1
|
Abulaiti K, Aikepa M, Ainaidu M, Wang J, Yizibula M, Aikemu M. Metabolomics combined with network pharmacology reveals anti-asthmatic effects of Nepeta bracteata on allergic asthma rats. CHINESE HERBAL MEDICINES 2024; 16:599-611. [PMID: 39606263 PMCID: PMC11589474 DOI: 10.1016/j.chmed.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 11/29/2024] Open
Abstract
Objective To investigate the mechanisms that underlie the anti-asthmatic effects of Nepeta bracteata (DBJJ, Dabao Jingjie in Chinese) in rats by integrating metabolomics and network pharmacology. Methods In this study, the rat model of asthma was induced by ovalbumin (OVA), and the rats were treated with a decoction of N. bracteata. Pathological changes in lung tissue were observed, and the quantification of eosinophils (EOS) and white blood cells (WBC) in bronchoalveolar lavage fluid was performed. Furthermore, the serum levels of asthma-related factors induced by OVA were assessed. 1H NMR spectroscopy serum metabolomics method was utilized to identify differential metabolites and their associated metabolic pathways. UPLC-QE-MS/MS combined with network pharmacology was employed to predict the core targets and pathways of DBJJ in its action against asthma. The anti-asthmatic properties of DBJJ were investigated using an integrated approach of metabolomics and network pharmacology. The findings were validated through molecular docking and Western blotting analysis of the key targets. Results The administration of DBJJ effectively alleviated OVA-induced lung histopathological changes and decreased the number of EOS and WBC in BALF. Additionally, DBJJ inhibited the OVA-induced elevation of TNF-α, IL-18, Ig-E, EOS, IL-1β, MDA, VEGF-A, and TGF-β1. A total of 21 biomarkers and 10 pathways were found by metabolomics analysis. A total of 29 compounds were identified by UPLC-QE-MS/MS, in which 13 active components were screened by oral availability and Caco-2 cell permeability, the 120 targets and 173 KEGG pathways were predicted. The integration of metabolomics and network pharmacological analysis revealed that DBJJ's main constituents, including ferulic acid and ursolic acid, exerted their effects on four targets, namely DAO and NOS2, as well as their associated metabolites and pathways. The active constituents of DBJJ demonstrated a high binding affinity towards DAO and NOS2. Furthermore, DBJJ was observed to decrease the protein expression and phosphorylation levels of NOS2, MAPK, and STAT3. Conclusion The administration of DBJJ demonstrates notable anti-asthma properties in rats with allergic asthma. This effect can be attributed to the modulation of various targets, including NOS2, MAPK, and STAT3, by primary constituents such as ferulic acid and ursolic acid.
Collapse
Affiliation(s)
- Kailibinuer Abulaiti
- Institute of Traditional Uyghur Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Miheleayi Aikepa
- Institute of Traditional Uyghur Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Mireguli Ainaidu
- Institute of Traditional Uyghur Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Jiaxin Wang
- Institute of Traditional Uyghur Medicine, Xinjiang Medical University, Urumqi 830017, China
| | | | - Maihesumu Aikemu
- Institute of Traditional Uyghur Medicine, Xinjiang Medical University, Urumqi 830017, China
| |
Collapse
|
2
|
Kim SR, Um YJ, Chung SI, Jeong KY, Park HJ, Park KH, Park JW, Park SG, Lee JH. Anti-aminoacyl-tRNA synthetase-interacting multifunctional protein-1 antibody improves airway inflammation in mice with house dust mite induced asthma. World Allergy Organ J 2024; 17:100956. [PMID: 39262899 PMCID: PMC11388501 DOI: 10.1016/j.waojou.2024.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024] Open
Abstract
Background Several biologics have been developed and used to treat severe asthma. However, commercialized biologics have limitations in treating T2-low asthma because their main target is the T2 inflammation marker. Therefore, there is an unmet need for treating T2-low severe asthma. Aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1) is an auxiliary protein in the mammalian multi-aminoacyl-tRNA synthetase complex. AIMP1 also acts as a cytokine and induces the secretion of proinflammatory cytokines. Since anti-AIMP1 has been shown to reduce interleukin (IL)-6, tumor necrosis factor-α, and IL-17A levels in a mouse model, it could be effective in the treatment of T2-low severe asthma. Methods Wild-type BALB/c mice were sensitized and challenged with intranasal inoculation of a crude HDM extract. Atliximab, a chimeric AIMP1 antibody, was administered once (20 μg, 40 μg, 100 μg) on Day 14. We evaluated airway hyperresponsiveness (AHR), performed cellular analyses of the bronchoalveolar lavage fluid (BALF), measured inflammatory cytokine levels, and examined peribronchial histological features. Results Atliximab reduced AIMP1 levels in asthmatic mice in a dose-dependent manner. AHR and Inflammatory cells such as neutrophils and eosinophils in the BALF decreased in asthmatic mice treated with atliximab. The levels of IL-6, IL-13, and transforming growth factor-β (TGF-β) in the lung tissue decreased in asthmatic mice treated with a high dose of atliximab (100 μg). Atliximab also reduced goblet cell hyperplasia and peribronchial fibrosis. Conclusions Atliximab improved asthmatic airway inflammation including neutrophilic inflammation in HDM-induced asthma mice. These data suggest that anti-AIMP1 plays an important role in the treatment of severe T2-low asthma.
