1
|
Fakhri S, Moradi SZ, Faraji F, Farhadi T, Hesami O, Iranpanah A, Webber K, Bishayee A. Current advances in nanoformulations of therapeutic agents targeting tumor microenvironment to overcome drug resistance. Cancer Metastasis Rev 2023; 42:959-1020. [PMID: 37505336 DOI: 10.1007/s10555-023-10119-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023]
Abstract
The tumor microenvironment (TME) plays a pivotal role in cancer development and progression. In this line, revealing the precise mechanisms of the TME and associated signaling pathways of tumor resistance could pave the road for cancer prevention and efficient treatment. The use of nanomedicine could be a step forward in overcoming the barriers in tumor-targeted therapy. Novel delivery systems benefit from enhanced permeability and retention effect, decreasing tumor resistance, reducing tumor hypoxia, and targeting tumor-associated factors, including immune cells, endothelial cells, and fibroblasts. Emerging evidence also indicates the engagement of multiple dysregulated mediators in the TME, such as matrix metalloproteinase, vascular endothelial growth factor, cytokines/chemokines, Wnt/β-catenin, Notch, Hedgehog, and related inflammatory and apoptotic pathways. Hence, investigating novel multitargeted agents using a novel delivery system could be a promising strategy for regulating TME and drug resistance. In recent years, small molecules from natural sources have shown favorable anticancer responses by targeting TME components. Nanoformulations of natural compounds are promising therapeutic agents in simultaneously targeting multiple dysregulated factors and mediators of TME, reducing tumor resistance mechanisms, overcoming interstitial fluid pressure and pericyte coverage, and involvement of basement membrane. The novel nanoformulations employ a vascular normalization strategy, stromal/matrix normalization, and stress alleviation mechanisms to exert higher efficacy and lower side effects. Accordingly, the nanoformulations of anticancer monoclonal antibodies and conventional chemotherapeutic agents also improved their efficacy and lessened the pharmacokinetic limitations. Additionally, the coadministration of nanoformulations of natural compounds along with conventional chemotherapeutic agents, monoclonal antibodies, and nanomedicine-based radiotherapy exhibits encouraging results. This critical review evaluates the current body of knowledge in targeting TME components by nanoformulation-based delivery systems of natural small molecules, monoclonal antibodies, conventional chemotherapeutic agents, and combination therapies in both preclinical and clinical settings. Current challenges, pitfalls, limitations, and future perspectives are also discussed.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| | - Tara Farhadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Osman Hesami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
2
|
Jafari Nivlouei S, Soltani M, Shirani E, Salimpour MR, Travasso R, Carvalho J. A multiscale cell-based model of tumor growth for chemotherapy assessment and tumor-targeted therapy through a 3D computational approach. Cell Prolif 2022; 55:e13187. [PMID: 35132721 PMCID: PMC8891571 DOI: 10.1111/cpr.13187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/09/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Computational modeling of biological systems is a powerful tool to clarify diverse processes contributing to cancer. The aim is to clarify the complex biochemical and mechanical interactions between cells, the relevance of intracellular signaling pathways in tumor progression and related events to the cancer treatments, which are largely ignored in previous studies. MATERIALS AND METHODS A three-dimensional multiscale cell-based model is developed, covering multiple time and spatial scales, including intracellular, cellular, and extracellular processes. The model generates a realistic representation of the processes involved from an implementation of the signaling transduction network. RESULTS Considering a benign tumor development, results are in good agreement with the experimental ones, which identify three different phases in tumor growth. Simulating tumor vascular growth, results predict a highly vascularized tumor morphology in a lobulated form, a consequence of cells' motile behavior. A novel systematic study of chemotherapy intervention, in combination with targeted therapy, is presented to address the capability of the model to evaluate typical clinical protocols. The model also performs a dose comparison study in order to optimize treatment efficacy and surveys the effect of chemotherapy initiation delays and different regimens. CONCLUSIONS Results not only provide detailed insights into tumor progression, but also support suggestions for clinical implementation. This is a major step toward the goal of predicting the effects of not only traditional chemotherapy but also tumor-targeted therapies.
Collapse
Affiliation(s)
- Sahar Jafari Nivlouei
- Department of Mechanical Engineering, Isfahan University of Technology, Isafahan, Iran.,Department of Physics, CFisUC, University of Coimbra, Coimbra, Portugal
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.,Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.,Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada.,Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran.,Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Shirani
- Department of Mechanical Engineering, Isfahan University of Technology, Isafahan, Iran.,Department of Mechanical Engineering, Foolad Institute of Technology, Fooladshahr, Iran
| | | | - Rui Travasso
- Department of Physics, CFisUC, University of Coimbra, Coimbra, Portugal
| | - João Carvalho
- Department of Physics, CFisUC, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
3
|
Jafari Nivlouei S, Soltani M, Carvalho J, Travasso R, Salimpour MR, Shirani E. Multiscale modeling of tumor growth and angiogenesis: Evaluation of tumor-targeted therapy. PLoS Comput Biol 2021; 17:e1009081. [PMID: 34161319 PMCID: PMC8259971 DOI: 10.1371/journal.pcbi.1009081] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/06/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
The dynamics of tumor growth and associated events cover multiple time and spatial scales, generally including extracellular, cellular and intracellular modifications. The main goal of this study is to model the biological and physical behavior of tumor evolution in presence of normal healthy tissue, considering a variety of events involved in the process. These include hyper and hypoactivation of signaling pathways during tumor growth, vessels' growth, intratumoral vascularization and competition of cancer cells with healthy host tissue. The work addresses two distinctive phases in tumor development-the avascular and vascular phases-and in each stage two cases are considered-with and without normal healthy cells. The tumor growth rate increases considerably as closed vessel loops (anastomoses) form around the tumor cells resulting from tumor induced vascularization. When taking into account the host tissue around the tumor, the results show that competition between normal cells and cancer cells leads to the formation of a hypoxic tumor core within a relatively short period of time. Moreover, a dense intratumoral vascular network is formed throughout the entire lesion as a sign of a high malignancy grade, which is consistent with reported experimental data for several types of solid carcinomas. In comparison with other mathematical models of tumor development, in this work we introduce a multiscale simulation that models the cellular interactions and cell behavior as a consequence of the activation of oncogenes and deactivation of gene signaling pathways within each cell. Simulating a therapy that blocks relevant signaling pathways results in the prevention of further tumor growth and leads to an expressive decrease in its size (82% in the simulation).
