1
|
Burzi IS, Parchi PD, Barachini S, Pardini E, Sardo Infirri G, Montali M, Petrini I. Hypoxia Promotes the Stemness of Mesangiogenic Progenitor Cells and Prevents Osteogenic but not Angiogenic Differentiation. Stem Cell Rev Rep 2024; 20:1830-1842. [PMID: 38914791 PMCID: PMC11457687 DOI: 10.1007/s12015-024-10749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
The stem cell niche in the bone marrow is a hypoxic environment, where the low oxygen tension preserves the pluripotency of stem cells. We have identified mesangiogenic progenitor cells (MPC) exhibiting angiogenic and mesenchymal differentiation capabilities in vitro. The effect of hypoxia on MPC has not been previously explored. In this study, MPCs were isolated from volunteers' bone marrow and cultured under both normoxic and hypoxic conditions (3% O2). MPCs maintained their characteristic morphology and surface marker expression (CD18 + CD31 + CD90-CD73-) under hypoxia. However, hypoxic conditions led to reduced MPC proliferation in primary cultures and hindered their differentiation into mesenchymal stem cells (MSCs) upon exposure to differentiative medium. First passage MSCs derived from MPC appeared unaffected by hypoxia, exhibiting no discernible differences in proliferative potential or cell cycle. However, hypoxia impeded the subsequent osteogenic differentiation of MSCs, as evidenced by decreased hydroxyapatite deposition. Conversely, hypoxia did not impact the angiogenic differentiation potential of MPCs, as demonstrated by spheroid-based assays revealing comparable angiogenic sprouting and tube-like formation capabilities under both hypoxic and normoxic conditions. These findings indicate that hypoxia preserves the stemness phenotype of MPCs, inhibits their differentiation into MSCs, and hampers their osteogenic maturation while leaving their angiogenic potential unaffected. Our study sheds light on the intricate effects of hypoxia on bone marrow-derived MPCs and their differentiation pathways.
Collapse
Affiliation(s)
- Irene Sofia Burzi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 2, 56125, Pisa, Italy
| | - Paolo Domenico Parchi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 2, 56125, Pisa, Italy
| | - Serena Barachini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56125, Pisa, Italy
| | - Eleonora Pardini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 2, 56125, Pisa, Italy
| | - Gisella Sardo Infirri
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 2, 56125, Pisa, Italy
| | - Marina Montali
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56125, Pisa, Italy
| | - Iacopo Petrini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 2, 56125, Pisa, Italy.
| |
Collapse
|
2
|
Yin X, Wei Y, Qin H, Zhao J, Chen Y, Yao S, Li N, Xiong A, Wang D, Zhang P, Liu P, Zeng H, Chen Y. Oxygen tension regulating hydrogels for vascularization and osteogenesis via sequential activation of HIF-1α and ERK1/2 signaling pathways in bone regeneration. BIOMATERIALS ADVANCES 2024; 161:213893. [PMID: 38796955 DOI: 10.1016/j.bioadv.2024.213893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Angiogenesis plays a crucial role in bone regeneration. Hypoxia is a driving force of angiogenesis at the initial stage of tissue repair. The hypoxic microenvironment could activate the hypoxia-inducible factor (HIF)-1α signaling pathway in cells, thereby enhancing the proliferation, migration and pro-angiogenic functions of stem cells. However, long-term chronic hypoxia could inhibit osteogenic differentiation and even lead to apoptosis. Therefore, shutdown of the HIF-1α signaling pathway and providing oxygen at later stage probably facilitate osteogenic differentiation and bone regeneration. Herein, an oxygen tension regulating hydrogel that sequentially activate and deactivate the HIF-1α signaling pathway were prepared in this study. Its effect and mechanism on stem cell differentiation were investigated both in vitro and in vivo. We proposed a gelatin-based hydrogel capable of sequentially delivering a hypoxic inducer (copper ions) and oxygen generator (calcium peroxide). The copper ions released from the hydrogels significantly enhanced cell viability and VEGF secretion of BMSCs via upregulating HIF-1α expression and facilitating its translocation into the nucleus. Additionally, calcium peroxide promoted alkaline phosphatase activity, osteopontin secretion, and calcium deposition through the activation of ERK1/2. Both Cu2+ and calcium peroxide demonstrated osteogenic promotion individually, while their synergistic effect within the hydrogels led to a superior osteogenic effect by potentially activating the HIF-1α and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Xianzhen Yin
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China; Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yihao Wei
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Haotian Qin
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jin Zhao
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yixiao Chen
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Sen Yao
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Nan Li
- Department of Stomatology, Shenzhen People's Hospital (Second Clinical Medical School of Jinan University, First Affiliated Hospital of Southern University of Science and Technology), Shenzhen 518020, China
| | - Ao Xiong
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Deli Wang
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peng Liu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Hui Zeng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Yingqi Chen
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| |
Collapse
|
3
|
Choi JW, Lim S, Jung SE, Jeong S, Moon H, Song BW, Kim IK, Lee S, Hwang KC, Kim SW. Enhanced Osteocyte Differentiation: Cathepsin D and L Secretion by Human Adipose-Derived Mesenchymal Stem Cells. Cells 2023; 12:2852. [PMID: 38132172 PMCID: PMC10742070 DOI: 10.3390/cells12242852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) have the potential to differentiate into bone, cartilage, fat, and neural cells and promote tissue regeneration and healing. It is known that they can have variable responses to hypoxic conditions. In the present study, we aimed to explore diverse changes in the cells and secretome of ASCs under a hypoxic environment over time and to present the possibility of ASCs as therapeutic agents from a different perspective. The expression differences of proteins between normoxic and hypoxic conditions (6, 12, or 24 h) were specifically investigated in human ASCs using 2-DE combined with MALDI-TOF MS analysis, and secreted proteins in ASC-derived conditioned media (ASC-derived CM) were examined by an adipokine array. In addition, genetic and/or proteomic interactions were assessed using a DAVID and miRNet functional annotation bioinformatics analysis. We found that 64 and 5 proteins were differentially expressed in hypoxic ASCs and in hypoxic ASC-derived CM, respectively. Moreover, 7 proteins among the 64 markedly changed spots in hypoxic ASCs were associated with bone-related diseases. We found that two proteins, cathepsin D (CTSD) and cathepsin L (CTSL), identified through an adipokine array independently exhibited significant efficacy in promoting osteocyte differentiation in bone-marrow-derived mesenchymal stem cells (BM-MSCs). This finding introduces a promising avenue for utilizing hypoxia-preconditioned ASC-derived CM as a potential therapeutic approach for bone-related diseases.
Collapse
Affiliation(s)
- Jung-Won Choi
- Medical Science Research Institute, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (J.-W.C.); (S.E.J.)
| | - Soyeon Lim
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| | - Seung Eun Jung
- Medical Science Research Institute, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (J.-W.C.); (S.E.J.)
| | - Seongtae Jeong
- The Interdisciplinary Graduate Program in Integrative Biotechnology, Yonsei University, Seoul 03722, Republic of Korea;
| | - Hanbyeol Moon
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul 03722, Republic of Korea;
| | - Byeong-Wook Song
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| | - Il-Kwon Kim
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| | - Seahyoung Lee
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| | - Ki-Chul Hwang
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| | - Sang Woo Kim
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| |
Collapse
|
4
|
Dirat B, Samouillan V, Dandurand J, Gardou JP, Walter V, Santran V. Positive effects of hypoxic preconditioning of the extracellular matrix and stromal vascular fraction from adipose tissue. JPRAS Open 2023; 38:173-185. [PMID: 37920282 PMCID: PMC10618624 DOI: 10.1016/j.jpra.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/23/2023] [Indexed: 11/04/2023] Open
Abstract
Background Numerous approaches have been developed to decelerate the aging process of facial skin. Synthetic fillers and cell-enriched fat grafts are the main procedures employed to fill wrinkles. Objective The aim of this study was to evaluate the in vitro and in vivo safety and efficiency of a new process developed by SYMBIOKEN: the AmeaCell, which facilitates the extraction of the stromal vascular fraction (SVF) and the associated hypoxia pre-conditioned matrix to promote fat graft survival. Methods The AmeaCell device allows the extraction from adipose tissue of SVF and pre-conditioned MatriCS and promotes a hypoxic environment. Experiments were carried out on human cells and then in mice. Results Characterization of cells and MatriCS showed that after their extraction using the new process developed by SYMBIOKEN, the extracted cells expressed stem-cell markers. The presence of characteristic proteins and lipid fractions found in the adipose matrix were confirmed in MatriCS. Cobalt chloride treatment of the matrix using the AmeaCell device induced modifications in the matrix composition with a decrease in laminin and without collagen modification, both of which promote adhesion and differentiation of SVF or adipose-derived stromal cells. The combination of MatriCS and SVF (1 × 106 and 5 × 106, respectively) is safe and efficient to fill winkles induced by UVB irradiation. The cross-talk between MatriCS and SVF can act a durable filler compared to the filling performed using cells or matrix or fat alone, which need to be replaced frequently. Conclusion These results indicate that the combination of MatriCS and SVF is safe and effective as a biological filler for achieving skin rejuvenation and wrinkle filling.
Collapse
Affiliation(s)
- Béatrice Dirat
- SYMBIOKEN, 42 avenue du Général de Croutte, 31100 Toulouse, France
| | - Valérie Samouillan
- PHYPOL, CIRIMAT, Institut Carnot Chimie Balard CIRIMAT, Université de Toulouse, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | - Jany Dandurand
- PHYPOL, CIRIMAT, Institut Carnot Chimie Balard CIRIMAT, Université de Toulouse, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | - Jean-Pierre Gardou
- LAPLACE, Université de Toulouse, CNRS, INPT, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | - Valérie Walter
- Department of Plastic and Reconstructive Surgery, Clinique la Croix du Sud, 31130 Quint Fonsegrive, France
| | | |
Collapse
|
5
|
Mahjoor M, Fakouri A, Farokhi S, Nazari H, Afkhami H, Heidari F. Regenerative potential of mesenchymal stromal cells in wound healing: unveiling the influence of normoxic and hypoxic environments. Front Cell Dev Biol 2023; 11:1245872. [PMID: 37900276 PMCID: PMC10603205 DOI: 10.3389/fcell.2023.1245872] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 10/31/2023] Open
Abstract
The innate and adaptive immune systems rely on the skin for various purposes, serving as the primary defense against harmful environmental elements. However, skin lesions may lead to undesirable consequences such as scarring, accelerated skin aging, functional impairment, and psychological effects over time. The rising popularity of mesenchymal stromal cells (MSCs) for skin wound treatment is due to their potential as a promising therapeutic option. MSCs offer advantages in terms of differentiation capacity, accessibility, low immunogenicity, and their central role in natural wound-healing processes. To accelerate the healing process, MSCs promote cell migration, angiogenesis, epithelialization, and granulation tissue development. Oxygen plays a critical role in the formation and expansion of mammalian cells. The term "normoxia" refers to the usual oxygen levels, defined at 20.21 percent oxygen (160 mm of mercury), while "hypoxia" denotes oxygen levels of 2.91 percent or less. Notably, the ambient O2 content (20%) in the lab significantly differs from the 2%-9% O2 concentration in their natural habitat. Oxygen regulation of hypoxia-inducible factor-1 (HIF-1) mediated expression of multiple genes plays a crucial role in sustaining stem cell destiny concerning proliferation and differentiation. This study aims to elucidate the impact of normoxia and hypoxia on MSC biology and draw comparisons between the two. The findings suggest that expanding MSC-based regenerative treatments in a hypoxic environment can enhance their growth kinetics, genetic stability, and expression of chemokine receptors, ultimately increasing their effectiveness.