Collapse
Affiliation(s)
- Sung-Ryeol Kim
- Yongin Severance Hospital, Yonsei University College of Medicine, Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Kyounggi-do, Republic of Korea
| | - Yun Jung Um
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Sook In Chung
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Yong Jeong
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Jung Park
- Gangnam Severance Hospital, Yonsei University College of Medicine, Department of Internal Medicine, Seoul, Republic of Korea
| | - Kyung Hee Park
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei University College of Medicine, Division of Allergy and Immunology, Department of Internal Medicine, Seoul, Republic of Korea
| | - Jung-Won Park
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei University College of Medicine, Division of Allergy and Immunology, Department of Internal Medicine, Seoul, Republic of Korea
| | - Sang Gyu Park
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Jae-Hyun Lee
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei University College of Medicine, Division of Allergy and Immunology, Department of Internal Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Reza Naghdi M, Ahadi R, Motamed Nezhad A, Sadat Ahmadi Tabatabaei F, Soleimani M, Hajisoltani R. The neuroprotective effect of Diosgenin in the rat Valproic acid model of autism. Brain Res 2024; 1838:148963. [PMID: 38705555 DOI: 10.1016/j.brainres.2024.148963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND AND AIM Autism spectrum disorder (ASD) is a neurodevelopmental disorder with two core behavioral symptoms restricted/repetitive behavior and social-communication deficit. The unknown etiology of ASD makes it difficult to identify potential treatments. Valproic acid (VPA) is an anticonvulsant drug with teratogenic effects during pregnancy in humans and rodents. Prenatal exposure to VPA induces autism-like behavior in both humans and rodents. This study aimed to investigate the protective effects of Diosgenin in prenatal Valproic acid-induced autism in rats. METHOD pregnant Wister female rats were given a single intraperitoneal injection of VPA (600 mg/kg, i.p.) on gestational day 12.5. The male offspring were given oral Dios (40 mg/kg, p.o.) or Carboxymethyl cellulose (5 mg/kg, p.o.) for 30 days starting from postnatal day 23. On postnatal day 52, behavioral tests were done. Additionally, biochemical assessments for oxidative stress markers were carried out on postnatal day 60. Further, histological evaluations were performed on the prefrontal tissue by Nissl staining and Immunohistofluorescence. RESULTS The VPA-exposed rats showed increased anxiety-like behavior in the elevated plus maze (EPM). They also demonstrated repetitive and grooming behaviors in the marble burying test (MBT) and self-grooming test. Social interaction was reduced, and they had difficulty detecting the novel object in the novel object recognition (NOR) test. Also, VPA-treated rats have shown higher levels of oxidative stress malondialdehyde (MDA) and lower GPX, TAC, and superoxide dismutase (SOD) levels. Furthermore, the number of neurons decreased and the ERK signaling pathway upregulated in the prefrontal cortex (PFC). On the other hand, treatment with Dios restored the behavioral consequences, lowered oxidative stress, and death of neurons, and rescued the overly activated ERK1/2 signaling in the prefrontal cortex. CONCLUSION Chronic treatment with Dios restored the behavioral, biochemical, and histological abnormalities caused by prenatal VPA exposure.
Collapse
Affiliation(s)
| | - Reza Ahadi
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Mansoureh Soleimani
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Razieh Hajisoltani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Tang D, Wang C, Liu H, Wu J, Tan L, Liu S, Lv H, Wang C, Wang F, Liu J. Integrated Multi-Omics Analysis Reveals Mountain-Cultivated Ginseng Ameliorates Cold-Stimulated Steroid-Resistant Asthma by Regulating Interactions among Microbiota, Genes, and Metabolites. Int J Mol Sci 2024; 25:9110. [PMID: 39201796 PMCID: PMC11354367 DOI: 10.3390/ijms25169110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Steroid-resistant asthma (SRA), resisting glucocorticoids such as dexamethasone (DEX), is a bottleneck in the treatment of asthma. It is characterized by a predominantly neutrophilic inflammatory subtype and is prone to developing into severe refractory asthma and fatal asthma. Currently, there is a lack of universally effective treatments for SRA. Moreover, since cold stimulation does increase the risk of asthma development and exacerbate asthma symptoms, the treatment of cold-stimulated SRA (CSRA) will face greater challenges. To find effective new methods to ameliorate CSRA, this study established a CSRA mouse model of allergic airway inflammation mimicking human asthma for the first time and evaluated the alleviating effects of 80% ethanol extract of mountain-cultivated ginseng (MCG) based on multi-omics analysis. The results indicate that cold stimulation indeed exacerbated the SRA-related symptoms in mice; the DEX individual treatment did not show a satisfactory effect; while the combination treatment of DEX and MCG could dose-dependently significantly enhance the lung function; reduce neutrophil aggregation; decrease the levels of LPS, IFN-γ, IL-1β, CXCL8, and IL-17; increase the level of IL-10; alleviate the inflammatory infiltration; and decrease the mucus secretion and the expression of MUC5AC. Moreover, the combination of DEX and high-dose (200 mg/kg) MCG could significantly increase the levels of tight junction proteins (TJs), regulate the disordered intestinal flora, increase the content of short-chain fatty acids (SCFAs), and regulate the abnormal gene profile and metabolic profile. Multi-omics integrated analysis showed that 7 gut microbes, 34 genes, 6 metabolites, and the involved 15 metabolic/signaling pathways were closely related to the pharmacological effects of combination therapy. In conclusion, integrated multi-omics profiling highlighted the benefits of MCG for CSRA mice by modulating the interactions of microbiota, genes, and metabolites. MCG shows great potential as a functional food in the adjuvant treatment of CSRA.
Collapse
Affiliation(s)
- Daohao Tang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (D.T.); (H.L.); (J.W.); (L.T.); (H.L.); (C.W.)
| | - Chao Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Hanlin Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (D.T.); (H.L.); (J.W.); (L.T.); (H.L.); (C.W.)
| | - Junzhe Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (D.T.); (H.L.); (J.W.); (L.T.); (H.L.); (C.W.)
| | - Luying Tan
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (D.T.); (H.L.); (J.W.); (L.T.); (H.L.); (C.W.)
| | - Sihan Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China;
| | - Haoming Lv
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (D.T.); (H.L.); (J.W.); (L.T.); (H.L.); (C.W.)