Collapse
Affiliation(s)
- Sahar Jafari Nivlouei
- Department of Mechanical Engineering, Isfahan University of Technology, Isafahan, Iran
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Ontario, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Ontario, Canada
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - João Carvalho
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| | - Rui Travasso
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| | | | - Ebrahim Shirani
- Department of Mechanical Engineering, Isfahan University of Technology, Isafahan, Iran
- Department of Mechanical Engineering, Foolad Institute of Technology, Fooladshahr, Iran
| |
Collapse
|
4
|
Coy R, Al-Badri G, Kayal C, O'Rourke C, Kingham PJ, Phillips JB, Shipley RJ. Combining in silico and in vitro models to inform cell seeding strategies in tissue engineering. J R Soc Interface 2020; 17:20190801. [PMID: 32208821 DOI: 10.1098/rsif.2019.0801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The seeding density of therapeutic cells in engineered tissue impacts both cell survival and vascularization. Excessively high seeded cell densities can result in increased death and thus waste of valuable cells, whereas lower seeded cell densities may not provide sufficient support for the tissue in vivo, reducing efficacy. Additionally, the production of growth factors by therapeutic cells in low oxygen environments offers a way of generating growth factor gradients, which are important for vascularization, but hypoxia can also induce unwanted levels of cell death. This is a complex problem that lends itself to a combination of computational modelling and experimentation. Here, we present a spatio-temporal mathematical model parametrized using in vitro data capable of simulating the interactions between a therapeutic cell population, oxygen concentrations and vascular endothelial growth factor (VEGF) concentrations in engineered tissues. Simulations of collagen nerve repair constructs suggest that specific seeded cell densities and non-uniform spatial distributions of seeded cells could enhance cell survival and the generation of VEGF gradients. These predictions can now be tested using targeted experiments.
Collapse
Affiliation(s)
- R Coy
- CoMPLEX, University College London, London, UK.,UCL Centre for Nerve Engineering, University College London, London, UK
| | - G Al-Badri
- UCL Centre for Nerve Engineering, University College London, London, UK.,Department of Mathematics, University College London, London, UK
| | - C Kayal
- UCL Centre for Nerve Engineering, University College London, London, UK.,Department of Mechanical Engineering, University College London, London, UK
| | - C O'Rourke
- UCL Centre for Nerve Engineering, University College London, London, UK.,Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - P J Kingham
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - J B Phillips
- UCL Centre for Nerve Engineering, University College London, London, UK.,Department of Pharmacology, UCL School of Pharmacy, University College London, London, UK
| | - R J Shipley
- UCL Centre for Nerve Engineering, University College London, London, UK.,Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
5
|
Salavati H, Soltani M. The impact of endothelial cells proliferation in a multiscale realistic reproduction of angiogenesis. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Salavati H, Soltani M, Amanpour S. The pivotal role of angiogenesis in a multi-scale modeling of tumor growth exhibiting the avascular and vascular phases. Microvasc Res 2018; 119:105-116. [PMID: 29742454 DOI: 10.1016/j.mvr.2018.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 04/28/2018] [Accepted: 05/03/2018] [Indexed: 12/28/2022]
Abstract
The mechanisms involved in tumor growth mainly occur at the microenvironment, where the interactions between the intracellular, intercellular and extracellular scales mediate the dynamics of tumor. In this work, we present a multi-scale model of solid tumor dynamics to simulate the avascular and vascular growth as well as tumor-induced angiogenesis. The extracellular and intercellular scales are modeled using partial differential equations and cellular Potts model, respectively. Also, few biochemical and biophysical rules control the dynamics of intracellular level. On the other hand, the growth of melanoma tumors is modeled in an animal in-vivo study to evaluate the simulation. The simulation shows that the model successfully reproduces a completed image of processes involved in tumor growth such as avascular and vascular growth as well as angiogenesis. The model incorporates the phenotypes of cancerous cells including proliferating, quiescent and necrotic cells, as well as endothelial cells during angiogenesis. The results clearly demonstrate the pivotal effect of angiogenesis on the progression of cancerous cells. Also, the model exhibits important events in tumor-induced angiogenesis like anastomosis. Moreover, the computational trend of tumor growth closely follows the observations in the experimental study.
Collapse
Affiliation(s)
- Hooman Salavati
- Department of Mechanical Engineering, Pardis Branch, Islamic Azad University, Pardis, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Computational Medicine Center, Tehran, Iran; Division of Nuclear Medicine, Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, MD, USA; Department of Earth & Environmental Sciences, University of Waterloo, Ontario, Canada; Cancer Biology Research Centre, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.
| | - Saeid Amanpour
- Cancer Biology Research Centre, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Adhikarla V, Jeraj R. An imaging-based computational model for simulating angiogenesis and tumour oxygenation dynamics. Phys Med Biol 2016; 61:3885-902. [PMID: 27117345 PMCID: PMC6284397 DOI: 10.1088/0031-9155/61/10/3885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tumour growth, angiogenesis and oxygenation vary substantially among tumours and significantly impact their treatment outcome. Imaging provides a unique means of investigating these tumour-specific characteristics. Here we propose a computational model to simulate tumour-specific oxygenation changes based on the molecular imaging data. Tumour oxygenation in the model is reflected by the perfused vessel density. Tumour growth depends on its doubling time (T d) and the imaged proliferation. Perfused vessel density recruitment rate depends on the perfused vessel density around the tumour (sMVDtissue) and the maximum VEGF concentration for complete vessel dysfunctionality (VEGFmax). The model parameters were benchmarked to reproduce the dynamics of tumour oxygenation over its entire lifecycle, which is the most challenging test. Tumour oxygenation dynamics were quantified using the peak pO2 (pO2peak) and the time to peak pO2 (t peak). Sensitivity of tumour oxygenation to model parameters was assessed by changing each parameter by 20%. t peak was found to be more sensitive to tumour cell line related doubling time (~30%) as compared to tissue vasculature density (~10%). On the other hand, pO2peak was found to be similarly influenced by the above tumour- and vasculature-associated parameters (~30-40%). Interestingly, both pO2peak and t peak were only marginally affected by VEGFmax (~5%). The development of a poorly oxygenated (hypoxic) core with tumour growth increased VEGF accumulation, thus disrupting the vessel perfusion as well as further increasing hypoxia with time. The model with its benchmarked parameters, is applied to hypoxia imaging data obtained using a [(64)Cu]Cu-ATSM PET scan of a mouse tumour and the temporal development of the vasculature and hypoxia maps are shown. The work underscores the importance of using tumour-specific input for analysing tumour evolution. An extended model incorporating therapeutic effects can serve as a powerful tool for analysing tumour response to anti-angiogenic therapies.
