1
|
Yuan L, Qin Q, Yao Y, Chen L, Liu H, Du X, Ji M, Wu X, Wang W, Qin Q, Xiang Y, Qing B, Qu X, Yang M, Qin X, Xia Z, Liu C. Increased expression of cathepsin C in airway epithelia exacerbates airway remodeling in asthma. JCI Insight 2024; 9:e181219. [PMID: 39436705 PMCID: PMC11601913 DOI: 10.1172/jci.insight.181219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Airway remodeling is a critical factor determining the pathogenesis and treatment sensitivity of severe asthma (SA) or uncontrolled asthma (UA). The activation of epithelial-mesenchymal trophic units (EMTUs) regulated by airway epithelial cells (AECs) has been proven to induce airway remodeling directly. However, the triggers for EMTU activation and the underlying mechanism of airway remodeling are not fully elucidated. Here, we screened the differentially expressed gene cathepsin C (CTSC; also known as dipeptidyl peptidase 1 [DPP-1]) in epithelia of patients with SA and UA using RNA-sequencing data and further verified the increased expression of CTSC in induced sputum of patients with asthma, which was positively correlated with severity and airway remodeling. Moreover, direct instillation of exogenous CTSC induced airway remodeling. Genetic inhibition of CTSC suppressed EMTU activation and airway remodeling in two asthma models with airway remodeling. Mechanistically, increased secretion of CTSC from AECs induced EMTU activation through the p38-mediated pathway, further inducing airway remodeling. Meanwhile, inhibition of CTSC also reduced the infiltration of inflammatory cells and the production of inflammatory factors in the lungs of asthmatic mice. Consequently, targeting CTSC with compound AZD7986 protected against airway inflammation, EMTU activation, and remodeling in the asthma model. Based on the dual effects of CTSC on airway inflammation and remodeling, CTSC is a potential biomarker and therapeutic target for SA or UA.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Qingwu Qin
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ye Yao
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Long Chen
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
- Functional Center, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Xizi Du
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Ming Ji
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Xinyu Wu
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Weijie Wang
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Qiuyan Qin
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Bei Qing
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Zhenkun Xia
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chi Liu
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| |
Collapse
|
2
|
Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model. J Allergy Clin Immunol 2023; 151:431-446.e16. [PMID: 36243221 DOI: 10.1016/j.jaci.2022.09.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Airway epithelial cells (AECs) with impaired barrier function contribute to airway remodeling through the activation of epithelial-mesenchymal trophic units (EMTUs). Although the decreased expression of ITGB4 in AECs is implicated in the pathogenesis of asthma, how ITGB4 deficiency impacts airway remodeling remains obscure. OBJECTIVE This study aims to determine the effect of epithelial ITGB4 deficiency on the barrier function of AECs, asthma susceptibility, airway remodeling, and EMTU activation. METHODS AEC-specific ITGB4 conditional knockout mice (ITGB4-/-) were generated and an asthma model was employed by the sensitization and challenge of house dust mite (HDM). EMTU activation-related growth factors were examined in ITGB4-silenced primary human bronchial epithelial cells of healthy subjects after HDM stimulation. Dexamethasone, the inhibitors of JNK phosphorylation or FGF2 were administered for the identification of the molecular mechanisms of airway remodeling in HDM-exposed ITGB4-/- mice. RESULTS ITGB4 deficiency in AECs enhanced asthma susceptibility and airway remodeling by disrupting airway epithelial barrier function. Aggravated airway remodeling in HDM-exposed ITGB4-/- mice was induced through the enhanced activation of EMTU mediated by Src homology domain 2-containing protein tyrosine phosphatase 2/c-Jun N-terminal kinase/Jun N-terminal kinase-dependent transcription factor/FGF2 (SHP2/JNK/c-Jun/FGF2) signaling pathway, which was partially independent of airway inflammation. Both JNK and FGF2 inhibitors significantly inhibited the aggravated airway remodeling and EMTU activation in HDM-exposed ITGB4-/- mice. CONCLUSIONS Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model of asthma through enhanced EMTU activation that is regulated by the SHP2/JNK/c-Jun/FGF2 pathway.
Collapse
|
3
|
Reichard A, Wanner N, Stuehr E, Alemagno M, Weiss K, Queisser K, Erzurum S, Asosingh K. Quantification of airway fibrosis in asthma by flow cytometry. Cytometry A 2018; 93:952-958. [PMID: 29659138 DOI: 10.1002/cyto.a.23373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/23/2018] [Accepted: 03/20/2018] [Indexed: 01/31/2023]
Abstract
Airway fibrosis is a prominent feature of asthma, contributing to the detrimental consequences of the disease. Fibrosis in the airway is the result of collagen deposition in the reticular lamina layer of the subepithelial tissue. Myofibroblasts are the leading cell type involved with this collagen deposition. Established methods of collagen deposition quantification present various issues, most importantly their inability to quantify current collagen biosynthesis occurring in airway myofibroblasts. Here, a novel method to quantify myofibroblast collagen expression in asthmatic lungs is described. Single cell suspensions of lungs harvested from C57BL/6 mice in a standard house dust mite model of asthma were employed to establish a flow cytometric method and compare collagen production in asthmatic and non-asthmatic lungs. Cells found to be CD45- αSMA+ , indicative of myofibroblasts, were gated, and median fluorescence intensity of the anti-collagen-I antibody labeling the cells was calculated. Lung myofibroblasts with no, medium, or high levels of collagen-I expression were distinguished. In asthmatic animals, collagen-I levels were increased in both medium and high expressers, and the number of myofibroblasts with high collagen-I content was elevated. Our findings determined that quantification of collagen-I deposition in myofibroblastic lung cells by flow cytometry is feasible in mouse models of asthma and indicative of increased collagen-I expression by asthmatic myofibroblasts. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Andrew Reichard
- Department of Inflammation and Immunity, The Cleveland Clinic, Cleveland, Ohio
| | - Nicholas Wanner
