister
- Division of Hematology and Cellular Therapy, Allegheny Health Network, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Toya T, Harada H, Harada Y, Doki N. Adult-onset hereditary myeloid malignancy and allogeneic stem cell transplantation. Front Oncol 2022; 12:997530. [PMID: 36185231 PMCID: PMC9524153 DOI: 10.3389/fonc.2022.997530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Hereditary myeloid malignancies, especially in adults or elderly persons, had been considered quite rare before the next-generation sequencing era; however, increased usage of clinical sequencing has revealed much higher prevalence of inherited myeloid malignancies. DDX41 and various pathogenic germline mutations have newly been recognized as the cause of adult-onset familial leukemia and myeloid malignancies. Although germline predisposition to myeloid neoplasms had been categorized as a provisional entity in the World Health Organization classification of hematopoietic neoplasms in 2016, methodology for the identification of hereditary myeloid malignancies has not been fully established yet. In addition, many unresolved problems, such as epidemiology, the exact pathogenic mechanisms, and ideal treatment strategy, including indications of allogeneic hematopoietic stem cell transplantation, still remain. Related donor selection for stem cell transplant is a particularly sensitive issue due to the possibility of germline mutation of the candidate relatives and the risk of donor cell leukemia after transplantation. Here, we reviewed the current evidence regarding epidemiology, diagnosis, mechanisms of progression, and transplantation strategy for hereditary myeloid malignancies.
Collapse
Affiliation(s)
- Takashi Toya
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Hironori Harada
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy & Life Sciences, Tokyo, Japan
| | - Yuka Harada
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| |
Collapse
|
6
|
Badar T, Chlon T. Germline and Somatic Defects in DDX41 and its Impact on Myeloid Neoplasms. Curr Hematol Malig Rep 2022; 17:113-120. [PMID: 35781188 DOI: 10.1007/s11899-022-00667-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW While DDX41 mutation (m) is one of the most prevalent predisposition genes in adult myelodysplastic syndrome (MDS)/acute myeloid leukemia (AML), most patients do not always present with a family history of MDS/AML. In this review, we will be highlighting epidemiological data on DDX41m, roles of DDX41 in oncogenesis, mechanisms of clonal evolution with somatic DDX41m, and clinical phenotypes and management of MDS/AML in patients harboring DDX41m. RECENT FINDINGS DDX41 encodes a DEAD-box helicase protein that is considered essential for cell growth and viability. High incidence of myeloid malignancies and other cancers in patients bearing DDX41m suggests that defects in DDX41 lead to loss of a tumor suppressor function, likely related to activities in RNA splicing and processing pathways. Seventy percent of cancer cases with DDX41m are associated with MDS/AML alone. More than 65% of familial cases harbor heterozygous germline frameshift mutations, of which p.D140Gfs*2 is the most common. A somatic DDX41m of the second allele is acquired in 70% of cases, leading to hematological malignancy. Myeloid neoplasms with DDX41m are typically characterized by long latency, high-risk disease at presentation with normal cytogenetics and without any additional molecular markers. Recent reports suggests that a subgroup of these patients have an indolent clinical course and have a better long-term survival compared to favorable or intermediate risk AML. Distinct clinical/pathologic features and favorable outcomes in MDS/AML highlight the need for standardized classification and gene specific guidelines that could assist in management decisions in patients with DDX41m.
Collapse
Affiliation(s)
- Talha Badar
- Division of Hematology & Medical Oncology, Mayo Clinic Cancer Center, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| | - Timothy Chlon
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
7
|
Wang LL, Guan J, Cheng P, Zhang T, Cheng H, Zou L. [Allogeneic hematopoietic stem cell transplantation for Familial platelet disorder with a propensity for acute myeloid malignancies with Runx1 germline mutations: a case report and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:517-520. [PMID: 35968597 PMCID: PMC9800216 DOI: 10.3760/cma.j.issn.0253-2727.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/24/2022]
Affiliation(s)
- L L Wang
- Department of Hematology, Wuhan First Hospital, Wuhan 430022, China
| | - J Guan
- Department of Hematology, Wuhan First Hospital, Wuhan 430022, China
| | - P Cheng
- Department of Hematology, Wuhan First Hospital, Wuhan 430022, China
| | - T Zhang
- Department of Hematology, Wuhan First Hospital, Wuhan 430022, China
| | - H Cheng
- Department of Hematology, Wuhan First Hospital, Wuhan 430022, China
| | - L Zou
- Department of Hematology, Wuhan First Hospital, Wuhan 430022, China
| |
Collapse
|
8
|
Lessons Learned from Donor Cell-Derived Myeloid Neoplasms: Report of Three Cases and Review of the Literature. Life (Basel) 2022; 12:life12040559. [PMID: 35455050 PMCID: PMC9028156 DOI: 10.3390/life12040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Donor-cell derived myeloid neoplasm (DDMN), a rare complication after allogeneic hematopoietic cell transplantation (HCT), is of interest for its potential to reveal donor-derived and host-derived factors that contribute to the pathogenesis of leukemia. The accurate diagnosis of donor-derived leukemias has been facilitated by the more frequent use of molecular techniques. In this study, we describe three additional cases of DDMN; the first reported case of donor-derived chronic myelomonocytic leukemia (CMML), one acute myeloid leukemia (AML) with t(8;21)(q22;22); RUNX1-RUNX1T1 and one donor-derived MDS with deletion 5q. A review of the cytogenetic profiles of previously reported DDMN indicates a significant contribution of therapy-related myeloid neoplasms. Cases with direct evidence of donor- or recipient-dependent factors are rare; a role of direct transfer of leukemic cells, genomic instability of the donor, abnormal gene methylation in donor cells, proleukemic potential of abnormal stromal niche, and the role of immunological surveillance after transplantation has been observed. The role of additional potential pathogenetic factors that are without clinically observed evidence are also reviewed.
Collapse
|
9
|
Wafa A, Ali B, Moassass F, Kheder M, Aljapawe A, Al-Halabi B, Mrasek K, Liehr T, Al-Achkar W. Acute myeloid leukemia due to germline CEBPA mutation in a Syrian family. Mol Genet Genomic Med 2022; 10:e1854. [PMID: 35032366 PMCID: PMC8830806 DOI: 10.1002/mgg3.1854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Familial cases of adult acute myeloid leukemia (AML) with germline-mutated CCAAT/enhancer-binding protein-α (CEBPA) gene are a rare entity classified in World Health Organization (WHO) classification 2016. Most families reported in the literature show an autosomal dominant inheritance pattern consistent with a single-gene mutation. METHODS Here we studied a Syrian family with four individuals suffering from AML for CEBPA gene mutations by Sanger sequencing. RESULTS The father, his three affected, and one yet unaffected child had the same mutation in the N-terminal region of CEBPA (c.198dupC), resulting in termination at Tyr67Leufs*41. All affected family members had a good primary response to chemotherapy and achieved complete remission. CONCLUSION Overall, another AML family with CEBPA gene mutation is added to the literature, presenting with yet unreported FAB subtype M5 and absence of CD7 expression in some family members.
Collapse
Affiliation(s)
- Abdulsamad Wafa
- Human Genetics Division, Molecular Biology and Biotechnology Department, Atomic Energy Commission of Syria, Damascus, Syria
| | - Belal Ali
- Ministry of High Education, Damascus Children University Hospital, Damascus, Syria
| | - Faten Moassass
- Human Genetics Division, Molecular Biology and Biotechnology Department, Atomic Energy Commission of Syria, Damascus, Syria
| | - Maged Kheder
- Ministry of High Education, Damascus Children University Hospital, Damascus, Syria
| | - Abdulmunim Aljapawe
- Mammalians Biology Division, Molecular Biology and Biotechnology Department, Flow-cytometry Laboratory, Atomic Energy Commission of Syria, Damascus, Syria
| | - Bassel Al-Halabi
- Human Genetics Division, Molecular Biology and Biotechnology Department, Atomic Energy Commission of Syria, Damascus, Syria
| | - Kristin Mrasek
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Walid Al-Achkar
- Human Genetics Division, Molecular Biology and Biotechnology Department, Atomic Energy Commission of Syria, Damascus, Syria
| |
Collapse
|
10
|
Genetic features and clinical outcomes of patients with isolated and comutated DDX41-mutated myeloid neoplasms. Blood Adv 2021; 6:528-532. [PMID: 34644397 PMCID: PMC8791578 DOI: 10.1182/bloodadvances.2021005738] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/13/2021] [Indexed: 12/04/2022] Open
Abstract
Isolated and comutated DDX41 myeloid neoplasms have different characteristics. DDX41-mutated AML has a relatively favorable outcome comparable to core binding factor AML.