Collapse
Affiliation(s)
- Vikram Adhikarla
- Department of Physics, University of Wisconsin, Madison, WI, USA. Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
8
|
Horsman MR, Vaupel P. Pathophysiological Basis for the Formation of the Tumor Microenvironment. Front Oncol 2016; 6:66. [PMID: 27148472 PMCID: PMC4828447 DOI: 10.3389/fonc.2016.00066] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/07/2016] [Indexed: 12/27/2022] Open
Abstract
Poor microenvironmental conditions are a characteristic feature of solid tumors. Such conditions occur because the tumor vascular supply, which develops from the normal host vasculature by the process of angiogenesis, is generally inadequate in meeting the oxygen and nutrient demands of the growing tumor mass. Regions of low oxygenation (hypoxia) is believed to be the most critical deficiency, since it has been well documented to play a significant role in influencing the response to conventional radiation and chemotherapy treatments, as well as influencing malignant progression in terms of aggressive growth and recurrence of the primary tumor and its metastatic spread. As a result, significant emphasis has been placed on finding clinically applicable approaches to identify those tumors that contain hypoxia and realistic methods to target this hypoxia. However, most studies consider hypoxia as a single entity, yet we now know that it is multifactorial. Furthermore, hypoxia is often associated with other microenvironmental parameters, such as elevated interstitial fluid pressure, glycolysis, low pH, and reduced bioenergetic status, and these can also influence the effects of hypoxia. Here, we review the various aspects of hypoxia, but also discuss the role of the other microenvironmental parameters associated with hypoxia.
Collapse
Affiliation(s)
- Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital , Aarhus , Denmark
| | - Peter Vaupel
- Department of Radiooncology and Radiotherapy, Klinikum rechts der Isar, Technische Universität München (TUM) , Munich , Germany
| |
Collapse
|
9
|
Sasaki JI, Hashimoto M, Yamaguchi S, Itoh Y, Yoshimoto I, Matsumoto T, Imazato S. Fabrication of Biomimetic Bone Tissue Using Mesenchymal Stem Cell-Derived Three-Dimensional Constructs Incorporating Endothelial Cells. PLoS One 2015; 10:e0129266. [PMID: 26047122 PMCID: PMC4457484 DOI: 10.1371/journal.pone.0129266] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/06/2015] [Indexed: 01/17/2023] Open
Abstract
The development of technologies to promote vascularization of engineered tissue would drive major developments in tissue engineering and regenerative medicine. Recently, we succeeded in fabricating three-dimensional (3D) cell constructs composed of mesenchymal stem cells (MSCs). However, the majority of cells within the constructs underwent necrosis due to a lack of nutrients and oxygen. We hypothesized that incorporation of vascular endothelial cells would improve the cell survival rate and aid in the fabrication of biomimetic bone tissues in vitro. The purpose of this study was to assess the impact of endothelial cells combined with the MSC constructs (MSC/HUVEC constructs) during short- and long-term culture. When human umbilical vein endothelial cells (HUVECs) were incorporated into the cell constructs, cell viability and growth factor production were increased after 7 days. Furthermore, HUVECs were observed to proliferate and self-organize into reticulate porous structures by interacting with the MSCs. After long-term culture, MSC/HUVEC constructs formed abundant mineralized matrices compared with those composed of MSCs alone. Transmission electron microscopy and qualitative analysis revealed that the mineralized matrices comprised porous cancellous bone-like tissues. These results demonstrate that highly biomimetic bone tissue can be fabricated in vitro by 3D MSC constructs incorporated with HUVECs.
Collapse
Affiliation(s)
- Jun-Ichi Sasaki
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
- * E-mail:
| | - Masanori Hashimoto
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satoshi Yamaguchi
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yoshihiro Itoh
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Itsumi Yoshimoto
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | | | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
10
|
3D discrete angiogenesis dynamic model and stochastic simulation for the assessment of blood perfusion coefficient and impact on heat transfer between nanoparticles and malignant tumors. Microvasc Res 2014; 98:197-217. [PMID: 24462603 DOI: 10.1016/j.mvr.2014.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/12/2014] [Accepted: 01/13/2014] [Indexed: 11/20/2022]
Abstract
Early detection of malignant tumors plays a crucial role in the survivability chances of the patient. Therefore, new and innovative tumor detection methods are constantly searched for. Tumor-specific magnetic-core nano-particles can be used with an alternating magnetic field to detect and treat tumors by hyperthermia. For the analysis of the method effectiveness, the bio-heat transfer between the nanoparticles and the tissue must be carefully studied. Heat diffusion in biological tissue is usually analyzed using the Pennes Bio-Heat Equation, where blood perfusion plays an important role. Malignant tumors are known to initiate an angiogenesis process, where endothelial cell migration from neighboring vasculature eventually leads to the formation of a thick blood capillary network around them. This process allows the tumor to receive its extensive nutrition demands and evolve into a more progressive and potentially fatal tumor. In order to assess the effect of angiogenesis on the bio-heat transfer problem, we have developed a discrete stochastic 3D model & simulation of tumor-induced angiogenesis. The model elaborates other angiogenesis models by providing high resolution 3D stochastic simulation, capturing of fine angiogenesis morphological features, effects of dynamic sprout thickness functions, and stochastic parent vessel generator. We show that the angiogenesis realizations produced are well suited for numerical bio-heat transfer analysis. Statistical study on the angiogenesis characteristics was derived using Monte Carlo simulations. According to the statistical analysis, we provide analytical expression for the blood perfusion coefficient in the Pennes equation, as a function of several parameters. This updated form of the Pennes equation could be used for numerical and analytical analyses of the proposed detection and treatment method.