- Department of Inflammation and Immunity, The Cleveland Clinic, Cleveland, Ohio
| | - Eric Stuehr
- Department of Inflammation and Immunity, The Cleveland Clinic, Cleveland, Ohio
| | - Mario Alemagno
- Department of Inflammation and Immunity, The Cleveland Clinic, Cleveland, Ohio
| | - Kelly Weiss
- Department of Inflammation and Immunity, The Cleveland Clinic, Cleveland, Ohio
| | - Kimberly Queisser
- Department of Inflammation and Immunity, The Cleveland Clinic, Cleveland, Ohio
| | - Serpil Erzurum
- Department of Inflammation and Immunity, The Cleveland Clinic, Cleveland, Ohio.,Respiratory Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Kewal Asosingh
- Department of Inflammation and Immunity, The Cleveland Clinic, Cleveland, Ohio.,Flow Cytometry Core, Lerner Research Institute The Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
4
|
Maltby S, Tay HL, Yang M, Foster PS. Mouse models of severe asthma: Understanding the mechanisms of steroid resistance, tissue remodelling and disease exacerbation. Respirology 2017; 22:874-885. [PMID: 28401621 DOI: 10.1111/resp.13052] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023]
Abstract
Severe asthma has significant disease burden and results in high healthcare costs. While existing therapies are effective for the majority of asthma patients, treatments for individuals with severe asthma are often ineffective. Mouse models are useful to identify mechanisms underlying disease pathogenesis and for the preclinical assessment of new therapies. In fact, existing mouse models have contributed significantly to our understanding of allergic/eosinophilic phenotypes of asthma and facilitated the development of novel targeted therapies (e.g. anti-IL-5 and anti-IgE). These therapies are effective in relevant subsets of severe asthma patients. Unfortunately, non-allergic/non-eosinophilic asthma, steroid resistance and disease exacerbation remain areas of unmet clinical need. No mouse model encompasses all features of severe asthma. However, mouse models can provide insight into pathogenic pathways that are relevant to severe asthma. In this review, as examples, we highlight models relevant to understanding steroid resistance, chronic tissue remodelling and disease exacerbation. Although these models highlight the complexity of the immune pathways that may underlie severe asthma, they also provide insight into new potential therapeutic approaches.
Collapse
Affiliation(s)
- Steven Maltby
- Hunter Medical Research Institute, Priority Research Centre for Healthy Lungs, Newcastle, New South Wales, Australia.,Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Hock L Tay
- Hunter Medical Research Institute, Priority Research Centre for Healthy Lungs, Newcastle, New South Wales, Australia.,Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Ming Yang
- Hunter Medical Research Institute, Priority Research Centre for Healthy Lungs, Newcastle, New South Wales, Australia.,Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Paul S Foster
- Hunter Medical Research Institute, Priority Research Centre for Healthy Lungs, Newcastle, New South Wales, Australia.,Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
5
|
Airway remodeling in asthma: what really matters. Cell Tissue Res 2017; 367:551-569. [PMID: 28190087 PMCID: PMC5320023 DOI: 10.1007/s00441-016-2566-8] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
Abstract
Airway remodeling is generally quite broadly defined as any change in composition, distribution, thickness, mass or volume and/or number of structural components observed in the airway wall of patients relative to healthy individuals. However, two types of airway remodeling should be distinguished more clearly: (1) physiological airway remodeling, which encompasses structural changes that occur regularly during normal lung development and growth leading to a normal mature airway wall or as an acute and transient response to injury and/or inflammation, which ultimately results in restoration of a normal airway structures; and (2) pathological airway remodeling, which comprises those structural alterations that occur as a result of either disturbed lung development or as a response to chronic injury and/or inflammation leading to persistently altered airway wall structures and function. This review will address a few major aspects: (1) what are reliable quantitative approaches to assess airway remodeling? (2) Are there any indications supporting the notion that airway remodeling can occur as a primary event, i.e., before any inflammatory process was initiated? (3) What is known about airway remodeling being a secondary event to inflammation? And (4), what can we learn from the different animal models ranging from invertebrate to primate models in the study of airway remodeling? Future studies are required addressing particularly pheno-/endotype-specific aspects of airway remodeling using both endotype-specific animal models and “endotyped” human asthmatics. Hopefully, novel in vivo imaging techniques will be further advanced to allow monitoring development, growth and inflammation of the airways already at a very early stage in life.
Collapse
|
6
|
Kim N, Duncan GA, Hanes J, Suk JS. Barriers to inhaled gene therapy of obstructive lung diseases: A review. J Control Release 2016; 240:465-488. [PMID: 27196742 DOI: 10.1016/j.jconrel.2016.05.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/29/2022]
Abstract
Knowledge of genetic origins of obstructive lung diseases has made inhaled gene therapy an attractive alternative to the current standards of care that are limited to managing disease symptoms. Initial lung gene therapy clinical trials occurred in the early 1990s following the discovery of the genetic defect responsible for cystic fibrosis (CF), a monogenic disorder. However, despite over two decades of intensive effort, gene therapy has yet to help patients with CF or any other obstructive lung disease. The slow progress is due in part to poor understanding of the biological barriers to inhaled gene therapy. Encouragingly, clinical trials have shown that inhaled gene therapy with various viral vectors and non-viral gene vectors is well tolerated by patients, and continued research has provided valuable lessons and resources that may lead to future success of this therapeutic strategy. In this review, we first introduce representative obstructive lung diseases and examine limitations of currently available therapeutic options. We then review key components for successful execution of inhaled gene therapy, including gene delivery systems, primary physiological barriers and strategies to overcome them, and advances in preclinical disease models with which the most promising systems may be identified for human clinical trials.