Collapse
Affiliation(s)
- Mohamad Mahjoor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arshia Fakouri
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Fatemeh Heidari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
6
|
Peng Y, Jiang H, Zuo HD. Factors affecting osteogenesis and chondrogenic differentiation of mesenchymal stem cells in osteoarthritis. World J Stem Cells 2023; 15:548-560. [PMID: 37424946 PMCID: PMC10324504 DOI: 10.4252/wjsc.v15.i6.548] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 06/26/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that often involves progressive cartilage degeneration and bone destruction of subchondral bone. At present, clinical treatment is mainly for pain relief, and there are no effective methods to delay the progression of the disease. When this disease progresses to the advanced stage, the only treatment option for most patients is total knee replacement surgery, which causes patients great pain and anxiety. As a type of stem cell, mesenchymal stem cells (MSCs) have multidirectional differentiation potential. The osteogenic differentiation and chondrogenic differentiation of MSCs can play vital roles in the treatment of OA, as they can relieve pain in patients and improve joint function. The differentiation direction of MSCs is accurately controlled by a variety of signaling pathways, so there are many factors that can affect the differentiation direction of MSCs by acting on these signaling pathways. When MSCs are applied to OA treatment, the microenvironment of the joints, injected drugs, scaffold materials, source of MSCs and other factors exert specific impacts on the differentiation direction of MSCs. This review aims to summarize the mechanisms by which these factors influence MSC differentiation to produce better curative effects when MSCs are applied clinically in the future.
Collapse
Affiliation(s)
- Yi Peng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Hai Jiang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Hou-Dong Zuo
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Radiology, Chengdu Xinhua Hospital, Chengdu 610067, Sichuan Province, China
| |
Collapse
|
7
|
Xu K, Zhang L, Yu N, Ren Z, Wang T, Zhang Y, Zhao X, Yu T. Effects of advanced glycation end products (AGEs) on the differentiation potential of primary stem cells: a systematic review. Stem Cell Res Ther 2023; 14:74. [PMID: 37038234 PMCID: PMC10088298 DOI: 10.1186/s13287-023-03324-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
The formation and accumulation of advanced glycation end products (AGEs) have been associated with aging and the development, or worsening, of many degenerative diseases, such as atherosclerosis, chronic kidney disease, and diabetes. AGEs can accumulate in a variety of cells and tissues, and organs in the body, which in turn induces oxidative stress and inflammatory responses and adversely affects human health. In addition, under abnormal pathological conditions, AGEs create conditions that are not conducive to stem cell differentiation. Moreover, an accumulation of AGEs can affect the differentiation of stem cells. This, in turn, leads to impaired tissue repair and further aggravation of diabetic complications. Therefore, this systematic review clearly outlines the effects of AGEs on cell differentiation of various types of primary isolated stem cells and summarizes the possible regulatory mechanisms and interventions. Our study is expected to reveal the mechanism of tissue damage caused by the diabetic microenvironment from a cellular and molecular point of view and provide new ideas for treating complications caused by diabetes.
Collapse
Affiliation(s)
- Kuishuai Xu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Liang Zhang
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Ning Yu
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhongkai Ren
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Tianrui Wang
- Department of Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yingze Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xia Zhao
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
8
|
Feng Z, Jin M, Liang J, Kang J, Yang H, Guo S, Sun X. Insight into the effect of biomaterials on osteogenic differentiation of mesenchymal stem cells: A review from a mitochondrial perspective. Acta Biomater 2023; 164:1-14. [PMID: 36972808 DOI: 10.1016/j.actbio.2023.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Bone damage may be triggered by a variety of factors, and the damaged area often requires a bone graft. Bone tissue engineering can serve as an alternative strategy for repairing large bone defects. Mesenchymal stem cells (MSCs), the progenitor cells of connective tissue, have become an important tool for tissue engineering due to their ability to differentiate into a variety of cell types. The precise regulation of the growth and differentiation of the stem cells used for bone regeneration significantly affects the efficiency of this type of tissue engineering. During the process of osteogenic induction, the dynamics and function of localized mitochondria are altered. These changes may also alter the microenvironment of the therapeutic stem cells and result in mitochondria transfer. Mitochondrial regulation not only affects the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell. To date, bone tissue engineering research has mainly focused on the influence of biomaterials on phenotype and nuclear genotype, with few studies investigating the role of mitochondria. In this review, we provide a comprehensive summary of researches into the role of mitochondria in MSCs differentiation and critical analysis regarding smart biomaterials that are able to "programme" mitochondria modulation was proposed. STATEMENT OF SIGNIFICANCE: : • This review proposed the precise regulation of the growth and differentiation of the stem cells used to seed bone regeneration. • This review addressed the dynamics and function of localized mitochondria during the process of osteogenic induction and the effect of mitochondria on the microenvironment of stem cells. • This review summarized biomaterials which affect the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell through the regulation of mitochondria.
Collapse
Affiliation(s)
- Ziyi Feng
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110002 Liaoning Province, China
| | - Meiqi Jin
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning Province, China
| | - Junning Kang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning Province, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110002 Liaoning Province, China.
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| |
Collapse
|
9
|
Pan RL, Martyniak K, Karimzadeh M, Gelikman DG, DeVries J, Sutter K, Coathup M, Razavi M, Sawh-Martinez R, Kean TJ. Systematic review on the application of 3D-bioprinting technology in orthoregeneration: current achievements and open challenges. J Exp Orthop 2022; 9:95. [PMID: 36121526 PMCID: PMC9485345 DOI: 10.1186/s40634-022-00518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Joint degeneration and large or complex bone defects are a significant source of morbidity and diminished quality of life worldwide. There is an unmet need for a functional implant with near-native biomechanical properties. The potential for their generation using 3D bioprinting (3DBP)-based tissue engineering methods was assessed. We systematically reviewed the current state of 3DBP in orthoregeneration. METHODS This review was performed using PubMed and Web of Science. Primary research articles reporting 3DBP of cartilage, bone, vasculature, and their osteochondral and vascular bone composites were considered. Full text English articles were analyzed. RESULTS Over 1300 studies were retrieved, after removing duplicates, 1046 studies remained. After inclusion and exclusion criteria were applied, 114 articles were analyzed fully. Bioink material types and combinations were tallied. Cell types and testing methods were also analyzed. Nearly all papers determined the effect of 3DBP on cell survival. Bioink material physical characterization using gelation and rheology, and construct biomechanics were performed. In vitro testing methods assessed biochemistry, markers of extracellular matrix production and/or cell differentiation into respective lineages. In vivo proof-of-concept studies included full-thickness bone and joint defects as well as subcutaneous implantation in rodents followed by histological and µCT analyses to demonstrate implant growth and integration into surrounding native tissues. CONCLUSIONS Despite its relative infancy, 3DBP is making an impact in joint and bone engineering. Several groups have demonstrated preclinical efficacy of mechanically robust constructs which integrate into articular joint defects in small animals. However, notable obstacles remain. Notably, researchers encountered pitfalls in scaling up constructs and establishing implant function and viability in long term animal models. Further, to translate from the laboratory to the clinic, standardized quality control metrics such as construct stiffness and graft integration metrics should be established with investigator consensus. While there is much work to be done, 3DBP implants have great potential to treat degenerative joint diseases and provide benefit to patients globally.
Collapse
Affiliation(s)
- Rachel L Pan
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kari Martyniak
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Makan Karimzadeh
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - David G Gelikman
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jonathan DeVries
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kelly Sutter
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Melanie Coathup
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Mehdi Razavi
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Rajendra Sawh-Martinez
- College of Medicine, University of Central Florida, Orlando, FL, USA.,Plastic and Reconstructive Surgery, AdventHealth, Orlando, FL, USA
| | - Thomas J Kean
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA.
| |
Collapse
|
10
|
Tian Y, Fang J, Zeng F, Chen Y, Pei Y, Gu F, Ding C, Niu G, Gu B. The role of hypoxic mesenchymal stem cells in tumor immunity. Int Immunopharmacol 2022; 112:109172. [PMID: 36087506 DOI: 10.1016/j.intimp.2022.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/06/2022] [Accepted: 08/14/2022] [Indexed: 11/09/2022]
Abstract
The emerging evidence has shown that mesenchymal stem cells (MSCs) not only exert a significant role in the occurrence and development of tumors, but also have immunosuppressive potential in tumor immunity. Hypoxia is a sign of solid tumors, but how functions of hypoxic MSCs alter in the tumor microenvironment (TME) remains less well and comprehensively described. Herein, we mostly describe and investigate recent advances in our comprehension of the emerging effects of different tissue derived MSCs in hypoxia condition on tumor progression and development, as well as bidirectional influence between hypoxic MSCs and immune cells of the TME. Furthermore, we also discuss the potential drug-resistant and therapeutic role of hypoxic MSCs. It can be envisaged that novel and profound insights into the functionality of hypoxic MSCs and the underlying mechanisms in tumor and tumor immunity will promote the meaningful and promising treatment strategies against tumor.
Collapse
Affiliation(s)
- Yiqing Tian
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Jian Fang
- The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, Anhui, PR China
| | - Fanpeng Zeng
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Yongqiang Chen
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Yunfeng Pei
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Feng Gu
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Chen Ding
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Guoping Niu
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510000, PR China.
| |
Collapse
|
11
|
Fuentes P, Torres MJ, Arancibia R, Aulestia F, Vergara M, Carrión F, Osses N, Altamirano C. Dynamic Culture of Mesenchymal Stromal/Stem Cell Spheroids and Secretion of Paracrine Factors. Front Bioeng Biotechnol 2022; 10:916229. [PMID: 36046670 PMCID: PMC9421039 DOI: 10.3389/fbioe.2022.916229] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, conditioned medium (CM) obtained from the culture of mesenchymal stromal/stem cells (MSCs) has been shown to effectively promote tissue repair and modulate the immune response in vitro and in different animal models, with potential for application in regenerative medicine. Using CM offers multiple advantages over the implantation of MSCs themselves: 1) simpler storage, transport, and preservation requirements, 2) avoidance of the inherent risks of cell transplantation, and 3) potential application as a ready-to-go biologic product. For these reasons, a large amount of MSCs research has focused on the characterization of the obtained CM, including soluble trophic factors and vesicles, preconditioning strategies for enhancing paracrine secretion, such as hypoxia, a three-dimensional (3D) environment, and biochemical stimuli, and potential clinical applications. In vitro preconditioning strategies can increase the viability, proliferation, and paracrine properties of MSCs and therefore improve the therapeutic potential of the cells and their derived products. Specifically, dynamic cultivation conditions, such as fluid flow and 3D aggregate culture, substantially impact cellular behaviour. Increased levels of growth factors and cytokines were observed in 3D cultures of MSC grown on orbital or rotatory shaking platforms, in stirred systems, such as spinner flasks or stirred tank reactors, and in microgravity bioreactors. However, only a few studies have established dynamic culture conditions and protocols for 3D aggregate cultivation of MSCs as a scalable and reproducible strategy for CM production. This review summarizes significant advances into the upstream processing, mainly the dynamic generation and cultivation of MSC aggregates, for de CM manufacture and focuses on the standardization of the soluble factor production.