Collapse
|
11
|
Finley SD, Dhar M, Popel AS. Compartment model predicts VEGF secretion and investigates the effects of VEGF trap in tumor-bearing mice. Front Oncol 2013; 3:196. [PMID: 23908970 PMCID: PMC3727077 DOI: 10.3389/fonc.2013.00196] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 07/13/2013] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels from existing vasculature, is important in tumor growth and metastasis. A key regulator of angiogenesis is vascular endothelial growth factor (VEGF), which has been targeted in numerous anti-angiogenic therapies aimed at inhibiting tumor angiogenesis. Systems biology approaches, including computational modeling, are useful for understanding this complex biological process and can aid in the development of novel and effective therapeutics that target the VEGF family of proteins and receptors. We have developed a computational model of VEGF transport and kinetics in the tumor-bearing mouse, which includes three-compartments: normal tissue, blood, and tumor. The model simulates human tumor xenografts and includes human (VEGF121 and VEGF165) and mouse (VEGF120 and VEGF164) isoforms. The model incorporates molecular interactions between these VEGF isoforms and receptors (VEGFR1 and VEGFR2), as well as co-receptors (NRP1 and NRP2). We also include important soluble factors: soluble VEGFR1 (sFlt-1) and α-2-macroglobulin. The model accounts for transport via macromolecular transendothelial permeability, lymphatic flow, and plasma clearance. We have fit the model to available in vivo experimental data on the plasma concentration of free VEGF Trap and VEGF Trap bound to mouse and human VEGF in order to estimate the rates at which parenchymal cells (myocytes and tumor cells) and endothelial cells secrete VEGF. Interestingly, the predicted tumor VEGF secretion rates are significantly lower (0.007-0.023 molecules/cell/s, depending on the tumor microenvironment) than most reported in vitro measurements (0.03-2.65 molecules/cell/s). The optimized model is used to investigate the interstitial and plasma VEGF concentrations and the effect of the VEGF-neutralizing agent, VEGF Trap (aflibercept). This work complements experimental studies performed in mice and provides a framework with which to examine the effects of anti-VEGF agents, aiding in the optimization of such anti-angiogenic therapeutics as well as analysis of clinical data. The model predictions also have implications for biomarker discovery with anti-angiogenic therapies.
Collapse
Affiliation(s)
- Stacey D Finley
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | | | | |
Collapse
|
12
|
Shirinifard A, Glazier JA, Swat M, Gens JS, Family F, Jiang Y, Grossniklaus HE. Adhesion failures determine the pattern of choroidal neovascularization in the eye: a computer simulation study. PLoS Comput Biol 2012; 8:e1002440. [PMID: 22570603 PMCID: PMC3342931 DOI: 10.1371/journal.pcbi.1002440] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 02/07/2012] [Indexed: 11/25/2022] Open
Abstract
Choroidal neovascularization (CNV) of the macular area of the retina is the major cause of severe vision loss in adults. In CNV, after choriocapillaries initially penetrate Bruch's membrane (BrM), invading vessels may regress or expand (CNV initiation). Next, during Early and Late CNV, the expanding vasculature usually spreads in one of three distinct patterns: in a layer between BrM and the retinal pigment epithelium (sub-RPE or Type 1 CNV), in a layer between the RPE and the photoreceptors (sub-retinal or Type 2 CNV) or in both loci simultaneously (combined pattern or Type 3 CNV). While most studies hypothesize that CNV primarily results from growth-factor effects or holes in BrM, our three-dimensional simulations of multi-cell model of the normal and pathological maculae recapitulate the three growth patterns, under the hypothesis that CNV results from combinations of impairment of: 1) RPE-RPE epithelial junctional adhesion, 2) Adhesion of the RPE basement membrane complex to BrM (RPE-BrM adhesion), and 3) Adhesion of the RPE to the photoreceptor outer segments (RPE-POS adhesion). Our key findings are that when an endothelial tip cell penetrates BrM: 1) RPE with normal epithelial junctions, basal attachment to BrM and apical attachment to POS resists CNV. 2) Small holes in BrM do not, by themselves, initiate CNV. 3) RPE with normal epithelial junctions and normal apical RPE-POS adhesion, but weak adhesion to BrM (e.g. due to lipid accumulation in BrM) results in Early sub-RPE CNV. 4) Normal adhesion of RBaM to BrM, but reduced apical RPE-POS or epithelial RPE-RPE adhesion (e.g. due to inflammation) results in Early sub-retinal CNV. 5) Simultaneous reduction in RPE-RPE epithelial binding and RPE-BrM adhesion results in either sub-RPE or sub-retinal CNV which often progresses to combined pattern CNV. These findings suggest that defects in adhesion dominate CNV initiation and progression.
Collapse
Affiliation(s)
- Abbas Shirinifard
- The Biocomplexity Institute and Department of Physics, Indiana University Bloomington, Bloomington, Indiana, United States of America.
| | | | | | | | | | | | | |
Collapse
|
13
|
Swat MH, Thomas GL, Belmonte JM, Shirinifard A, Hmeljak D, Glazier JA. Multi-scale modeling of tissues using CompuCell3D. Methods Cell Biol 2012; 110:325-66. [PMID: 22482955 PMCID: PMC3612985 DOI: 10.1016/b978-0-12-388403-9.00013-8] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The study of how cells interact to produce tissue development, homeostasis, or diseases was, until recently, almost purely experimental. Now, multi-cell computer simulation methods, ranging from relatively simple cellular automata to complex immersed-boundary and finite-element mechanistic models, allow in silico study of multi-cell phenomena at the tissue scale based on biologically observed cell behaviors and interactions such as movement, adhesion, growth, death, mitosis, secretion of chemicals, chemotaxis, etc. This tutorial introduces the lattice-based Glazier-Graner-Hogeweg (GGH) Monte Carlo multi-cell modeling and the open-source GGH-based CompuCell3D simulation environment that allows rapid and intuitive modeling and simulation of cellular and multi-cellular behaviors in the context of tissue formation and subsequent dynamics. We also present a walkthrough of four biological models and their associated simulations that demonstrate the capabilities of the GGH and CompuCell3D.