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (D.T.); (H.L.); (J.W.); (L.T.); (H.L.); (C.W.)
| | - Fang Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (D.T.); (H.L.); (J.W.); (L.T.); (H.L.); (C.W.)
| |
Collapse
|
5
|
Grogan L, Shapiro P. Progress in the development of ERK1/2 inhibitors for treating cancer and other diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:181-207. [PMID: 39034052 DOI: 10.1016/bs.apha.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The extracellular signal-regulated kinases-1 and 2 (ERK1/2) are ubiquitous regulators of many cellular functions, including proliferation, differentiation, migration, and cell death. ERK1/2 regulate cell functions by phosphorylating a diverse collection of protein substrates consisting of other kinases, transcription factors, structural proteins, and other regulatory proteins. ERK1/2 regulation of cell functions is tightly regulated through the balance between activating phosphorylation by upstream kinases and inactivating dephosphorylation by phosphatases. Disruption of homeostatic ERK1/2 regulation caused by elevated extracellular signals or mutations in upstream regulatory proteins leads to the constitutive activation of ERK1/2 signaling and uncontrolled cell proliferation observed in many types of cancer. Many inhibitors of upstream kinase regulators of ERK1/2 have been developed and are part of targeted therapeutic options to treat a variety of cancers. However, the efficacy of these drugs in providing sustained patient responses is limited by the development of acquired resistance often involving re-activation of ERK1/2. As such, recent drug discovery efforts have focused on the direct targeting of ERK1/2. Several ATP competitive ERK1/2 inhibitors have been identified and are being tested in cancer clinical trials. One drug, Ulixertinib (BVD-523), has received FDA approval for use in the Expanded Access Program for patients with no other therapeutic options. This review provides an update on ERK1/2 inhibitors in clinical trials, their successes and limitations, and new academic drug discovery efforts to modulate ERK1/2 signaling for treating cancer and other diseases.
Collapse
Affiliation(s)
- Lena Grogan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States.
| |
Collapse
|
6
|
Mallek NM, Martin EM, Dailey LA, McCullough SD. Liquid application dosing alters the physiology of air-liquid interface (ALI) primary human bronchial epithelial cell/lung fibroblast co-cultures and in vitro testing relevant endpoints. FRONTIERS IN TOXICOLOGY 2024; 5:1264331. [PMID: 38464699 PMCID: PMC10922929 DOI: 10.3389/ftox.2023.1264331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/14/2023] [Indexed: 03/12/2024] Open
Abstract
Differentiated primary human bronchial epithelial cell (dpHBEC) cultures grown under air-liquid interface (ALI) conditions exhibit key features of the human respiratory tract and are thus critical for respiratory research as well as efficacy and toxicity testing of inhaled substances (e.g., consumer products, industrial chemicals, and pharmaceuticals). Many inhalable substances (e.g., particles, aerosols, hydrophobic substances, reactive substances) have physiochemical properties that challenge their evaluation under ALI conditions in vitro. Evaluation of the effects of these methodologically challenging chemicals (MCCs) in vitro is typically conducted by "liquid application," involving the direct application of a solution containing the test substance to the apical, air-exposed surface of dpHBEC-ALI cultures. We report that the application of liquid to the apical surface of a dpHBEC-ALI co-culture model results in significant reprogramming of the dpHBEC transcriptome and biological pathway activity, alternative regulation of cellular signaling pathways, increased secretion of pro-inflammatory cytokines and growth factors, and decreased epithelial barrier integrity. Given the prevalence of liquid application in the delivery of test substances to ALI systems, understanding its effects provides critical infrastructure for the use of in vitro systems in respiratory research as well as in the safety and efficacy testing of inhalable substances.
Collapse
Affiliation(s)
- Nicholas M. Mallek
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Elizabeth M. Martin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, NC, United States
| | - Lisa A. Dailey
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Chapel Hill, NC, United States
| | - Shaun D. McCullough
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Chapel Hill, NC, United States
- Exposure and Protection, RTI International, Durham, NC, United States
| |
Collapse
|
7
|
Laubhahn K, Schaub B. From preschool wheezing to asthma: Immunological determinants. Pediatr Allergy Immunol 2023; 34:e14038. [PMID: 37877843 DOI: 10.1111/pai.14038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Asthma represents a chronic respiratory disease affecting millions of children worldwide. The transition from preschool wheezing to school-age asthma involves a multifaceted interplay of various factors, including immunological aspects in early childhood. These factors include complex cellular interactions among different immune cell subsets, induction of pro-inflammatory mediators and the molecular impact of environmental factors like allergens or viral infections on the developing immune system. Furthermore, the activation of specific genes and signalling pathways during this early phase plays a pivotal role in the manifestation of symptoms and subsequent development of asthma. Early identification of the propensity or risk for asthma development, for example by allergen sensitisation and viral infections during this critical period, is crucial for understanding the transition from wheeze to asthma. Favourable immune regulation during a critical 'window of opportunity' in early childhood can induce persistent changes in immune cell behaviour. In this context, trained immunity, including memory function of innate immune cells, has significant implications for understanding immune responses, potentially shaping long-term immunological outcomes based on early-life environmental exposures. Exploration of these underlying immune mechanisms that drive disease progression will provide valuable insights to understand childhood asthma development. This will be instrumental to develop preventive strategies at different stages of disease development for (i) inhibiting progression from wheeze to asthma or (ii) reducing disease severity and (iii) uncovering novel therapeutic strategies and contributing to more tailored and effective treatments for childhood asthma. In the long term, this shall empower healthcare professionals to develop evidence-based interventions that reduce the burden of asthma for children, families and society overall.
Collapse
Affiliation(s)
- Kristina Laubhahn
- Department of Pulmonary and Allergy, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
- Member of German Centre for Lung Research - DZL, LMU Munich, Munich, Germany
| | - Bianca Schaub
- Department of Pulmonary and Allergy, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
- Member of German Centre for Lung Research - DZL, LMU Munich, Munich, Germany
| |
Collapse
|
8
|
Kierbiedź-Guzik N, Sozańska B. miRNAs as Modern Biomarkers in Asthma Therapy. Int J Mol Sci 2023; 24:11499. [PMID: 37511254 PMCID: PMC10380449 DOI: 10.3390/ijms241411499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the airways characterized by shortness of breath, chest tightness, coughing, and wheezing. For several decades (approximately 30 years), miRNAs and their role in asthma have been of constant interest among scientists. These small, non-coding RNA fragments, 18-25 nucleotides long, regulate gene expression at the post-transcriptional level by binding to the target mRNA. In this way, they affect several biological processes, e.g., shaping airway structures, producing cytokines and immune mediators, and controlling defense mechanisms. Publications confirm their potential role in the diagnosis and monitoring of the disease, but only some articles address the use of miRNAs in the treatment of asthma. The following paper reviews the latest available studies and presents miRNAs as a useful tool for predicting the effectiveness of the included treatment, early diagnosis of exacerbations, and in assessing patient compliance for different groups of drugs used in asthma. The latest known pathways underlying the pathogenesis of the disease, which are associated with a change in miRNA expression, may be precise targets of therapeutic activity in the future.