Collapse
Affiliation(s)
- Paloma Fuentes
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - María José Torres
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Rodrigo Arancibia
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Cellus Biomédica, Parque Tecnológico de León, León, Spain
| | - Francisco Aulestia
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Cellus Biomédica, Parque Tecnológico de León, León, Spain
| | - Mauricio Vergara
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Flavio Carrión
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Nelson Osses
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- CREAS, Centro Regional de Estudios en Alimentos Saludables, Valparaíso, Chile
- *Correspondence: Claudia Altamirano,
| |
Collapse
|
12
|
Silvestro S, Diomede F, Chiricosta L, Zingale VD, Marconi GD, Pizzicannella J, Valeri A, Avanzini MA, Calcaterra V, Pelizzo G, Mazzon E. The Role of Hypoxia in Improving the Therapeutic Potential of Mesenchymal Stromal Cells. A Comparative Study From Healthy Lung and Congenital Pulmonary Airway Malformations in Infants. Front Bioeng Biotechnol 2022; 10:868486. [PMID: 35774062 PMCID: PMC9237219 DOI: 10.3389/fbioe.2022.868486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) play an important role in the field of regenerative medicine thanks to their immunomodulatory properties and their ability to secrete paracrine factors. The use of MSCs has also been tested in children with congenital lung diseases inducing fibrosis and a decrease in lung function. Congenital malformations of the pulmonary airways (CPAM) are the most frequently encountered lung lesion that results from defects in early development of airways. Despite the beneficial properties of MSCs, interventions aimed at improving the outcome of cell therapy are needed. Hypoxia may be an approach aimed to ameliorate the therapeutic potential of MSCs. In this regard, we evaluated the transcriptomic profile of MSCs collected from pediatric patients with CPAM, analyzing similarities and differences between healthy tissue (MSCs-lung) and cystic tissue (MSCs-CPAM) both in normoxia and in cells preconditioned with hypoxia (0.2%) for 24 h. Study results showed that hypoxia induces cell cycle activation, increasing in such a way the cell proliferation ability, and enhancing cell anaerobic metabolism in both MSCs-lung and MSCs-CPAM-lung. Additionally, hypoxia downregulated several pro-apoptotic genes preserving MSCs from apoptosis and, at the same time, improving their viability in both comparisons. Finally, data obtained indicates that hypoxia leads to a greater expression of genes involved in the regulation of the cytoskeleton in MSCs-lung than MSCs-CPAM.
Collapse
Affiliation(s)
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” Chieti-Pescara, Chieti, Italy
| | | | | | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. D’Annunzio” Chieti-Pescara, Chieti, Italy
| | | | - Andrea Valeri
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | - Maria Antonietta Avanzini
- Cell Factory, Pediatric Hematology Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy
- Pediatric Department, Children’s Hospital “Vittore Buzzi”, Milano, Italy
| | - Gloria Pelizzo
- Pediatric Surgery Department, Children’s Hospital “Vittore Buzzi”, Milano, Italy
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, Milan, Italy
| | | |
Collapse
|
13
|
Preconditioning and Engineering Strategies for Improving the Efficacy of Mesenchymal Stem Cell-Derived Exosomes in Cell-Free Therapy. Stem Cells Int 2022; 2022:1779346. [PMID: 35607400 PMCID: PMC9124131 DOI: 10.1155/2022/1779346] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/07/2022] [Accepted: 04/23/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely applied to regenerative medicine owing to their multiple differentiation, self-renewal, and immunomodulatory abilities. Exosomes are cell-secreted natural nanovesicles and thought to be mediators of intercellular communication and material transport. The therapeutic potential of MSCs can be largely attributed to MSC-derived exosomes (MSC-exosomes). Emerging evidence suggests that the therapeutic efficacy of MSC-exosomes is highly dependent on the status of MSCs, and optimization of the extracellular environment affects the exosomal content. Pretreatment methods including three-dimensional cultures, hypoxia, and other biochemical cues have been shown to potentially enhance the biological activity of MSC-exosomes while maintaining or enhancing their production. On the other hand, engineering means to enhance the desired function of MSC-exosomes has been rapidly gaining attention. In particular, biologically active molecule encapsulation and membrane modification can alter or enhance biological functions and targeting of MSC-exosomes. In this review, we summarize two possible strategies to improve the therapeutic activity of MSC-exosomes: preconditioning approaches and engineering exosomes. We also explore the underlying mechanisms of different strategies and discuss their advantages and limitations of the upcoming clinical applications.
Collapse
|
14
|
To Explore the Stem Cells Homing to GBM: The Rise to the Occasion. Biomedicines 2022; 10:biomedicines10050986. [PMID: 35625723 PMCID: PMC9138893 DOI: 10.3390/biomedicines10050986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple efforts are currently underway to develop targeted therapeutic deliveries to the site of glioblastoma progression. The use of carriers represents advancement in the delivery of various therapeutic agents as a new approach in neuro-oncology. Mesenchymal stem cells (MSCs) and neural stem cells (NSCs) are used because of their capability in migrating and delivering therapeutic payloads to tumors. Two of the main properties that carrier cells should possess are their ability to specifically migrate from the bloodstream and low immunogenicity. In this article, we also compared the morphological and molecular features of each type of stem cell that underlie their migration capacity to glioblastoma. Thus, the major focus of the current review is on proteins and lipid molecules that are released by GBM to attract stem cells.
Collapse
|
15
|
Impact of Microenvironmental Changes during Degeneration on Intervertebral Disc Progenitor Cells: A Comparison with Mesenchymal Stem Cells. Bioengineering (Basel) 2022; 9:bioengineering9040148. [PMID: 35447707 PMCID: PMC9025850 DOI: 10.3390/bioengineering9040148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022] Open
Abstract
Intervertebral disc (IVD) degeneration occurs with natural ageing and is linked to low back pain, a common disease. As an avascular tissue, the microenvironment inside the IVD is harsh. During degeneration, the condition becomes even more compromised, presenting a significant challenge to the survival and function of the resident cells, as well as to any regeneration attempts using cell implantation. Mesenchymal stem cells (MSCs) have been proposed as a candidate stem cell tool for IVD regeneration. Recently, endogenous IVD progenitor cells have been identified inside the IVD, highlighting their potential for self-repair. IVD progenitor cells have properties similar to MSCs, with minor differences in potency and surface marker expression. Currently, it is unclear how IVD progenitor cells react to microenvironmental factors and in what ways they possibly behave differently to MSCs. Here, we first summarized the microenvironmental factors presented in the IVD and their changes during degeneration. Then, we analyzed the available studies on the responses of IVD progenitor cells and MSCs to these factors, and made comparisons between these two types of cells, when possible, in an attempt to achieve a clear understanding of the characteristics of IVD progenitor cells when compared to MSCs; as well as, to provide possible clues to cell fate after implantation, which may facilitate future manipulation and design of IVD regeneration studies.
Collapse
|
16
|
Insight in Hypoxia-Mimetic Agents as Potential Tools for Mesenchymal Stem Cell Priming in Regenerative Medicine. Stem Cells Int 2022; 2022:8775591. [PMID: 35378955 PMCID: PMC8976669 DOI: 10.1155/2022/8775591] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-mimetic agents are new potential tools in MSC priming instead of hypoxia incubators or chambers. Several pharmaceutical/chemical hypoxia-mimetic agents can be used to induce hypoxia in the tissues: deferoxamine (DFO), dimethyloxaloylglycine (DMOG), 2,4-dinitrophenol (DNP), cobalt chloride (CoCl2), and isoflurane (ISO). Hypoxia-mimetic agents can increase cell proliferation, preserve or enhance differentiation potential, increase migration potential, and induce neovascularization in a concentration- and stem cell source-dependent manner. Moreover, hypoxia-mimetic agents may increase HIF-1α, changing the metabolism and enhancing glycolysis like hypoxia. So, there is clear evidence that treatment with hypoxia-mimetic agents is beneficial in regenerative medicine, preserving stem cell capacities. These agents are not studied so wildly as hypoxia but, considering the low cost and ease of use, are believed to find application as pretreatment of many diseases such as ischemic heart disease and myocardial fibrosis and promote cardiac and cartilage regeneration. The knowledge of MSC priming is critical in evaluating safety procedures and use in clinics. In this review, similarities and differences between hypoxia and hypoxia-mimetic agents in terms of their therapeutic efficiency are considered in detail. The advantages, challenges, and future perspectives in MSC priming with hypoxia mimetic agents are also discussed.
Collapse
|
17
|
Guo X, Huang D, Li D, Zou L, Lv H, Wang Y, Tan M. Adipose-derived mesenchymal stem cells with hypoxic preconditioning improve tenogenic differentiation. J Orthop Surg Res 2022; 17:49. [PMID: 35090498 PMCID: PMC8796587 DOI: 10.1186/s13018-021-02908-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Background Adipose-derived mesenchymal stem cells (ADSCs), as seed cells for tendon tissue engineering, are promising for tendon repair and regeneration. But for ADSCs, diverse oxygen tensions have different stimulatory effects. To explore this issue, we investigated the tenogenic differentiation capability of ADSCs under hypoxia condition (5% O2) and the possible signaling pathways correspondingly. The effects of different oxygen tensions on proliferation, migration, and tenogenic differentiation potential of ADSCs were investigated. Methods P4 ADSCs were divided into a hypoxic group and a normoxic group. The hypoxic group was incubated under a reduced O2 pressure (5% O2, 5% CO2, balanced N2). The normoxic group was cultured in 21% O2. Two groups were compared: HIF-1α inhibitor (2-MeOE2) in normoxic culturing conditions and hypoxic culturing conditions. Hypoxia-inducible factor-1α (HIF-1α) and VEGF were measured using RT-qPCR. Specific HIF-1α inhibitor 2-methoxyestradiol (2-MeOE2) was applied to investigate whether HIF-1α involved in ADSCs tenogenesis under hypoxia. Results Hypoxia significantly reduced proliferation and migration of ADSCs. Continuous treatment of ADSCs at 5% O2 resulted in a remarkable decrease in HIF-1α expression in comparison with 20% O2. Additionally, ADSCs of hypoxia preconditioning exhibited higher mRNA expression levels of the related key tenogenic makers and VEGF than normoxia via RT-qPCR measurement (p ˂ 0.05). Furthermore, the effects of hypoxia on tenogenic differentiation of ADSCs were inhibited by 2-MeOE2. Hypoxia can also stimulate VEGF production in ADSCs. Conclusions Our findings demonstrate that hypoxia preconditioning attenuates the proliferation and migration ability of ADSCs, but has positive impact on tenogenic differentiation through HIF-1α signaling pathway.
Collapse
|
18
|
Garcia JP, Avila FR, Torres RA, Maita KC, Eldaly AS, Rinker BD, Zubair AC, Forte AJ, Sarabia-Estrada R. Hypoxia-preconditioning of human adipose-derived stem cells enhances cellular proliferation and angiogenesis: A systematic review. J Clin Transl Res 2022; 8:61-70. [PMID: 35187291 PMCID: PMC8848748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Human adipose-derived stem cells (hADSCs) have gained attention lately because of their ease of harvesting and ability to be substantially multiplied in laboratory cultures. Stem cells are usually cultured under atmospheric conditions; however, preconditioning stem cells under hypoxic conditions seems beneficial. AIM This systematic review aims to investigate the effect of hypoxia preconditioning and its impact on the proliferation and angiogenic capacity of the hADSCs. METHODS We performed a systematic review by searching PubMed, Scopus, Embase, and Google Scholar databases from all years through March 22, 2021, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Medical Subject Headings terms "adipose-derived stem cell," "Hypoxia," "cell proliferation," and "angiogenesis" guided our search. Only articles written in English using experimental models comparing a preconditioned group against a control group of hADSCs with data on proliferation and angiogenic capacity were included. RESULTS Our search yielded a total of 321 articles. 11 articles met our inclusion criteria and were ultimately included in this review. Two studies induced hypoxia using hypoxia-inducible factor-1 alpha stabilizing agents, while nine reached hypoxia by changing oxygen tension conditions around the cells. Four articles conducted in-vivo studies to correlate their in-vitro findings, which proved to be consistent. Although 1 article indicated cell proliferation inhibition with hypoxia preconditioning, the remaining 10 found enhanced proliferation in preconditioned groups compared to controls. All articles showed an enhanced angiogenic capacity of hADSCs after hypoxia preconditioning. CONCLUSION In this review, we found evidence to support hypoxia preconditioning of hADSCs before implantation. Benefits include enhanced cell proliferation with a faster population doubling rate and increased secretion of multiple angiogenic growth factors, enhancing angiogenesis capacity. RELEVANCE FOR PATIENTS Although regenerative therapy is a promising field of study and treatment in medicine, much is still unknown. The potential for angiogenic therapeutics with stem cells is high, but more so, if we discover ways to enhance their natural angiogenic properties. Procedures and pathologies alike require the assistance of angiogenic treatments to improve outcome, such is the case with skin grafts, muscle flaps, skin flaps, or myocardial infarction to mention a few. Enhanced angiogenic properties of stem cells may pave the way for better outcomes and results for patients.
