1
|
Goon S, Shiu Chen Liu C, Ghosh Dastidar U, Paul B, Mukherjee S, Sarkar HS, Desai M, Jana R, Pal S, Sreedevi NV, Ganguly D, Talukdar A. Exploring the Structural Attributes of Yoda1 for the Development of New-Generation Piezo1 Agonist Yaddle1 as a Vaccine Adjuvant Targeting Optimal T Cell Activation. J Med Chem 2024; 67:8225-8246. [PMID: 38716967 DOI: 10.1021/acs.jmedchem.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Piezo1, a mechano-activated ion channel, has wide-ranging physiological and therapeutic implications, with the ongoing development of specific agonists unveiling cellular responses to mechanical stimuli. In our study, we systematically analyzed the chemical subunits in Piezo1 protein agonist Yoda1 to comprehend the structure-activity relationship and push forward next-generation agonist development. Preliminary screening assays for Piezo1 agonism were performed using the Piezo1-mCherry-transfected HEK293A cell line, keeping Yoda1 as a positive control. We introduce a novel Piezo1 agonist Yaddle1 (34, 0.40 μM), featuring a trifluoromethyl group, with further exploration through in vitro studies and density functional theory calculations, emphasizing its tetrel interactions, to act as an ambidextrous wedge between the domains of Piezo1. In contrast to the poor solubility of the established agonist Yoda1, our results showed that the kinetic solubility of Yaddle1 (26.72 ± 1.8 μM at pH 7.4) is 10-fold better than that of Yoda1 (1.22 ± 0.11 μM at pH 7.4). Yaddle1 (34) induces Ca2+ influx in human CD4+ T cell, suggesting its potential as a vaccine adjuvant for enhanced T cell activation.
Collapse
Affiliation(s)
- Sunny Goon
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Chinky Shiu Chen Liu
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Uddipta Ghosh Dastidar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Barnali Paul
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Suravi Mukherjee
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, WB, India
| | - Himadri Sekhar Sarkar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Milie Desai
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, WB, India
| | - Rituparna Jana
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, WB, India
| | - Sourav Pal
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Namala Venkata Sreedevi
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Dipyaman Ganguly
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Hamzian N, Nickfarjam A, Shams A, Haghiralsadat F, Najmi-Nezhad M. Radioprotective effect of nanoniosome loaded by Mentha Pulegium essential oil on human peripheral blood mononuclear cells exposed to ionizing radiation. Drug Dev Ind Pharm 2024; 50:262-273. [PMID: 38334353 DOI: 10.1080/03639045.2024.2317297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVE The present study aimed to assess the radioprotective effect of nanoniosomes loaded by Mentha Pulegium essential oil (MPEO-N nanoparticles) as a natural antioxidant on human peripheral blood mononuclear cells (PBMCs). SIGNIFICANCE Despite the applications and advantages of ionizing radiation, there are many radiation risks to biological systems that are necessary to be reduced as much as possible. METHODS MPEO-N nanoparticles were prepared by the lipid thin film hydration method, and its physicochemical characteristics were analyzed. PBMCs were then irradiated with X-ray using a 6 MV linear accelerator at two radiation doses in the presence of nontoxic concentrations of MPEO-N nanoparticles (IC10). After 48 and 72 h of incubation, the radioprotective effect was investigated by measuring survival, apoptosis, and necrosis of PBMCs, using MTT assay and flow cytometry analysis. KEY FINDINGS The hydrodynamic diameter and zeta potential of nanoniosomes were 106.0 ± 4.69 nm and -15.2 ± 0.9 mV, respectively. The mean survival percentage of PBMCs showed a significant increase only at a radiation dose of 200 cGy compared with the control group. The percentages of apoptosis and necrosis of cells in the presence of MPEO-N nanoparticles at both radiation doses and incubation periods (48 and 72 h) demonstrated a significant reduction compared with the control. CONCLUSION MPEO-N nanoparticles as a natural antioxidant, exhibited a favorable radioprotective effect by a significant reduction in the percentage of apoptosis and necrosis of irradiated PBMCs.
Collapse
Affiliation(s)
- Nima Hamzian
- Department of Medical Physics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abolfazl Nickfarjam
- Department of Medical Physics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Shams
- Department of Immunology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Haghiralsadat
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Moslem Najmi-Nezhad
- Department of Radiology, School of Paramedical, Iranshahr University of Medical Sciences, Iranshahr, Iran
| |
Collapse
|
3
|
Sioen S, D'Hondt L, Van Houte F, Demuynck R, Bacher K, De Wagter C, Vral A, Vanderstraeten B, Krysko DV, Baeyens A. Peripheral blood lymphocytes differ in DNA damage response after exposure to X-rays with different physical properties. Int J Radiat Biol 2024; 100:236-247. [PMID: 37819795 DOI: 10.1080/09553002.2023.2261525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023]
Abstract
Introduction: In radiology, low X-ray energies (<140 keV) are used to obtain an optimal image while in radiotherapy, higher X-ray energies (MeV) are used to eradicate tumor tissue. In radiation research, both these X-ray energies being used to extrapolate in vitro research to clinical practice. However, the energy deposition of X-rays depends on their energy spectrum, which might lead to changes in biological response. Therefore, this study compared the DNA damage response (DDR) in peripheral blood lymphocytes (PBLs) exposed to X-rays with varying beam quality, mean photon energy (MPE) and dose rate.Methods: The DDR was evaluated in peripheral blood lymphocytes (PBLs) by the ɣ-H2AX foci assay, the cytokinesis-block micronucleus assay and an SYTOX-based cell death assay, combined with specific cell death inhibitors. Cell cultures were irradiated with a 220 kV X-ray research cabinet (SARRP, X-Strahl) or a 6 MV X-ray linear accelerator (Elekta Synergy). Three main physical parameters were investigated: beam quality (V), MPE (eV) and dose rate (Gy/min). Additional copper (Cu) filtration caused variation in the MPE (78 keV, 94 keV, 118 keV) at SARRP; dose rates were varied by adjusting tube current for 220 kV X-rays (0.33-3 Gy/min) or water-phantom depth in the 6 MV set-up (3-6 Gy/min).Results: The induction of chromosomal damage and initial (30 min) DNA double-stranded breaks (DSBs) were significantly higher for 220 kV X-rays compared to 6 MV X-rays, while cell death induction was similar. Specific cell death inhibitors for apoptosis, necroptosis and ferroptosis were not capable of blocking cell death after irradiation using low or high-energy X-rays. Additional Cu filtration increased the MPE, which significantly decreased the amount of chromosomal damage and DSBs. Within the tested ranges no specific effects of dose rate variation were observed.Conclusion: The DDR in PBLs is influenced by the beam quality and MPE. This study reinforces the need for consideration and inclusion of all physical parameters in radiation-related studies.