Collapse
Affiliation(s)
- Maciej H Swat
- Department of Physics, Biocomplexity Institute, Indiana University, Bloomington, Indiana, USA
| | | | | | | | | | | |
Collapse
|
14
|
Pharmacokinetics and pharmacodynamics of VEGF-neutralizing antibodies. BMC SYSTEMS BIOLOGY 2011; 5:193. [PMID: 22104283 PMCID: PMC3229549 DOI: 10.1186/1752-0509-5-193] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/21/2011] [Indexed: 12/20/2022]
Abstract
Background Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, and its role in cancer biology has been widely studied. Many cancer therapies target angiogenesis, with a focus being on VEGF-mediated signaling such as antibodies to VEGF. However, it is difficult to predict the effects of VEGF-neutralizing agents. We have developed a whole-body model of VEGF kinetics and transport under pathological conditions (in the presence of breast tumor). The model includes two major VEGF isoforms VEGF121 and VEGF165, receptors VEGFR1, VEGFR2 and co-receptors Neuropilin-1 and Neuropilin-2. We have added receptors on parenchymal cells (muscle fibers and tumor cells), and incorporated experimental data for the cell surface density of receptors on the endothelial cells, myocytes, and tumor cells. The model is applied to investigate the action of VEGF-neutralizing agents (called "anti-VEGF") in the treatment of cancer. Results Through a sensitivity study, we examine how model parameters influence the level of free VEGF in the tumor, a measure of the response to VEGF-neutralizing drugs. We investigate the effects of systemic properties such as microvascular permeability and lymphatic flow, and of drug characteristics such as the clearance rate and binding affinity. We predict that increasing microvascular permeability in the tumor above 10-5 cm/s elicits the undesired effect of increasing tumor interstitial VEGF concentration beyond even the baseline level. We also examine the impact of the tumor microenvironment, including receptor expression and internalization, as well as VEGF secretion. We find that following anti-VEGF treatment, the concentration of free VEGF in the tumor can vary between 7 and 233 pM, with a dependence on both the density of VEGF receptors and co-receptors and the rate of neuropilin internalization on tumor cells. Finally, we predict that free VEGF in the tumor is reduced following anti-VEGF treatment when VEGF121 comprises at least 25% of the VEGF secreted by tumor cells. Conclusions This study explores the optimal drug characteristics required for an anti-VEGF agent to have a therapeutic effect and the tumor-specific properties that influence the response to therapy. Our model provides a framework for investigating the use of VEGF-neutralizing drugs for personalized medicine treatment strategies.
Collapse
|
15
|
Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput Biol 2009; 5:e1000445. [PMID: 19629173 PMCID: PMC2709079 DOI: 10.1371/journal.pcbi.1000445] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 06/23/2009] [Indexed: 12/22/2022] Open
Abstract
The extracellular matrix plays a critical role in orchestrating the events necessary for wound healing, muscle repair, morphogenesis, new blood vessel growth, and cancer invasion. In this study, we investigate the influence of extracellular matrix topography on the coordination of multi-cellular interactions in the context of angiogenesis. To do this, we validate our spatio-temporal mathematical model of angiogenesis against empirical data, and within this framework, we vary the density of the matrix fibers to simulate different tissue environments and to explore the possibility of manipulating the extracellular matrix to achieve pro- and anti-angiogenic effects. The model predicts specific ranges of matrix fiber densities that maximize sprout extension speed, induce branching, or interrupt normal angiogenesis, which are independently confirmed by experiment. We then explore matrix fiber alignment as a key factor contributing to peak sprout velocities and in mediating cell shape and orientation. We also quantify the effects of proteolytic matrix degradation by the tip cell on sprout velocity and demonstrate that degradation promotes sprout growth at high matrix densities, but has an inhibitory effect at lower densities. Our results are discussed in the context of ECM targeted pro- and anti-angiogenic therapies that can be tested empirically.
Collapse
|
16
|
Bauer AL, Jackson TL, Jiang Y. A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys J 2007; 92:3105-21. [PMID: 17277180 PMCID: PMC1852370 DOI: 10.1529/biophysj.106.101501] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This work describes the first cell-based model of tumor-induced angiogenesis. At the extracellular level, the model describes diffusion, uptake, and decay of tumor-secreted pro-angiogenic factor. At the cellular level, the model uses the cellular Potts model based on system-energy reduction to describe endothelial cell migration, growth, division, cellular adhesion, and the evolving structure of the stroma. Numerical simulations show: 1), different tumor-secreted pro-angiogenic factor gradient profiles dramatically affect capillary sprout morphology; 2), average sprout extension speeds depend on the proximity of the proliferating region to the sprout tip, and the coordination of cellular functions; and 3), inhomogeneities in the extravascular tissue lead to sprout branching and anastomosis, phenomena that emerge without any prescribed rules. This model provides a quantitative framework to test hypotheses on the biochemical and biomechanical mechanisms that control tumor-induced angiogenesis.
Collapse
Affiliation(s)
- Amy L Bauer
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
17
|
Shang ZJ, Li ZB, Li JR. VEGF is up-regulated by hypoxic stimulation and related to tumour angiogenesis and severity of disease in oral squamous cell carcinoma: in vitro and in vivo studies. Int J Oral Maxillofac Surg 2006; 35:533-8. [PMID: 16388929 DOI: 10.1016/j.ijom.2005.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 08/22/2005] [Accepted: 09/15/2005] [Indexed: 11/19/2022]
Abstract
The present study was aimed to speculate whether the up-regulation of VEGF in oral squamous cell carcinoma (OSCC) is associated with oxygen levels, tumor angiogenesis and severity of disease. Under different oxygen levels, VEGF protein production in two oral cancer cell lines was quantitatively documented by using ELISA kit. Correlations between expression of VEGF, microvessel density, and various clinico-pathologic factors were studied in forty patients with OSCC. VEGF production was continuously elevated in supernatants from both cell lines in respond to the drop of oxygen levels. When oxygen level decreased to 1%, there was a 2.1-fold and nearly a 2.9-fold elevation of VEGF production in TSCCa and GNM cell line, respectively. On hypoxia VEGF production also presented a time-dependent up-regulation in both oral cancer cell lines. VEGF positivity was correlated with regional lymph nodal involvement and clinical stage. Microvessel density was significantly higher in VEGF-positive tumors than in VEGF-negative tumors. The presence of hypoxia in oral cancers is partly responsible for the up-regulation of VEGF. The elevation of VEGF expression in OSCC tissues correlates with the increased microvessel density and severity of the disease.