Collapse
Affiliation(s)
- John P. Garcia
- 1Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida
| | | | | | - Karla C. Maita
- 1Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida
| | | | - Brian D. Rinker
- 1Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida
| | - Abba C. Zubair
- 2Transfusion Medicines and Stem Cell Therapy, Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Antonio J. Forte
- 1Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida,Corresponding author: Antonio J. Forte Division of Plastic Surgery, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224. Phone: 904-953-2073 Fax: 904-953-7368
| | - Rachel Sarabia-Estrada
- 3Departments of Neurosurgery; Neuroscience; and, Cancer Biology, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
19
|
Pei YA, Pei M. Hypoxia Modulates Regenerative Potential of Fetal Stem Cells. APPLIED SCIENCES (BASEL, SWITZERLAND) 2022; 12:363. [PMID: 36660242 PMCID: PMC9846719 DOI: 10.3390/app12010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Adult mesenchymal stem cells (MSCs) are prone to senescence, which limits the scope of their use in tissue engineering and regeneration and increases the likelihood of post-implantation failure. As a robust alternative cell source, fetal stem cells can prevent an immune reaction and senescence. However, few studies use this cell type. In this study, we sought to characterize fetal cells' regenerative potential in hypoxic conditions. Specifically, we examined whether hypoxic exposure during the expansion and differentiation phases would affect human fetal nucleus pulposus cell (NPC) and fetal synovium-derived stem cell (SDSC) plasticity and three-lineage differentiation potential. We concluded that fetal NPCs represent the most promising cell source for chondrogenic differentiation, as they are more responsive and display stronger phenotypic stability, particularly when expanded and differentiated in hypoxic conditions. Fetal SDSCs have less potential for chondrogenic differentiation compared to their adult counterpart. This study also indicated that fetal SDSCs exhibit a discrepancy in adipogenic and osteogenic differentiation in response to hypoxia.
Collapse
Affiliation(s)
- Yixuan Amy Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
20
|
Choudhery MS. Strategies to improve regenerative potential of mesenchymal stem cells. World J Stem Cells 2021; 13:1845-1862. [PMID: 35069986 PMCID: PMC8727227 DOI: 10.4252/wjsc.v13.i12.1845] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/31/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
In the last few decades, stem cell-based therapies have gained attention worldwide for various diseases and disorders. Adult stem cells, particularly mesenchymal stem cells (MSCs), are preferred due to their significant regenerative potential in cellular therapies and are currently involved in hundreds of clinical trials. Although MSCs have high self-renewal as well as differentiation potential, such abilities are compromised with “advanced age” and “disease status” of the donor. Similarly, cell-based therapies require high cell number for clinical applications that often require in vitro expansion of cells. It is pertinent to note that aged individuals are the main segment of population for stem cell-based therapies, however; autologous use of stem cells for such patients (aged and diseased) does not seem to give optimal results due to their compromised potential. In vitro expansion to obtain large numbers of cells also negatively affects the regenerative potential of MSCs. It is therefore essential to improve the regenerative potential of stem cells compromised due to “in vitro expansion”, “donor age” and “donor disease status” for their successful autologous use. The current review has been organized to address the age and disease depleted function of resident adult stem cells, and the strategies to improve their potential. To combat the problem of decline in the regenerative potential of cells, this review focuses on the strategies that manipulate the cell environment such as hypoxia, heat shock, caloric restriction and preconditioning with different factors.
Collapse
Affiliation(s)
- Mahmood S Choudhery
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Punjab, Pakistan
- Department of Genetics and Molecular Biology, University of Health Sciences, Lahore 54600, Punjab, Pakistan
| |
Collapse
|
21
|
Hypoxic Culture Maintains Cell Growth of the Primary Human Valve Interstitial Cells with Stemness. Int J Mol Sci 2021; 22:ijms221910534. [PMID: 34638873 PMCID: PMC8508607 DOI: 10.3390/ijms221910534] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 02/04/2023] Open
Abstract
The characterization of aortic valve interstitial cells (VICs) cultured under optimal conditions is essential for understanding the molecular mechanisms underlying aortic valve stenosis. Here, we propose 2% hypoxia as an optimum VIC culture condition. Leaflets harvested from patients with aortic valve regurgitation were digested using collagenase and VICs were cultured under the 2% hypoxic condition. A significant increase in VIC growth was observed in 2% hypoxia (hypo-VICs), compared to normoxia (normo-VICs). RNA-sequencing revealed that downregulation of oxidative stress-marker genes (such as superoxide dismutase) and upregulation of cell cycle accelerators (such as cyclins) occurred in hypo-VICs. Accumulation of reactive oxygen species was observed in normo-VICs, indicating that low oxygen tension can avoid oxidative stress with cell-cycle arrest. Further mRNA quantifications revealed significant upregulation of several mesenchymal and hematopoietic progenitor markers, including CD34, in hypo-VICs. The stemness of hypo-VICs was confirmed using osteoblast differentiation assays, indicating that hypoxic culture is beneficial for maintaining growth and stemness, as well as for avoiding senescence via oxidative stress. The availability of hypoxic culture was also demonstrated in the molecular screening using proteomics. Therefore, hypoxic culture can be helpful for the identification of therapeutic targets and the evaluation of VIC molecular functions in vitro.
Collapse
|
22
|
Yang Y, Lee EH, Yang Z. Hypoxia conditioned mesenchymal stem cells in tissue regeneration application. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:966-977. [PMID: 34569290 DOI: 10.1089/ten.teb.2021.0145] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) have been demonstrated as promising cell sources for tissue regeneration due to their capability of self-regeneration, differentiation and immunomodulation. MSCs also exert extensive paracrine effects through release of trophic factors and extracellular vesicles. However, despite extended exploration of MSCs in pre-clinical studies, the results are far from satisfactory due to the poor engraftment and low level of survival after implantation. Hypoxia preconditioning has been proposed as an engineering approach to improve the therapeutic potential of MSCs. During in vitro culture, hypoxic conditions can promote MSC proliferation, survival and migration through various cellular responses to the reduction of oxygen tension. The multilineage differentiation potential of MSCs is altered under hypoxia, with consistent reports of enhanced chondrogenesis. Hypoxia also stimulates the paracrine activities of MSCs and increases the production of secretome both in terms of soluble factors as well as extracellular vesicles. The secretome from hypoxia preconditioned MSCs play important roles in promoting cell proliferation and migration, enhancing angiogenesis while inhibiting apoptosis and inflammation. In this review, we summarise current knowledge of hypoxia-induced changes in MSCs and discuss the application of hypoxia preconditioned MSCs as well as hypoxic secretome in different kinds of disease models.
Collapse
Affiliation(s)
- Yanmeng Yang
- National University of Singapore, 37580, Orthopaedic Surgery, 27 Medical Drive, Singapore, Singapore, 117510;
| | - Eng Hin Lee
- National University of Singapore, Department of Orthopaedic Surgery, 1E Kent Ridge Road, NUHS Tower Block, Level 11, Singapore, Singapore, 119228;
| | - Zheng Yang
- National University of Singapore, Life Sciences Institute, Singapore, Singapore;
| |
Collapse
|
23
|
Guo X, Lv H, Fan Z, Duan K, Liang J, Zou L, Xue H, Huang D, Wang Y, Tan M. Effects of hypoxia on Achilles tendon repair using adipose tissue-derived mesenchymal stem cells seeded small intestinal submucosa. J Orthop Surg Res 2021; 16:570. [PMID: 34579755 PMCID: PMC8474963 DOI: 10.1186/s13018-021-02713-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The study was performed to evaluate the feasibility of utilizing small intestinal submucosa (SIS) scaffolds seeded with adipose-derived mesenchymal stem cells (ADMSCs) for engineered tendon repairing rat Achilles tendon defects and to compare the effects of preconditioning treatments (hypoxic vs. normoxic) on the tendon healing. METHODS Fifty SD rats were randomized into five groups. Group A received sham operation (blank control). In other groups, the Achilles tendon was resected and filled with the original tendon (Group B, autograft), cell-free SIS (Group C), or SIS seeded with ADMSCs preconditioned under normoxic conditions (Group D) or hypoxic conditions (Group E). Samples were collected 4 weeks after operation and analyzed by histology, immunohistochemistry, and tensile testing. RESULTS Histologically, compared with Groups C and D, Group E showed a significant improvement in extracellular matrix production and a higher compactness of collagen fibers. Group E also exhibited a significantly higher peak tensile load than Groups D and C. Additionally, Group D had a significantly higher peak load than Group C. Immunohistochemically, Group E exhibited a significantly higher percentage of MKX + cells than Group D. The proportion of ADMSCs simultaneously positive for both MKX and CM-Dil observed from Group E was also greater than that in Group D. CONCLUSIONS In this animal model, the engineered tendon grafts created by seeding ADMSCs on SIS were superior to cell-free SIS. The hypoxic precondition further improved the expression of tendon-related genes in the seeded cells and increased the rupture load after grafting in the Achilles tendon defects.
Collapse
Affiliation(s)
- Xing Guo
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - Hui Lv
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - ZhongWei Fan
- Department of Orthopaedic Surgery, The First People's Hospital of Neijiang, Neijiang, 641100, Sichuan, China
| | - Ke Duan
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - Jie Liang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - LongFei Zou
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - Hao Xue
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - DengHua Huang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - YuanHui Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - MeiYun Tan
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
24
|
Characterization of Scleraxis and SRY-Box 9 from Adipose-Derived Stem Cells Culture Seeded with Enthesis Scaffold in Hypoxic Condition. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2021. [DOI: 10.4028/www.scientific.net/jbbbe.52.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of mesenchymal stem cells can add local improvements potential to enthesis tissue regeneration based on tropical activity through secretions of growth factors, cytokines, and vesicles (e.g. exosomes), collectively known as secretomes. This study aims to analyze secretomes characterization from adipose-derived mesenchymal stem cells seeded with enthesis tissue scaffold in hypoxic conditions and to analyze the influence of hypoxic environment to the characterization of secretomes. This is an in-vitro study using a Randomized Control Group Post-Test Only design. This study using Adipose Stem Cells (ASCs) were cultured in hypoxia (Oxygen 5%) and Normoxia (21%) condition. The scaffolds are fresh-frozen enthesis tissue and was seeded in the treatment group and compared to control. The evaluation of Scleraxis (Scx) and SRY-box (Sox9) was measured using ELISA on the 2nd, 4th, and 6th days. Comparison of Scx levels between each evaluation time showed a positive trend in a group with scaffold in hypoxia condition although it has no significant differences (p=0.085), with the highest level on day 6, that is 13,568 ng/ml. Conversely, the comparison of Sox9 showed significant differences (p=0.02) in a group with scaffold in hypoxia condition, with the highest level on day 4, that is 28,250 ng/ml. The use of enthesis scaffold seeded in adipose-derived mesenchymal stem cells in hypoxic conditions shows a positive trend as regenerative effort of injured enthesis tissue through Scleraxis and Sox9 secretomes induction.