Collapse
Affiliation(s)
- Namho Kim
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregg A Duncan
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Justin Hanes
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Environmental and Health Sciences, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jung Soo Suk
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
7
|
Abstract
Several years ago, omalizumab became commercially available for the treatment of severe asthma. It remains the only monoclonal antibody to be marketed for this purpose. Since then, many studies have been published endorsing its efficacy and effectiveness. Concomitantly, evidence of an overlap between atopic and non-atopic severe asthma has emerged. However, there also appears to be some disagreement regarding the value of omalizumab in the management of non-atopic disease, as some studies have failed to show any benefit in these patients. The recent literature has also sought to identify appropriate prognostic biomarkers for the use of omalizumab, other than immunoglobulin (IgE) levels. This article briefly summarizes the evolution of asthma treatment, the pathophysiology of the condition, and the method of action of omalizumab. The author describes the controlled and uncontrolled studies (also named "real-life studies") published in adult and pediatric populations in different countries and expresses his view on the current place of the drug in the management of severe allergic asthma. He offers a personal perspective on the recent evidence for the use of omalizumab in non-atopic patients, highlighting the implications for current clinical practice and the gaps in our knowledge. The author justifies his belief that omalizumab is not only an IgE-blocking drug and should be considered as a disease-modifying therapy because of its multiple effects on different biologic pathways. Finally, some areas for future research are indicated.
Collapse
Affiliation(s)
- Christian Domingo
- Pulmonary Service, Hospital de Sabadell (Corporació Sanitària i Universitària Parc Taulí), Parc Taulí 1, 08208, Sabadell (Barcelona), Spain,
| |
Collapse
|
8
|
Christianson CA, Goplen NP, Zafar I, Irvin C, Good JT, Rollins DR, Gorentla B, Liu W, Gorska MM, Chu H, Martin RJ, Alam R. Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33. J Allergy Clin Immunol 2015; 136:59-68.e14. [PMID: 25617223 DOI: 10.1016/j.jaci.2014.11.037] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 01/18/2023]
Abstract
BACKGROUND Asthma in a mouse model spontaneously resolves after cessation of allergen exposure. We developed a mouse model in which asthma features persisted for 6 months after cessation of allergen exposure. OBJECTIVE We sought to elucidate factors contributing to the persistence of asthma. METHODS We used a combination of immunologic, genetic, microarray, and pharmacologic approaches to dissect the mechanism of asthma persistence. RESULTS Elimination of T cells though antibody-mediated depletion or lethal irradiation and transplantation of recombination-activating gene (Rag1)(-/-) bone marrow in mice with chronic asthma resulted in resolution of airway inflammation but not airway hyperreactivity or remodeling. Elimination of T cells and type 2 innate lymphoid cells (ILC2s) through lethal irradiation and transplantation of Rag2(-/-)γc(-/-) bone marrow or blockade of IL-33 resulted in resolution of airway inflammation and hyperreactivity. Persistence of asthma required multiple interconnected feedback and feed-forward circuits between ILC2s and epithelial cells. Epithelial IL-33 induced ILC2s, a rich source of IL-13. The latter directly induced epithelial IL-33, establishing a positive feedback circuit. IL-33 autoinduced, generating another feedback circuit. IL-13 upregulated IL-33 receptors and facilitated IL-33 autoinduction, thus establishing a feed-forward circuit. Elimination of any component of these circuits resulted in resolution of chronic asthma. In agreement with the foregoing, IL-33 and ILC2 levels were increased in the airways of asthmatic patients. IL-33 levels correlated with disease severity. CONCLUSIONS We present a critical network of feedback and feed-forward interactions between epithelial cells and ILC2s involved in maintaining chronic asthma. Although T cells contributed to the severity of chronic asthma, they were redundant in maintaining airway hyperreactivity and remodeling.
Collapse
Affiliation(s)
| | - Nicholas P Goplen
- Division of Allergy and Immunology, National Jewish Health, Denver, Colo
| | - Iram Zafar
- Division of Allergy and Immunology, National Jewish Health, Denver, Colo
| | - Chaoyu Irvin
- Division of Allergy and Immunology, National Jewish Health, Denver, Colo
| | - James T Good
- Division of Pulmonary Medicine, Department of Medicine, National Jewish Health, Denver, Colo
| | - Donald R Rollins
- Division of Pulmonary Medicine, Department of Medicine, National Jewish Health, Denver, Colo
| | | | - Weimin Liu
- Division of Allergy and Immunology, National Jewish Health, Denver, Colo
| | - Magdalena M Gorska
- Division of Allergy and Immunology, National Jewish Health, Denver, Colo; University of Colorado Denver, Denver, Colo
| | - HongWei Chu
- Division of Pulmonary Medicine, Department of Medicine, National Jewish Health, Denver, Colo; University of Colorado Denver, Denver, Colo
| | - Richard J Martin
- Division of Pulmonary Medicine, Department of Medicine, National Jewish Health, Denver, Colo; University of Colorado Denver, Denver, Colo
| | - Rafeul Alam
- Division of Allergy and Immunology, National Jewish Health, Denver, Colo; University of Colorado Denver, Denver, Colo.
| |
Collapse
|
9
|
Schmidt M, Mattoli S. A mouse model for evaluating the contribution of fibrocytes and myofibroblasts to airway remodeling in allergic asthma. Methods Mol Biol 2014; 1032:235-55. [PMID: 23943458 DOI: 10.1007/978-1-62703-496-8_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Airway remodeling is a term used to collectively indicate bronchial structural changes that may lead to irreversible airflow obstruction and progressive decline in lung function in asthmatic patients. Bronchial myofibroblasts contribute to airway remodeling by producing collagenous proteins in the subepithelial zone and by increasing the density of contractile cells in the bronchial wall. A substantial proportion of bronchial myofibroblasts in asthma differentiate from circulating mesenchymal progenitor cells known as fibrocytes. Here, we describe a mouse model of allergic asthma for evaluating the functional role of fibrocytes and myofibroblasts in this disease and the inhibitory effects of novel therapeutic candidates.