DDX41 mutations (germline and somatic) are associated with late onset myelodysplastic syndromes/acute myeloid leukemia (MDS/AML). Myeloid neoplasms (MN) with germline predisposition was identified as a distinct category in the 2016 WHO classification revision, including MN with germline DDX41 mutation. We retrospectively analyzed the molecular findings and clinical characteristics of thirty-three DDX41-mutated (mDDX41) patients at our institution. We identified 14 distinct pathogenic DDX41 variants in 32 patients and 8 DDX41 variants of unknown significance (VUS) in 9 patients. Five (16%) patients had a second DDX41 somatic mutation p.R525H and 13 (40%) had at least one additional oncogenic co-mutation in other genes. The median age at the time of diagnosis was 66 years, with male predominance (72%) and the majority of patients had normal cytogenetics (91%). Two-year overall survival (OS) was 86% and 6 (21%) MDS/AML patients with relatively preserved hematopoietic function were observed without further intervention. In comparison to AML patients with prognostically more favorable subtypes [t(8;21), n=27 and inv(16), n=40], mDDX41 patients in our cohort showed similarly favorable OS. Our study highlights that mDDX41-MN patients often have an indolent course and mDDX41-AML has comparable OS to favorable-risk AML.
Collapse
|
11
|
Nie Y, Su L, Li W, Gao S. Novel insights of acute myeloid leukemia with CEBPA deregulation: Heterogeneity dissection and re-stratification. Crit Rev Oncol Hematol 2021; 163:103379. [PMID: 34087345 DOI: 10.1016/j.critrevonc.2021.103379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/21/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia with bi-allelic CEBPA mutation was categorized as an independent disease entity with favorable prognosis, however, recent researches have revealed huge heterogeneity within this disease group, and for some patients, relapse remained a major cause of treatment failure. Further risk stratification is essentially needed. Here by reviewing the latest literature, we summarized the characteristics of CEBPA mutation profiles and clinical features, with a special intention of dissecting the heterogeneity within the seemingly homogeneous AML with bi-allelic CEBPA mutations. Specifically, non-classical CEBPA mutation, miscellaneous companion genetic aberrations and the presence of germline CEBPA mutation are three major sources of heterogeneity. Identifying these factors can help us predict patients at a higher risk of relapse, for whom aggressive treatment may be recommended. Novel therapeutic approaches regarding manipulating potentially druggable targets as well as the debate over post remission consolidation regimens has also been discussed.
Collapse
Affiliation(s)
- Yuanyuan Nie
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130012, China
| | - Long Su
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130012, China
| | - Wei Li
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130012, China; Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, 130012, China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130012, China.
| |
Collapse
|
12
|
RUNX1-mutated families show phenotype heterogeneity and a somatic mutation profile unique to germline predisposed AML. Blood Adv 2021; 4:1131-1144. [PMID: 32208489 DOI: 10.1182/bloodadvances.2019000901] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/03/2020] [Indexed: 01/07/2023] Open
Abstract
First reported in 1999, germline runt-related transcription factor 1 (RUNX1) mutations are a well-established cause of familial platelet disorder with predisposition to myeloid malignancy (FPD-MM). We present the clinical phenotypes and genetic mutations detected in 10 novel RUNX1-mutated FPD-MM families. Genomic analyses on these families detected 2 partial gene deletions, 3 novel mutations, and 5 recurrent mutations as the germline RUNX1 alterations leading to FPD-MM. Combining genomic data from the families reported herein with aggregated published data sets resulted in 130 germline RUNX1 families, which allowed us to investigate whether specific germline mutation characteristics (type, location) could explain the large phenotypic heterogeneity between patients with familial platelet disorder and different HMs. Comparing the somatic mutational signatures between the available familial (n = 35) and published sporadic (n = 137) RUNX1-mutated AML patients showed enrichment for somatic mutations affecting the second RUNX1 allele and GATA2. Conversely, we observed a decreased number of somatic mutations affecting NRAS, SRSF2, and DNMT3A and the collective genes associated with CHIP and epigenetic regulation. This is the largest aggregation and analysis of germline RUNX1 mutations performed to date, providing a unique opportunity to examine the factors underlying phenotypic differences and disease progression from FPD to MM.
Collapse
|
13
|
Bagla S, Regling KA, Wakeling EN, Gadgeel M, Buck S, Zaidi AU, Flore LA, Chicka M, Schiffer CA, Chitlur MB, Ravindranath Y. Distinctive phenotypes in two children with novel germline RUNX1 mutations - one with myeloid malignancy and increased fetal hemoglobin. Pediatr Hematol Oncol 2021; 38:65-79. [PMID: 32990483 DOI: 10.1080/08880018.2020.1814463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RUNX1 associated familial platelet disorder (FPD) is a rare autosomal dominant hematologic disorder characterized by thrombocytopenia and/or altered platelet function. There is an increased propensity to develop myeloid malignancy (MM) - acute myeloid leukemia, myeloproliferative neoplasms or myelodysplastic syndrome often in association with secondary somatic variants in other genes. To date, 23 FPD-MM pediatric cases have been reported worldwide. Here, we present two new kindreds with novel RUNX1 pathogenic variants in which children are probands. The first family is a daughter/mother diad, sharing a heterozygous frameshift variant in RUNX1 gene (c.501delT p.Ser167Argfs*9). The daughter, age 13 years, presented with features resembling juvenile myelomonocytic leukemia - severe anemia, thrombocytopenia, high white cell count with blast cells, monocytosis, increased nucleated red cells and had somatic mutations with high allele burden in CUX1, PHF6, and SH2B3 genes. She also had increased fetal hemoglobin and increased LIN28B expression. The mother, who had a long history of hypoplastic anemia, had different somatic mutations- a non-coding mutation in CUX1 but none in PHF6 or SH2B3. Her fetal hemoglobin and LIN28B expression were normal. In the second kindred, the proband, now 4 years old with thrombocytopenia alone, was investigated at 3 months of age for persistent neonatal thrombocytopenia with large platelets. Molecular testing identified a heterozygous intragenic deletion in RUNX1 encompassing exon 5. His father is known to have increased bruising for several years but is unavailable for testing. These two cases illustrate the significance of secondary mutations in the development and progression of RUNX1-FPD to MM.
Collapse
Affiliation(s)
- Shruti Bagla
- Department of Pediatrics-Hematology/Oncology, Wayne State University-School of Medicine, Detroit, Michigan, USA
| | - Katherine A Regling
- Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Erin N Wakeling
- DMC University Laboratories, Detroit Medical Center, Detroit, Michigan, USA
| | - Manisha Gadgeel
- Department of Pediatrics-Hematology/Oncology, Wayne State University-School of Medicine, Detroit, Michigan, USA
| | - Steven Buck
- Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Ahmar U Zaidi
- Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Leigh A Flore
- Department of Pediatrics-Hematology/Oncology, Wayne State University-School of Medicine, Detroit, Michigan, USA.,Division of Genetic, Genomic and Metabolic Disorders, Children's Hospital of Michigan, Detroit, Michigan, USA
| | | | - Charles A Schiffer
- Department of Pediatrics-Hematology/Oncology, Wayne State University-School of Medicine, Detroit, Michigan, USA.,Department of Oncology, Karmanos Cancer Institute, Detroit, Michigan
| | - Meera B Chitlur
- Department of Pediatrics-Hematology/Oncology, Wayne State University-School of Medicine, Detroit, Michigan, USA.,Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Yaddanapudi Ravindranath
- Department of Pediatrics-Hematology/Oncology, Wayne State University-School of Medicine, Detroit, Michigan, USA.,Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA
| |
Collapse
|
14
|
Pollyea DA, Bixby D, Perl A, Bhatt VR, Altman JK, Appelbaum FR, de Lima M, Fathi AT, Foran JM, Gojo I, Hall AC, Jacoby M, Lancet J, Mannis G, Marcucci G, Martin MG, Mims A, Neff J, Nejati R, Olin R, Percival ME, Prebet T, Przespolewski A, Rao D, Ravandi-Kashani F, Shami PJ, Stone RM, Strickland SA, Sweet K, Vachhani P, Wieduwilt M, Gregory KM, Ogba N, Tallman MS. NCCN Guidelines Insights: Acute Myeloid Leukemia, Version 2.2021. J Natl Compr Canc Netw 2021; 19:16-27. [PMID: 33406488 DOI: 10.6004/jnccn.2021.0002] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The NCCN Guidelines for Acute Myeloid Leukemia (AML) provide recommendations for the diagnosis and treatment of adults with AML based on clinical trials that have led to significant improvements in treatment, or have yielded new information regarding factors with prognostic importance, and are intended to aid physicians with clinical decision-making. These NCCN Guidelines Insights focus on recent select updates to the NCCN Guidelines, including familial genetic alterations in AML, postinduction or postremission treatment strategies in low-risk acute promyelocytic leukemia or favorable-risk AML, principles surrounding the use of venetoclax-based therapies, and considerations for patients who prefer not to receive blood transfusions during treatment.