Collapse
|
25
|
Zou T, Jiang S, Zhang Y, Liu J, Yi B, Qi Y, Dissanayaka WL, Zhang C. In Situ Oxygen Generation Enhances the SCAP Survival in Hydrogel Constructs. J Dent Res 2021; 100:1127-1135. [PMID: 34328028 DOI: 10.1177/00220345211027155] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Prolonged and severe hypoxia is the main cause of death of transplanted cells prior to the establishment of functional circulation. In situ generation of oxygen by oxygen-producing scaffolds-a unique solution that could produce and deliver oxygen to the adjacent cells independently of blood perfusion-has attracted considerable attention to enhance the survivability of the transplanted cells. However, the application of oxygen-generating scaffolds for facilitating cell survival in pulp-like tissue regeneration is yet to be explored. In this study, gelatin methacryloyl (GelMA)-a biocompatible scaffolding material that closely mimics the native extracellular matrix and is conducive to cell proliferation and differentiation-was used to fabricate oxygen-generating scaffolds by loading various concentrations of CaO2. The CaO2 distribution, topography, swelling, and pore size of CaO2-GelMA hydrogels were characterized in detail. The release of O2 by the scaffold and the viability, spreading, and proliferation of stem cells from apical papilla (SCAPs) encapsulated in the GelMA hydrogels with various concentrations of CaO2 under hypoxia were evaluated. In addition, cellular constructs were engineered into root canals, and cell viability within the apical, middle, and coronal portions was assessed. Our findings showed that 0.5% CaO2-GelMA was sufficient to supply in situ oxygen for maintaining the embedded SCAP viability for 1 wk. Furthermore, the 0.5% CaO2-GelMA hydrogels improved the survivability of SCAPs within the coronal portion of the engineered cellular constructs within the root canals. This work demonstrated that 0.5% CaO2-GelMA hydrogels offer a potential promising scaffold that enhances survival of the embedded SCAPs in endodontic regeneration.
Collapse
Affiliation(s)
- T Zou
- Restorative Dental Science, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - S Jiang
- School of Stomatology, Shenzhen University Health Science Center, Shenzhen, China
| | - Y Zhang
- Restorative Dental Science, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - J Liu
- Restorative Dental Science, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - B Yi
- Restorative Dental Science, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Y Qi
- Restorative Dental Science, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - W L Dissanayaka
- Restorative Dental Science, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - C Zhang
- Restorative Dental Science, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
26
|
Ong WK, Chakraborty S, Sugii S. Adipose Tissue: Understanding the Heterogeneity of Stem Cells for Regenerative Medicine. Biomolecules 2021; 11:biom11070918. [PMID: 34206204 PMCID: PMC8301750 DOI: 10.3390/biom11070918] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stem cells (ASCs) have been increasingly used as a versatile source of mesenchymal stem cells (MSCs) for diverse clinical investigations. However, their applications often become complicated due to heterogeneity arising from various factors. Cellular heterogeneity can occur due to: (i) nomenclature and criteria for definition; (ii) adipose tissue depots (e.g., subcutaneous fat, visceral fat) from which ASCs are isolated; (iii) donor and inter-subject variation (age, body mass index, gender, and disease state); (iv) species difference; and (v) study design (in vivo versus in vitro) and tools used (e.g., antibody isolation and culture conditions). There are also actual differences in resident cell types that exhibit ASC/MSC characteristics. Multilineage-differentiating stress-enduring (Muse) cells and dedifferentiated fat (DFAT) cells have been reported as an alternative or derivative source of ASCs for application in regenerative medicine. In this review, we discuss these factors that contribute to the heterogeneity of human ASCs in detail, and what should be taken into consideration for overcoming challenges associated with such heterogeneity in the clinical use of ASCs. Attempts to understand, define, and standardize cellular heterogeneity are important in supporting therapeutic strategies and regulatory considerations for the use of ASCs.
Collapse
Affiliation(s)
- Wee Kiat Ong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
- Correspondence: (W.K.O.); (S.S.)
| | - Smarajit Chakraborty
- Institute of Bioengineering and Bioimaging (IBB), A*STAR, 31 Biopolis Way, Singapore 138669, Singapore;
| | - Shigeki Sugii
- Institute of Bioengineering and Bioimaging (IBB), A*STAR, 31 Biopolis Way, Singapore 138669, Singapore;
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Correspondence: (W.K.O.); (S.S.)
| |
Collapse
|
27
|
Lee MH, Kang BY, Wong CC, Li AW, Naseer N, Ibrahim SA, Keimig EL, Poon E, Alam M. A systematic review of autologous adipose-derived stromal vascular fraction (SVF) for the treatment of acute cutaneous wounds. Arch Dermatol Res 2021; 314:417-425. [PMID: 34047823 DOI: 10.1007/s00403-021-02242-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Stromal vascular fraction (SVF), derived enzymatically or mechanically from adipose tissue, contains a heterogenous population of cells and stroma, including multipotent stem cells. The regenerative capacity of SVF may potentially be adapted for a broad range of clinical applications, including the healing of acute cutaneous wounds. OBJECTIVE To evaluate the available literature on the efficacy and safety of autologous adipose-derived stromal vascular fraction (SVF) for the treatment of acute cutaneous wounds in humans. METHODS A systematic review of the literature utilizing MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials was performed to identify published clinical trials of autologous adipose-derived SVF or similar ADSC-containing derivatives for patients with acute cutaneous wounds. This was supplemented by searches for ongoing clinical trials through ClinicalTrials.gov and the WHO International Clinical Trials Registry Platform. RESULTS 872 records were initially retrieved. Application of inclusion and exclusion criteria yielded 10 relevant studies: two completed non-randomized controlled trials and eight ongoing clinical trials. Both completed studies reported a statistically significant benefit in percentage re-epithelialization and time to healing for the SVF treatment arms. Safety information for SVF was not provided. Ongoing clinical trials were assessing outcomes such as safety, patient and observer reported scar appearance, wound healing rate, and wound epithelization. CONCLUSION In the context of substantial limitations in the quantity and quality of available evidence, the existing literature suggests that SVF may be a useful treatment for acute cutaneous wounds in humans. More clinical trials with improved outcome measures and safety assessment are needed.
Collapse
Affiliation(s)
- M H Lee
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 676 N Saint Clair Street, Suite 1600, Chicago, IL, 60611, USA
| | - B Y Kang
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 676 N Saint Clair Street, Suite 1600, Chicago, IL, 60611, USA
| | - C C Wong
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 676 N Saint Clair Street, Suite 1600, Chicago, IL, 60611, USA
| | - A W Li
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 676 N Saint Clair Street, Suite 1600, Chicago, IL, 60611, USA
| | - N Naseer
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 676 N Saint Clair Street, Suite 1600, Chicago, IL, 60611, USA
| | - Sarah A Ibrahim
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 676 N Saint Clair Street, Suite 1600, Chicago, IL, 60611, USA
| | - E L Keimig
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 676 N Saint Clair Street, Suite 1600, Chicago, IL, 60611, USA
| | - E Poon
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 676 N Saint Clair Street, Suite 1600, Chicago, IL, 60611, USA
| | - M Alam
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 676 N Saint Clair Street, Suite 1600, Chicago, IL, 60611, USA.
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
28
|
Wu SH, Liao YT, Hsueh KK, Huang HK, Chen TM, Chiang ER, Hsu SH, Tseng TC, Wang JP. Adipose-Derived Mesenchymal Stem Cells From a Hypoxic Culture Improve Neuronal Differentiation and Nerve Repair. Front Cell Dev Biol 2021; 9:658099. [PMID: 33996818 PMCID: PMC8120285 DOI: 10.3389/fcell.2021.658099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/09/2021] [Indexed: 01/09/2023] Open
Abstract
Hypoxic expansion has been demonstrated to enhance in vitro neuronal differentiation of bone-marrow derived mesenchymal stem cells (BMSCs). Whether adipose-derived mesenchymal stem cells (ADSCs) increase their neuronal differentiation potential following hypoxic expansion has been examined in the study. Real-time quantitative reverse transcription-polymerase chain reaction and immunofluorescence staining were employed to detect the expression of neuronal markers and compare the differentiation efficiency of hypoxic and normoxic ADSCs. A sciatic nerve injury animal model was used to analyze the gastrocnemius muscle weights as the outcomes of hypoxic and normoxic ADSC treatments, and sections of the regenerated nerve fibers taken from the conduits were analyzed by histological staining and immunohistochemical staining. Comparisons of the treatment effects of ADSCs and BMSCs following hypoxic expansion were also conducted in vitro and in vivo. Hypoxic expansion prior to the differentiation procedure promoted the expression of the neuronal markers in ADSC differentiated neuron-like cells. Moreover, the conduit connecting the sciatic nerve gap injected with hypoxic ADSCs showed the highest recovery rate of the gastrocnemius muscle weights in the animal model, suggesting a conceivable treatment for hypoxic ADSCs. The percentages of the regenerated myelinated fibers from the hypoxic ADSCs detected by toluidine blue staining and myelin basic protein (MBP) immunostaining were higher than those of the normoxic ones. On the other hand, hypoxic expansion increased the neuronal differentiation potential of ADSCs compared with that of the hypoxic BMSCs in vitro. The outcomes of animals treated with hypoxic ADSCs and hypoxic BMSCs showed similar results, confirming that hypoxic expansion enhances the neuronal differentiation potential of ADSCs in vitro and improves in vivo therapeutic potential.
Collapse
Affiliation(s)
- Szu-Hsien Wu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Ting Liao
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuang-Kai Hsueh
- Department of Orthopedics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Hui-Kuang Huang
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Orthopaedics, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan.,Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Tung-Ming Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Orthopedics, Taipei City Hospital-Zhong Xiao Branch, Taipei, Taiwan
| | - En-Rung Chiang
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Ting-Chen Tseng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Jung-Pan Wang
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
29
|
Towards Physiologic Culture Approaches to Improve Standard Cultivation of Mesenchymal Stem Cells. Cells 2021; 10:cells10040886. [PMID: 33924517 PMCID: PMC8069108 DOI: 10.3390/cells10040886] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are of great interest for their use in cell-based therapies due to their multipotent differentiation and immunomodulatory capacities. In consequence of limited numbers following their isolation from the donor tissue, MSCs require extensive expansion performed in traditional 2D cell culture setups to reach adequate amounts for therapeutic use. However, prolonged culture of MSCs in vitro has been shown to decrease their differentiation potential and alter their immunomodulatory properties. For that reason, preservation of these physiological characteristics of MSCs throughout their in vitro culture is essential for improving the efficiency of therapeutic and in vitro modeling applications. With this objective in mind, many studies already investigated certain parameters for enhancing current standard MSC culture protocols with regard to the effects of specific culture media components or culture conditions. Although there is a lot of diversity in the final therapeutic uses of the cells, the primary stage of standard isolation and expansion is imperative. Therefore, we want to review on approaches for optimizing standard MSC culture protocols during this essential primary step of in vitro expansion. The reviewed studies investigate and suggest improvements focused on culture media components (amino acids, ascorbic acid, glucose level, growth factors, lipids, platelet lysate, trace elements, serum, and xenogeneic components) as well as culture conditions and processes (hypoxia, cell seeding, and dissociation during passaging), in order to preserve the MSC phenotype and functionality during the primary phase of in vitro culture.
Collapse
|
30
|
Tomecka E, Lech W, Zychowicz M, Sarnowska A, Murzyn M, Oldak T, Domanska-Janik K, Buzanska L, Rozwadowska N. Assessment of the Neuroprotective and Stemness Properties of Human Wharton's Jelly-Derived Mesenchymal Stem Cells under Variable (5% vs. 21%) Aerobic Conditions. Cells 2021; 10:717. [PMID: 33804841 PMCID: PMC8063843 DOI: 10.3390/cells10040717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 12/20/2022] Open
Abstract
To optimise the culture conditions for human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) intended for clinical use, we investigated ten different properties of these cells cultured under 21% (atmospheric) and 5% (physiological normoxia) oxygen concentrations. The obtained results indicate that 5% O2 has beneficial effects on the proliferation rate, clonogenicity, and slowdown of senescence of hWJ-MSCs; however, the oxygen level did not have an influence on the cell morphology, immunophenotype, or neuroprotective effect of the hWJ-MSCs. Nonetheless, the potential to differentiate into adipocytes, osteocytes, and chondrocytes was comparable under both oxygen conditions. However, spontaneous differentiation of hWJ-MSCs into neuronal lineages was observed and enhanced under atmospheric oxygen conditions. The cells relied more on mitochondrial respiration than glycolysis, regardless of the oxygen conditions. Based on these results, we can conclude that hWJ-MSCs could be effectively cultured and prepared under both oxygen conditions for cell-based therapy. However, the 5% oxygen level seemed to create a more balanced and appropriate environment for hWJ-MSCs.