Collapse
|
10
|
Alrifai M, Marsh LM, Dicke T, Kılıç A, Conrad ML, Renz H, Garn H. Compartmental and temporal dynamics of chronic inflammation and airway remodelling in a chronic asthma mouse model. PLoS One 2014; 9:e85839. [PMID: 24465740 PMCID: PMC3897544 DOI: 10.1371/journal.pone.0085839] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/02/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Allergic asthma is associated with chronic airway inflammation and progressive airway remodelling. However, the dynamics of the development of these features and their spontaneous and pharmacological reversibility are still poorly understood. We have therefore investigated the dynamics of airway remodelling and repair in an experimental asthma model and studied how pharmacological intervention affects these processes. METHODS Using BALB/c mice, the kinetics of chronic asthma progression and resolution were characterised in absence and presence of inhaled corticosteroid (ICS) treatment. Airway inflammation and remodelling was assessed by the analysis of bronchoalveolar and peribronichal inflammatory cell infiltrate, goblet cell hyperplasia, collagen deposition and smooth muscle thickening. RESULTS Chronic allergen exposure resulted in early (goblet cell hyperplasia) and late remodelling (collagen deposition and smooth muscle thickening). After four weeks of allergen cessation eosinophilic inflammation, goblet cell hyperplasia and collagen deposition were resolved, full resolution of lymphocyte inflammation and smooth muscle thickening was only observed after eight weeks. ICS therapy when started before the full establishment of chronic asthma reduced the development of lung inflammation, decreased goblet cell hyperplasia and collagen deposition, but did not affect smooth muscle thickening. These effects of ICS on airway remodelling were maintained for a further four weeks even when therapy was discontinued. CONCLUSIONS Utilising a chronic model of experimental asthma we have shown that repeated allergen exposure induces reversible airway remodelling and inflammation in mice. Therapeutic intervention with ICS was partially effective in inhibiting the transition from acute to chronic asthma by reducing airway inflammation and remodelling but was ineffective in preventing smooth muscle hypertrophy.
Collapse
Affiliation(s)
- Mohammed Alrifai
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Medical Faculty, Philipps University Marburg, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research, Marburg, Germany
| | - Leigh M. Marsh
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Medical Faculty, Philipps University Marburg, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research, Marburg, Germany
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Tanja Dicke
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Medical Faculty, Philipps University Marburg, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research, Marburg, Germany
| | - Ayse Kılıç
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Medical Faculty, Philipps University Marburg, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research, Marburg, Germany
| | - Melanie L. Conrad
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Medical Faculty, Philipps University Marburg, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Medical Faculty, Philipps University Marburg, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research, Marburg, Germany
| | - Holger Garn
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Medical Faculty, Philipps University Marburg, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research, Marburg, Germany
- * E-mail:
| |
Collapse
|
11
|
Gabehart KE, Royce SG, Maselli DJ, Miyasato SK, Davis EC, Tang MLK, Jourdan Le Saux C. Airway hyperresponsiveness is associated with airway remodeling but not inflammation in aging Cav1-/- mice. Respir Res 2013; 14:110. [PMID: 24138138 PMCID: PMC4015038 DOI: 10.1186/1465-9921-14-110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/14/2013] [Indexed: 12/03/2022] Open
Abstract
Background Airway inflammation and airway remodeling are the key contributors to airway hyperresponsiveness (AHR), a characteristic feature of asthma. Both processes are regulated by Transforming Growth Factor (TGF)-β. Caveolin 1 (Cav1) is a membrane bound protein that binds to a variety of receptor and signaling proteins, including the TGF-β receptors. We hypothesized that caveolin-1 deficiency promotes structural alterations of the airways that develop with age will predispose to an increased response to allergen challenge. Methods AHR was measured in Cav1-deficient and wild-type (WT) mice 1 to 12 months of age to examine the role of Cav1 in AHR and the relative contribution of inflammation and airway remodeling. AHR was then measured in Cav1-/- and WT mice after an ovalbumin-allergen challenge performed at either 2 months of age, when remodeling in Cav1-/- and WT mice was equivalent, and at 6 months of age, when the Cav1-/- mice had established airway remodeling. Results Cav1-/- mice developed increased thickness of the subepithelial layer and a correspondingly increased AHR as they aged. In addition, allergen-challenged Cav1-/- mice had an increase in AHR greater than WT mice that was largely independent of inflammation. Cav1-/- mice challenged at 6 months of age have decreased AHR compared to those challenged at 2 months with correspondingly decreased BAL IL-4 and IL-5 levels, inflammatory cell counts and percentage of eosinophils. In addition, in response to OVA challenge, the number of goblet cells and α-SMA positive cells in the airways were reduced with age in response to OVA challenge in contrast to an increased collagen deposition further enhanced in absence of Cav1. Conclusion A lack of Cav1 contributed to the thickness of the subepithelial layer in mice as they aged resulting in an increase in AHR independent of inflammation, demonstrating the important contribution of airway structural changes to AHR. In addition, age in the Cav1-/- mice is a contributing factor to airway remodeling in the response to allergen challenge.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claude Jourdan Le Saux
- Department of Cell and Molecular Biology, John A, Burns School of Medicine, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
12
|
Herbert C, Shadie AM, Kumar RK. Interleukin-17 signalling in a murine model of mild chronic asthma. Int Arch Allergy Immunol 2013; 162:253-62. [PMID: 24022125 DOI: 10.1159/000353247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/22/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The role of Th17 cell-derived cytokines in the pathogenesis of airway inflammation and remodelling in mild asthma remains unclear. We investigated this in a mouse model which reproduces most of the features of the human disease. METHODS Systemically sensitised BALB/c mice were challenged via the airways with a low mass concentration of ovalbumin aerosol for 8 weeks to induce lesions of mild chronic asthma. Changes were compared with those in animals deficient in signalling via the interleukin (IL)-17 receptor A (IL-17R). Low-passage airway epithelial cells (AEC) and fibroblasts were cultured with IL-17A, or with media from Th17-polarised cells, to assess activation. RESULTS In CD4+ T cells from chronically challenged mice, expression of mRNA for Th17 cytokines IL-17A, IL-17F, IL-21 and IL-22 was significantly increased. Both recombinant IL-17A and media from Th17 cells significantly stimulated the production of various pro-inflammatory and pro-remodelling cytokines by AEC and fibroblasts. In the mouse model, abrogation of IL-17R signalling had no effect on the development of airway inflammation or on most changes of remodelling. However, numbers of mucus-producing cells and expression of mRNA for Gob-5 were attenuated in the absence of IL-17R signalling. CONCLUSIONS Although IL-17A and Th17 cells stimulate cytokine production by structural cells of the airways, and Th17 cells are induced in our model of mild chronic asthma, signalling via IL-17R did not contribute significantly to the development of airway inflammation and most changes of remodelling in this model. However, in mild asthma, IL-17A appears to have a role in the goblet cell response in the airways.