Collapse
Affiliation(s)
- Natalia Kierbiedź-Guzik
- 14th Paediatric Ward-Pulmonology and Allergology, J. Gromkowski Provincial Specialist Hospital, ul. Koszarowa 5, 51-149 Wrocław, Poland
| | - Barbara Sozańska
- 1st Department and Clinic of Paediatrics, Allergology and Cardiology Wrocław Medical University, ul. Chałubińskiego 2a, 50-368 Wrocław, Poland
| |
Collapse
|
9
|
Sio YY, Gan WL, Ng WS, Matta SA, Say YH, Teh KF, Wong YR, Rawanan Shah SM, Reginald K, Chew FT. The ERBB2 Exonic Variant Pro1170Ala Modulates Mitogen-Activated Protein Kinase Signaling Cascades and Associates with Allergic Asthma. Int Arch Allergy Immunol 2023; 184:1010-1021. [PMID: 37336194 DOI: 10.1159/000530960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/30/2023] [Indexed: 06/21/2023] Open
Abstract
INTRODUCTION Previous studies have indicated the ERBB2 genetic variants in the 17q12 locus might be associated with asthma; however, the functional effects of these variants on asthma risk remain inconclusive. This study aimed to characterize the functional roles of asthma-associated ERBB2 single nucleotide polymorphisms (SNPs) in asthma pathogenesis by performing genetic association and functional analysis studies. METHODS This study belongs to a part of an ongoing Singapore/Malaysia cross-sectional genetics and epidemiological study (SMCSGES). Genotype-phenotype associations were assessed by performing a genotyping assay on n = 4,348 ethnic Chinese individuals from the SMCSGES cohort. The phosphorylation levels of receptors and signaling proteins in the MAPK signaling cascades, including ErbB2, EGFR, and ERK1/2, were compared across the genotypes of asthma-associated SNPs through in vitro and ex vivo approaches. RESULTS The ERBB2 tag-SNP rs1058808 was significantly associated with allergic asthma, with the allele "G" identified as protective against the disease (adjusted logistic p = 6.56 × 10-9, OR = 0.625, 95% CI: 0.544-0.718). The allele "G" of rs1058808 resulted in a Pro1170Ala mutation that results in lower phosphorylation levels of ErbB2 in HaCat cells (p < 0.001), whereas the overall ERBB2 mRNA expression and the phosphorylation levels of EGFR remained unaffected. In the SMCSGES cohort, individuals carrying the genotype "GG" of rs1058808 had lower phosphorylated ERK1/2 proteins in the MAPK signaling cascade. A lower phosphorylation level of ERK1/2 was also associated with reduced asthma risk. CONCLUSIONS The present findings highlighted the involvement of a functional exonic variant of ERBB2 in asthma development via modulating the MAPK signaling cascade.
Collapse
Affiliation(s)
- Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore,
| | - Wei Liang Gan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Wing Shan Ng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sri Anusha Matta
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yee-How Say
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR)Kampar Campus, Kampar, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Keng Foo Teh
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Yi Ru Wong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Smyrna Moti Rawanan Shah
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
McClean N, Hasday JD, Shapiro P. Progress in the development of kinase inhibitors for treating asthma and COPD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:145-178. [PMID: 37524486 DOI: 10.1016/bs.apha.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Current therapies to mitigate inflammatory responses involved in airway remodeling and associated pathological features of asthma and chronic obstructive pulmonary disease (COPD) are limited and largely ineffective. Inflammation and the release of cytokines and growth factors activate kinase signaling pathways that mediate changes in airway mesenchymal cells such as airway smooth muscle cells and lung fibroblasts. Proliferative and secretory changes in mesenchymal cells exacerbate the inflammatory response and promote airway remodeling, which is often characterized by increased airway smooth muscle mass, airway hyperreactivity, increased mucus secretion, and lung fibrosis. Thus, inhibition of relevant kinases has been viewed as a potential therapeutic approach to mitigate the debilitating and, thus far, irreversible airway remodeling that occurs in asthma and COPD. Despite FDA approval of several kinase inhibitors for the treatment of proliferative disorders, such as cancer and inflammation associated with rheumatoid arthritis and ulcerative colitis, none of these drugs have been approved to treat asthma or COPD. This review will provide a brief overview of the role kinases play in the pathology of asthma and COPD and an update on the status of kinase inhibitors currently in clinical trials for the treatment of obstructive pulmonary disease. In addition, potential issues associated with the current kinase inhibitors, which have limited their success as therapeutic agents in treating asthma or COPD, and alternative approaches to target kinase functions will be discussed.