Collapse
Affiliation(s)
| | - Dale Bixby
- University of Michigan Rogel Cancer Center
| | - Alexander Perl
- Abramson Cancer Center at the University of Pennsylvania
| | | | - Jessica K Altman
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | - Marcos de Lima
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | | | - Ivana Gojo
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | - Aric C Hall
- University of Wisconsin Carbone Cancer Center
| | - Meagan Jacoby
- Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | | | - Michael G Martin
- St. Jude Children's Research Hospital/The University of Tennessee Health Science Center
| | - Alice Mims
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | | | | | - Rebecca Olin
- UCSF Helen Diller Family Comprehensive Cancer Center
| | | | | | | | - Dinesh Rao
- UCLA Jonsson Comprehensive Cancer Center
| | | | - Paul J Shami
- Huntsman Cancer Institute at the University of Utah
| | | | | | | | | | | | | | - Ndiya Ogba
- National Comprehensive Cancer Network; and
| | | |
Collapse
|
15
|
Abstract
In recent years CMML has received increased attention as the most commonly observed MDS/MPN overlap syndrome. Renewed interest has occurred in part due to widespread adoption of next-generation sequencing panels that help render the diagnosis in the absence of morphologic dysplasia. Although most CMML patients exhibit somatic mutations in epigenetic modifiers, spliceosome components, transcription factors and signal transduction genes, it is increasingly clear that a small subset harbors an inherited predisposition to CMML and other myeloid neoplasms. More intriguing is the fact that the mutational spectrum observed in CMML is found in other types of myeloid leukemias, begging the question of how similar genetic backgrounds can lead to such divergent clinical phenotypes. In this review we present a contemporary snapshot of the genetic complexity inherent to CMML, explore the relationship between genotype-phenotype and present a stepwise model of CMML pathogenesis and progression.
Collapse
Affiliation(s)
- Ami B Patel
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael W Deininger
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
16
|
Bispo JAB, Pinheiro PS, Kobetz EK. Epidemiology and Etiology of Leukemia and Lymphoma. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a034819. [PMID: 31727680 DOI: 10.1101/cshperspect.a034819] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Available evidence suggests that the incidence of leukemia and lymphoma tends to be higher in highly developed regions of the world and among Whites in the United States. Temporal trends in incidence are dynamic and multifactorial; for instance, the incidence of non-Hodgkin's lymphoma increased around the turn of the century, in part because of the acquired immune deficiency syndrome (AIDS) epidemic. Most leukemias and lymphomas are sporadic and the specific etiology remains elusive. Still, research shows that these malignancies often develop in the context of genetic abnormalities, immunosuppression, and exposure to risk factors like ionizing radiation, carcinogenic chemicals, and oncogenic viruses. The prognosis varies by subtype, with poorer survival outcomes for acute leukemias among adults, and more favorable outcomes for Hodgkin's lymphoma. At a time when specific prevention efforts targeting these malignancies are nonexistent, there is a great need to ensure equitable access to diagnostic services and treatments worldwide.
Collapse
Affiliation(s)
- Jordan A Baeker Bispo
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Paulo S Pinheiro
- Sylvester Comprehensive Cancer Center and Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Erin K Kobetz
- Sylvester Comprehensive Cancer Center and Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| |
Collapse
|
17
|
Takaoka K, Koya J, Yoshimi A, Toya T, Kobayashi T, Nannya Y, Nakazaki K, Arai S, Ueno H, Usuki K, Yamashita T, Imanishi D, Sato S, Suzuki K, Harada H, Manabe A, Hayashi Y, Miyazaki Y, Kurokawa M. Nationwide epidemiological survey of familial myelodysplastic syndromes/acute myeloid leukemia in Japan: a multicenter retrospective study. Leuk Lymphoma 2020; 61:1688-1694. [PMID: 32157945 DOI: 10.1080/10428194.2020.1734595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Although several pedigrees of familial myelodysplastic syndromes/acute myeloid leukemia (fMDS/AML) have been reported, the epidemiology and clinical features has been poorly understood. To explore the epidemiology of this entity, we performed a retrospective nationwide epidemiological survey in Japan using questionnaire sheets. The questionnaire was sent to 561 institutions or hospitals certified by Japanese Society of Hematology, unearthing the existence of 41 pedigrees of fMDS/AML. Among them, we obtained the clinical information of 31 patients in 20 pedigrees. The median age of the initial diagnosis was 51 years (range 9-88 years) and the WHO classification 2008 ranged from refractory anemia (RA) to AML. Focusing on the familial MDS patients, refractory anemia with excess blasts (RAEB)-2 was the largest group (27.3%). The median overall survival (OS) of fMDS and fAML in this study were 71.6 and 12.4 months, and the five-year OS were 61.3 and 50%, respectively.
Collapse
Affiliation(s)
- Kensuke Takaoka
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junji Koya
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akihide Yoshimi
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Toya
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Kobayashi
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuhito Nannya
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kumi Nakazaki
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shunya Arai
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hironori Ueno
- Department of Hematology, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Kensuke Usuki
- Department of Hematology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Takeshi Yamashita
- Department of Internal Medicine, Keiju Kanazawa Hospital, Ishikawa, Japan
| | - Daisuke Imanishi
- Department of Internal medicine, Nagasaki Goto Chuoh Hospital, Nagasaki, Japan
| | - Shinya Sato
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
| | - Kenshi Suzuki
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Hironori Harada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Atsushi Manabe
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Yasuhide Hayashi
- Institute of Physiology and Medicine, Jobu University, Gunma, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan.,Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Mineo Kurokawa
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Cell Therapy and Transplantation, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
18
|
ETV6: A Candidate Gene for Predisposition to "Blend Pedigrees"? A Case Report from the NEXT-Famly Clinical Trial. Case Rep Hematol 2020; 2020:2795656. [PMID: 32148977 PMCID: PMC7057007 DOI: 10.1155/2020/2795656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
Background The identification of germline mutations in familial leukemia predisposition genes by next generation sequencing is of pivotal importance. Lately, some “blend pedigrees” characterized by both solid and hematologic malignancies have been described. Some genes were recognized as related to this double predisposition, while the involvement of others is still a matter of debate. ETV6 was associated with hematologic malignancies, in particular myeloid malignancies, and recently described as mutated also in oncologic patients. No clear evidences in its involvement in blend pedigrees are known. Case Presentation. We present our recent experience in the identification of an ETV6 was associated with hematologic malignancies, in particular myeloid malignancies, and recently described as mutated also in oncologic patients. No clear evidences in its involvement in blend pedigrees are known. ETV6 was associated with hematologic malignancies, in particular myeloid malignancies, and recently described as mutated also in oncologic patients. No clear evidences in its involvement in blend pedigrees are known. ETV6 was associated with hematologic malignancies, in particular myeloid malignancies, and recently described as mutated also in oncologic patients. No clear evidences in its involvement in blend pedigrees are known. Conclusion This evidence supports the involvement of ETV6 in the predisposition to both solid and hematologic neoplasia and the importance of the investigation of the noncoding regions of the genes as recently suggested by different expert groups.ETV6 was associated with hematologic malignancies, in particular myeloid malignancies, and recently described as mutated also in oncologic patients. No clear evidences in its involvement in blend pedigrees are known.
Collapse
|
19
|
Wiggins M, Stevenson W. Genetic predisposition in acute leukaemia. Int J Lab Hematol 2020; 42 Suppl 1:75-81. [PMID: 32115888 DOI: 10.1111/ijlh.13173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/06/2020] [Indexed: 11/30/2022]
Abstract
A small but important proportion of patients with myelodysplasia (MDS) and acute leukaemia (AL) have underlying germline mutations in leukaemia susceptibility genes. The majority of these variants predispose to myeloid neoplasms with a smaller number associated with acute lymphoblastic leukaemia (ALL). The 2016 revision of the WHO classification of tumours of haematopoietic and lymphoid tissues has defined a number of myeloid neoplasms with germline predisposition (Blood, 127, 2016, 2391) alerting clinicians to the importance of this underlying diagnosis. Advances in genetic technology and access to testing will undoubtably result in increased numbers of patients and families with leukaemia predisposition syndromes being identified. Here we summarize the salient biology and genetic and clinical features of a number of these conditions including some more recently described genetic variants.
Collapse
Affiliation(s)
- Meredith Wiggins
- Department of Haematology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - William Stevenson
- Department of Haematology, Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
20
|
Yokota A, Huo L, Lan F, Wu J, Huang G. The Clinical, Molecular, and Mechanistic Basis of RUNX1 Mutations Identified in Hematological Malignancies. Mol Cells 2020; 43:145-152. [PMID: 31964134 PMCID: PMC7057846 DOI: 10.14348/molcells.2019.0252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
RUNX1 plays an important role in the regulation of normal hematopoiesis. RUNX1 mutations are frequently found and have been intensively studied in hematological malignancies. Germline mutations in RUNX1 cause familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML). Somatic mutations of RUNX1 are observed in various types of hematological malignancies, such as AML, acute lymphoblastic leukemia (ALL), myelodysplastic syndromes (MDS), myeloproliferative neoplasm (MPN), chronic myelomonocytic leukemia (CMML), and congenital bone marrow failure (CBMF). Here, we systematically review the clinical and molecular characteristics of RUNX1 mutations, the mechanisms of pathogenesis caused by RUNX1 mutations, and potential therapeutic strategies to target RUNX1-mutated cases of hematological malignancies.