Collapse
Affiliation(s)
- Simon Sioen
- Radiobiology group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Louise D'Hondt
- Radiobiology group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Fien Van Houte
- Radiobiology group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Robin Demuynck
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Klaus Bacher
- Medical Physics Group, Department of Human Structure and Repair, Gent, Belgium
| | - Carlos De Wagter
- Medical Physics Group, Department of Human Structure and Repair, Gent, Belgium
- Department of Radiotherapy-Oncology, Ghent University Hospital, Gent, Belgium
| | - Anne Vral
- Radiobiology group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Barbara Vanderstraeten
- Medical Physics Group, Department of Human Structure and Repair, Gent, Belgium
- Department of Radiotherapy-Oncology, Ghent University Hospital, Gent, Belgium
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Ans Baeyens
- Radiobiology group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
4
|
Nishio T, Kishi R, Sato K, Sato K. Blue light exposure enhances oxidative stress, causes DNA damage, and induces apoptosis signaling in B16F1 melanoma cells. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 883-884:503562. [DOI: 10.1016/j.mrgentox.2022.503562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
|
5
|
De Schutter E, Cappe B, Wiernicki B, Vandenabeele P, Riquet FB. Plasma membrane permeabilization following cell death: many ways to dye! Cell Death Discov 2021; 7:183. [PMID: 34282124 PMCID: PMC8289853 DOI: 10.1038/s41420-021-00545-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/13/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Elke De Schutter
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Center of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Edegem, Belgium
| | - Benjamin Cappe
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bartosz Wiernicki
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- VIB Center for Inflammation Research, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Franck B Riquet
- VIB Center for Inflammation Research, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium. .,Université de Lille, Lille, France.
| |
Collapse
|
6
|
Torres-Martínez A, Bedrina B, Falomir E, Marín MJ, Angulo-Pachón CA, Galindo F, Miravet JF. Non-Polymeric Nanogels as Versatile Nanocarriers: Intracellular Transport of the Photosensitizers Rose Bengal and Hypericin for Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2021; 4:3658-3669. [PMID: 35014451 DOI: 10.1021/acsabm.1c00139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of nanocarriers for intracellular transport of actives has been extensively studied in recent years and represents a central area of nanomedicine. The main novelty of this paper lies on the use of nanogels formed by a low-molecular-weight gelator (1). Here, non-polymeric, molecular nanogels are successfully used for intracellular transport of two photodynamic therapy (PDT) agents, Rose Bengal (RB) and hypericin (HYP). The two photosensitizers (PSs) exhibit different drawbacks for their use in clinical applications. HYP is poorly water-soluble, while the cellular uptake of RB is hindered due to its dianionic character at physiological pH values. Additionally, both PSs tend to aggregate precluding an effective PDT. Despite the different nature of these PSs, nanogels from gelator 1 provide, in both cases, an efficient intracellular transport into human colon adenocarcinoma cells (HT-29) and a notably improved PDT efficiency, as assessed by confocal laser scanning microscopy and flow cytometry. Furthermore, no significant dark toxicity of the nanogels is observed, supporting the biocompatibility of the delivery system. The developed nanogels are highly reproducible due to their non-polymeric nature, and their synthesis is easily scaled up. The results presented here thus confirm the potential of molecular nanogels as valuable nanocarriers, capable of entrapping both hydrophobic and hydrophilic actives, for PDT of cancer.
Collapse
Affiliation(s)
- Ana Torres-Martínez
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló de la Plana 12071, Spain
| | - Begoña Bedrina
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló de la Plana 12071, Spain
| | - Eva Falomir
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló de la Plana 12071, Spain
| | - María J Marín
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - César A Angulo-Pachón
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló de la Plana 12071, Spain
| | - Francisco Galindo
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló de la Plana 12071, Spain
| | - Juan F Miravet
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló de la Plana 12071, Spain
| |
Collapse
|
7
|
Acosta-Dávila A, Acosta-Espinel A, Hernández-de-Los-Ríos A, Gómez-Marín JE. Human peripheral blood mononuclear cells as an ex vivo model to study the host parasite interaction in Toxoplasma gondii. Exp Parasitol 2020; 219:108020. [PMID: 33058858 DOI: 10.1016/j.exppara.2020.108020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Abstract
Toxoplasma gondii is a parasite that can invade any cell in the human body. Here, we implemented and described an ex vivo model with human peripheral blood mononuclear cells (PBMCs) without using culture supplements/antibiotics and without cryopreserved cells (EXMOWS) to study the interactions between T. gondii and human cells. To establish the EXMOWS, three independent tests were carried out. Firstly, blood samples from 5 individuals were included to assess the viability and adherence of PBMCs in plate culture. In a second trial, blood samples from three seropositive and two seronegative individuals for T. gondii were used to evaluate human PBMCs cells: parasites, multiplicity of infection (MOI) 1:1, 1:3 and 1:5 at different times post infection (1 h, 6 h and 24 h). The possible immunomodulatory effect of the infection for this EXMOWS were evaluated in a third trial where HFF cells were infected with T. gondii and co-cultured with PBMCs obtained from anti-Toxoplasma IgG positive and IgG negative individuals. One hour was enough time for T. gondii infection of human PBMCs and 2 h was the minimum incubation time to guarantee adherence before carrying out any infection assay. A minimum of 1:3 MOI was necessary to guarantee efficient infection in human PBMCs with T. gondii RH-GFP. All protocols, including PBMCs isolation and stimulation, should be conducted the same day. This EXMOWS can be adapted to study the early stages of interaction with other microorganisms of human interest, without need of using cryopreservation and supplements/antibiotics.