Collapse
Affiliation(s)
- Cristan Herbert
- Inflammation and Infection Research, Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, N.S.W., Australia
| | | | | |
Collapse
|
13
|
Beckett EL, Stevens RL, Jarnicki AG, Kim RY, Hanish I, Hansbro NG, Deane A, Keely S, Horvat JC, Yang M, Oliver BG, van Rooijen N, Inman MD, Adachi R, Soberman RJ, Hamadi S, Wark PA, Foster PS, Hansbro PM. A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis. J Allergy Clin Immunol 2013; 131:752-62. [PMID: 23380220 PMCID: PMC4060894 DOI: 10.1016/j.jaci.2012.11.053] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND Cigarette smoke-induced chronic obstructive pulmonary disease (COPD) is a life-threatening inflammatory disorder of the lung. The development of effective therapies for COPD has been hampered by the lack of an animal model that mimics the human disease in a short timeframe. OBJECTIVES We sought to create an early-onset mouse model of cigarette smoke-induced COPD that develops the hallmark features of the human condition in a short time-frame. We also sought to use this model to better understand pathogenesis and the roles of macrophages and mast cells (MCs) in patients with COPD. METHODS Tightly controlled amounts of cigarette smoke were delivered to the airways of mice, and the development of the pathologic features of COPD was assessed. The roles of macrophages and MC tryptase in pathogenesis were evaluated by using depletion and in vitro studies and MC protease 6-deficient mice. RESULTS After just 8 weeks of smoke exposure, wild-type mice had chronic inflammation, mucus hypersecretion, airway remodeling, emphysema, and reduced lung function. These characteristic features of COPD were glucocorticoid resistant and did not spontaneously resolve. Systemic effects on skeletal muscle and the heart and increased susceptibility to respiratory tract infections also were observed. Macrophages and tryptase-expressing MCs were required for the development of COPD. Recombinant MC tryptase induced proinflammatory responses from cultured macrophages. CONCLUSION A short-term mouse model of cigarette smoke-induced COPD was developed in which the characteristic features of the disease were induced more rapidly than in existing models. The model can be used to better understand COPD pathogenesis, and we show a requirement for macrophages and tryptase-expressing MCs.
Collapse
Affiliation(s)
- Emma L Beckett
- Priority Research Centre for Asthma and Respiratory Disease and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Van der Velden J, Barker D, Barcham G, Koumoundouros E, Snibson K. Increased vascular density is a persistent feature of airway remodeling in a sheep model of chronic asthma. Exp Lung Res 2012; 38:307-15. [PMID: 22734813 DOI: 10.3109/01902148.2012.697975] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Increases in blood vessel density and vascular area are now recognized as important features of remodeled airways in asthma. However, the time sequence for these vascular changes and whether they resolve in the absence of continued antigenic exposure is not well elucidated. The aim of the present study was to correlate progressive changes in airway vascularity with changes in functional airway responses in sheep chronically challenged with house dust mite (HDM) allergen, and to examine the resolution of vascular remodeling following allergen withdrawal. METHODS Progressive changes in vascular indices were examined in four spatially separate lung segments that received weekly challenges with HDM allergen for 0, 8, 16, or 24 weeks. Reversibility of these changes was assessed in a separate experiment in which two lung segments received 24 weeks of HDM challenges and either no rest or 12 weeks rest. Lung tissue was collected from each segment 7 days following the final challenge and vascular changes assessed by a morphometric analysis of airways immunohistochemically stained with an antibody against type IV collagen. RESULTS Blood vessel density and percent airway vascularity were significantly increased in bronchi following 24 weeks of HDM challenges compared to untreated controls (P < .05), but not at any of the other time-points. There was no significant correlation between vascular indices and airway responses to allergic or nonspecific stimuli. The increase in blood vessel density induced by repeated allergen exposures did not return to baseline levels following a 12-week withdrawal period from allergen. CONCLUSIONS Our results show for the first time that the airways of sheep chronically exposed to HDM allergen undergo vascular remodeling. These findings show the potential of this large animal model for investigating airway angiogenesis in asthma.
Collapse
Affiliation(s)
- Joanne Van der Velden
- Department of Veterinary Science, Centre for Animal Biotechnology, University of Melbourne, Parkville, Australia
| | | | | | | | | |
Collapse
|
15
|
Kumar RK, Foster PS. Are mouse models of asthma appropriate for investigating the pathogenesis of airway hyper-responsiveness? Front Physiol 2012; 3:312. [PMID: 23060800 PMCID: PMC3459343 DOI: 10.3389/fphys.2012.00312] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 07/15/2012] [Indexed: 01/05/2023] Open
Abstract
Whether mouse models of chronic asthma can be used to investigate the relationship between airway inflammation/remodeling and airway hyper-responsiveness (AHR) is a vexed question. It raises issues about the extent to which such models replicate key features of the human disease. Here, we review some of the characteristic pathological features of human asthma and their relationship to AHR and examine some limitations of mouse models that are commonly used to investigate these relationships. We compare these conventional models with our mouse model of chronic asthma involving long-term low-level inhalational challenge and review studies of the relationship between inflammation/remodeling and AHR in this model and its derivatives, including models of an acute exacerbation of chronic asthma and of the induction phase of childhood asthma. We conclude that while extrapolating from studies in mouse models to AHR in humans requires cautious interpretation, such experimental work can provide significant insights into the pathogenesis of airway responsiveness and its molecular and cellular regulation.