Collapse
Affiliation(s)
- Z-J Shang
- Key Laboratory of Oral Biomedical Engineering, Ministry of Education, School of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, PR China.
| | | | | |
Collapse
|
18
|
Calviello G, Di Nicuolo F, Gragnoli S, Piccioni E, Serini S, Maggiano N, Tringali G, Navarra P, Ranelletti FO, Palozza P. n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway. Carcinogenesis 2004; 25:2303-10. [PMID: 15358633 DOI: 10.1093/carcin/bgh265] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
n-3 Polyunsaturated fatty acids (PUFAs) inhibit the development of microvessels in mammary tumors growing in mice. Human colorectal tumors produce vascular endothelial growth factor (VEGF) whose expression is up-regulated in tumor cells by both cyclooxygenase-2 (COX-2) and PGE(2) and directly correlated to neoangiogenesis and clinical outcome. The goal of this study was to examine the capability of n-3 PUFAs to regulate VEGF expression in HT-29 human colorectal cells in vitro and in vivo. Constitutive VEGF expression was augmented in cultured HT-29 cells by serum starvation and the effects of eicosapentaenoic (EPA) or docosahexaenoic acid (DHA) on VEGF, COX-2, phosphorylated extracellular signal-regulated kinase (ERK)-1 and -2 and hypoxia-inducible-factor 1-alpha (HIF-1alpha) expression and PGE(2) levels were assessed. Tumor growth, VEGF, COX and PGE(2) analysis were carried out in tumors derived from HT-29 cells transplanted in nude mice fed with either EPA or DHA. Both EPA and DHA reduced VEGF and COX-2 expression and PGE(2) levels in HT-29 cells cultured in vitro. Moreover, they inhibited ERK-1 and -2 phosphorylation and HIF-1alpha protein over-expression, critical steps in the PGE(2)-induced signaling pathway leading to the augmented expression of VEGF in colon cancer cells. EPA always showed higher efficacy than DHA in vitro. Both fatty acids decreased the growth of the tumors obtained by inoculating HT-29 cells in nude mice, microvessel formation and the levels of VEGF, COX-2 and PGE(2) in tumors. The data provide evidence that these n-3 PUFAs are able to inhibit VEGF expression in colon cancer cells and suggest that one possible mechanism involved may be the negative regulation of the COX-2/PGE(2) pathway. Their potential clinical application as anti-angiogenic compounds in colon cancer therapy is proposed.
Collapse
Affiliation(s)
- Gabriella Calviello
- Institute of General Pathology, Catholic University, L.go F. Vito, 1, 00168 Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Barthel H, Wilson H, Collingridge DR, Brown G, Osman S, Luthra SK, Brady F, Workman P, Price PM, Aboagye EO. In vivo evaluation of [18F]fluoroetanidazole as a new marker for imaging tumour hypoxia with positron emission tomography. Br J Cancer 2004; 90:2232-42. [PMID: 15150578 PMCID: PMC2409496 DOI: 10.1038/sj.bjc.6601862] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Development of hypoxia-targeted therapies has stimulated the search for clinically applicable noninvasive markers of tumour hypoxia. Here, we describe the validation of [18F]fluoroetanidazole ([18F]FETA) as a tumour hypoxia marker by positron emission tomography (PET). Cellular transport and retention of [18F]FETA were determined in vitro under air vs nitrogen. Biodistribution and metabolism of the radiotracer were determined in mice bearing MCF-7, RIF-1, EMT6, HT1080/26.6, and HT1080/1-3C xenografts. Dynamic PET imaging was performed on a dedicated small animal scanner. [18F]FETA, with an octanol–water partition coefficient of 0.16±0.01, was selectively retained by RIF-1 cells under hypoxia compared to air (3.4- to 4.3-fold at 60–120 min). The radiotracer was stable in the plasma and distributed well to all the tissues studied. The 60-min tumour/muscle ratios positively correlated with the percentage of pO2 values <5 mmHg (r=0.805, P=0.027) and carbogen breathing decreased [18F]FETA-derived radioactivity levels (P=0.028). In contrast, nitroreductase activity did not influence accumulation. Tumours were sufficiently visualised by PET imaging within 30–60 min. Higher fractional retention of [18F]FETA in HT1080/1-3C vs HT1080/26.6 tumours determined by dynamic PET imaging (P=0.05) reflected higher percentage of pO2 values <1 mmHg (P=0.023), lower vessel density (P=0.026), and higher radiobiological hypoxic fraction (P=0.008) of the HT1080/1-3C tumours. In conclusion, [18F]FETA shows hypoxia-dependent tumour retention and is, thus, a promising PET marker that warrants clinical evaluation.
Collapse
Affiliation(s)
- H Barthel
- Cancer Research UK PET Oncology Group, Department of Cancer Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W12 0NN London, UK
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 20A, 04103 Leipzig, Germany
| | - H Wilson
- Hammersmith Imanet, Cyclotron Building, Hammersmith Hospital, Du Cane Road, W12 0NN London, UK
| | - D R Collingridge
- Cancer Research UK PET Oncology Group, Department of Cancer Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W12 0NN London, UK
| | - G Brown
- Hammersmith Imanet, Cyclotron Building, Hammersmith Hospital, Du Cane Road, W12 0NN London, UK
| | - S Osman
- Hammersmith Imanet, Cyclotron Building, Hammersmith Hospital, Du Cane Road, W12 0NN London, UK
| | - S K Luthra
- Hammersmith Imanet, Cyclotron Building, Hammersmith Hospital, Du Cane Road, W12 0NN London, UK
| | - F Brady
- Hammersmith Imanet, Cyclotron Building, Hammersmith Hospital, Du Cane Road, W12 0NN London, UK
| | - P Workman
- Cancer Research UK Centre for Cancer Therapeutics, The Institute for Cancer Research, Brookes Lawley Building, Room 0E8, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - P M Price
- Cancer Research UK PET Oncology Group, Department of Cancer Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W12 0NN London, UK
| | - E O Aboagye
- Cancer Research UK PET Oncology Group, Department of Cancer Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W12 0NN London, UK
- Molecular Therapy Group, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK. E-mail:
| |
Collapse
|
20
|
Chou SC, Azuma Y, Varia MA, Raleigh JA. Evidence that involucrin, a marker for differentiation, is oxygen regulated in human squamous cell carcinomas. Br J Cancer 2004; 90:728-35. [PMID: 14760391 PMCID: PMC2409601 DOI: 10.1038/sj.bjc.6601585] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The majority of hypoxic cells in squamous cell carcinomas of the head and neck and cervix express involucrin, a molecular marker for differentiation. This raises the question of whether involucrin is an oxygen-regulated protein and, if so, whether it could serve as an endogenous marker for tumour hypoxia. Consistent with oxygen regulation, involucrin protein was found to increase with increasing hypoxia in confluent cultures of moderately differentiated human SCC9 cells. Cells harvested at the point of confluence and exposed to graded concentrations of oxygen revealed a Km of approximately 15 mmHg for involucrin induction. This is similar to Kms for HIF-1α, CAIX and VEGF. Involucrin induction showed a steep dependence on pO2 with a transition from minimum to maximum expression occurring over less than an order of magnitude change in pO2. In contrast to SCC9 cells, involucrin was not induced by hypoxia in poorly differentiated SCC4 cells. It is concluded that involucrin is an oxygen-regulated protein, but that differentiation modulates its transcription status with respect to hypoxia induction.