Collapse
Affiliation(s)
- Ewelina Tomecka
- Polish Stem Cell Bank, FamiCord Group, 00-867 Warsaw, Poland; (E.T.); (M.M.); (T.O.)
| | - Wioletta Lech
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Marzena Zychowicz
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Anna Sarnowska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Magdalena Murzyn
- Polish Stem Cell Bank, FamiCord Group, 00-867 Warsaw, Poland; (E.T.); (M.M.); (T.O.)
| | - Tomasz Oldak
- Polish Stem Cell Bank, FamiCord Group, 00-867 Warsaw, Poland; (E.T.); (M.M.); (T.O.)
| | - Krystyna Domanska-Janik
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Natalia Rozwadowska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland;
| |
Collapse
|
31
|
Samal JRK, Rangasami VK, Samanta S, Varghese OP, Oommen OP. Discrepancies on the Role of Oxygen Gradient and Culture Condition on Mesenchymal Stem Cell Fate. Adv Healthc Mater 2021; 10:e2002058. [PMID: 33533187 PMCID: PMC11469238 DOI: 10.1002/adhm.202002058] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Over the past few years, mesenchymal stem (or stromal) cells (MSCs) have garnered enormous interest due to their therapeutic value especially for their multilineage differentiation potential leading to regenerative medicine applications. MSCs undergo physiological changes upon in vitro expansion resulting in expression of different receptors, thereby inducing high variabilities in therapeutic efficacy. Therefore, understanding the biochemical cues that influence the native local signals on differentiation or proliferation of these cells is very important. There have been several reports that in vitro culture of MSCs in low oxygen gradient (or hypoxic conditions) upregulates the stemness markers and promotes cell proliferation in an undifferentiated state, as hypoxia mimics the conditions the progenitor cells experience within the tissue. However, different studies report different oxygen gradients and culture conditions causing ambiguity in their interpretation of the results. In this progress report, it is aimed to summarize recent studies in the field with specific focus on conflicting results reported during the application of hypoxic conditions for improving the proliferation or differentiation of MSCs. Further, it is tried to decipher the factors that can affect characteristics of MSC under hypoxia and suggest a few techniques that could be combined with hypoxic cell culture to better recapitulate the MSC tissue niche.
Collapse
Affiliation(s)
- Jay R. K. Samal
- Department of Instructive Biomaterial EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Vignesh K. Rangasami
- Bioengineering and Nanomedicine GroupFaculty of Medicine and Health TechnologiesTampere UniversityTampere33720Finland
| | - Sumanta Samanta
- Bioengineering and Nanomedicine GroupFaculty of Medicine and Health TechnologiesTampere UniversityTampere33720Finland
| | - Oommen P. Varghese
- Translational Chemical Biology LaboratoryDepartment of Chemistry, Polymer ChemistryÅngström LaboratoryUppsala UniversityUppsala751 21Sweden
| | - Oommen P. Oommen
- Bioengineering and Nanomedicine GroupFaculty of Medicine and Health TechnologiesTampere UniversityTampere33720Finland
| |
Collapse
|
32
|
Zhao Y, Zhang M, Lu GL, Huang BX, Wang DW, Shao Y, Lu MJ. Hypoxic Preconditioning Enhances Cellular Viability and Pro-angiogenic Paracrine Activity: The Roles of VEGF-A and SDF-1a in Rat Adipose Stem Cells. Front Cell Dev Biol 2020; 8:580131. [PMID: 33330455 PMCID: PMC7719676 DOI: 10.3389/fcell.2020.580131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
To achieve the full therapeutic potential of implanted adipose stem cells (ASCs) in vivo, it is crucial to improve the viability and pro-angiogenic properties of the stem cells. Here, we first simulated the conditions of ischemia and hypoxia using the in vitro oxygen-glucose deprivation (OGD) model and confirmed that hypoxic preconditioning of ASCs could provide improved protection against OGD and enhance ASC viability. Second, we assessed the effect of hypoxic preconditioning on pro-angiogenic potential of ASCs, with a particular focus on the role of vascular endothelial growth factor-A (VEGF-A) and stromal derived factor-1a (SDF-1a) paracrine activity in mediating angiogenesis. We found that the conditioned medium of ASCs (ASCCM) with hypoxic preconditioning enhanced angiogenesis by a series of angiogenesis assay models in vivo and in vitro through the upregulation of and a synergistic effect between VEGF-A and SDF-1a. Finally, to investigate the possible downstream mechanisms of VEGF/VEGFR2 and SDF-1a/CXCR4 axes-driven angiogenesis, we evaluated relevant protein kinases involved the signal transduction pathway of angiogenesis and showed that VEGF/VEGFR2 and SDF-1a/CXCR4 axes may synergistically promote angiogenesis by activating Akt. Collectively, our findings demonstrate that hypoxic preconditioning may constitute a promising strategy to enhance cellular viability and angiogenesis of transplanted ASCs, therein improving the success rate of stem cell-based therapies in tissue engineering.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Liang Lu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bao-Xing Huang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Da-Wei Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Shao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mu-Jun Lu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Wan X, Xie MK, Xu H, Wei ZW, Yao HJ, Wang Z, Zheng DC. Hypoxia-preconditioned adipose-derived stem cells combined with scaffold promote urethral reconstruction by upregulation of angiogenesis and glycolysis. Stem Cell Res Ther 2020; 11:535. [PMID: 33308306 PMCID: PMC7731784 DOI: 10.1186/s13287-020-02052-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale Tissue engineering is a promising alternative for urethral reconstruction, and adipose-derived stem cells (ADSCs) are widely used as seeding cells. Hypoxia preconditioning can significantly enhance the therapeutic effects of ADSCs. The low oxygen tension of postoperative wound healing is inevitable and may facilitate the nutritional function of ADSCs. This study aimed to investigate if hypoxia-preconditioned ADSCs, compared to normoxia-preconditioned ADSCs, combined with scaffold could better promote urethral reconstruction and exploring the underlying mechanism. Methods In vitro, paracrine cytokines and secretomes that were secreted by hypoxia- or normoxia-preconditioned ADSCs were added to cultures of human umbilical vein endothelial cells (HUVECs) to measure their functions. In vivo, hypoxia- or normoxia-preconditioned ADSCs were seeded on a porous nanofibrous scaffold for urethral repair on a defect model in rabbits. Results The in vitro results showed that hypoxia could enhance the secretion of VEGFA by ADSCs, and hypoxia-preconditioned ADSCs could enhance the viability, proliferation, migration, angiogenesis, and glycolysis of HUVECs (p < 0.05). After silencing VEGFA, angiogenesis and glycolysis were significantly inhibited (p < 0.05). The in vivo results showed that compared to normoxia-preconditioned ADSCs, hypoxia-preconditioned ADSCs combined with scaffolds led to a larger urethral lumen diameter, preserved urethral morphology, and enhanced angiogenesis (p < 0.05). Conclusions Hypoxia preconditioning of ADSCs combined with scaffold could better promote urethral reconstruction by upregulating angiogenesis and glycolysis. Hypoxia-preconditioned ADSCs combined with novel scaffold may provide a promising alternative treatment for urethral reconstruction.
Collapse
Affiliation(s)
- Xiang Wan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road in Huangpu District, Shanghai, 200011, China
| | - Min-Kai Xie
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road in Huangpu District, Shanghai, 200011, China
| | - Huan Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road in Huangpu District, Shanghai, 200011, China
| | - Zi-Wei Wei
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road in Huangpu District, Shanghai, 200011, China
| | - Hai-Jun Yao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road in Huangpu District, Shanghai, 200011, China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road in Huangpu District, Shanghai, 200011, China.
| | - Da-Chao Zheng
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road in Huangpu District, Shanghai, 200011, China.
| |
Collapse
|
34
|
Ratushnyy AY, Rudimova YV, Buravkova LB. Replicative Senescence and Expression of Autophagy Genes in Mesenchymal Stromal Cells. BIOCHEMISTRY (MOSCOW) 2020; 85:1169-1177. [PMID: 33202202 DOI: 10.1134/s0006297920100053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cell senescence leads to a number of changes in the properties of mesenchymal stromal cells (MSCs). In particular, the number of damaged structures is increased producing negative effect on intracellular processes. Elimination of the damaged molecules and organelles occurs via autophagy that can be important in the context of aging. Cultivation under low oxygen level can be used as an approach for enhancement of MSC therapeutic properties and "slowing down" cell senescence. The goal of this work was to study some morphological and functional characteristics and expression of autophagy-associated genes during replicative senescence of MSCs under different oxygen concentration. The study revealed changes in the regulation of autophagy at the transcriptional level. Upregulation of the expression of autophagosome membrane growth genes ATG9A and ULK1, of the autophagosome maturation genes CTSD, CLN3, GAA, and GABARAPL1, of the autophagy regulation genes TP53, TGFB1, BCL2L1, FADD, and HTT was shown. These changes were accompanied by downregulation of IGF1 and TGM2 expression. Increase of the lysosomal compartment volume was observed in the senescent MSCs that also indicated increase of their degradation activity. The number of lysosomes was decreased following prolonged cultivation under low oxygen concentration (5%). The replicative senescence of MSCs under conditions of different oxygen levels led to the similar modifications in the expression of the autophagy-associated genes.
Collapse
Affiliation(s)
- A Y Ratushnyy
- Institute of Biomedical Problems (IBMP), Russian Academy of Sciences, Moscow, 123007, Russia.
| | - Y V Rudimova
- Institute of Biomedical Problems (IBMP), Russian Academy of Sciences, Moscow, 123007, Russia
| | - L B Buravkova
- Institute of Biomedical Problems (IBMP), Russian Academy of Sciences, Moscow, 123007, Russia
| |
Collapse
|
35
|
Casciaro F, Borghesan M, Beretti F, Zavatti M, Bertucci E, Follo MY, Maraldi T, Demaria M. Prolonged hypoxia delays aging and preserves functionality of human amniotic fluid stem cells. Mech Ageing Dev 2020; 191:111328. [DOI: 10.1016/j.mad.2020.111328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 01/10/2023]
|
36
|
Bahir B, S. Choudhery M, Hussain I. Hypoxic Preconditioning as a Strategy to Maintain the Regenerative Potential of Mesenchymal Stem Cells. Regen Med 2020. [DOI: 10.5772/intechopen.93217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
37
|
Labedz-Maslowska A, Bryniarska N, Kubiak A, Kaczmarzyk T, Sekula-Stryjewska M, Noga S, Boruczkowski D, Madeja Z, Zuba-Surma E. Multilineage Differentiation Potential of Human Dental Pulp Stem Cells-Impact of 3D and Hypoxic Environment on Osteogenesis In Vitro. Int J Mol Sci 2020; 21:ijms21176172. [PMID: 32859105 PMCID: PMC7504399 DOI: 10.3390/ijms21176172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Human dental pulp harbours unique stem cell population exhibiting mesenchymal stem/stromal cell (MSC) characteristics. This study aimed to analyse the differentiation potential and other essential functional and morphological features of dental pulp stem cells (DPSCs) in comparison with Wharton’s jelly-derived MSCs from the umbilical cord (UC-MSCs), and to evaluate the osteogenic differentiation of DPSCs in 3D culture with a hypoxic microenvironment resembling the stem cell niche. Human DPSCs as well as UC-MSCs were isolated from primary human tissues and were subjected to a series of experiments. We established a multiantigenic profile of DPSCs with CD45−/CD14−/CD34−/CD29+/CD44+/CD73+/CD90+/CD105+/Stro-1+/HLA-DR− (using flow cytometry) and confirmed their tri-lineage osteogenic, chondrogenic, and adipogenic differentiation potential (using qRT-PCR and histochemical staining) in comparison with the UC-MSCs. The results also demonstrated the potency of DPSCs to differentiate into osteoblasts in vitro. Moreover, we showed that the DPSCs exhibit limited cardiomyogenic and endothelial differentiation potential. Decreased proliferation and metabolic activity as well as increased osteogenic differentiation of DPSCs in vitro, attributed to 3D cell encapsulation and low oxygen concentration, were also observed. DPSCs exhibiting elevated osteogenic potential may serve as potential candidates for a cell-based product for advanced therapy, particularly for bone repair. Novel tissue engineering approaches combining DPSCs, 3D biomaterial scaffolds, and other stimulating chemical factors may represent innovative strategies for pro-regenerative therapies.