Collapse
Affiliation(s)
- Nathaniel McClean
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Jeffery D Hasday
- Department of Medicine, Division of Pulmonary Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States.
| |
Collapse
|
11
|
Yoon SH, Song MK, Kim DI, Lee JK, Jung JW, Lee JW, Lee K. Comparative study of lung toxicity of E-cigarette ingredients to investigate E-cigarette or vaping product associated lung injury. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130454. [PMID: 37055947 DOI: 10.1016/j.jhazmat.2022.130454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 06/19/2023]
Abstract
No comparative study has yet been performed on the respiratory effects of individual E-cigarette ingredients. Here, lung toxicity of individual ingredients of E-cigarette products containing nicotine or tetrahydrocannabinol was investigated. Mice were intratracheally administered propylene glycol (PG), vegetable glycerin (VG), vitamin E acetate (VEA), or nicotine individually for two weeks. Cytological and histological changes were noticed in PG- and VEA-treated mice that exhibited pathophysiological changes which were associated with symptoms seen in patients with symptoms of E-cigarette or Vaping Use-Associated Lung Injuries (EVALI) or E-cigarette users. Compared to potential human exposure situations, while the VEA exposure condition was similar to the dose equivalent of VEA content in E-cigarettes, the PG condition was about 47-137 times higher than the dose equivalent of the daily PG intake of E-cigarette users. These results reveal that VEA exposure is much more likely to cause problems related to EVALI in humans than PG. Transcriptomic analysis revealed that PG exposure was associated with fibrotic lung injury via the AKT signaling pathway and M2 macrophage polarization, and VEA exposure was associated with asthmatic airway inflammation via the mitogen-activated protein kinase signaling pathway. This study provides novel insights into the pathophysiological effects of individual ingredients of E-cigarettes.
Collapse
Affiliation(s)
- Sung-Hoon Yoon
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Mi-Kyung Song
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Dong Im Kim
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Jeom-Kyu Lee
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Ji-Won Jung
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Joong Won Lee
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
12
|
Makled MN, El-Sheakh AR. Fingolimod attenuates ovalbumin-induced airway inflammation via inhibiting MAPK/ERK signaling in mice. J Biochem Mol Toxicol 2023; 37:e23266. [PMID: 36468814 DOI: 10.1002/jbt.23266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/06/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
The current study was designed to investigate the potential anti-inflammatory and antioxidant effects of fingolimod against Ovalbumin (Ova)-induced allergic airway inflammation compared to dexamethasone. Fingolimod was given (0.5 mg/kg/day, p.o.) for sensitized mice 1 h before Ova challenge from Days 19 to 24. Fingolimod significantly inhibited Ova-induced elevation of inflammatory cells and eosinophils numbers in bronchoalveolar lavage fluid (BALF) and reduced concentrations of immunoglobulin E in serum and of sphingosine-1-phosphate, interleukin (IL)-4, and IL-13 in BALF. Fingolimod inhibited microvascular leakage and edema as reflected by the decreased lung/body weight index. These findings were supported by histopathological examination results showing that fingolimod substantially decreased perivascular edema and inflammatory cell infiltration. Fingolimod also attenuated Ova-induced oxidative stress as evidenced by decreased malondialdehyde concentration along with increasing concentrations of reduced glutathione and superoxide dismutase in lung tissues. Fingolimod also significantly decreased monocyte chemoattractant protein-1 (MCP-1), p-ERK, and p-P38 in lung tissues of Ova-challenged mice. In conclusion, the current study demonstrated the anti-inflammatory and antioxidant effects of fingolimod in allergic airway inflammation that might be associated with the downregulation of mitogen activated kinases signaling to decrease T helper 2 cytokine secretion (IL-4 and IL-13) and MCP-1 expression, along with the inhibition of oxidative stress.
Collapse
Affiliation(s)
- Mirhan N Makled
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Future Studies and Risks Management & National Committee of Drugs, Academy of Scientific Research, Ministry of Higher Education, ElSayeda Zeinab, Egypt
| |
Collapse
|
13
|
Mallek NM, Martin EM, Dailey LA, McCullough SD. Liquid Application Dosing Alters the Physiology of Air-Liquid Interface Primary Bronchial Epithelial Cultures and In vitro Testing Relevant Endpoints. RESEARCH SQUARE 2023:rs.3.rs-2570280. [PMID: 36865279 PMCID: PMC9980280 DOI: 10.21203/rs.3.rs-2570280/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Differentiated Primary human bronchial epithelial cell (dpHBEC) cultures grown under air-liquid interface (ALI) conditions exhibit key features of the human respiratory tract and are thus critical for respiratory research as well as efficacy and toxicity testing of inhaled substances (e.g., consumer products, industrial chemicals, and pharmaceuticals). Many inhalable substances (e.g., particles, aerosols, hydrophobic substances, reactive substances) have physiochemical properties that challenge their evaluation under ALI conditions in vitro. Evaluation of the effects of these methodologically challenging chemicals (MCCs) in vitro is typically conducted by "liquid application," involving the direct application of a solution containing the test substance to the apical, air-exposed surface of dpHBEC-ALI cultures. We report that the application of liquid to the apical surface of a dpHBEC-ALI co-culture model results in significant reprogramming of the dpHBEC transcriptome and biological pathway activity, alternative regulation of cellular signaling pathways, increased secretion of pro-inflammatory cytokines and growth factors, and decreased epithelial barrier integrity. Given the prevalence of liquid application in the delivery of test substances to ALI systems, understanding its effects provides critical infrastructure for the use of in vitro systems in respiratory research as well as in the safety and efficacy testing of inhalable substances.