Collapse
Affiliation(s)
- Asumi Yokota
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Li Huo
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou 15006, China
| | - Fengli Lan
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 40022, China
| | - Jianqiang Wu
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Gang Huang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
21
|
Nguyen L, Zhang X, Roberts E, Yun S, McGraw K, Abraham I, Song J, Braswell D, Qin D, Sallman DA, Lancet JE, List AF, Moscinski LC, Padron E, Zhang L. Comparison of mutational profiles and clinical outcomes in patients with acute myeloid leukemia with mutated RUNX1 versus acute myeloid leukemia with myelodysplasia-related changes with mutated RUNX1. Leuk Lymphoma 2020; 61:1395-1405. [PMID: 32091281 DOI: 10.1080/10428194.2020.1723016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Studies comparing the prognostic role of RUNX1 mutations (RUNX1mut) in acute myeloid leukemia (AML) and acute myeloid leukemia-with myelodysplasia-related changes (AML-MRC) are limited. Our study examines the genetic profile of 118 RUNX1mut AML patients including 57 AML with RUNX1mut and 61 AML-MRC with RUNX1mut and 100 AML, NOS patients with wild type RUNX1 (RUNX1wt). Results revealed that AML-MRC patients with RUNX1mut had shorter median overall survival (OS) (11 ± 3.3 months) when compared to AML with RUNX1mut (19 ± 7.1 months) and AML, NOS with RUNX1wt (not reached) (p = .001). The most common concurrent mutations observed in AML-MRC with RUNX1mut patients were DNMT3A, SRSF2, ASXL1, and IDH2 while in AML with RUNX1mut patients were ASXL1, SRSF2, TET2, IDH2, and DNMT3A. ASXL1 and TET2 mutations appeared to adversely affect OS in AML-MRC, but not in AML with RUNX1mut. Concurrent RUNX1/DNMT3A mutations, in contrast had negative impact on OS in AML with RUNX1mut, but not in AML-MRC with RUNX1mut.
Collapse
Affiliation(s)
- Lynh Nguyen
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Pathology, James A. Haley Veterans' Hospital, Tampa, FL, USA.,Department of Pathology, Morsani College of Medicine, The University of South Florida, Tampa, FL, USA
| | - Xiaohui Zhang
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Evans Roberts
- Department of Pathology, Morsani College of Medicine, The University of South Florida, Tampa, FL, USA
| | - Seongseok Yun
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kathy McGraw
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ivo Abraham
- Center for Health Outcomes and PharmacoEconomic Research, University of Arizona, Tucson, AZ, USA
| | - Jinming Song
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Diana Braswell
- Department of Pathology, Morsani College of Medicine, The University of South Florida, Tampa, FL, USA
| | - Dahui Qin
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David A Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jeffrey E Lancet
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alan F List
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Lynn C Moscinski
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric Padron
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ling Zhang
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
22
|
DiFilippo EC, Coltro G, Carr RM, Mangaonkar AA, Binder M, Khan SP, Rodriguez V, Gangat N, Wolanskyj A, Pruthi RK, Chen D, He R, Viswanatha DS, Lasho T, Finke C, Tefferi A, Pardanani A, Patnaik MM. Spectrum of abnormalities and clonal transformation in germline RUNX1 familial platelet disorder and a genomic comparative analysis with somatic RUNX1 mutations in MDS/MPN overlap neoplasms. Leukemia 2020; 34:2519-2524. [PMID: 32060405 DOI: 10.1038/s41375-020-0752-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
| | - Giacomo Coltro
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ryan M Carr
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Moritz Binder
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shakila P Khan
- Division of Pediatric Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Naseema Gangat
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexandra Wolanskyj
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rajiv K Pruthi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Dong Chen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rong He
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David S Viswanatha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Terra Lasho
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Christy Finke
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Animesh Pardanani
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mrinal M Patnaik
- Division of Pediatric Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
23
|
Spaulding TP, Stockton SS, Savona MR. The evolving role of next generation sequencing in myelodysplastic syndromes. Br J Haematol 2019; 188:224-239. [PMID: 31571207 DOI: 10.1111/bjh.16212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 12/11/2022]
Abstract
Myelodysplastic syndromes (MDS) are clonal haematological disorders characterized by haematopoietic cell dysplasia, peripheral blood cytopenias, and a predisposition for developing acute myeloid leukaemia (AML). Cytogenetics have historically been important in diagnosis and prognosis in MDS, but the growing accessibility of next generation sequencing (NGS) has led to growing research in the roles of molecular genetic variation on clinical decision-making in these disorders. Multiple genes have been previously studied and found to be associated with specific outcomes or disease types within MDS and knowledge of mutations in these genes provides insight into previously defined MDS subtypes. Knowledge of these mutations also informs development of novel therapies in the treatment of MDS. The precise role of NGS in the diagnosis, prognosis and monitoring of MDS remains unclear but the improvements in NGS technology and accessibility affords clinicians an additional practice tool to provide the best care for patients.
Collapse
Affiliation(s)
- Travis P Spaulding
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shannon S Stockton
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael R Savona
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.,Cancer Biology Program, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
24
|
Sandner AS, Weggel R, Mehraein Y, Schneider S, Hiddemann W, Spiekermann K. Frequency of hematologic and solid malignancies in the family history of 50 patients with acute myeloid leukemia - a single center analysis. PLoS One 2019; 14:e0215453. [PMID: 30998723 PMCID: PMC6472770 DOI: 10.1371/journal.pone.0215453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
Background and objective The revised World Health Organization classification of 2016 for myeloid neoplasms and acute leukemia added a section of myeloid neoplasms with germline predisposition. The main objective of our study was to evaluate the frequency of hematologic and solid malignancies in the family history of patients with acute myeloid leukemia (AML) by using a systemic pedigree interview. The family history was taken of 50 patients between 24 and 80 years. Findings 8/50 (16%) patients with AML had family members with hematologic malignancies. 2/50 (4%) patients had family members of first degree with hematologic malignancies. Furthermore in 42/50 (84%) of AML patients solid malignancies were documented in family members of any degree and in 31/50 (62%) in family members of first degree. The most commonly occurring malignancies in our cohort were breast and colorectal cancer. We analyzed the pedigrees for cancer syndromes that can be associated with acute leukemia like Li-Fraumeni syndrome, Lynch syndrome and hereditary breast cancer. 2/50 (4%) patients fulfilled the criteria for familial breast and ovarian cancer from the German consortium and 1/50 (2%) patients fulfilled the Bethesda Guidelines criteria for hereditary nonpolyposis colorectal cancer. No pedigree met the criteria for Li-Fraumeni syndrome. In 29 cases we compared the patient history obtained in the routine work-up with our data. The accuracy of the obtained family history was 23%, outlining that in the clinical routine information about family histories often escapes notice. Conclusion Our study shows that though generally considered a sporadic disease, the presence of hematologic and solid malignancies in the family history of AML patients is relatively high. One should keep in mind that cancer syndromes like hereditary breast cancer are associated with a higher incidence of leukemia. These data are relevant in the context of family donor search for allogeneic stem cell transplantation, genetic counseling and testing as well as cancer prevention.
Collapse
Affiliation(s)
- Anne-Sophie Sandner
- Department of Medicine III, University Hospital Munich, Ludwig-Maximilians-University Munich—Campus Großhadern, Munich, Germany
- * E-mail:
| | - Ramona Weggel
- Department of Medicine III, University Hospital Munich, Ludwig-Maximilians-University Munich—Campus Großhadern, Munich, Germany
| | - Yasmin Mehraein
- Institute of Human Genetics, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stephanie Schneider
- Department of Medicine III, University Hospital Munich, Ludwig-Maximilians-University Munich—Campus Großhadern, Munich, Germany
| | - Wolfgang Hiddemann
- Department of Medicine III, University Hospital Munich, Ludwig-Maximilians-University Munich—Campus Großhadern, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Spiekermann
- Department of Medicine III, University Hospital Munich, Ludwig-Maximilians-University Munich—Campus Großhadern, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperative Group Leukemia, Helmholtz Center Munich, Germany
| |
Collapse
|
25
|
Rajpal S, Jain A, Jamwal M, Jain N, Sachdeva MUS, Malhotra P, Varma N, Das R. A novel germline RUNX1 mutation with co-occurrence of somatic alterations in a case of myeloid neoplasm with familial thrombocytopenia: first report from India. Leuk Lymphoma 2019; 60:2568-2571. [PMID: 30990344 DOI: 10.1080/10428194.2019.1587756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sweta Rajpal
- Department of Hematology, Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Arihant Jain
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Manu Jamwal
- Department of Hematology, Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Nidhi Jain
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Man U S Sachdeva
- Department of Hematology, Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Pankaj Malhotra
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Neelam Varma
- Department of Hematology, Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Reena Das
- Department of Hematology, Post Graduate Institute of Medical Education and Research , Chandigarh , India
| |
Collapse
|
26
|
A germline HLTF mutation in familial MDS induces DNA damage accumulation through impaired PCNA polyubiquitination. Leukemia 2019; 33:1773-1782. [PMID: 30696947 DOI: 10.1038/s41375-019-0385-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/27/2018] [Accepted: 12/27/2018] [Indexed: 02/08/2023]
Abstract
Although several causal genes of familial myelodysplastic syndromes (MDS) have been identified, the genetic landscape and the molecular pathogenesis are not totally understood. To explore novel driver genes and their pathogenetic significance, we performed whole-exome sequence analysis of four individuals from a familial MDS pedigree and 10 candidate single-nucleotide variants (C9orf43, CYP7B1, EFHB, ENTPD7, FAM160B2, HELZ2, HLTF, INPP5J, ITPKB, and RYK) were identified. Knockdown screening revealed that Hltf downregulation enhanced colony-forming capacity of primary murine bone marrow (BM) stem/progenitor cells. γH2AX immunofluorescent staining assay revealed increased DNA damage in a human acute myeloid leukemia (AML) cell line ectopically expressing HLTF E259K, which was not observed in cells expressing wild-type HLTF. Silencing of HLTF in human AML cells also led to DNA damage, indicating that HLTF E259K is a loss-of-function mutation. Molecularly, we found that an E259K mutation reduced the binding capacity of HLTF with ubiquitin-conjugating enzymes, methanesulfonate sensitive 2 and ubiquitin-conjugating enzyme E2N, resulting in impaired polyubiquitination of proliferating cell nuclear antigen (PCNA) in HLTF E259K-transduced cells. In summary, our results indicate that a familial MDS-associated HLTF E259K germline mutation induces accumulation of DNA double-strand breaks, possibly through impaired PCNA polyubiquitination.