Collapse
Affiliation(s)
- Alejandro Acosta-Dávila
- Grupo GEPAMOL, Centro de Investigaciones Biomédicas, Facultad de Ciencias de La Salud, Universidad Del Quindio, Colombia
| | - Alejandra Acosta-Espinel
- Grupo GEPAMOL, Centro de Investigaciones Biomédicas, Facultad de Ciencias de La Salud, Universidad Del Quindio, Colombia
| | | | - Jorge Enrique Gómez-Marín
- Grupo GEPAMOL, Centro de Investigaciones Biomédicas, Facultad de Ciencias de La Salud, Universidad Del Quindio, Colombia.
| |
Collapse
|
8
|
Naranjo-Lucena A, García-Campos A, Garza-Cuartero L, Britton L, Blanco A, Zintl A, Mulcahy G. Fasciola hepatica products can alter the response of bovine immune cells to Mycobacterium avium subsp. paratuberculosis. Parasite Immunol 2020; 42:e12779. [PMID: 32725900 PMCID: PMC8365740 DOI: 10.1111/pim.12779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/17/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Fasciola hepatica causes economically important disease in livestock worldwide. The relevance of this parasitic infection extends beyond its direct consequences due to its immunoregulatory properties. OBJECTIVES Given the importance of the T helper 1 (Th1) immune response in controlling infections with Mycobacterium avium subspecies paratuberculosis (MAP) in cattle, we aimed to establish the immunological consequences that co-infection with F. hepatica might have on the course of Johne's disease (JD). METHODS This study compared the in vitro response of bovine immune cells to infection with MAP or exposure to MAP antigens following F. hepatica infection or stimulation with F. hepatica products. RESULTS We found a decreased proliferation of peripheral blood mononuclear cells (PBMCs) after infection with F. hepatica. This reduction was inversely correlated with fluke burden. Pre-stimulation with F. hepatica molecules produced a significant reduction of ileocaecal lymph node leucocyte proliferation in response to MAP antigens. Additionally,F. hepatica products reduced expression of the CD14 receptor by macrophages and increased levels of apoptosis and bacterial (MAP) uptake. CONCLUSIONS Overall, F. hepatica infection had little impact on the in vitro response of immune cells to MAP, whereas in vitro co-stimulation with F. hepatica molecules had a measurable effect. Whether this is likely to affect JD progression during in vivo chronic conditions remains unclear.
Collapse
Affiliation(s)
- Amalia Naranjo-Lucena
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Andrés García-Campos
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Laura Garza-Cuartero
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Louise Britton
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alfonso Blanco
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Annetta Zintl
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Grace Mulcahy
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
9
|
Abstract
Abstract
Peripheral blood lymphocytes (PBL) are able to synthesize various cytokines that play key roles in the immune response and intercellular signaling. Since alterations in cytokine production and/or activity occur in many pathological processes, the study of cytokine synthetic capacity of PBL is a valuable tool for assessing the immune profile. In this paper, we aimed to investigate the variability of interleukin-2 (IL-2), tumor necrosis factor-alpha (TNF-α) and interferon gamma (IFN-γ) synthetic capacity of CD4+/CD8+ T-cells stimulated ex-vivo in healthy subjects, by means of a commercial intracellular cytokine staining (ICS) protocol. Peripheral blood mononuclear cells were isolated from 16 healthy subjects by Ficoll gradient centrifugation and activated ex-vivo with PMA/Ionomycin/Brefeldin-A for 4 hours. Activated PBL were surface-stained for CD3/CD4/CD8, fixed and permeabilized. ICS was performed using anti-human IL-2/TNF-α/IFN-γ and samples were analyzed on a BD-FACSAria-III flow cytometer. We recorded high post-isolation and post-activation mean viabilities: 82.1% and 82.4% respectively, p=0.84. Both CD4+/CD8+ subpopulations were found to partially produce each of the three cytokines, but in different proportions. On average, a significantly greater percentage of CD4+ cells was shown to produce IL-2 and TNF-α, compared with CD8+ cells (61.5%+/-5.8 vs. 25%+/-5.6 and 26.9%+/-11 vs. 7.5%+/-3.3 respectively, p---lt---0.0001 for both). Contrarily, IFN-γ was produced by a higher proportion of CD8+ cells (8.4%+/-3.9 vs. 6.8%+/-3.2, p=0.01). These results show that the employed ICS protocol elicits a satisfactory and consistent cytokine response from PBL of healthy subjects. The collected data may be used to outline a preliminary reference range for future studies on both healthy/pathological subjects.
Collapse
|
10
|
Cáceres-Del-Carpio J, Moustafa MT, Toledo-Corral J, Hamid MA, Atilano SR, Schneider K, Fukuhara PS, Costa RD, Norman JL, Malik D, Chwa M, Boyer DS, Limb GA, Kenney MC, Kuppermann BD. In vitro response and gene expression of human retinal Müller cells treated with different anti-VEGF drugs. Exp Eye Res 2020; 191:107903. [PMID: 31904361 PMCID: PMC7058176 DOI: 10.1016/j.exer.2019.107903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/18/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022]
Affiliation(s)
| | - M Tarek Moustafa
- Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | | | - Mohamed A Hamid
- Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - Shari R Atilano
- Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - Kevin Schneider
- Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - Paula S Fukuhara
- Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | | | - J Lucas Norman
- Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - Deepika Malik
- Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - Marilyn Chwa
- Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - David S Boyer
- Retina-Vitreous Associates Medical Group, Los Angeles, CA, USA
| | - G Astrid Limb
- Division of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - M Cristina Kenney
- Gavin Herbert Eye Institute, University of California, Irvine, CA, USA; Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA.