Collapse
Affiliation(s)
- Rakesh K Kumar
- Department of Pathology, School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | | |
Collapse
|
16
|
Abstract
Airway remodeling is a central feature of asthma. It is exemplified by thickening of the lamina reticularis and structural changes to the epithelium, submucosa, smooth muscle, and vasculature of the airway wall. Airway remodeling may result from persistent airway inflammation. Immunoglobulin E (IgE) is an important mediator of allergic reactions and has a central role in airway inflammation and asthma-related symptoms. Anti-IgE therapies (such as omalizumab) have the potential to block an early step in the allergic cascade and therefore have the potential to reduce airway remodeling. The reduction in free IgE levels following anti-IgE therapy leads to reductions in high-affinity IgE receptor (FcεRI) expression on mast cells, basophils, and dendritic cells. This combined effect results in attenuation of several markers of inflammation, including peripheral and bronchial tissue eosinophilia and levels of granulocyte macrophage colony-stimulating factor, interleukin (IL)-2, IL-4, IL-5, and IL-13. Considering the previously demonstrated anti-inflammatory effects of anti-IgE therapy, along with results from a small study showing continued benefit after discontinuation of long-term treatment, a larger study to assess its effect on markers of airway remodeling is underway.
Collapse
Affiliation(s)
- K F Rabe
- Department of Medicine, University Kiel, Kiel, Germany and Krankenhaus Grosshansdorf, Center for Pulmonology and Thoracic Surgery, Wöhrendamm 80, Grosshansdorf, Germany.
| | | | | | | |
Collapse
|
17
|
Stevenson CS, Birrell MA. Moving towards a new generation of animal models for asthma and COPD with improved clinical relevance. Pharmacol Ther 2010; 130:93-105. [PMID: 21074553 DOI: 10.1016/j.pharmthera.2010.10.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 10/11/2010] [Indexed: 12/18/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are complex inflammatory airway diseases characterised by airflow obstruction that remain leading causes of hospitalization and death worldwide. Animal modelling systems that accurately reflect disease pathophysiology continue to be essential to the development of new therapies for both conditions. In this review, we describe preclinical in vivo models that recapitulate many of the features of asthma and COPD. Specifically, we discuss the pro's and con's of the standard models and highlight recently developed systems designed to more accurately reflect the complexity of both diseases. For instance, clinically relevant allergens (i.e. house dust mite) are now being used to mimic the inflammatory changes and airway remodelling that result after chronic allergen exposures. Additionally, systems are being developed to mimic steroid-resistant and viral exacerbations of allergic inflammation - aspects of asthma where there is an acute need for new therapies. Similarly, COPD models have evolved to align with the improved clinical understanding of the factors contributing to disease progression. This includes using cigarette smoke to model not only airway inflammation and remodelling, but some systemic changes (e.g. hypertension and skeletal muscle alterations) that are thought to influence disease. Further, mouse genetics are being exploited to gain insights into the genetics of COPD susceptibility. The new models of asthma and COPD described herein demonstrate that improved clinical understanding of the diseases and better preclinical models is an iterative process that will hopefully lead to therapies that can effectively manage severe asthma and COPD.
Collapse
|
18
|
Combined sensitization of mice to extracts of dust mite, ragweed, and Aspergillus species breaks through tolerance and establishes chronic features of asthma. J Allergy Clin Immunol 2009; 123:925-32.e11. [PMID: 19348928 DOI: 10.1016/j.jaci.2009.02.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 01/20/2009] [Accepted: 02/03/2009] [Indexed: 11/23/2022]
Abstract
BACKGROUND Existing asthma models develop tolerance when chronically exposed to the same allergen. OBJECTIVE We sought to establish a chronic model that sustains features of asthma long after discontinuation of allergen exposure. METHODS We immunized and exposed mice to a combination of single, double, or triple allergens (dust mite, ragweed, and Aspergillus species) intranasally for 8 weeks. Airway hyperreactivity (AHR) and morphologic features of asthma were studied 3 weeks after allergen exposure. Signaling effects of the allergens were studied on dendritic cells. RESULTS Sensitization and repeated exposure to a single allergen induced tolerance. Sensitization to double and especially triple allergens broke through tolerance and established AHR, eosinophilic inflammation, mast cell and smooth muscle hyperplasia, mucus production, and airway remodeling that persisted at least 3 weeks after allergen exposure. Mucosal exposure to triple allergens in the absence of an adjuvant was sufficient to induce chronic airway inflammation. Anti-IL-5 and anti-IL-13 antibodies inhibited inflammation and AHR in the acute asthma model but not in the chronic triple-allergen model. Multiple allergens produce a synergy in p38 mitogen-activated protein kinase signaling and maturation of dendritic cells, which provides heightened T-cell costimulation at a level that cannot be achieved with a single allergen. CONCLUSIONS Sensitivity to multiple allergens leads to chronic asthma in mice. Multiple allergens synergize in dendritic cell signaling and T-cell stimulation that allows escape from the single allergen-associated tolerance development.
Collapse
|
19
|
Nials AT, Uddin S. Mouse models of allergic asthma: acute and chronic allergen challenge. Dis Model Mech 2009; 1:213-20. [PMID: 19093027 DOI: 10.1242/dmm.000323] [Citation(s) in RCA: 291] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Asthma is defined as a chronic inflammatory disease of the airways; however, the underlying physiological and immunological processes are not fully understood. Animal models have been used to elucidate asthma pathophysiology, and to identify and evaluate novel therapeutic targets. Several recent review articles (Epstein, 2004; Lloyd, 2007; Boyce and Austen, 2005; Zosky and Sly, 2007) have discussed the potential value of these models. Allergen challenge models reproduce many features of clinical asthma and have been widely used by investigators; however, the majority involve acute allergen challenge procedures. It is recognised that asthma is a chronic inflammatory disease resulting from continued or intermittent allergen exposure, usually via inhalation, and there has been a recent focus on developing chronic allergen exposure models, predominantly in mice. Here, we review the acute and chronic exposure mouse models, and consider their potential role and impact in the field of asthma research.