Collapse
|
27
|
Kim HS, Han E, Jang W, Kim M, Kim Y, Han K, Kim HJ, Cho B. Germline CEBPA mutations in Korean patients with acute myeloid leukemia. Leuk Res 2019; 76:84-86. [DOI: 10.1016/j.leukres.2018.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/19/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
|
28
|
Crysandt M, Brings K, Beier F, Thiede C, Brümmendorf TH, Jost E. Germ line predisposition to myeloid malignancies appearing in adulthood. Expert Rev Hematol 2018; 11:625-636. [PMID: 29958021 DOI: 10.1080/17474086.2018.1494566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Germ line predisposition to myeloid neoplasms has been incorporated in the WHO 2016 classification of myeloid neoplasms and acute leukemia. The new category of disease is named hereditary myeloid disorder (HMD). Although most myeloid neoplasms are sporadic, germ line mutations and familial predisposition can contribute to development of chronic myeloid diseases and acute myeloid leukemia. This finding and upcoming frequent use of genome wide detection of molecular aberrations will lead to a higher detection rate of a genetic predisposition and influence treatment decisions. Hereditary predisposition is responsible for 5-10% of myeloid malignancies. Management of affected patients begins by the awareness of treating physicians of the problem and a precise work up of the patient and family members. Areas covered: This review focuses on current knowledge about germ line predisposition for myeloid neoplasms including diagnostic, prognostic, and therapeutic aspects in adult patients. Essential information for clinical routine is provided. Expert commentary: Compared to a patient without predisposition, adaptation of treatment strategy for patients with an HMD is often necessary, especially to avoid higher risk of relapse or higher toxicity during chemotherapy or transplantation. Mistakes in choice of a related donor can be omitted. Relatives at risk of developing a HMD need specific surveillance.
Collapse
Affiliation(s)
- Martina Crysandt
- a Medical Faculty, Dept. of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation , University Hospital RWTH Aachen , Aachen , Germany
| | - Kira Brings
- a Medical Faculty, Dept. of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation , University Hospital RWTH Aachen , Aachen , Germany
| | - Fabian Beier
- a Medical Faculty, Dept. of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation , University Hospital RWTH Aachen , Aachen , Germany
| | - Christian Thiede
- b Medizinische Klinik und Poliklinik I , Universitätsklinikum Carl Gustav Carus der TU Dresden , Dresden , Germany
| | - Tim H Brümmendorf
- a Medical Faculty, Dept. of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation , University Hospital RWTH Aachen , Aachen , Germany
| | - Edgar Jost
- a Medical Faculty, Dept. of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation , University Hospital RWTH Aachen , Aachen , Germany
| |
Collapse
|
29
|
Nunes-Santos CDJ, Rosenzweig SD. Bacille Calmette-Guerin Complications in Newly Described Primary Immunodeficiency Diseases: 2010-2017. Front Immunol 2018; 9:1423. [PMID: 29988375 PMCID: PMC6023996 DOI: 10.3389/fimmu.2018.01423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/07/2018] [Indexed: 12/25/2022] Open
Abstract
Bacille Calmette–Guerin (BCG) vaccine is widely used as a prevention strategy against tuberculosis. BCG is a live vaccine, usually given early in life in most countries. While safe to most recipients, it poses a risk to immunocompromised patients. Several primary immunodeficiency diseases (PIDD) have been classically associated with complications related to BCG vaccine. However, a number of new inborn errors of immunity have been described lately in which little is known about adverse reactions following BCG vaccination. The aim of this review is to summarize the existing data on BCG-related complications in patients diagnosed with PIDD described since 2010. When BCG vaccination status or complications were not specifically addressed in those manuscripts, we directly contacted the corresponding authors for further clarification. We also analyzed data on other mycobacterial infections in these patients. Based on our analysis, around 8% of patients with gain-of-function mutations in STAT1 had mycobacterial infections, including localized complications in 3 and disseminated disease in 4 out of 19 BCG-vaccinated patients. Localized BCG reactions were also frequent in activated PI3Kδ syndrome type 1 (3/10) and type 2 (2/18) vaccinated children. Also, of note, no BCG-related complications have been described in either CTLA4 or LRBA protein-deficient patients; and not enough information on BCG-vaccinated NFKB1 or NFKB2-deficient patients was available to drive any conclusions about these diseases. Despite the high prevalence of environmental mycobacterial infections in GATA2-deficient patients, only one case of BCG reaction has been reported in a patient who developed disseminated disease. In conclusion, BCG complications could be expected in some particular, recently described PIDD and it remains a preventable risk factor for pediatric PIDD patients.
Collapse
Affiliation(s)
- Cristiane de Jesus Nunes-Santos
- Faculdade de Medicina, Instituto da Crianca, Universidade de São Paulo, São Paulo, Brazil.,Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
30
|
Zhang M, Yin J, He Q, Zhang F, Huang H, Wu B, Wang X, Liu H, Yin H, Zeng Y, Gale RP, Wu D, Yin B. Chinese and Europeans with acute myeloid leukemia have discordant mutation topographies. Leuk Res 2018; 70:8-12. [PMID: 29727824 DOI: 10.1016/j.leukres.2018.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/10/2018] [Accepted: 04/15/2018] [Indexed: 11/19/2022]
Abstract
Although the topography of mutations in persons of predominately European-descent with acute myeloid leukemia (AML) is well-described this is less so in Asians. We studied AML-related mutations in 289 consecutive Chinese (mostly Han) with newly-diagnosed de novo AML. Full-length coding sequence of NPM1 and CEBPA, IDH1 and IDH2 hotspot mutations and WT1 mutations in exons 7 and 9 were analyzed by PCR as were correlations with clinical and laboratory variables. CEBPA mutations were detected in 20% of subjects (95% confidence interval [CI] 15, 25%), NPM1 mutations in 20% (15, 25%), IDH1 mutations in 4% (1, 6%), IDH2 mutations in 11% (7, 15%) and WT1 mutations in 6% (3, 9%). A comparison of these data with mutation frequencies in persons of predominately European-descent with AML indicates a higher frequency of CEBPA mutations, a similar frequency of IDH2 mutations and lower frequencies of NPM1, IDH1 and WT1 mutations. Our data indicate different topographies of AML-associated mutations in Chinese compared with persons of predominately European descent suggesting genetic background, life-style, environment and perhaps other variables may influence these differences.
Collapse
Affiliation(s)
- Min Zhang
- Department of Laboratory Medicine, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, 214002, China
| | - Jiawei Yin
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Qinghua He
- Department of Laboratory Medicine, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, 214002, China
| | - Fan Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Hongyu Huang
- Department of Laboratory Medicine, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, 214002, China
| | - Biao Wu
- Department of Laboratory Medicine, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, 214002, China
| | - Xuedong Wang
- Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, The Medical School of Jiangnan University, Wuxi, Jiangsu, 214000, China
| | - Hong Liu
- First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, Jiangsu Province, 215006, China
| | - Hongchao Yin
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yan Zeng
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Robert Peter Gale
- Haematology Research Centre, Division of Experimental Medicine, Department of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Depei Wu
- First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, Jiangsu Province, 215006, China
| | - Bin Yin
- Department of Laboratory Medicine, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, 214002, China; Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province, 215123, China.
| |
Collapse
|
31
|
Richter L, Wang Y, Hyde RK. Targeting binding partners of the CBFβ-SMMHC fusion protein for the treatment of inversion 16 acute myeloid leukemia. Oncotarget 2018; 7:66255-66266. [PMID: 27542261 PMCID: PMC5323231 DOI: 10.18632/oncotarget.11357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/09/2016] [Indexed: 11/25/2022] Open
Abstract
Inversion of chromosome 16 (inv(16)) generates the CBFβ-SMMHC fusion protein and is found in nearly all patients with acute myeloid leukemia subtype M4 with Eosinophilia (M4Eo). Expression of CBFβ-SMMHC is causative for leukemia development, but the molecular mechanisms underlying its activity are unclear. Recently, there have been important advances in defining the role of CBFβ-SMMHC and its binding partners, the transcription factor RUNX1 and the histone deacetylase HDAC8. Importantly, initial trials demonstrate that small molecules targeting these binding partners are effective against CBFβ-SMMHC induced leukemia. This review will discuss recent advances in defining the mechanism of CBFβ-SMMHC activity, as well as efforts to develop new therapies for inv(16) AML.