| | - Baruch D Kuppermann
- Gavin Herbert Eye Institute, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, USA
| |
Collapse
|
11
|
Liu D, Miao Z, Wu C, He F, Ren P, Bai S, Jiang X, Gao Y. Isothermal kinase-triggered supramolecular assemblies as drug sensitizers. Chem Sci 2019; 11:1132-1139. [PMID: 34084370 PMCID: PMC8145944 DOI: 10.1039/c9sc04317a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein kinases, the main regulators of a vast map of cellular processes, are the most attractive targets in drug discovery. Despite a few successful examples of protein kinase inhibitors, the drug discovery strategy of downregulating protein kinase activity has been quite limited and often fails even in animal models. Here, we utilize protein kinase A (PKA) activity to design PKA-triggered supramolecular assemblies with anticancer activities. Grafting a suitable peptide to PNIPAM raises the critical temperature of the LCST polymer above body temperature. Interestingly, the corresponding phosphorylated polymer has a critical temperature below body temperature, making this peptide-appended PNIPAM a suitable polymer for the PKA-triggered supramolecular assembly process. PKA-triggered assembly occurs selectively in PKA-upregulated MCF-7 cells, which disturbs the cytoskeleton and sensitizes cancer cells against doxorubicin. The chemosensitization is also observed in vivo to identify effective tumor inhibitors with satisfactory biocompatibility. Overall, this phosphorylation-induced (in principle, PKA-catalyzed) supramolecular assembly opens up a promising chemotherapy strategy for combating kinase-upregulated cancer. A nonapeptide grafted LCST polymer undergoes enzymatic phosphorylation to assemble, which selectively disrupts PKA overexpressing cancer cells via kinetics targeting.![]()
Collapse
Affiliation(s)
- Dongdong Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology Beijing 100190 P. R. China .,Sino-Danish College, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhe Miao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Chengling Wu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Fangfei He
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Peng Ren
- Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shuo Bai
- Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xingyu Jiang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology Beijing 100190 P. R. China .,Sino-Danish College, University of Chinese Academy of Sciences Beijing 100049 P. R. China.,Department of Biomedical Engineering, Southern University of Science & Technology Shenzhen 518055 Guangdong P. R. China
| | - Yuan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology Beijing 100190 P. R. China .,Sino-Danish College, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
12
|
Acosta Davila JA, Hernandez De Los Rios A. An Overview of Peripheral Blood Mononuclear Cells as a Model for Immunological Research of Toxoplasma gondii and Other Apicomplexan Parasites. Front Cell Infect Microbiol 2019; 9:24. [PMID: 30800644 PMCID: PMC6376612 DOI: 10.3389/fcimb.2019.00024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022] Open
Abstract
In biology, models are experimental systems meant to recreate aspects of diseases or human tissue with the goal of generating inferences and approximations that can contribute to the resolution of specific biological problems. Although there are many models for studying intracellular parasites, their data have produced critical contradictions, especially in immunological assays. Peripheral blood mononuclear cells (PBMCs) represent an attractive tissue source in pharmacogenomics and in molecular and immunologic studies, as these cells are easily collected from patients and can serve as sentinel tissue for monitoring physiological perturbations due to disease. However, these cells are a very sensitive model due to variables such as temperature, type of stimulus and time of collection as part of posterior processes. PBMCs have been used to study Toxoplasma gondii and other apicomplexan parasites. For instance, this model is frequently used in new therapies or vaccines that use peptides or recombinant proteins derived from the parasite. The immune response to T. gondii is highly variable, so it may be necessary to refine this cellular model. This mini review highlights the major approaches in which PBMCs are used as a model of study for T. gondii and other apicomplexan parasites. The variables related to this model have significant implications for data interpretation and conclusions related to host-parasite interaction.
Collapse
|
13
|
Goncharov NV, Terpilowski MA, Nadeev AD, Kudryavtsev IV, Serebriakova MK, Zinchenko VP, Avdonin PV. Cytotoxic Power of Hydrogen Peroxide Effect on Endothelial Cells in vitro. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2018. [DOI: 10.1134/s199074781802006x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Nadeev AD, Kudryavtsev IV, Serebriakova MK, Avdonin PV, Zinchenko VP, Goncharov NV. Dual proapoptotic and pronecrotic effect of hydrogen peroxide on human umbilical vein endothelial cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s1990519x16020097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Stemberger J, Witt V, Printz D, Geyeregger R, Fritsch G. Novel single-platform multiparameter FCM analysis of apoptosis: Significant differences between wash and no-wash procedure. Cytometry A 2011; 77:1075-81. [PMID: 20872888 DOI: 10.1002/cyto.a.20976] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
FCM is a generally accepted tool to analyze apoptosis. Unfortunately, the cell preparation of all commercial kits available includes cell washing known to cause cell loss which is most likely to affect apoptotic cells in particular. To address this, we developed a seven-color single-platform no-wash analysis technique and compared the results with those from an analogous procedure including cell washing. A five-color mAb cocktail was employed to address target cells by surface labeling, Yo-PRO-1® and DAPI were used to discriminate apoptotic and necrotic from viable cells. Cells were quantified on the basis of internal-standard fluorescent beads. Jurkat cells ACC 282 treated with camptothecin were employed to establish the staining procedure, which was then applied to blood cells collected by extracorporeal apheresis and treated with UV irradiation. Data evaluation showed that although each method by itself was highly reproducible (R(2) = 0.973), the numbers of apoptotic cells detected with the no-wash procedure were significantly higher than those obtained after cell washing (P = 6.6 E(-5), Wilcoxon Test). In addition, the observed differences increased with higher cell numbers (Bland and Altmann). We conclude that the described test is a feasible and reliable tool for apoptosis measurement and it provides results that are definitely closer to the truth than those obtained from kits that require cell washing.
Collapse
Affiliation(s)
- Julia Stemberger
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | | | | | | | | |
Collapse
|
16
|
Abstract
Imaging cytometry has recently become an important achievement in development of flow cytometric technologies. The ImageStream cytometer combines the vast features of classical flow cytometry including an impartial analysis of great number of cells in short period of time which results in strong statistical data output, with essential features of fluorescence microscopy such us collecting of real multiparameter images of analyzed objects. In this chapter, we would like to introduce an overview of imaging cytometry platform and emphasize the potential advantages of using this system for several experimental purposes. Moreover, both well established as well as potential applications of imaging cytometry will be described. Eventually, we would like to illustrate the unique use of ImageStream cytometer for identification and characterization of subpopulations of stem/ progenitor cells present in different biological specimens.