Collapse
Affiliation(s)
- Anna Labedz-Maslowska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
| | - Natalia Bryniarska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Andrzej Kubiak
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | - Tomasz Kaczmarzyk
- Department of Oral Surgery, Faculty of Medicine, Jagiellonian University Medical College, 31-155 Krakow, Poland;
| | - Malgorzata Sekula-Stryjewska
- Laboratory of Stem Cell Biotechnology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Sylwia Noga
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
- Laboratory of Stem Cell Biotechnology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | | | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
- Correspondence: ; Tel.: +48-12-664-61-80
| |
Collapse
|
38
|
Chen W, Zhuo Y, Duan D, Lu M. Effects of Hypoxia on Differentiation of Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2020; 15:332-339. [PMID: 31441734 DOI: 10.2174/1574888x14666190823144928] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
Mesenchymal Stem Cells (MSCs) are distributed in many parts of the human body, including
the bone marrow, placenta, umbilical cord, fat, and nasal mucosa. One of the unique features of
MSCs is their multidirectional differentiation potential, including the ability to undergo osteogenesis,
adipogenesis, and chondrogenesis, and to produce neurons, endothelial cells, Schwann cells, medullary
nucleus cells, cardiomyocytes, and alveolar epithelial cells. MSCs have thus become a hot research
topic in recent years. Numerous studies have investigated the differentiation of MSCs into various
types of cells in vitro and their application to numerous fields. However, most studies have cultured
MSCs under atmospheric oxygen tension with an oxygen concentration of 21%, which does not reflect
a normal physiological state, given that the oxygen concentration generally used in vitro is four to ten
times that to which MSCs would be exposed in the body. We therefore review the growing number of
studies exploring the effect of hypoxic preconditioning on the differentiation of MSCs.
Collapse
Affiliation(s)
- Wei Chen
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Yi Zhuo
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Da Duan
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Ming Lu
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| |
Collapse
|
39
|
Lee HY, Hong IS. Metabolic Regulation and Related Molecular Mechanisms in Various Stem Cell Functions. Curr Stem Cell Res Ther 2020; 15:531-546. [PMID: 32394844 DOI: 10.2174/1574888x15666200512105347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Recent studies on the mechanisms that link metabolic changes with stem cell fate have deepened our understanding of how specific metabolic pathways can regulate various stem cell functions during the development of an organism. Although it was originally thought to be merely a consequence of the specific cell state, metabolism is currently known to play a critical role in regulating the self-renewal capacity, differentiation potential, and quiescence of stem cells. Many studies in recent years have revealed that metabolic pathways regulate various stem cell behaviors (e.g., selfrenewal, migration, and differentiation) by modulating energy production through glycolysis or oxidative phosphorylation and by regulating the generation of metabolites, which can modulate multiple signaling pathways. Therefore, a more comprehensive understanding of stem cell metabolism could allow us to establish optimal culture conditions and differentiation methods that would increase stem cell expansion and function for cell-based therapies. However, little is known about how metabolic pathways regulate various stem cell functions. In this context, we review the current advances in metabolic research that have revealed functional roles for mitochondrial oxidative phosphorylation, anaerobic glycolysis, and oxidative stress during the self-renewal, differentiation and aging of various adult stem cell types. These approaches could provide novel strategies for the development of metabolic or pharmacological therapies to promote the regenerative potential of stem cells and subsequently promote their therapeutic utility.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- Department of Biomedical Science, Jungwon University, 85 Goesan-eup, Munmu-ro, Goesan-gun, Chungcheongbuk-do 367-700, Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| |
Collapse
|
40
|
Hwang SH, Lee DC, Kim DH, Kim BY, Park SH, Lim MH, Jeun JH, Park YH, Kim SW. In vivo Oxygen Condition of Human Nasal Inferior Turbinate-Derived Stem Cells in Human Nose. ORL J Otorhinolaryngol Relat Spec 2020; 82:86-92. [PMID: 31991414 DOI: 10.1159/000504628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/03/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Human nasal inferior turbinate-derived stem cells (hNTSCs) have been considered as a potent and useful source for regenerative medicine. To most effectively mimic the native environment of inferior turbinate could be very effective to hNTSCs biology. Thus, the purpose of this study was to evaluate partial pressure of oxygen (ppO2) and temperature in inferior turbinate. METHODS Ten patients were enrolled who underwent endoscopic endonasal transsphenoidal skull base tumor surgery between January 2014 and December 2015. The commercially available OxyLab pO2 monitor gauges the ppO2 and temperature using a fluorescence quenching technique. Also, hNTSCs were isolated from 10 patients and cultivated under hypercapnic condition (5, 10, and 15%) to mimic hypoxic intranasal conditions. RESULTS The measured oxygen concentration in submucosa tissue was higher than that at the surface of the inferior turbinate and the temperature in submucosa tissue was higher than the value at the surface of inferior turbinate. The patterns of proliferation were significantly different according to hypercapnic cultivation conditions and there were statistically significant decreased proliferation rates after the exposure of higher CO2 over a period of 5 days. CONCLUSIONS Intranasal turbinate tissue showed the hypoxia state in concordance with the result of the other tissues or organs. However, indirectly induced hypoxia influenced the influence on the hNTSCs proliferation negatively. Further study is needed to mimic the real hypoxic state, but our results could be used to optimize the culture environment of hNTSCs, thereby producing the stem cells for regenerative therapies.
Collapse
Affiliation(s)
- Se Hwan Hwang
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Chang Lee
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Do Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Boo-Young Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun Hwa Park
- Department of Biomedical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-Hyun Lim
- Department of Biomedical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Ho Jeun
- Department of Biomedical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young Hoon Park
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,
| |
Collapse
|
41
|
Tirza G, Solodeev I, Sela M, Greenberg I, Pasmanik-Chor M, Gur E, Shani N. Reduced culture temperature attenuates oxidative stress and inflammatory response facilitating expansion and differentiation of adipose-derived stem cells. Stem Cell Res Ther 2020; 11:35. [PMID: 31973743 PMCID: PMC6979291 DOI: 10.1186/s13287-019-1542-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/10/2019] [Accepted: 12/26/2019] [Indexed: 11/16/2022] Open
Abstract
Background Adipose-derived stem cell (ASC) expansion under atmospheric oxygen levels (21%) was previously shown to cause increased reactive oxygen species (ROS) accumulation and genetic instability compared to cells cultured under physiological oxygen levels (2–8%). However, since culture under physiological oxygen levels is costly and complicated, a simpler method to reduce ROS accumulation is desirable. The current study aimed to determine whether lower culture temperature can reduce ROS production in ASCs without impairing their culture expansion. Methods Proliferation, differentiation, ROS accumulation, and gene expression were compared between ASC cultures at 35 °C and 37 °C. ASCs isolated either from rat fat depots or from human lipoaspirates were examined in the study. Results Rat visceral ASCs (vASCs) cultured at 35 °C demonstrated reduced ROS production and apoptosis and enhanced expansion and adipogenic differentiation compared to vASCs cultured at 37 °C. Similarly, the culture of human ASCs (hASCs) at 35 °C led to reduced ROS accumulation and apoptosis, with no effect on the proliferation rate, compared to hASCs cultured at 37 °C. Comparison of gene expression profiles of 35 °C versus 37 °C vASCs uncovered the development of a pro-inflammatory phenotype in 37 °C vASCs in correlation with culture temperature and ROS overproduction. This correlation was reaffirmed in both hASCs and subcutaneous rat ASCs. Conclusions This is the first evidence of the effect of culture temperature on ASC growth and differentiation properties. Reduced temperatures may result in superior ASC cultures with enhanced expansion capacities in vitro and effectiveness in vivo.
Collapse
Affiliation(s)
- Gal Tirza
- The Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Inna Solodeev
- The Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Meirav Sela
- The Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ilanit Greenberg
- The Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- The Bioinformatics Unit George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Gur
- The Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Weizmann 6, Tel Aviv, Israel
| | - Nir Shani
- The Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Weizmann 6, Tel Aviv, Israel.
| |
Collapse
|
42
|
Increased BMPR1A Expression Enhances the Adipogenic Differentiation of Mesenchymal Stem Cells in Patients with Ankylosing Spondylitis. Stem Cells Int 2019; 2019:4143167. [PMID: 31827527 PMCID: PMC6885782 DOI: 10.1155/2019/4143167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 11/18/2022] Open
Abstract
Objective To investigate the adipogenic differentiation capacity of mesenchymal stem cells (MSCs) from ankylosing spondylitis (AS) patients and explore the mechanism of abnormal MSC adipogenesis in AS. Methods MSCs from patients with AS (ASMSCs) and healthy donors (HDMSCs) were cultured in adipogenic differentiation medium for up to 21 days. Adipogenic differentiation was determined using oil red O (ORO) staining and quantification and was confirmed by assessing adipogenic marker expression (PPAR-γ, FABP4, and adiponectin). Gene expression of adipogenic markers was detected using qRT-PCR. Protein levels of adipogenic markers and signaling pathway-related molecules were assessed via Western blotting. Levels of bone morphogenetic proteins 4, 6, 7, and 9 were determined using enzyme-linked immunosorbent assays. Lentiviruses encoding short hairpin RNAs (shRNAs) were constructed to reverse abnormal bone morphogenetic protein receptor 1A (BMPR1A) expression and evaluate its role in abnormal ASMSC adipogenic differentiation. Bone marrow fat content was assessed using hematoxylin and eosin (HE) staining. BMPR1A expression in bone marrow MSCs was measured using immunofluorescence staining. Results ASMSCs exhibited a greater adipogenic differentiation capacity than HDMSCs. During adipogenesis, ASMSCs expressed BMPR1A at higher levels, which activated the BMP-pSmad1/5/8 signaling pathway and increased adipogenesis. BMPR1A silencing using an shRNA eliminated the difference in adipogenic differentiation between HDMSCs and ASMSCs. Moreover, HE and immunofluorescence staining showed higher bone marrow fat content and BMPR1A expression in patients with AS than in healthy donors. Conclusion Increased BMPR1A expression induces abnormal ASMSC adipogenic differentiation, potentially contributing to fat metaplasia and thus new bone formation in patients with AS.