Collapse
|
14
|
Qasim M, Abdullah M, Ali Ashfaq U, Noor F, Nahid N, Alzamami A, Alturki NA, Khurshid M. Molecular mechanism of Ferula asafoetida for the treatment of asthma: Network pharmacology and molecular docking approach. Saudi J Biol Sci 2023; 30:103527. [PMID: 36568408 PMCID: PMC9772567 DOI: 10.1016/j.sjbs.2022.103527] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Asthma is a significant health-care burden that has great impact on the quality of life of patients and their families. The limited amount of previously reported data and complicated pathophysiology of asthma make it a difficult to treat and significant economic burden on public healthcare systems. Ferula asafoetida is an herbaceous, monoecious, perennial plant of the Umbelliferae family. In Asia, F. asafoetida is used to treat a range of diseases and disorders, including asthma. Several in vitro studies demonstrated the therapeutic efficacy of F. asafoetida against asthma. Nevertheless, the precise molecular mechanism is yet to be discovered. In the framework of current study, network pharmacology approach was used to identify the bioactive compounds of F. asafoetida in order to better understand its molecular mechanism for the treatment of asthma. In present work, we explored a compound-target-pathway network and discovered that assafoetidin, cynaroside, farnesiferol-B, farnesiferol-C, galbanic-acid, and luteolin significantly influenced the development of asthma by targeting MAPK3, AKT1 and TNF genes. Later, docking analysis revealed that active constituents of F. asafoetida bind stably with three target proteins and function as asthma repressor by regulating the expression of MAPK3, AKT1 and TNF genes. Thus, integration of network pharmacology with molecular docking revealed that F. asafoetida prevent asthma by modulating asthma-related signaling pathways. This study lays the basis for establishing the efficacy of multi-component, multi-target compound formulae, as well as investigating new therapeutic targets for asthma.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Abdullah
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan,Corresponding author at: Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| | - Ahmad Alzamami
- Department of Clinical Laboratory Science, College of Applied Medical Science, Shaqra University, AlQuwayiyah 11961, Saudi Arabia
| | - Norah A Alturki
- Department of Clinical Laboratory Science, College of Applied Medical Science, King Saud University, Riyadh 11433, Saudi Arabia
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
15
|
Gil-Martínez M, Lorente-Sorolla C, Rodrigo-Muñoz JM, Lendínez MÁ, Núñez-Moreno G, de la Fuente L, Mínguez P, Mahíllo-Fernández I, Sastre J, Valverde-Monge M, Quirce S, Caballero ML, González-Barcala FJ, Arismendi E, Bobolea I, Valero A, Muñoz X, Cruz MJ, Martínez-Rivera C, Plaza V, Olaguibel JM, del Pozo V. Analysis of Differentially Expressed MicroRNAs in Serum and Lung Tissues from Individuals with Severe Asthma Treated with Oral Glucocorticoids. Int J Mol Sci 2023; 24:1611. [PMID: 36675122 PMCID: PMC9864670 DOI: 10.3390/ijms24021611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Nowadays, microRNAs (miRNAs) are increasingly used as biomarkers due to their potential contribution to the diagnosis and targeted treatment of a range of diseases. The aim of the study was to analyze the miRNA expression profiles in serum and lung tissue from patients with severe asthma treated with oral corticosteroids (OCS) and those without OCS treatment. For this purpose, serum and lung tissue miRNAs of OCS and non-OCS asthmatic individuals were evaluated by miRNAs-Seq, and subsequently miRNA validation was performed using RT-qPCR. Additionally, pathway enrichment analysis of deregulated miRNAs was conducted. We observed altered expression by the next-generation sequencing (NGS) of 11 miRNAs in serum, of which five (hsa-miR-148b-3p, hsa-miR-221-5p, hsa-miR-618, hsa-miR-941, and hsa-miR-769-5p) were validated by RT-qPCR, and three miRNAs in lung tissue (hsa-miR-144-3p, hsa-miR-144-5p, and hsa-miR-451a). The best multivariate logistic regression model to differentiate individuals with severe asthma, treated and untreated with OCS, was to combine the serum miRNAs hsa-miR-221-5p and hsa-miR-769-5p. Expression of hsa-miR-148b-3p and hsa-miR-221-5p correlated with FEV1/FVC (%) and these altered miRNAs act in key signaling pathways for asthma disease and the regulated expression of some genes (FOXO3, PTEN, and MAPK3) involved in these pathways. In conclusion, there are miRNA profiles differentially expressed in OCS-treated individuals with asthma and could be used as biomarkers of OCS treatment.
Collapse
Affiliation(s)
- Marta Gil-Martínez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Clara Lorente-Sorolla
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - José M. Rodrigo-Muñoz
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Miguel Ángel Lendínez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Gonzalo Núñez-Moreno
- Department of Genetics, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Lorena de la Fuente
- Department of Genetics, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Pablo Mínguez
- Department of Genetics, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Ignacio Mahíllo-Fernández
- Biostatistics and Epidemiology Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - Joaquín Sastre
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Allergy Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Marcela Valverde-Monge
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Allergy Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Santiago Quirce
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Allergy, Hospital Universitario La Paz, IdiPAZ, 28046 Madrid, Spain
| | - María L. Caballero
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Allergy, Hospital Universitario La Paz, IdiPAZ, 28046 Madrid, Spain
| | - Francisco J. González-Barcala
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Pulmonology Department, Complejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, Spain
| | - Ebymar Arismendi
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Allergy Unit & Severe Asthma Unit, Pulmonology and Allergy Department, Hospital Clínic, 08036 Barcelona, Spain
| | - Irina Bobolea
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Allergy Unit & Severe Asthma Unit, Pulmonology and Allergy Department, Hospital Clínic, 08036 Barcelona, Spain
| | - Antonio Valero
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Allergy Unit & Severe Asthma Unit, Pulmonology and Allergy Department, Hospital Clínic, 08036 Barcelona, Spain
| | - Xavier Muñoz
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Pulmonology Department, Hospital Vall d’Hebron, 08035 Barcelona, Spain
| | - María Jesús Cruz
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Pulmonology Department, Hospital Vall d’Hebron, 08035 Barcelona, Spain
| | - Carlos Martínez-Rivera
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Pulmonology Department, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Vicente Plaza
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Respiratory Medicine Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - José M. Olaguibel
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Severe Asthma Unit, Department of Allergy, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Victoria del Pozo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Medicine, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
16
|
Hao Y, Garcia-de-Alba-Rivas C. Selective Inhibition of Extracellular Signal-regulated Kinases 1 and 2: When Less Is More. Am J Respir Cell Mol Biol 2023; 68:1-2. [PMID: 36227721 PMCID: PMC9817910 DOI: 10.1165/rcmb.2022-0376ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yuan Hao
- Division of Pulmonary MedicineBoston Children’s HospitalBoston, Massachusetts
| | | |
Collapse
|
17
|
Anti-inflammatory and relaxation effects of Ulmus pumilla L. on EGF-inflamed bronchial epithelial and asthmatic bronchial smooth muscle cells. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Citrus junos Tanaka Peel Extract Ameliorates HDM-Induced Lung Inflammation and Immune Responses In Vivo. Nutrients 2022; 14:nu14235024. [PMID: 36501052 PMCID: PMC9740624 DOI: 10.3390/nu14235024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
In the wake of the COVID-19 pandemic, lung disorders have become a major health concern for humans. Allergic asthma is the most prevalent form of asthma, and its treatments target the inflammation process. Despite significant developments in the diagnosis and management of allergic asthma, side effects are a major concern. Additionally, its extreme heterogeneity impedes the efficacy of the majority of treatments. Thus, newer, safer therapeutic substances, such as natural products, are desired. Citrus junos Tanaka has traditionally been utilized as an anti-inflammatory, sedative, antipyretic, and antitoxic substance. In this study, the protective effects of Citrus junos Tanaka peel extract (B215) against lung inflammation were examined, and efforts were made to understand the underlying protective mechanism using an HDM-induced lung inflammation murine model. The administration of B215 reduced immune cell infiltration in the lungs, plasma IgE levels, airway resistance, mucus hypersecretions, and cytokine production. These favorable effects alleviated HDM-induced lung inflammation by modulating the NF-κB signaling pathway. Hence, B215 might be a promising functional food to treat lung inflammation without adverse effects.