Collapse
Affiliation(s)
- Ewa K Zuba-Surma
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | |
Collapse
|
17
|
Glisic S, Ehlenbach S, Jailwala P, Waukau J, Jana S, Ghosh S. Inducible regulatory T cells (iTregs) from recent-onset type 1 diabetes subjects show increased in vitro suppression and higher ITCH levels compared with controls. Cell Tissue Res 2010; 339:585-95. [PMID: 20143240 DOI: 10.1007/s00441-009-0900-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 10/13/2009] [Indexed: 12/30/2022]
Abstract
CD4+CD25+(high) regulatory T cells (Tregs) play a pivotal role in the control of the immune response. A growing body of evidence suggests the reduced function of these cells in autoimmune diseases, including type 1 diabetes (T1D). Restoration of their function can potentially delay further disease development. In the present study, we have converted conventional effector T cells into induced Tregs (iTregs) in recent-onset (RO) T1D (n=9) and compared them with the same cells generated in controls (n=12) and in long-standing (LS) T1D subjects (n=9). The functional potential of in-vitro-generated Tregs was measured by using an in vitro proliferation assay. We noted that the suppressive potential of iTregs exceeded that of natural regulatory T cells (nTregs) only in the RO T1D subjects. We showed that iTregs from RO T1D subjects had increased expression of Foxp3, E3 ubiquitin ligase (ITCH) and TGF-beta-inducible early gene 1 (TIEG1) compared with control and LS T1D subjects. We also expanded natural, thymically derived Tregs (nTregs) and compared the functional ability of these cells between subject groups. Expanded cells from all three subject groups were suppressive. RO T1D subjects were the only group in which both iTregs and expanded Tregs were functional, suggesting that the inflammatory milieu impacts in vitro Treg generation. Future longitudinal studies should delineate the actual contribution of the stage of disease to the quality of in-vitro-generated Tregs.
Collapse
Affiliation(s)
- Sanja Glisic
- Max McGee National Center for Juvenile Diabetes and Human Molecular Genetic Center, Department of Pediatrics, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, 53226, USA
| | | | | | | | | | | |
Collapse
|
18
|
Jailwala P, Waukau J, Glisic S, Jana S, Ehlenbach S, Hessner M, Alemzadeh R, Matsuyama S, Laud P, Wang X, Ghosh S. Apoptosis of CD4+ CD25(high) T cells in type 1 diabetes may be partially mediated by IL-2 deprivation. PLoS One 2009; 4:e6527. [PMID: 19654878 PMCID: PMC2716541 DOI: 10.1371/journal.pone.0006527] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 07/02/2009] [Indexed: 01/26/2023] Open
Abstract
Background Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease targeting the insulin-producing pancreatic β cells. Naturally occurring FOXP3+CD4+CD25high regulatory T cells (Tregs) play an important role in dominant tolerance, suppressing autoreactive CD4+ effector T cell activity. Previously, in both recent-onset T1D patients and β cell antibody-positive at-risk individuals, we observed increased apoptosis and decreased function of polyclonal Tregs in the periphery. Our objective here was to elucidate the genes and signaling pathways triggering apoptosis in Tregs from T1D subjects. Principal Findings Gene expression profiles of unstimulated Tregs from recent-onset T1D (n = 12) and healthy control subjects (n = 15) were generated. Statistical analysis was performed using a Bayesian approach that is highly efficient in determining differentially expressed genes with low number of replicate samples in each of the two phenotypic groups. Microarray analysis showed that several cytokine/chemokine receptor genes, HLA genes, GIMAP family genes and cell adhesion genes were downregulated in Tregs from T1D subjects, relative to control subjects. Several downstream target genes of the AKT and p53 pathways were also upregulated in T1D subjects, relative to controls. Further, expression signatures and increased apoptosis in Tregs from T1D subjects partially mirrored the response of healthy Tregs under conditions of IL-2 deprivation. CD4+ effector T-cells from T1D subjects showed a marked reduction in IL-2 secretion. This could indicate that prior to and during the onset of disease, Tregs in T1D may be caught up in a relatively deficient cytokine milieu. Conclusions In summary, expression signatures in Tregs from T1D subjects reflect a cellular response that leads to increased sensitivity to apoptosis, partially due to cytokine deprivation. Further characterization of these signaling cascades should enable the detection of genes that can be targeted for restoring Treg function in subjects predisposed to T1D.
Collapse
Affiliation(s)
- Parthav Jailwala
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jill Waukau
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Sanja Glisic
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Srikanta Jana
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Sarah Ehlenbach
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Martin Hessner
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ramin Alemzadeh
- Children's Hospital of Wisconsin Diabetes Center, Pediatric Endocrinology and Metabolism, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Shigemi Matsuyama
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Purushottam Laud
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Xujing Wang
- Department of Physics & the Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Soumitra Ghosh
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
19
|
Genetic association of HLA DQB1 with CD4+CD25+(high) T-cell apoptosis in type 1 diabetes. Genes Immun 2009; 10:334-40. [PMID: 19295543 DOI: 10.1038/gene.2009.14] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Type 1 diabetes (T1D) has a strong genetic component and the major locus lies in the HLA DQB1 region. We found earlier an increased apoptosis with decreased viability and function of the CD4+CD25+(high) T-cell subset (Treg) in human subjects with recent-onset T1D and in multiple autoantibody-positive, high at-risk individuals. Tregs normally inhibit or delay onset of T1D in animal models and increased Treg apoptosis could bring on or accelerate disease from effector T-cell-mediated destruction of insulin-producing beta cells. In this study, we test the hypothesis that HLA DQB1 genotypes are associated with increased CD4+CD25+(high) T-cell apoptosis. HLA DQ-based genetic risk status was significantly associated with CD4+CD25+(high) T-cell apoptosis, after adjustment for age, gender and phenotypic status (n=83, F=4.04 (d.f.=3), P=0.01). Unaffected, autoantibody-negative high risk HLA DQB1 control subjects showed increased CD4+CD25+(high) apoptosis levels compared with low risk HLA DQB1 control subjects (n=26, P=0.002), confirming that the association precedes disease. The association of specific HLA DQB1 genotypes with Treg apoptosis was also tested, showing significance for HLA DQB1*0302, DQB1*0201 and HLA DQB1*0602 alleles. Our study shows an association of HLA DQB1 genotypes with CD4+CD25+(high) T-cell apoptosis, which implicates CD4+CD25+(high) T-cell apoptosis as a new intermediate trait for T1D.