Collapse
Affiliation(s)
- Anthony T Nials
- Discovery Biology, Respiratory Centre of Excellence for Drug Discovery, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK.
| | | |
Collapse
|
20
|
Roth M, Black JL. An imbalance in C/EBPs and increased mitochondrial activity in asthmatic airway smooth muscle cells: novel targets in asthma therapy? Br J Pharmacol 2009; 157:334-41. [PMID: 19371343 DOI: 10.1111/j.1476-5381.2009.00188.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The asthma prevalence was increasing over the past two decades worldwide. Allergic asthma, caused by inhaled allergens of different origin or by food, is mediated by inflammatory mechanisms. The action of non-allergic asthma, induced by cold air, humidity, temperature or exercise, is not well understood. Asthma affects up to 15% of the population and is treated with anti-inflammatory and muscle relaxing drugs which allow symptom control. Asthma was first defined as a malfunction of the airway smooth muscle, later as an imbalanced immune response of the lung. Recent studies placed the airway smooth muscle again into the focus. Here we summarize the molecular biological basis of the deregulated function of the human airway smooth muscle cell as a cause or important contributor to the pathology of asthma. In the asthmatic human airway smooth muscle cells, there is: (i) a deregulation of cell differentiation due to low levels of maturation-regulating transcription factors such as CCAAT/enhancer binding proteins and peroxisome proliferator-activated receptors, thereby reducing the cells threshold to proliferate and to secrete pro-inflammatory cytokines under certain conditions; (ii) a higher basal energy turnover that is due to increased number and activity of mitochondria; and (iii) a modified feedback mechanism between cells and the extracellular matrix they are embedded in. All these cellular pathologies are linked to each other and to the innate immune response of the lung, but the sequence of events is unclear and needs further investigation. However, these findings may present the basis for the development of novel curative asthma drugs.
Collapse
Affiliation(s)
- Michael Roth
- Pulmonary Cell Research, Pneumology, University Hospital Basel, Biomedicine, Lab 305, Petersgraben 4, Basel CH-4031, Switzerland.
| | | |
Collapse
|
21
|
Gao FS, Qiao JO, Zhang Y, Jin XQ. Chronic intranasal administration of Aspergillus fumigatus spores leads to aggravation of airway inflammation and remodelling in asthmatic rats. Respirology 2009; 14:360-70. [PMID: 19207119 DOI: 10.1111/j.1440-1843.2009.01482.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Epidemiological evidence indicates a close link between exposure to fungi and deterioration of asthma. However, the role of fungi as an exogenous precipitant for initiation and progression of asthma has been incompletely explored. In this study, the effects of Aspergillus fumigatus exposure on airway inflammation and remodelling in a rat model of chronic asthma were investigated. METHODS The rat model of chronic asthma was established by systemic sensitization and repeated challenge with ovalbumin (OVA). The asthmatic rats were exposed to chronic intranasal inhalation of A. fumigatus spores. Changes in airway inflammation, remodelling and BHR were measured after exposure to the fungus. RESULTS Chronic inhalation of A. fumigatus spores elevated the production of T helper 2 (Th2) cytokines, increased the concentration of total serum IgE, and resulted in the recruitment of eosinophils and lymphocyte infiltration into the airways of asthmatic rats. Goblet cell hyperplasia, mucus hyperproduction and subepithelial collagen deposition were also induced by inhalation of the fungus. The remodelling changes induced by inhalation of the fungus paralleled the changes in BHR in this rat model of asthma. CONCLUSIONS Chronic exposure to A. fumigatus aggravated Th2 airway inflammation, promoted airway remodelling and increased BHR in OVA-sensitized and -challenged rats.
Collapse
Affiliation(s)
- Fu-Sheng Gao
- Department of Respiratory Medicine, First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | | | | | | |
Collapse
|
22
|
Hirshoren N, Eliashar R. Wound-healing modulation in upper airway stenosis-Myths and facts. Head Neck 2009; 31:111-26. [DOI: 10.1002/hed.20925] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
23
|
Buchweitz JP, Harkema JR, Kaminski NE. Time-dependent airway epithelial and inflammatory cell responses induced by influenza virus A/PR/8/34 in C57BL/6 mice. Toxicol Pathol 2007; 35:424-35. [PMID: 17487773 DOI: 10.1080/01926230701302558] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present study examines the kinetics of airway epithelial remodeling and inflammation in the airways of C57BL/6J mice infected with influenza virus A/PR/8/34 (PR8). Mice were intranasally instilled with 50 plaque forming units (pfu) of virus or its respective vehicle, saline, and then were sacrificed at 3, 7, 10, 15, or 21 days postinfection (dpi). PR8 treatment resulted in airway epithelial cell regeneration as suggested by proliferating cell nuclear antigen (PCNA) positive staining at 7 and 10 dpi and mucous cell metaplasia (MCM) evident at 10, 15, and 21 dpi. PR8 treatment resulted in a classic pattern of inflammation observed in bronchoalveolar lavage fluid (BALF), in which neutrophils peaked at 3 and 7 dpi and monocytes, lymphocytes, and eosinophils peaked at 10 dpi before returning to background levels of detection. Chemokine (MCP-1) and cytokine (IL-6, TNF-alpha, IFN-gamma, IL-5, IL-4, and IL-9) levels peaked at 7 dpi in BALF. IL-13 levels were unaffected by PR8 treatment. Concurrent with inflammation, MUC5AC gene expression was markedly increased by PR8 treatment at 7 dpi. Collectively, the results of this study indicate that the onset of MCM in airway epithelium occurs during the remodeling process and persists after the inflammatory response has diminished.
Collapse
Affiliation(s)
- John P Buchweitz
- Department of Pharmacology and Toxicology, National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
24
|
Abstract
Allergic asthma is a complex disease that has been modeled extensively in small rodents. Airway eosinophilia and changes in lung function have been documented using a variety of protocols. However, recent efforts have improved these models by trying to replicate the structural remodeling that occurs in the lung as a consequence of chronic allergen-driven inflammation. This review documents the recent developments in protocols and systems designed to examine pathways leading to allergen-induced airway remodeling.