Collapse
|
19
|
Iwashita J, Maeda H, Ishimura M, Murata J. Type IV collagen reduces MUC5AC secretion in the lungs of ovalbumin-sensitized mice. Front Pharmacol 2022; 13:851374. [PMID: 36188610 PMCID: PMC9523140 DOI: 10.3389/fphar.2022.851374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022] Open
Abstract
Mucin 5AC (MUC5AC) is excessively secreted in the respiratory tract of patients with asthma. Suppressing this secretion is important for improving the air passages, which facilitates easy breathing. We have previously reported that the addition of type IV collagen, a typical extracellular matrix (ECM) protein, to the culture medium for human cell lines and primary cells reduced MUC5AC secretion. In this report, we further investigated the effect of type IV collagen on MUC5AC secretion in vivo. We employed ovalbumin (OVA)-sensitized mice to model of asthma and exposed them to type IV collagen to verify the reducing effect of MUC5AC in vivo. The amount of MUC5AC in bronchoalveolar lavage fluid was examined after nebulization of type IV collagen. Hypersecretion of MUC5AC of the OVA-sensitized mice was suppressed by type IV collagen exposure in a time- and dose-dependent manner. Furthermore, type IV collagen exposure to OVA-sensitized mice decreased integrin α2 and β1 expression in the lungs and increased the levels of Akt and extracellular signal-regulated kinase (ERK) phosphorylation in the trachea. These results suggest that type IV collagen suppresses MUC5AC hypersecretion via modulating integrin expression and Akt/ERK phosphorylation in the respiratory tract of the OVA-sensitized mice.
Collapse
|
20
|
Lim JO, Kim YH, Lee IS, Kim WI, Lee SJ, Pak SW, Shin IS, Kim T. Cinnamomum cassia (L.) J.Presl Alleviates Allergic Responses in Asthmatic Mice via Suppression of MAPKs and MMP-9. Front Pharmacol 2022; 13:906916. [PMID: 36034804 PMCID: PMC9405665 DOI: 10.3389/fphar.2022.906916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
The prevalence of asthma is gradually increasing, and endangers human health. Many therapeutic agents have been developed to address this concern. Cinnamomum cassia (L.) J.Presl is a traditional herbal remedy in China, Japan, and Korea and used mainly to control common cold, cough, pneumonitis and fever in Donguibogam, a medical encyclopedia of Korea. Therefore, we investigated whether C. cassia (L.) J.Presl extract (CCE) confers protective effects on asthma model induced by ovalbumin (OVA). The animals were received intraperitoneal administration of OVA on day 1 and 14, and then subjected to OVA inhalation from day 21–23. They were orally treated CCE (30 and 100 mg/kg) from day 18–23. CCE administration decreased allergic responses, including airway hyperresponsiveness, eosinophilia, inflammatory cytokine production, and immunoglobulin E in OVA-exposed mice, along with the decline in inflammatory cell count and mucus secretion in respiratory tract. Additionally, CCE suppressed MAPK phosphorylation and MMP-9 expression in OVA-exposed mice. Overall, CCE treatment attenuated allergic responses induced by OVA exposure, which may be connected to the suppression of MAPK phosphorylation.
Collapse
Affiliation(s)
- Je-Oh Lim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, South Korea
| | - Yun Hee Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Ik Soo Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, South Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, South Korea
| | - So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, South Korea
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, South Korea
- *Correspondence: In-Sik Shin, ; Taesoo Kim,
| | - Taesoo Kim
- R&D Strategy Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
- *Correspondence: In-Sik Shin, ; Taesoo Kim,
| |
Collapse
|
21
|
A gene cluster with positive and negative elements controls bistability and hysteresis of the Crippled versus Normal growth in the fungus Podospora anserina. Fungal Genet Biol 2022; 161:103711. [PMID: 35597448 DOI: 10.1016/j.fgb.2022.103711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Accepted: 05/15/2022] [Indexed: 11/23/2022]
Abstract
The Crippled Growth (CG) cell degeneration of the model ascomycete Podospora anserina (strain S) is controlled by a prion-like element and has been linked to the self-activation of the PaMpk1 MAP kinase cascade. Here, we report on the identification of the "86-11" locus containing twelve genes, ten of which are involved either in setting up the self-activation loop of CG or in inhibiting this loop, as demonstrated by targeted gene deletion. Interestingly, deletion of the whole locus results only in the elimination of CG and in no detectable additional physiological defect. Sequence comparison shows that these ten genes belong to four different families, each one endowed with a specific activity: two encode factors activating the loop, a third one encodes a factor crucial for inhibition of the loop and the fourth one participates in inhibiting the loop in a pathway parallel to the one controlled by the previously described PDC1 gene. Intriguingly, a very distant homologue of this "86-11" locus is present at the syntenic position in Podospora comata (strain T) that do not present Crippled Growth. Introgression of the P. comata strain T locus in P. anserina strain S and the P. anserina strain S in P. comata strain T showed that both drive CG in the P. anserina strain S genetic background, but not in the genetic background of strain P. comata T, indicating that genetic determinants outside the twelve-gene locus are responsible for lack of CG in P. comata strain T. Our data question the role of this twelve-gene locus in the physiology of P. anserina.