Collapse
|
20
|
Impaired survival of peripheral T cells, disrupted NK/NKT cell development, and liver failure in mice lacking Gimap5. Blood 2008; 112:4905-14. [PMID: 18796632 DOI: 10.1182/blood-2008-03-146555] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The loss of Gimap5 (GTPase of the immune-associated protein 5) gene function is the underlying cause of lymphopenia and autoimmune diabetes in the BioBreeding (BB) rat. The in vivo function of murine gimap5 is largely unknown. We show that selective gene ablation of the mouse gimap5 gene impairs the final intrathymic maturation of CD8 and CD4 T cells and compromises the survival of postthymic CD4 and CD8 cells, replicating findings in the BB rat model. In addition, gimap5 deficiency imposes a block of natural killer (NK)- and NKT-cell differentiation. Development of NK/NKT cells is restored on transfer of gimap5(-/-) bone marrow into a wild-type environment. Mice lacking gimap5 have a median survival of 15 weeks, exhibit chronic hepatic hematopoiesis, and in later stages show pronounced hepatocyte apoptosis, leading to liver failure. This pathology persists in a Rag2-deficient background in the absence of mature B, T, or NK cells and cannot be adoptively transferred by transplanting gimap5(-/-) bone marrow into wild-type recipients. We conclude that mouse gimap5 is necessary for the survival of peripheral T cells, NK/NKT-cell development, and the maintenance of normal liver function. These functions involve cell-intrinsic as well as cell-extrinsic mechanisms.
Collapse
|
21
|
Tijssen MR, Woelders H, de Vries-van Rossen A, van der Schoot CE, Voermans C, Lagerberg JWM. Improved postthaw viability and in vitro functionality of peripheral blood hematopoietic progenitor cells after cryopreservation with a theoretically optimized freezing curve. Transfusion 2008; 48:893-901. [PMID: 18298597 DOI: 10.1111/j.1537-2995.2008.01650.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The freezing curve currently used for the cryopreservation of peripheral blood stem cell transplants (PBSCTs) has been determined empirically. Although the use of cryopreserved PBSCTs is successful and usually leads to rapid hematopoietic recovery, the freeze-thawing process is known to induce a significant degree of cell death. Furthermore, the infusion of dimethyl sulfoxide (DMSO), used to protect the cells against damage induced by freezing, can cause morbidity. Therefore, optimizing the current cryopreservation protocol (with 10% DMSO and a slow linear cooling curve) with theoretically optimized freezing curves and a lower DMSO concentration might improve the recovery after transplantation. STUDY DESIGN AND METHODS A theoretical model was used to predict optimal freezing curves for 5 and 10 percent DMSO. CD34+-selected and -unselected PBSCs were cryopreserved with the current or the new freezing curves. Postthaw quality was evaluated by cell viability, colony formation, and megakaryocyte outgrowth. RESULTS With 10 percent DMSO, the use of the predicted optimal freezing curve resulted in increased postthaw viability of CD34+ cells, colony formation, and megakaryocyte outgrowth. Lowering the DMSO concentration to 5 percent resulted in improved postthaw viability and functionality, which was not further improved by use of the theoretically optimized freezing curve. CONCLUSIONS Our results indicate that the current cryopreservation method for PBSCTs can be improved by either lowering the DMSO concentration to 5 percent or by using the theoretically optimized freezing curve. Infusion of less DMSO and more viable cells might improve the outcome of PBSCT.
Collapse
Affiliation(s)
- Marloes R Tijssen
- Department of Experimental Immunohematology and Blood Cell Research, Laboratory of Cryobiology, Sanquin Research, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
“Decoding the Dots”: The ImageStream system (ISS) as a novel and powerful tool for flow cytometric analysis. Open Life Sci 2008. [DOI: 10.2478/s11535-007-0044-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe aim of this article is to provide a brief review of the ImageStream system (ISS). The ISS technology was developed as a novel method for multiparameter cell analysis and subsequently as a supportive tool for flow cytometry (FC). ISS integrates the features of FC and fluorescent microscopy collecting images of acquired cells for offline digital image analysis. The article presents an overview of the main characteristics of ISS and a comparison between ISS, FC and the laser scanning cytometer (LSC). We reviewed ISS applications focusing on those involved in cellular phenotyping and provide our own experience with using ISS as a supportive tool to classical FC and demonstrate the compatibility between FC and ISS photometric analysis as well as the advantages of using ISS to confirm FC results.
Collapse
|
23
|
Zuba-Surma EK, Kucia M, Abdel-Latif A, Dawn B, Hall B, Singh R, Lillard JW, Ratajczak MZ. Morphological characterization of very small embryonic-like stem cells (VSELs) by ImageStream system analysis. J Cell Mol Med 2007; 12:292-303. [PMID: 18031297 PMCID: PMC3823490 DOI: 10.1111/j.1582-4934.2007.00154.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Recently, our group purified a rare population of primitive Sca1+/Lin−/CD45− cells from murine bone marrow by employing multiparameter cell sorting. Based on flow cytometric and gene expression analysis, these cells have been shown to express several markers of embryonic stem cells and were accordingly termed Very Small Embryonic-Like stem cells (VSELs). In order to better characterize VSELs, we focused on their morphological parameters (e.g. diameter, nuclear to cytoplasmic ratio, cytoplasmic area) as well as expression of Oct-4. To examine the morphological features of VSELs, we employed a multi-dimensional approach, including (i) traditional flow cytometry, (ii) a novel approach, which is ImageStream (IS) cytometry and (iii) confocal microscopy. We demonstrate by all of the sensitive and precise methods employed, that VSELs are a population of very small cells, which are significantly smaller than haematopoetic stem cells (HSC) (3.63 ± 0.09 versus 6.54 ±0.17 μm in diameter). They also exhibit higher nuclear to cytoplasmic ratio and lower cytoplasmic area as compared with HSCs and mature granulocytes. Besides confirming the size characteristics, confocal microscopic analysis also confirmed that VSELs express Oct-4, a marker of pluripotent embryonic stem cells. Morphological examination reveals that VSELs are unusually small eukaryotic cells that posses several characteristics of embryonic cells. Thus, FACS-based sorting strategies should consider that adult tissues harbour small primitive cells that are larger than platelets and smaller than erythrocytes.