Collapse
Affiliation(s)
- Lisa Richter
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yiqian Wang
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - R Katherine Hyde
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
32
|
How I treat myelodysplastic syndromes of childhood. Blood 2018; 131:1406-1414. [PMID: 29438960 DOI: 10.1182/blood-2017-09-765214] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/27/2018] [Indexed: 02/06/2023] Open
Abstract
Pediatric myelodysplastic syndromes (MDSs) are a heterogeneous group of clonal disorders with an annual incidence of 1 to 4 cases per million, accounting for less than 5% of childhood hematologic malignancies. MDSs in children often occur in the context of inherited bone marrow failure syndromes, which represent a peculiarity of myelodysplasia diagnosed in pediatric patients. Moreover, germ line syndromes predisposing individuals to develop MDS or acute myeloid leukemia have recently been identified, such as those caused by mutations in GATA2, ETV6, SRP72, and SAMD9/SAMD9-L Refractory cytopenia of childhood (RCC) is the most frequent pediatric MDS variant, and it has specific histopathologic features. Allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of choice for many children with MDSs and is routinely offered to all patients with MDS with excess of blasts, to those with MDS secondary to previously administered chemoradiotherapy, and to those with RCC associated with monosomy 7, complex karyotype, severe neutropenia, or transfusion dependence. Immune-suppressive therapy may be a treatment option for RCC patients with hypocellular bone marrow and the absence of monosomy 7 or a complex karyotype, although the response rate is lower than that observed in severe aplastic anemia, and a relevant proportion of these patients will subsequently need HSCT for either nonresponse or relapse.
Collapse
|
33
|
Smith FO, Dvorak CC, Braun BS. Myelodysplastic Syndromes and Myeloproliferative Neoplasms in Children. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00063-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Draper JE, Sroczynska P, Fadlullah MZH, Patel R, Newton G, Breitwieser W, Kouskoff V, Lacaud G. A novel prospective isolation of murine fetal liver progenitors to study in utero hematopoietic defects. PLoS Genet 2018; 14:e1007127. [PMID: 29300724 PMCID: PMC5754050 DOI: 10.1371/journal.pgen.1007127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/26/2017] [Indexed: 12/29/2022] Open
Abstract
In recent years, highly detailed characterization of adult bone marrow (BM) myeloid progenitors has been achieved and, as a result, the impact of somatic defects on different hematopoietic lineage fate decisions can be precisely determined. Fetal liver (FL) hematopoietic progenitor cells (HPCs) are poorly characterized in comparison, potentially hindering the study of the impact of genetic alterations on midgestation hematopoiesis. Numerous disorders, for example infant acute leukemias, have in utero origins and their study would therefore benefit from the ability to isolate highly purified progenitor subsets. We previously demonstrated that a Runx1 distal promoter (P1)-GFP::proximal promoter (P2)-hCD4 dual-reporter mouse (Mus musculus) model can be used to identify adult BM progenitor subsets with distinct lineage preferences. In this study, we undertook the characterization of the expression of Runx1-P1-GFP and P2-hCD4 in FL. Expression of P2-hCD4 in the FL immunophenotypic Megakaryocyte-Erythroid Progenitor (MEP) and Common Myeloid Progenitor (CMP) compartments corresponded to increased granulocytic/monocytic/megakaryocytic and decreased erythroid specification. Moreover, Runx1-P2-hCD4 expression correlated with several endogenous cell surface markers' expression, including CD31 and CD45, providing a new strategy for prospective identification of highly purified fetal myeloid progenitors in transgenic mouse models. We utilized this methodology to compare the impact of the deletion of either total RUNX1 or RUNX1C alone and to determine the fetal HPCs lineages most substantially affected. This new prospective identification of FL progenitors therefore raises the prospect of identifying the underlying gene networks responsible with greater precision than previously possible.
Collapse
Affiliation(s)
- Julia E. Draper
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, Manchester Cancer Research Centre, The University of Manchester, Manchester, United Kingdom
| | - Patrycja Sroczynska
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, Manchester Cancer Research Centre, The University of Manchester, Manchester, United Kingdom
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Muhammad Z. H. Fadlullah
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, Manchester Cancer Research Centre, The University of Manchester, Manchester, United Kingdom
| | - Rahima Patel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, Manchester Cancer Research Centre, The University of Manchester, Manchester, United Kingdom
| | - Gillian Newton
- Molecular Biology Core Facility, Cancer Research UK Manchester Institute, Manchester Cancer Research Centre, The University of Manchester, Manchester, United Kingdom
| | - Wolfgang Breitwieser
- Molecular Biology Core Facility, Cancer Research UK Manchester Institute, Manchester Cancer Research Centre, The University of Manchester, Manchester, United Kingdom
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, Michael Smith Building, The University of Manchester, Manchester, United Kingdom
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, Manchester Cancer Research Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
35
|
Changes in the World Health Organization 2016 classification of myeloid neoplasms everyone should know. Curr Opin Hematol 2017; 25:120-128. [PMID: 29256927 DOI: 10.1097/moh.0000000000000404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review highlights the main changes in the revised 2016 WHO classification of myeloid neoplasms (published in 2017) that impact diagnosis and ultimately impact management of patients with these diseases. RECENT FINDINGS The revision was based on data accumulated since the 2008 WHO classification, much of which relate to new molecular genetic information about these neoplasms. This massive recent influx of data concerning the significance of pathogenic mutations has affected all myeloid neoplasm categories. The new information has been incorporated as part of the diagnostic criteria of many diseases and has led to the creation of new provisional entities defined by genetic features. Germline mutations that predispose to myeloid neoplasms are also emerging as important findings that impact disease classification. SUMMARY The growing body of genetic data have not only altered the classification of myeloid neoplasms, but are also impacting patient management. Genetically-defined disease categories have characteristic prognoses and predicted clinical behavior. Some mutations are associated with responsiveness to certain therapies, including those that target relevant oncogenes. The disease categories in the new classification facilitate the application of risk-adapted therapy based on the most recently available data.
Collapse
|
36
|
Bellissimo DC, Speck NA. RUNX1 Mutations in Inherited and Sporadic Leukemia. Front Cell Dev Biol 2017; 5:111. [PMID: 29326930 PMCID: PMC5742424 DOI: 10.3389/fcell.2017.00111] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022] Open
Abstract
RUNX1 is a recurrently mutated gene in sporadic myelodysplastic syndrome and leukemia. Inherited mutations in RUNX1 cause familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML). In sporadic AML, mutations in RUNX1 are usually secondary events, whereas in FPD/AML they are initiating events. Here we will describe mutations in RUNX1 in sporadic AML and in FPD/AML, discuss the mechanisms by which inherited mutations in RUNX1 could elevate the risk of AML in FPD/AML individuals, and speculate on why mutations in RUNX1 are rarely, if ever, the first event in sporadic AML.
Collapse
Affiliation(s)
- Dana C Bellissimo
- Department of Cell and Developmental Biology, Perelman School of Medicine, Abramson Family Cancer Research Institute, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Perelman School of Medicine, Abramson Family Cancer Research Institute, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
37
|
McReynolds LJ, Savage SA. Pediatric leukemia susceptibility disorders: manifestations and management. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:242-250. [PMID: 29222262 PMCID: PMC6142612 DOI: 10.1182/asheducation-2017.1.242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The clinical manifestations of inherited susceptibility to leukemia encompass a wide phenotypic range, including patients with certain congenital anomalies or early-onset myelodysplastic syndrome (MDS) and some with no obvious medical problems until they develop leukemia. Leukemia susceptibility syndromes occur as a result of autosomal dominant, autosomal recessive, or X-linked recessive inheritance, or de novo occurrence, of germline pathogenic variants in DNA repair, ribosome biogenesis, telomere biology, hematopoietic transcription factors, tumor suppressors, and other critical cellular processes. Children and adults with cytopenias, MDS, dysmorphic features, notable infectious histories, immunodeficiency, certain dermatologic findings, lymphedema, unusual sensitivity to radiation or chemotherapy, or acute leukemia with a family history of early-onset cancer, pulmonary fibrosis, or alveolar proteinosis should be thoroughly evaluated for a leukemia susceptibility syndrome. Genetic testing and other diagnostic modalities have improved our ability to identify these patients and to counsel them and their family members for subsequent disease risk, cancer surveillance, and therapeutic interventions. Herein, the leukemia susceptibility syndromes are divided into 3 groups: (1) those associated with an underlying inherited bone marrow failure syndrome, (2) disorders in which MDS precedes leukemia development, and (3) those with a risk primarily of leukemia. Although children are the focus of this review, it is important for clinicians to recognize that inherited susceptibility to cancer can present at any age, even in older adults; genetic counseling is essential and prompt referral to experts in each syndrome is strongly recommended.