Collapse
Affiliation(s)
- S-C Chou
- Department of Radiation Oncology, UNC School of Medicine, CB 7512, Chapel Hill, NC 27599, USA
| | - Y Azuma
- Department of Radiation Oncology, UNC School of Medicine, CB 7512, Chapel Hill, NC 27599, USA
| | - M A Varia
- Department of Radiation Oncology, UNC School of Medicine, CB 7512, Chapel Hill, NC 27599, USA
| | - J A Raleigh
- Department of Radiation Oncology, UNC School of Medicine, CB 7512, Chapel Hill, NC 27599, USA
- Department of Radiation Oncology, UNC School of Medicine, CB 7512, Chapel Hill, NC 27599, USA. E-mail:
| |
Collapse
|
21
|
Raleigh JA, Chou SC, Bono EL, Thrall DE, Varia MA. Semiquantitative immunohistochemical analysis for hypoxia in human tumors. Int J Radiat Oncol Biol Phys 2001; 49:569-74. [PMID: 11173156 DOI: 10.1016/s0360-3016(00)01505-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The goal of this study was to develop a semiquantitative scoring system for measuring hypoxia in human tumors by an immunohistochemical marker approach. METHODS AND MATERIALS Eighteen patients diagnosed with squamous cell carcinoma of the uterine cervix or head and neck were infused intravenously with a solution of pimonidazole hydrochloride at a dose of 0.5 gm/m2. Twenty-four hours later, four biopsies on average from each tumor were fixed in formalin, processed into paraffin blocks, and sectioned. Tissue sections were immunostained for the presence of pimonidazole adducts. Microscopic images (x200) of immunostaining were captured and quantitated by standard image analysis. Images with known amounts of hypoxia spanning ranges of > 0% to 5%, > 5% to 15%, > 15% to 30%, and >30% were assigned scores of +1, +2, +3, and +4, respectively. Three observers then used this calibrated scoring system to analyze hypoxia in tumor sections in a blinded fashion. RESULTS Excellent interobserver reproducibility was obtained with the calibrated, semiquantitative, immunohistochemical assay for hypoxia in squamous cell carcinomas. CONCLUSION The calibrated, semiquantitative assay shows promise as an approach to simplifying the quantitation of human tumor hypoxia by immunohistochemical techniques.
Collapse
Affiliation(s)
- J A Raleigh
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
22
|
Parliament MB, Allalunis-Turner MJ, Franko AJ, Olive PL, Mandyam R, Santos C, Wolokoff B. Vascular endothelial growth factor expression is independent of hypoxia in human malignant glioma spheroids and tumours. Br J Cancer 2000; 82:635-41. [PMID: 10682677 PMCID: PMC2363312 DOI: 10.1054/bjoc.1999.0975] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We recently showed that severe hypoxia was not universally present adjacent to necrosis in human glioma xenografts and spheroids established from the M059K, M006, M006X, M006XLo and M010b cell lines. Using these glioma models, we wished to test whether oxygen serves as a regulator of cellular VEGF expression in situ. In situ hybridization (ISH) and immunohistochemistry (IHC) were used to detect vascular endothelial growth factor (VEGF) mRNA and protein expression in sections of glioma xenografts and spheroids in which hypoxic regions and regions with well-oxygenated necrosis were identified on contiguous sections by use of the hypoxia-specific marker, 3H-misonidazole. Independent validation of the presence of radiobiologically hypoxic cells in M006 xenografts was undertaken using the comet assay. Northern blotting analyses of monolayer cells demonstrated significant up-regulation of VEGF mRNA in the M006X line at oxygen concentrations of 6% and below. ISH analysis of VEGF mRNA showed unexpectedly strong staining for VEGF mRNA across the entire viable rim of M006X and M006XLo glioma spheroids. Similarly, in virtually all xenograft tumours of the M059K, M006 and M010b lines, VEGF ISH showed similar staining across all regions of healthy cells up to the border of necrosis. Only in one M006X tumour was there a suggestion of increased VEGF expression in cells adjacent to necrosis. IHC for VEGF showed good concordance with the ISH results. IHC analysis of the VEGF receptor flt-1 showed strong tumour cell staining in M006XLo glioma cells. In human glioma spheroids and xenograft tumours, regions of severe hypoxia do not correspond to areas of up-regulated VEGF expression; in fact, VEGF expression is quite uniform. Furthermore, this and our previous study demonstrate that levels of VEGF expression vary among sublines (M006, M006X and M006XLo) derived from a single human glioma specimen.