Collapse
Affiliation(s)
- Ewa K Zuba-Surma
- Stem Cell Biology Institute, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kerschen EJ, Fernandez JA, Cooley BC, Yang XV, Sood R, Mosnier LO, Castellino FJ, Mackman N, Griffin JH, Weiler H. Endotoxemia and sepsis mortality reduction by non-anticoagulant activated protein C. ACTA ACUST UNITED AC 2007; 204:2439-48. [PMID: 17893198 PMCID: PMC2118455 DOI: 10.1084/jem.20070404] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Activated protein C (APC) reduces mortality of severe sepsis patients but increases the risk of serious bleeding. APC exerts anticoagulant activity by proteolysis of factors Va/VIIIa. APC also exerts antiinflammatory and antiapoptotic effects and stabilizes endothelial barrier function by APC-initiated cell signaling that requires two receptors, endothelial cell protein C receptor (EPCR) and protease-activated receptor 1 (PAR1). The relative importance of APC's various activities for efficacy in sepsis is unknown. We used protein engineering of mouse APC and genetically altered mice to clarify mechanisms for the efficacy of APC in mouse sepsis models. Mortality reduction in LPS-induced endotoxemia required the enzymatic active site of APC, EPCR, and PAR-1, highlighting a key role for APC's cytoprotective actions. A recombinant APC variant with normal signaling but <10% anticoagulant activity (5A-APC) was as effective as wild-type APC in reducing mortality after LPS challenge, and enhanced the survival of mice subjected to peritonitis induced by gram-positive or -negative bacteria or to polymicrobial peritoneal sepsis triggered by colon ascendens stent implantation. Thus, APC's efficacy in severe sepsis is predominantly based on EPCR- and PAR1-dependent cell signaling, and APC variants with normal cell signaling but reduced anticoagulant activities retain efficacy while reducing the risk of bleeding.
Collapse
|
25
|
Glisic-Milosavljevic S, Wang T, Koppen M, Kramer J, Ehlenbach S, Waukau J, Jailwala P, Jana S, Alemzadeh R, Ghosh S. Dynamic changes in CD4+ CD25+(high) T cell apoptosis after the diagnosis of type 1 diabetes. Clin Exp Immunol 2007; 150:75-82. [PMID: 17711492 PMCID: PMC2219285 DOI: 10.1111/j.1365-2249.2007.03475.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Because type 1 diabetes (T1D) is a chronic, autoimmune, T cell-mediated disease, interventions affecting T cells are expected to modulate the immune cascade and lead to disease remission. We propose that increased CD4(+) CD25(+high) T cell apoptosis, a trait we discovered in recent-onset T1D subjects, reflects T1D partial remission within the first 6 months after diagnosis. Apoptosis of forkhead box P3 (FoxP3)(+) CD4(+) CD25(+high) T cells, in addition to total daily doses of insulin (TDD), blood glucose, HbA1c and age, were measured in 45 subjects with T1D at various times after diagnosis. Sixteen healthy control subjects were also recruited to the study. Higher CD4(+) CD25(+high) T cell apoptosis levels were detected within the first 6 months of diagnosis (odds ratio = 1.39, P = 0.009), after adjustment for age, TDD and HbA1c. A proportional hazards model confirmed that the decline of apoptosis after diagnosis of T1D was related significantly to survival time (hazards ratio = 1.08, P = 0.014), with TDD and age also contributing to survival. During this time there was an inverse relationship between CD4(+) CD25(+high) T cell apoptosis with TDD (r = -0.39, P = 0.008). The CD4(+) CD25(+high) T cell apoptosis levels decline significantly after the first 6 months from diagnosis of T1D and may help in the close monitoring of autoimmunity. In parallel, there is an increase in TDD during this time. We also propose that CD4(+) CD25(+high) T cell apoptosis assay can be used to gauge the efficacy of the several immune tolerance induction protocols, now under way.
Collapse
Affiliation(s)
- S Glisic-Milosavljevic
- The Max McGee National Center for Juvenile Diabetes and Human Molecular Genetics Center, Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, WI 53226-0509, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gerstner AOH, Laffers W. Get closer!--into the path lab, into the OR, (in)to the patient. Cytometry A 2007; 71:540-1. [PMID: 17487887 DOI: 10.1002/cyto.a.20400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Holme AL, Yadav SK, Pervaiz S. Automated laser scanning cytometry: a powerful tool for multi-parameter analysis of drug-induced apoptosis. Cytometry A 2007; 71:80-6. [PMID: 17200953 DOI: 10.1002/cyto.a.20362] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Simultaneous analysis of multiple intracellular events is critical for assessing the effect of biological response modifiers, including the efficacy of chemotherapy. Here we used the automated laser scanning cytometry (LSC) for multi-parameter analysis of drug-induced tumor cell apoptosis. MATERIALS Using 2-mercaptopyridine-N-oxide-hydrate sodium salt, or the commonly used chemotherapeutic agents etoposide and camptothecin, we performed simultaneous analyses of apoptosis-related morphological features as well as fluorescence-based biochemical changes in a 96-well format. RESULTS We demonstrate the scope of LSC as a platform for comparing multiple variables between different cell populations, distinguishing unique events at a single cell level within a sample population, and enabling simultaneous screenings in a single assay at multiple dosages and time-points. CONCLUSION These data underscore the power of LSC for simultaneous multi-parameter analysis, which could have implications for screening or assessing the efficacy of drug responses in heterogeneous cell populations and at the single cell level.