Collapse
Affiliation(s)
- Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| |
Collapse
|
38
|
Baptista RLR, Dos Santos ACE, Gutiyama LM, Solza C, Zalcberg IR. Familial Myelodysplastic/Acute Leukemia Syndromes-Myeloid Neoplasms with Germline Predisposition. Front Oncol 2017; 7:206. [PMID: 28955657 PMCID: PMC5600909 DOI: 10.3389/fonc.2017.00206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022] Open
Abstract
Although most cases of myeloid neoplasms are sporadic, a small subset has been associated with germline mutations. The 2016 revision of the World Health Organization classification included these cases in a myeloid neoplasm group with a predisposing germline mutational background. These patients must have a different management and their families should get genetic counseling. Cases identification and outline of the major known syndromes characteristics will be discussed in this text.
Collapse
Affiliation(s)
| | | | - Luciana Mayumi Gutiyama
- Divisão de Laboratórios do Centro de Transplantes de Medula Óssea (CEMO), Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| | - Cristiana Solza
- Departamento de Medicina Interna/Hematologia, Hospital Universitário Pedro Ernesto, Rio de Janeiro, Brazil
| | - Ilana Renault Zalcberg
- Divisão de Laboratórios do Centro de Transplantes de Medula Óssea (CEMO), Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Draper JE, Sroczynska P, Leong HS, Fadlullah MZH, Miller C, Kouskoff V, Lacaud G. Mouse RUNX1C regulates premegakaryocytic/erythroid output and maintains survival of megakaryocyte progenitors. Blood 2017; 130:271-284. [PMID: 28490570 PMCID: PMC5833261 DOI: 10.1182/blood-2016-06-723635] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 04/21/2017] [Indexed: 12/13/2022] Open
Abstract
RUNX1 is crucial for the regulation of megakaryocyte specification, maturation, and thrombopoiesis. Runx1 possesses 2 promoters: the distal P1 and proximal P2 promoters. The major protein isoforms generated by P1 and P2 are RUNX1C and RUNX1B, respectively, which differ solely in their N-terminal amino acid sequences. RUNX1C is the most abundantly expressed isoform in adult hematopoiesis, present in all RUNX1-expressing populations, including the cKit+ hematopoietic stem and progenitor cells. RUNX1B expression is more restricted, being highly expressed in the megakaryocyte lineage but downregulated during erythropoiesis. We generated a Runx1 P1 knock-in of RUNX1B, termed P1-MRIPV This mouse line lacks RUNX1C expression but has normal total RUNX1 levels, solely comprising RUNX1B. Using this mouse line, we establish a specific requirement for the P1-RUNX1C isoform in megakaryopoiesis, which cannot be entirely compensated for by RUNX1B overexpression. P1 knock-in megakaryocyte progenitors have reduced proliferative capacity and undergo increased cell death, resulting in thrombocytopenia. P1 knock-in premegakaryocyte/erythroid progenitors demonstrate an erythroid-specification bias, evident from increased erythroid colony-forming ability and decreased megakaryocyte output. At a transcriptional level, multiple erythroid-specific genes are upregulated and megakaryocyte-specific transcripts are downregulated. In addition, proapoptotic pathways are activated in P1 knock-in premegakaryocyte/erythroid progenitors, presumably accounting for the increased cell death in the megakaryocyte progenitor compartment. Unlike in the conditional adult Runx1 null models, megakaryocytic maturation is not affected in the P1 knock-in mice, suggesting that RUNX1B can regulate endomitosis and thrombopoiesis. Therefore, despite the high degree of structural similarity, RUNX1B and RUNX1C isoforms have distinct and specific roles in adult megakaryopoiesis.
Collapse
Affiliation(s)
- Julia E Draper
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Patrycja Sroczynska
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
- Biotech Research and Innovation Center and
- Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark; and
| | - Hui Sun Leong
- Cancer Research UK Applied Computational Biology and Bioinformatics Group, Cancer Research UK Manchester Institute and
| | - Muhammad Z H Fadlullah
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Crispin Miller
- Cancer Research UK Applied Computational Biology and Bioinformatics Group, Cancer Research UK Manchester Institute and
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Manchester, United Kingdom
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
40
|
Kanagal-Shamanna R, Loghavi S, DiNardo CD, Medeiros LJ, Garcia-Manero G, Jabbour E, Routbort MJ, Luthra R, Bueso-Ramos CE, Khoury JD. Bone marrow pathologic abnormalities in familial platelet disorder with propensity for myeloid malignancy and germline RUNX1 mutation. Haematologica 2017; 102:1661-1670. [PMID: 28659335 PMCID: PMC5622850 DOI: 10.3324/haematol.2017.167726] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/20/2017] [Indexed: 01/20/2023] Open
Abstract
A subset of patients with familial platelet disorder with propensity to myeloid malignancy and germline RUNX1 mutation develops hematological malignancies, often myelodysplastic syndrome/acute myeloid leukemia, currently recognized in the 2016 WHO classification. Patients who develop hematologic malignancies are typically young, respond poorly to conventional therapy, and need allogeneic stem cell transplant from non-familial donors. Understanding the spectrum of bone marrow morphologic and genetic findings in these patients is critical to ensure diagnostic accuracy and develop criteria to recognize the onset of hematologic malignancies, particularly myelodysplastic syndrome. However, bone marrow features remain poorly characterized. To address this knowledge gap, we analyzed the clinicopathologic and genetic findings of 11 patients from 7 pedigrees. Of these, 6 patients did not develop hematologic malignancies over a 22-month follow-up period; 5 patients developed hematologic malignancies (3 acute myeloid leukemia; 2 myelodysplastic syndrome). All patients had thrombocytopenia at initial presentation. All 6 patients who did not develop hematologic malignancies showed baseline bone marrow abnormalities: low-for-age cellularity (n=4), dysmegakaryopoiesis (n=5), megakaryocytic hypoplasia/hyperplasia (n=5), and eosinophilia (n=4). Two patients had multiple immunophenotypic alterations in CD34-positive myeloblasts; 1 patient had clonal hematopoiesis. In contrast, patients who developed hematologic malignancies had additional cytopenia(s) (n=4), abnormal platelet granulation (n=5), bone marrow hypercellularity (n=4), dysplasia in ≥2 lineages including megakaryocytes (n=3) and acquired clonal genetic aberrations (n=5). In conclusion, our study demonstrated that specific bone marrow abnormalities and acquired genetic alterations may be harbingers of progression to hematological malignancies in patients with familial platelet disorder with germline RUNX1 mutation.
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Mark J Routbort
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Rajyalakshmi Luthra
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Carlos E Bueso-Ramos
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
41
|
Abstract
The GATA2 gene codes for a master hematopoietic transcription factor that is essential for the proliferation and maintenance of hematopoietic stem and progenitor cells. Heterozygous germline mutations in GATA2 have been initially associated with several clinical entities that are now collectively defined as GATA2 deficiency. Despite pleiotropic clinical manifestations, the high propensity for the development of myelodysplastic syndromes (MDS) constitutes the most common clinical denominator of this major MDS predisposition syndrome. The immunological phenotypes can be variable and mostly include deficiency of monocytes and/or B cells. Thus far, nearly 380 GATA2-deficient patients had been reported, with a roughly estimated prevalence of myeloid neoplasia of at least 75%. The most common abnormal karyotypes associated with GATA2-related MDS are monosomy 7, der(1;7) and trisomy 8. The overall clinical penetrance seems to be nearly complete for this transcriptopathy disorder. The high-risk MDS subtypes and karyotypes, and the underlying immunodeficiency guide decision-making toward timely stem cell transplantation.
Collapse
Affiliation(s)
- Shinsuke Hirabayashi
- Department of Pediatrics, St. Luke's InternationalHospital, 9-1, Akashi-cho, Chuo-ku, Tokyo, 1048560, Japan.
| | - Marcin W Wlodarski
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Emilia Kozyra
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Charlotte M Niemeyer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
42
|
Hayashi Y, Harada Y, Huang G, Harada H. Myeloid neoplasms with germ line RUNX1 mutation. Int J Hematol 2017; 106:183-188. [PMID: 28534116 DOI: 10.1007/s12185-017-2258-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/16/2017] [Indexed: 01/23/2023]
Abstract
Familial platelet disorder with propensity to myeloid malignancies (FPD/AML) is an autosomal dominant disorder characterized by quantitative and/or qualitative platelet defects with a tendency to develop a variety of hematological malignancies. Heterozygous germ line mutations in the RUNX1 gene are responsible genetic events for FPD/AML. Notably, about half of individuals in the family with germ line mutations in RUNX1 develop overt hematological malignancies. The latency is also relatively long as an average age at diagnosis is more than 30 years. Similar to what is observed in sporadic hematological malignancies, acquired additional genetic events cooperate with inherited RUNX1 mutations to progress the overt malignant phase. Reflecting recent increased awareness of hematological malignancies with germ line mutations, FPD/AML was added in the revised WHO 2016 classification. In this review, we provide an update on FPD/AML with recent clinical and experimental findings.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Laboratory of Oncology, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.,Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Yuka Harada
- Department of Clinical Laboratory Medicine, Faculty of Health Science Technology, Bunkyo Gakuin University, Tokyo, 113-0023, Japan
| | - Gang Huang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Hironori Harada
- Laboratory of Oncology, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
43
|
Schlegelberger B, Heller PG. RUNX1 deficiency (familial platelet disorder with predisposition to myeloid leukemia, FPDMM). Semin Hematol 2017. [PMID: 28637620 DOI: 10.1053/j.seminhematol.2017.04.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this review, we discuss disease-causing alterations of RUNT-related transcription factor 1 (RUNX1), a master regulator of hematopoietic differentiation. Familial platelet disorder with predisposition to myeloid leukemia (FPDMM) typically presents with (1) mild to moderate thrombocytopenia with normal-sized platelets; (2) functional platelets defects leading to prolonged bleeding; and (3) an increased risk to develop myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), or T-cell acute lymphoblastic leukemia (T-ALL). Hematological neoplasms in carriers of a germline RUNX1 mutation need additional secondary mutations or chromosome aberrations to develop. If a disease-causing mutation is known in the family, it is important to prevent hematopoietic stem cell transplantation from a sibling or other relative carrying the familial mutation. First experiments introducing a wild-type copy of RUNX1 into induce pluripotent stem cells (iPSC) lines from patients with FPDMM appear to demonstrate that by gene correction reversal of the phenotype may be possible.