Collapse
Affiliation(s)
- M B Parliament
- Divisions of Radiation, Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Chiarotto JA, Hill RP. A quantitative analysis of the reduction in oxygen levels required to induce up-regulation of vascular endothelial growth factor (VEGF) mRNA in cervical cancer cell lines. Br J Cancer 1999; 80:1518-24. [PMID: 10408392 PMCID: PMC2363165 DOI: 10.1038/sj.bjc.6690555] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The presence of hypoxia (low oxygen concentrations) in solid tumours correlates with poor prognosis, increased metastasis, and resistance to radiotherapy and some forms of chemotherapy. Malignant cells produce an angiogenesis factor, vascular endothelial growth factor (VEGF), which may increase metastatic ability and is up-regulated in the presence of hypoxia. Clinical data for cancers of the cervix and head and neck relate oxygen levels in the tumour to treatment outcome. This suggests the possibility that the presence of VEGF mRNA might be used as a marker for relevant levels of hypoxia. Suspension cultures of three human cervical cancer cell lines, SiHa, ME-180 and HeLa, were used to investigate up-regulation of VEGF mRNA levels following exposure to precisely defined oxygen concentrations for 2 or 4 h. An oxygen sensor was used to confirm the actual levels of dissolved oxygen present. The oxygen concentrations which caused half-maximal upregulation (the Km value) of VEGF mRNA level in the three cell lines were similar except for one instance (Km at 4 h: SiHa 27.0 +/- 5.7 microM, ME-180 16.8 +/- 3.3 microM, HeLa 13.0 +/- 1.8 microM, SiHa and HeLa P = 0.01). The Km values for the HeLa cell line as measured at 2 h (24.9 +/- 0.8 microM) and 4 h (13.0 +/- 1.8 microM) were significantly different (P < 0.0001). VEGF mRNA half-lives measured in air were consistent with values in the literature (SiHa 59.8 +/- 5.8 min, ME-180 44.4 +/- 7.2 min, HeLa 44.5 +/- 6.3 min). Differences in oxygen consumption at low oxygen concentrations were noted between the different cell lines. Stirring in suspension culture was found to induce VEGF mRNA in SiHa cells. The presence of VEGF mRNA may be a marker for radiobiologic hypoxia.
Collapse
Affiliation(s)
- J A Chiarotto
- Research Department, Ontario Cancer Institute/Princess Margaret Hospital, University of Toronto, Canada
| | | |
Collapse
|
24
|
Abstract
Cellular responses to hypoxia include modulation of respiration rate and up-regulation of genes which encode for angiogenesis factors. We tested whether human malignant glioma cells vary in their response to hypoxic stress over the range of oxygen concentrations which exist in tumours. In five cell lines tested, decreased oxygen availability resulted in decreased rates of oxygen utilization, however substantial differences in the magnitude of the response were observed. Northern blot analysis was used to study induction of vascular endothelial growth factor mRNA in response to hypoxia. In two cell lines, modest hypoxia increased vascular endothelial growth factor mRNA levels compared with those of aerobic controls. In two additional cell lines, vascular endothelial growth factor mRNA was constituitively expressed under aerobic conditions and was not further increased by hypoxia. These findings demonstrate that differences in the response to hypoxia exist among human malignant glioma cell lines and suggest that therapies designed to exploit tumour hypoxia may have varying effects in tumours with different hypoxic stress responses. © 1999 Cancer Research Campaign
Collapse
Affiliation(s)
- R H Begent
- CRC Targeting and Imaging Group, Department of Oncology, Royal Free Medical School, London, UK
| |
Collapse
|
25
|
Rodriguez CR, Fei DT, Keyt B, Baly DL. A sensitive fluorometric enzyme-linked immunosorbent assay that measures vascular endothelial growth factor165 in human plasma. J Immunol Methods 1998; 219:45-55. [PMID: 9831387 DOI: 10.1016/s0022-1759(98)00131-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A specific and sensitive fluorometric enzyme-linked immunosorbent assay (ELISA) was developed to measure endogenous levels of vascular endothelial growth factor (VEGF165) in human plasma. The ELISA can be performed in 10% human EDTA plasma, yielding a neat plasma sensitivity of 10 pg/ml or 0.2 pM. The recovery of recombinant human VEGF (rhVEGF) added to human plasma ranges from 89 to 100%. The capture antibody depletes the endogenous signal in normal human plasma, suggesting that the signal is specific for VEGF. The inter-assay and intra-assay coefficients of variation (CV) for the ELISA ranges from 5 to 14% and 8 to 18%, respectively. Characterization of the ELISA using plasmin derived VEGF variants suggests the assay is specific for the VEGF165 isoform. The heterodimer, VEGF(165/110) quantitates similar to that of the intact VEGF165 homodimer, however, the homodimers VEGF121, VEGF110 and the carboxy terminal domain (residues 111-165) are not detected in the assay. Circulating endogenous VEGF levels measured in 50 normal healthy individuals range from 20 to 141 pg/ml, with a mean of 42 +/- 22 pg/ml. There were no significant differences in VEGF levels between males and females. Circulating endogenous VEGF levels in cancer patients ranged from 32 to 418 pg/ml, averaging 129 +/- 17 pg/ml.
Collapse
Affiliation(s)
- C R Rodriguez
- Department of BioAnalytical Technology, Genetech, South San Francisco, CA 94080, USA
| | | | | | | |
Collapse
|
26
|
Abstract
In vivo tumor growth data from experiments performed in our laboratory suggest that basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) are angiogenic signals emerging from an up-regulated genetic message in the proliferating rim of a solid tumor in response to tumor-wide hypoxia. If these signals are generated in response to unfavorable environmental conditions, i.e. a decrease in oxygen tension, then the tumor may play an active role in manipulating its own environment. We have idealized this type of adaptive behavior in our mathematical model via a parameter which represents the carrying capacity of the host for the tumor. If that model parameter is held constant, then environmental control is limited to tumor shape and mitogenic signal processing. However, if we assume that the response of the local stroma to these signals is an increase in the host's ability to support an ever larger tumor, then our models describe a positive feedback control system. In this paper, we generalize our previous results to a model including a carrying capacity which depends on the size of the proliferating compartment in the tumor. Specific functional forms for the carrying capacity are discussed. Stability criteria of the system and steady state conditions for these candidate functions are analyzed. The dynamics needed to generate stable tumor growth, including countervailing negative feedback signals, are discussed in detail with respect to both their mathematical and biological properties.
Collapse
Affiliation(s)
- S Michelson
- Research Support and Information Services, Roche Bioscience, Palo Alto, CA 94303, USA.
| | | |
Collapse
|