Collapse
|
43
|
Chen K, Xie S, Jin W. Crucial lncRNAs associated with adipocyte differentiation from human adipose-derived stem cells based on co-expression and ceRNA network analyses. PeerJ 2019; 7:e7544. [PMID: 31534842 PMCID: PMC6733242 DOI: 10.7717/peerj.7544] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/24/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Injection of adipose-derived stem cells (ASCs) is a promising treatment for facial contour deformities. However, its treatment mechanisms remain largely unknown. The study aimed to explain the molecular mechanisms of adipogenic differentiation from ASCs based on the roles of long noncoding RNAs (lncRNAs). METHODS Datasets of mRNA-lncRNA (GSE113253) and miRNA (GSE72429) expression profiling were collected from Gene Expression Omnibus database. The differentially expressed genes (DEGs), lncRNAs (DELs) and miRNAs (DEMs) between undifferentiated and adipocyte differentiated human ASCs were identified using the Linear Models for Microarray Data method. DELs related co-expression and competing endogenous RNA (ceRNA) networks were constructed. Protein-protein interaction (PPI) analysis was performed to screen crucial target genes. RESULTS A total of 748 DEGs, 17 DELs and 51 DEMs were identified. A total of 13 DELs and 279 DEGs with Pearson correlation coefficients > 0.9 and p-value < 0.01 were selected to construct the co-expression network. A total of 151 interaction pairs among 112 nodes (10 DEMs; eight DELs; 94 DEGs) were obtained to construct the ceRNA network. By comparing the lncRNAs and mRNAs in two networks, five lncRNAs (SNHG9, LINC02202, UBAC2-AS1, PTCSC3 and myocardial infarction associated transcript (MIAT)) and 32 genes (i.e., such as phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), protein tyrosine phosphatase receptor type B (PTPRB)) were found to be shared. PPI analysis demonstrated PIK3R1 , forkhead box O1 (FOXO1; a transcription factor) and estrogen receptor 1 (ESR1) were hub genes, which could be regulated by the miRNAs that interacted with the above five lncRNAs, such as LINC02202-miR-136-5p-PIK3R1, LINC02202-miR-381-3p-FOXO1 and MIAT-miR-18a-5p-ESR1. LINC02202 also could directly co-express with PIK3R1. Furthermore, PTPRB was predicted to be modulated by co-expression with LINC01119. CONCLUSION MIAT, LINC02202 and LINC01119 may be potentially important, new lncRNAs associated with adipogenic differentiation of ASCs. They may be involved in adipogenesis by acting as a ceRNA or co-expressing with their targets.
Collapse
Affiliation(s)
- Kana Chen
- Department of Plastic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Shujie Xie
- Department of Hepatobiliary Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Wujun Jin
- Department of Plastic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| |
Collapse
|
44
|
Seo Y, Shin TH, Kim HS. Current Strategies to Enhance Adipose Stem Cell Function: An Update. Int J Mol Sci 2019; 20:E3827. [PMID: 31387282 PMCID: PMC6696067 DOI: 10.3390/ijms20153827] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) emerged as a promising therapeutic tool targeting a variety of inflammatory disorders due to their multiple remarkable properties, such as superior immunomodulatory function and tissue-regenerative capacity. Although bone marrow (BM) is a dominant source for adult MSCs, increasing evidence suggests that adipose tissue-derived stem cells (ASCs), which can be easily obtained at a relatively high yield, have potent therapeutic advantages comparable with BM-MSCs. Despite its outstanding benefits in pre-clinical settings, the practical efficacy of ASCs remains controversial since clinical trials with ASC application often resulted in unsatisfactory outcomes. To overcome this challenge, scientists established several strategies to generate highly functional ASCs beyond the naïve cells, including (1) pre-conditioning of ASCs with various stimulants such as inflammatory agents, (2) genetic manipulation of ASCs and (3) modification of culture conditions with three-dimensional (3D) aggregate formation and hypoxic culture. Also, exosomes and other extracellular vesicles secreted from ASCs can be applied directly to recapitulate the beneficial performance of ASCs. This review summarizes the current strategies to improve the therapeutic features of ASCs for successful clinical implementation.
Collapse
Affiliation(s)
- Yoojin Seo
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Tae-Hoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyung-Sik Kim
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea.
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
45
|
Zhu Q, Shan C, Li L, Song L, Zhang K, Zhou Y. Differential expression of genes associated with hypoxia pathway on bone marrow stem cells in osteoporosis patients with different bone mass index. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:309. [PMID: 31475179 DOI: 10.21037/atm.2019.06.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background This study aimed to assess gene expression changes associated with hypoxia pathway on bone marrow stem cells (BMSCs) and explore effects of bone mass index (BMI) on hypoxia pathway of osteoporosis (OP) patients. Methods Human BMSCs were isolated from bone marrow. Subjects were divided into healthy control group and OP group which was further divided into BMI <25 OP subgroup and BMI ≥25 OP subgroup. Results The genes downregulated in OP patients were involved in hypoxia pathway. Furthermore, those genes were even downregulated in OP patients BMI ≥25 subgroup than OP patients BMI <25 subgroup. The genes were expressed in response to decreased oxygen levels, and their functions are related to photoperiodism, positive regulation of myoblast differentiation, and entrainment of circadian clock by gene ontology (GO) analysis. Conclusions The expression of genes associated with hypoxia pathway on BMSCs in OP patients are lower than healthy subjects, and the expression of genes related to carbohydrate metabolism are lower in overweight OP patients than in normal weight OP patients. These results need further research.
Collapse
Affiliation(s)
- Qi Zhu
- The Endocrinology Department of Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.,The Geriatric Department of Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Chang Shan
- The Endocrinology Department of Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.,Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai 200025, China
| | - Ling Li
- The Endocrinology Department of Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Lige Song
- The Endocrinology Department of Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Keqin Zhang
- The Endocrinology Department of Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yun Zhou
- The Endocrinology Department of Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
46
|
Annamalai RT, Hong X, Schott NG, Tiruchinapally G, Levi B, Stegemann JP. Injectable osteogenic microtissues containing mesenchymal stromal cells conformally fill and repair critical-size defects. Biomaterials 2019; 208:32-44. [PMID: 30991216 PMCID: PMC6500486 DOI: 10.1016/j.biomaterials.2019.04.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
Repair of complex fractures with bone loss requires a potent, space-filling intervention to promote regeneration of bone. We present a biomaterials-based strategy combining mesenchymal stromal cells (MSC) with a chitosan-collagen matrix to form modular microtissues designed for delivery through a needle to conformally fill cavital defects. Implantation of microtissues into a calvarial defect in the mouse showed that osteogenically pre-differentiated MSC resulted in complete bridging of the cavity, while undifferentiated MSC produced mineralized tissue only in apposition to native bone. Decreasing the implant volume reduced bone regeneration, while increasing the MSC concentration also attenuated bone formation, suggesting that the cell-matrix ratio is important in achieving a robust response. Conformal filling of the defect with microtissues in a carrier gel resulted in complete healing. Taken together, these results show that modular microtissues can be used to augment the differentiated function of MSC and provide an extracellular environment that potentiates bone repair.
Collapse
Affiliation(s)
- Ramkumar T Annamalai
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
| | - Xiaowei Hong
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
| | - Nicholas G Schott
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
| | | | - Benjamin Levi
- Department of Surgery, University of Michigan, Ann Arbor, United States
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States.
| |
Collapse
|
47
|
Zhou S, Chen S, Jiang Q, Pei M. Determinants of stem cell lineage differentiation toward chondrogenesis versus adipogenesis. Cell Mol Life Sci 2019; 76:1653-1680. [PMID: 30689010 PMCID: PMC6456412 DOI: 10.1007/s00018-019-03017-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/10/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Abstract
Adult stem cells, also termed as somatic stem cells, are undifferentiated cells, detected among differentiated cells in a tissue or an organ. Adult stem cells can differentiate toward lineage specific cell types of the tissue or organ in which they reside. They also have the ability to differentiate into mature cells of mesenchymal tissues, such as cartilage, fat and bone. Despite the fact that the balance has been comprehensively scrutinized between adipogenesis and osteogenesis and between chondrogenesis and osteogenesis, few reviews discuss the relationship between chondrogenesis and adipogenesis. In this review, the developmental and transcriptional crosstalk of chondrogenic and adipogenic lineages are briefly explored, followed by elucidation of signaling pathways and external factors guiding lineage determination between chondrogenic and adipogenic differentiation. An in-depth understanding of overlap and discrepancy between these two mesenchymal tissues in lineage differentiation would benefit regeneration of high-quality cartilage tissues and adipose tissues for clinical applications.
Collapse
Affiliation(s)
- Sheng Zhou
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
- Department of Sports Medicine and Adult Reconstructive Surgery, School of Medicine, Drum Tower Hospital, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Song Chen
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, 610083, Sichuan, People's Republic of China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, School of Medicine, Drum Tower Hospital, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA.
- Robert C. Byrd Health Sciences Center, WVU Cancer Institute, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
48
|
Keeley TP, Mann GE. Defining Physiological Normoxia for Improved Translation of Cell Physiology to Animal Models and Humans. Physiol Rev 2019; 99:161-234. [PMID: 30354965 DOI: 10.1152/physrev.00041.2017] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The extensive oxygen gradient between the air we breathe (Po2 ~21 kPa) and its ultimate distribution within mitochondria (as low as ~0.5-1 kPa) is testament to the efforts expended in limiting its inherent toxicity. It has long been recognized that cell culture undertaken under room air conditions falls short of replicating this protection in vitro. Despite this, difficulty in accurately determining the appropriate O2 levels in which to culture cells, coupled with a lack of the technology to replicate and maintain a physiological O2 environment in vitro, has hindered addressing this issue thus far. In this review, we aim to address the current understanding of tissue Po2 distribution in vivo and summarize the attempts made to replicate these conditions in vitro. The state-of-the-art techniques employed to accurately determine O2 levels, as well as the issues associated with reproducing physiological O2 levels in vitro, are also critically reviewed. We aim to provide the framework for researchers to undertake cell culture under O2 levels relevant to specific tissues and organs. We envisage that this review will facilitate a paradigm shift, enabling translation of findings under physiological conditions in vitro to disease pathology and the design of novel therapeutics.
Collapse
Affiliation(s)
- Thomas P Keeley
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| |
Collapse
|
49
|
de Almeida Fuzeta M, de Matos Branco AD, Fernandes-Platzgummer A, da Silva CL, Cabral JMS. Addressing the Manufacturing Challenges of Cell-Based Therapies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:225-278. [PMID: 31844924 DOI: 10.1007/10_2019_118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exciting developments in the cell therapy field over the last decades have led to an increasing number of clinical trials and the first cell products receiving marketing authorization. In spite of substantial progress in the field, manufacturing of cell-based therapies presents multiple challenges that need to be addressed in order to assure the development of safe, efficacious, and cost-effective cell therapies.The manufacturing process of cell-based therapies generally requires tissue collection, cell isolation, culture and expansion (upstream processing), cell harvest, separation and purification (downstream processing), and, finally, product formulation and storage. Each one of these stages presents significant challenges that have been the focus of study over the years, leading to innovative and groundbreaking technological advances, as discussed throughout this chapter.Delivery of cell-based therapies relies on defining product targets while controlling process variable impact on cellular features. Moreover, commercial viability is a critical issue that has had damaging consequences for some therapies. Implementation of cost-effectiveness measures facilitates healthy process development, potentially being able to influence end product pricing.Although cell-based therapies represent a new level in bioprocessing complexity in every manufacturing stage, they also show unprecedented levels of therapeutic potential, already radically changing the landscape of medical care.
Collapse
Affiliation(s)
- Miguel de Almeida Fuzeta
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - André Dargen de Matos Branco
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia Lobato da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
50
|
Li P, Guo X. A review: therapeutic potential of adipose-derived stem cells in cutaneous wound healing and regeneration. Stem Cell Res Ther 2018; 9:302. [PMID: 30409218 PMCID: PMC6225584 DOI: 10.1186/s13287-018-1044-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As the most important barrier for the human body, the skin often suffers from acute and chronic injuries, especially refractory wounds, which seriously affect the quality of life of patients. For these refractory wounds that cannot be cured by various surgical methods, stem cell transplantation becomes an effective research direction. As one of the adult stem cells, adipose-derived stem cells play an indispensable role in the repair of skin wounds more than other stem cells because of their advantages such as immune compatibility and freedom from ethical constraints. Here, we actively explore the role of adipose-derived stem cells in the repair of cutaneous wound and conclude that it can significantly promote cutaneous wound healing and regeneration. Based on a large number of animal and clinical trials, we believe that adipose-derived stem cells will have a greater breakthrough in the field of skin wound repair in the future, especially in chronic refractory wounds.
Collapse
Affiliation(s)
- Peng Li
- Department of Anorectal Surgery, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xiutian Guo
- Department of Anorectal Surgery, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|