Collapse
Affiliation(s)
| | - Paula G Heller
- Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires, IDIM-CONICET, Buenos Aires, Argentina
| |
Collapse
|
44
|
Index case of acute myeloid leukemia in a family harboring a novel CEBPA germ line mutation. Blood Adv 2017; 1:500-503. [PMID: 29296967 DOI: 10.1182/bloodadvances.2017004424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/16/2017] [Indexed: 11/20/2022] Open
Abstract
The persistence of a CEBPA mutation at the time of complete remission warrants germ line analysis.Not all patients harboring germ line CEBPA mutations have a family history of AML.
Collapse
|
45
|
Clinical utility of gene panel-based testing for hereditary myelodysplastic syndrome/acute leukemia predisposition syndromes. Leukemia 2017; 31:1226-1229. [PMID: 28104920 PMCID: PMC5420790 DOI: 10.1038/leu.2017.28] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Wang SY, Chen WL, Wang ZC, Li XF, Lin SL, Gao C, Huang YM, Luo DF, Li JG, Zi YM, Yi Z, Lin Y, Lai L, Pan LL. High expression of FAMLF is associated with clinical response in patients with de novo acute myeloid leukemia. Leuk Lymphoma 2016; 57:2727-30. [PMID: 27064024 DOI: 10.3109/10428194.2016.1160087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Shao-Yuan Wang
- a Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology , Fujian Medical University Union Hospital , Fuzhou , PR China
| | - Wan-Ling Chen
- b Union Clinical Medical College , Fujian Medical University , Fuzhou , PR China
| | - Ze-Chuan Wang
- b Union Clinical Medical College , Fujian Medical University , Fuzhou , PR China
| | - Xiao-Fan Li
- a Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology , Fujian Medical University Union Hospital , Fuzhou , PR China
| | - Sheng-Long Lin
- b Union Clinical Medical College , Fujian Medical University , Fuzhou , PR China
| | - Chao Gao
- b Union Clinical Medical College , Fujian Medical University , Fuzhou , PR China
| | - Yuan-Mao Huang
- b Union Clinical Medical College , Fujian Medical University , Fuzhou , PR China
| | - Dong-Feng Luo
- b Union Clinical Medical College , Fujian Medical University , Fuzhou , PR China
| | - Jing-Gang Li
- a Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology , Fujian Medical University Union Hospital , Fuzhou , PR China
| | - You-Mei Zi
- b Union Clinical Medical College , Fujian Medical University , Fuzhou , PR China
| | - Zheng Yi
- b Union Clinical Medical College , Fujian Medical University , Fuzhou , PR China
| | - Yun Lin
- b Union Clinical Medical College , Fujian Medical University , Fuzhou , PR China
| | - Laijun Lai
- c Department of Allied Health Sciences , University of Connecticut , Storrs , CT , USA
| | - Li-Li Pan
- a Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology , Fujian Medical University Union Hospital , Fuzhou , PR China
| |
Collapse
|
47
|
Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood 2016; 127:1387-97; quiz 1518. [DOI: 10.1182/blood-2015-09-669937] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/09/2015] [Indexed: 01/06/2023] Open
Abstract
Key Points
Germline GATA2 mutations account for 15% of advanced and 7% of all primary pediatric MDS and do not influence overall survival. The majority (72%) of adolescents with MDS and monosomy 7 carry an underlying GATA2 deficiency.
Collapse
|
48
|
Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies. Blood 2015; 127:1017-23. [PMID: 26712909 DOI: 10.1182/blood-2015-10-676098] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022] Open
Abstract
Recently our group and others have identified DDX41 mutations both as germ line and acquired somatic mutations in families with multiple cases of late onset myelodysplastic syndrome (MDS) and/or acute myeloid leukemia (AML), suggesting that DDX41 acts as a tumor suppressor. To determine whether novel DDX41 mutations could be identified in families with additional types of hematologic malignancies, our group screened two cohorts of families with a diverse range of hematologic malignancy subtypes. Among 289 families, we identified nine (3%) with DDX41 mutations. As previously observed, MDS and AML were the most common malignancies, often of the erythroblastic subtype, and 1 family displayed early-onset follicular lymphoma. Five novel mutations were identified, including missense mutations within important functional domains and start-loss and splicing mutations predicted to result in truncated proteins. We also show that most asymptomatic mutation carriers have normal blood counts until malignancy develops. This study expands both the mutation and phenotypic spectra observed in families with germ line DDX41 mutations. With an increasing number of both inherited and acquired mutations in this gene being identified, further study of how DDX41 disruption leads to hematologic malignancies is critical.
Collapse
|
49
|
Babushok DV, Bessler M, Olson TS. Genetic predisposition to myelodysplastic syndrome and acute myeloid leukemia in children and young adults. Leuk Lymphoma 2015; 57:520-36. [PMID: 26693794 DOI: 10.3109/10428194.2015.1115041] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myelodysplastic syndrome (MDS) is a clonal blood disorder characterized by ineffective hematopoiesis, cytopenias, dysplasia and an increased risk of acute myeloid leukemia (AML). With the growing availability of clinical genetic testing, there is an increasing appreciation that a number of genetic predisposition syndromes may underlie apparent de novo presentations of MDS/AML, particularly in children and young adults. Recent findings of clonal hematopoiesis in acquired aplastic anemia add another facet to our understanding of the mechanisms of MDS/AML predisposition. As more predisposition syndromes are recognized, it is becoming increasingly important for hematologists and oncologists to have familiarity with the common as well as emerging syndromes, and to have a systematic approach to diagnosis and screening of at risk patient populations. Here, we provide a practical algorithm for approaching a patient with a suspected MDS/AML predisposition, and provide an in-depth review of the established and emerging familial MDS/AML syndromes caused by mutations in the ANKRD26, CEBPA, DDX41, ETV6, GATA2, RUNX1, SRP72 genes. Finally, we discuss recent data on the role of somatic mutations in malignant transformation in acquired aplastic anemia, and review the practical aspects of MDS/AML management in patients and families with predisposition syndromes.
Collapse
Affiliation(s)
- Daria V Babushok
- a Division of Hematology-Oncology, Department of Medicine , Hospital of the University of Pennsylvania , Philadelphia , PA , USA ;,b Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics , Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Monica Bessler
- a Division of Hematology-Oncology, Department of Medicine , Hospital of the University of Pennsylvania , Philadelphia , PA , USA ;,b Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics , Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Timothy S Olson
- b Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics , Children's Hospital of Philadelphia , Philadelphia , PA , USA ;,c Blood and Marrow Transplant Program, Division of Oncology, Department of Pediatrics , Children's Hospital of Philadelphia and University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
50
|
Jamani K, Owen C. Update on recurrent genetic aberrations in acute myeloid leukemia. Int J Hematol Oncol 2015. [DOI: 10.2217/ijh.15.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recurrent chromosomal aberrations have long been recognized to influence prognosis in acute myeloid leukemia (AML), however, 50% of AML patients have a normal karyotype. The new millennium ushered in discoveries of gene mutations at the molecular level that predict outcome in patients with normal karyotype. Some recurrent mutations are already used in routine practice for AML risk stratification. With the development of high-throughput sequencing technologies, there has been a storm of new data, uncovering a complex genetic landscape in AML. In this review, we describe the significant progress in characterizing recurrent genetic abnormalities in AML in the last 5 years, focusing on prognostic significance and therapeutic implications.
Collapse
Affiliation(s)
- Kareem Jamani
- Division of Hematology, University of Calgary, Room 603 South Tower, Foothills Hospital, 1403 29 St NW, Calgary, Alberta, T2N 2T9, Canada
| | - Carolyn Owen
- Division of Hematology, University of Calgary, Room 603 South Tower, Foothills Hospital, 1403 29 St NW, Calgary, Alberta, T2N 2T9, Canada
| |
Collapse
|