Collapse
Affiliation(s)
- Andrea Lisa Holme
- ROS Biology and Apoptosis Group, National University Medical Institutes, Singapore
| | | | | |
Collapse
|
28
|
Glisic-Milosavljevic S, Waukau J, Jailwala P, Jana S, Khoo HJ, Albertz H, Woodliff J, Koppen M, Alemzadeh R, Hagopian W, Ghosh S. At-risk and recent-onset type 1 diabetic subjects have increased apoptosis in the CD4+CD25+ T-cell fraction. PLoS One 2007; 2:e146. [PMID: 17206281 PMCID: PMC1764033 DOI: 10.1371/journal.pone.0000146] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 12/06/2006] [Indexed: 11/19/2022] Open
Abstract
Background In experimental models, Type 1 diabetes T1D can be prevented by adoptive transfer of CD4+CD25+ FoxP3+ suppressor or regulatory T cells. Recent studies have found a suppression defect of CD4+CD25+high T cells in human disease. In this study we measure apoptosis of CD4+CD25+high T cells to see if it could contribute to reduced suppressive activity of these cells. Methods and Findings T-cell apoptosis was evaluated in children and adolescent 35 females/40 males subjects comprising recent-onset and long-standing T1D subjects and their first-degree relatives, who are at variable risk to develop T1D. YOPRO1/7AAD and intracellular staining of the active form of caspase 3 were used to evaluate apoptosis. Isolated CD4+CD25+high and CD4+CD25− T cells were co-cultured in a suppression assay to assess the function of the former cells. We found that recent-onset T1D subjects show increased apoptosis of CD4+CD25+high T cells when compared to both control and long-standing T1D subjects p<0.0001 for both groups. Subjects at high risk for developing T1D 2–3Ab+ve show a similar trend p<0.02 and p<0.01, respectively. On the contrary, in long-standing T1D and T2D subjects, CD4+CD25+high T cell apoptosis is at the same level as in control subjects p = NS. Simultaneous intracellular staining of the active form of caspase 3 and FoxP3 confirmed recent-onset FoxP3+ve CD4+CD25+high T cells committed to apoptosis at a higher percentage 15.3±2.2 compared to FoxP3+ve CD4+CD25+high T cells in control subjects 6.1±1.7 p<0.002. Compared to control subjects, both recent-onset T1D and high at-risk subjects had significantly decreased function of CD4+CD25+high T cells p = 0.0007 and p = 0.007, respectively. Conclusions There is a higher level of ongoing apoptosis in CD4+CD25+high T cells in recent-onset T1D subjects and in subjects at high risk for the disease. This high level of CD4+CD25+high T-cell apoptosis could be a contributing factor to markedly decreased suppressive potential of these cells in recent-onset T1D subjects.
Collapse
Affiliation(s)
- Sanja Glisic-Milosavljevic
- The Max McGee National Center for Juvenile Diabetes and Human Molecular Genetics Center, Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jill Waukau
- The Max McGee National Center for Juvenile Diabetes and Human Molecular Genetics Center, Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Parthav Jailwala
- The Max McGee National Center for Juvenile Diabetes and Human Molecular Genetics Center, Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Srikanta Jana
- The Max McGee National Center for Juvenile Diabetes and Human Molecular Genetics Center, Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Huoy-Jii Khoo
- The Max McGee National Center for Juvenile Diabetes and Human Molecular Genetics Center, Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Hope Albertz
- Blood Center of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jeffrey Woodliff
- Flow Cytometry Core Facility, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Marilyn Koppen
- The Max McGee National Center for Juvenile Diabetes and Human Molecular Genetics Center, Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ramin Alemzadeh
- Children's Hospital of Wisconsin Diabetes Center, Pediatric Endocrinology and Metabolism, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - William Hagopian
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Soumitra Ghosh
- The Max McGee National Center for Juvenile Diabetes and Human Molecular Genetics Center, Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Vraka PS, Drouza C, Rikkou MP, Odysseos AD, Keramidas AD. Synthesis and study of the cancer cell growth inhibitory properties of α-, γ-tocopheryl and γ-tocotrienyl 2-phenylselenyl succinates. Bioorg Med Chem 2006; 14:2684-96. [PMID: 16378730 DOI: 10.1016/j.bmc.2005.11.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2005] [Revised: 11/18/2005] [Accepted: 11/28/2005] [Indexed: 12/13/2022]
Abstract
Vitamin E succinate selenium-conjugated molecules were synthesized and their apoptogenic properties were evaluated. 4-Methyl-2-phenylselenyl succinate (4) was prepared by the reaction of sodium benzeneselenolate with 2-bromosuccinic anhydrite in methanol solution. The methyl ester was converted to the acid (5) by hydrolysis with aqueous hydrochloric acid. Reaction of the 2-phenylselenyl succinic anhydrite (6) with alpha-tocopherol (1a), gamma-tocopherol (1c), and gamma-tocotrienol (2c) in acidic conditions gave the respective esters. The free radical scavenging properties of alpha-tocopheryl-2-phenylselenyl succinate (7), gamma-tocopheryl-2-phenylselenyl succinate (8), and gamma-tocotrienyl-2-phenylselenyl succinate (9) were evaluated in comparison with those of alpha-tocopheryl succinate (10), gamma-tocopheryl succinate (11), and gamma-tocotrienyl succinate (12), respectively, and the free tocopherols and gamma-tocotrienol. Compounds 7-9 induced a statistically significant decrease in prostate cancer cell viability compared to 10-12, respectively, or 5, exhibiting features of apoptotic cell death and associated with caspase-3 activation. These data show that structural modifications of vitamin E components by 5 enhance their apoptogenic properties in cancer cells.
Collapse
|
30
|
Bocsi J, Mittag A, Sack U, Gerstner AOH, Barten MJ, Tárnok A. Novel aspects of systems biology and clinical cytomics. Cytometry A 2006; 69:105-8. [PMID: 16479593 DOI: 10.1002/cyto.a.20239] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The area of Cytomics and Systems Biology became of great impact during the last years. In some fields of the leading cytometric techniques it represents the cutting edge today. Many different applications/variations of multicolor staining were developed for flow- or slide-based cytometric analysis of suspensions and sections to whole animal analysis. Multispectral optical imaging can be used for studying immunological and tumorigenic processes. New methods resulted in the establishment of lipidomics as the systemic research of lipids and their behavior. All of these development push the systemic approach of the analysis of biological specimens to enhance the outcome in the clinic and in drug discovery programs.
Collapse
Affiliation(s)
- József Bocsi
- Department of Pediatric Cardiology, Heart Center Leipzig GmbH, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|