Collapse
Affiliation(s)
- Clare M Lloyd
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London SW7 2AZ, England.
| |
Collapse
|
25
|
Kirschvink N, Leemans J, Delvaux F, Snaps F, Clercx C, Gustin P. Functional, inflammatory and morphological characterisation of a cat model of allergic airway inflammation. Vet J 2007; 174:541-53. [PMID: 17306576 DOI: 10.1016/j.tvjl.2006.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 11/01/2006] [Accepted: 11/03/2006] [Indexed: 11/25/2022]
Abstract
The aims of this study were to characterise a model of feline allergic airway inflammation and to test through a longitudinal investigation whether five repeated allergen exposures would lead to signs of airway remodelling that would be detectable in vivo. Eight healthy control cats and eight cats sensitised with Ascaris suum allergens were investigated. Barometric whole body plethysmography (BWBP) was used for the assessment of respiratory variables and airway responsiveness (AR). Bronchoalveolar lavage fluid (BALF) was sampled for cytology and determination of F(2)-isoprostane concentration and matrix metalloproteinase type 9 (MMP-9) activity. Thoracic radiography and bronchoscopy scores were also established. Cats were investigated prior to sensitisation and after inhalation of placebo or allergen challenge 1. BWBP measurements revealed a significant increase of enhanced pause (Penh), an index of bronchoconstriction, and AR in sensitised cats in response to allergen challenge 1. A significant increase in BALF neutrophil and eosinophil %, F(2)-isoprostane concentration and MMP-9 activity, and increased radiography and bronchoscopy scores were recorded. After a recovery period of 6 weeks, all variables except BALF MMP-9 returned to baseline values. Four further allergen challenges induced similar changes to those seen in challenge 1 and no signs of persistent changes suggestive of bronchial remodelling were detectable. The model provides an in vivo approach to functional, inflammatory and morphological changes occurring in response to single and repeated allergen exposure.
Collapse
Affiliation(s)
- Nathalie Kirschvink
- Department for Functional Sciences B41, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
26
|
Fernández-Caldas E, Iraola V, Boquete M, Nieto A, Casanovas M. Mite immunotherapy. Curr Allergy Asthma Rep 2006; 6:413-9. [PMID: 16899204 DOI: 10.1007/s11882-996-0015-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Dermatophagoides pteronyssinus and D. farinae are the most common house dust mites and are among the most common sources of indoor allergens worldwide. These species are very common in humid regions, where most allergic individuals are sensitized to house dust mites. Specific immunotherapy with mite extracts has demonstrated clinical benefits in several double-blind, placebo-controlled trials that are included in recent reviews of subcutaneous immunotherapy, including pediatric and adult patients with rhinoconjunctivitis and or asthma. Most successful studies of mite immunotherapy have used native allergen extracts adsorbed onto aluminum hydroxide, or chemically modified mite-allergen extracts. Several studies have also shown efficacy using sublingual immunotherapy in pediatric and adult patients with asthma and/or rhinitis. Additionally, the efficacy of subcutaneous immunotherapy has been demonstrated in patients with atopic dermatitis, although more double-blind, placebo-controlled studies are needed. Based on several studies, it cannot be concluded that mite immunotherapy is more dangerous or safer than immunotherapy with grasses, epithelia, or animal epithelia. Because the delivery of high doses of allergen carries with it the risk for immunoglobulin E (IgE)-mediated events, several methods have been developed to reduce specific IgE binding to mite-allergen extracts. An important challenge for future mite immunotherapy modalities is the delivery of relatively high doses without a significant risk for severe reactions.
Collapse
|
27
|
Lofgren JLS, Mazan MR, Ingenito EP, Lascola K, Seavey M, Walsh A, Hoffman AM. Restrained whole body plethysmography for measure of strain-specific and allergen-induced airway responsiveness in conscious mice. J Appl Physiol (1985) 2006; 101:1495-505. [PMID: 16857859 DOI: 10.1152/japplphysiol.00464.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mouse is the most extensively studied animal species in respiratory research, yet the technologies available to assess airway function in conscious mice are not universally accepted. We hypothesized that whole body plethysmography employing noninvasive restraint (RWBP) could be used to quantify specific airway resistance (sRaw-RWBP) and airway responsiveness in conscious mice. Methacholine responses were compared using sRaw-RWBP vs. airway resistance by the forced oscillation technique (Raw-FOT) in groups of C57, A/J, and BALB/c mice. sRaw-RWBP was also compared with sRaw derived from double chamber plethysmography (sRaw-DCP) in BALB/c. Finally, airway responsiveness following allergen challenge in BALB/c was measured using RWBP. sRaw-RWBP in C57, A/J, and BALB/c mice was 0.51 +/- 0.03, 0.68 +/- 0.03, and 0.63 +/- 0.05 cm/s, respectively. sRaw derived from Raw-FOT and functional residual capacity (Raw*functional residual capacity) was 0.095 cm/s, approximately one-fifth of sRaw-RWBP in C57 mice. The intra- and interanimal coefficients of variations were similar between sRaw-RWBP (6.8 and 20.1%) and Raw-FOT (3.4 and 20.1%, respectively). The order of airway responsiveness employing sRaw-RWBP was AJ > BALBc > C57 and for Raw-FOT was AJ > BALB/c = C57. There was no difference between the airway responsiveness assessed by RWBP vs. DCP; however, baseline sRaw-RWBP was significantly lower than sRaw-DCP. Allergen challenge caused a progressive decrease in the provocative concentration of methacholine that increased sRaw to 175% postsaline values based on sRaw-RWBP. In conclusion, the technique of RWBP was rapid, reproducible, and easy to perform. Airway responsiveness measured using RWBP, DCP, and FOT was equivalent. Allergen responses could be followed longitudinally, which may provide greater insight into the pathogenesis of chronic airway disease.
Collapse
Affiliation(s)
- Jennifer L S Lofgren
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA 01536, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
ZHU Y, ZHOU LF, JIANG XB, YIN KS. Pulmonary major histocompatability complex expression pattern is suggestive of the characteristics of airway antigen. Chin Med J (Engl) 2006. [DOI: 10.1097/00029330-200604020-00013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
29
|
Fulkerson PC, Rothenberg ME, Hogan SP. Building a better mouse model: experimental models of chronic asthma. Clin Exp Allergy 2006; 35:1251-3. [PMID: 16238782 DOI: 10.1111/j.1365-2222.2005.02354.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Current World Literature. Curr Opin Allergy Clin Immunol 2006; 6:67-9. [PMID: 16505615 DOI: 10.1097/01.all.0000202355.95779.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Current World Literature. Curr Opin Allergy Clin Immunol 2005. [DOI: 10.1097/01.all.0000175939.68435.7e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|