Collapse
|
22
|
Side-Directed Release of Differential Extracellular Vesicle-associated microRNA Profiles from Bronchial Epithelial Cells of Healthy and Asthmatic Subjects. Biomedicines 2022; 10:biomedicines10030622. [PMID: 35327424 PMCID: PMC8945885 DOI: 10.3390/biomedicines10030622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are released by virtually all cells and may serve as intercellular communication structures by transmitting molecules such as proteins, lipids, and nucleic acids between cells. MicroRNAs (miRNAs) are an abundant class of vesicular RNA playing a pivotal role in regulating intracellular processes. In this work, we aimed to characterize vesicular miRNA profiles released in a side-directed manner by bronchial epithelial cells from healthy and asthmatic subjects using an air−liquid interface cell culture model. EVs were isolated from a culture medium collected from either the basolateral or apical cell side of the epithelial cell cultures and characterized by nano-flow cytometry (NanoFCM) and bead-based flow cytometry. EV-associated RNA profiles were assessed by small RNA sequencing and subsequent bioinformatic analyses. Furthermore, miRNA-associated functions and targets were predicted and miRNA network analyses were performed. EVs were released at higher numbers to the apical cell side of the epithelial cells and were considerably smaller in the apical compared to the basolateral compartment. EVs from both compartments showed a differential tetraspanins surface marker expression. Furthermore, 236 miRNAs were differentially expressed depending on the EV secretion side, regardless of the disease phenotype. On the apical cell side, 32 miRNAs were significantly altered in asthmatic versus healthy conditions, while on the basolateral cell side, 23 differentially expressed miRNAs could be detected. Downstream KEGG pathway analysis predicted mTOR and MAPK signaling pathways as potential downstream targets of apically secreted miRNAs. In contrast, miRNAs specifically detected at the basolateral side were associated with processes of T and B cell receptor signaling. The study proves a compartmentalized packaging of EVs by bronchial epithelial cells supposedly associated with site-specific functions of cargo miRNAs, which are considerably affected by disease conditions such as asthma.
Collapse
|
23
|
Geiß C, Salas E, Guevara-Coto J, Régnier-Vigouroux A, Mora-Rodríguez RA. Multistability in Macrophage Activation Pathways and Metabolic Implications. Cells 2022; 11:404. [PMID: 35159214 PMCID: PMC8834178 DOI: 10.3390/cells11030404] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 12/22/2022] Open
Abstract
Macrophages are innate immune cells with a dynamic range of reversible activation states including the classical pro-inflammatory (M1) and alternative anti-inflammatory (M2) states. Deciphering how macrophages regulate their transition from one state to the other is key for a deeper understanding of inflammatory diseases and relevant therapies. Common regulatory motifs reported for macrophage transitions, such as positive or double-negative feedback loops, exhibit a switchlike behavior, suggesting the bistability of the system. In this review, we explore the evidence for multistability (including bistability) in macrophage activation pathways at four molecular levels. First, a decision-making module in signal transduction includes mutual inhibitory interactions between M1 (STAT1, NF-KB/p50-p65) and M2 (STAT3, NF-KB/p50-p50) signaling pathways. Second, a switchlike behavior at the gene expression level includes complex network motifs of transcription factors and miRNAs. Third, these changes impact metabolic gene expression, leading to switches in energy production, NADPH and ROS production, TCA cycle functionality, biosynthesis, and nitrogen metabolism. Fourth, metabolic changes are monitored by metabolic sensors coupled to AMPK and mTOR activity to provide stability by maintaining signals promoting M1 or M2 activation. In conclusion, we identify bistability hubs as promising therapeutic targets for reverting or blocking macrophage transitions through modulation of the metabolic environment.
Collapse
Affiliation(s)
- Carsten Geiß
- Institute for Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, 55128 Mainz, Germany;
| | - Elvira Salas
- Department of Biochemistry, Faculty of Medicine, Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica;
| | - Jose Guevara-Coto
- Department of Computer Sciences and Informatics (ECCI), Faculty of Engineering, Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica;
- Research Center for Information and Communication Technologies (CITIC), Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Anne Régnier-Vigouroux
- Institute for Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, 55128 Mainz, Germany;
| | - Rodrigo A. Mora-Rodríguez
- Institute for Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, 55128 Mainz, Germany;
- Research Center on Surgery and Cancer (CICICA), Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica
- Research Center for Tropical Diseases (CIET), Lab of Tumor Chemosensitivity (LQT), Faculty of Microbiology, Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica
| |
Collapse
|
24
|
Gutierrez DA, Contreras L, Villanueva PJ, Borrego EA, Morán-Santibañez K, Hess JD, DeJesus R, Larragoity M, Betancourt AP, Mohl JE, Robles-Escajeda E, Begum K, Roy S, Kirken RA, Varela-Ramirez A, Aguilera RJ. Identification of a Potent Cytotoxic Pyrazole with Anti-Breast Cancer Activity That Alters Multiple Pathways. Cells 2022; 11:254. [PMID: 35053370 PMCID: PMC8773755 DOI: 10.3390/cells11020254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 11/26/2022] Open
Abstract
In this study, we identified a novel pyrazole-based derivative (P3C) that displayed potent cytotoxicity against 27 human cancer cell lines derived from different tissue origins with 50% cytotoxic concentrations (CC50) in the low micromolar and nanomolar range, particularly in two triple-negative breast cancer (TNBC) cell lines (from 0.25 to 0.49 µM). In vitro assays revealed that P3C induces reactive oxygen species (ROS) accumulation leading to mitochondrial depolarization and caspase-3/7 and -8 activation, suggesting the participation of both the intrinsic and extrinsic apoptotic pathways. P3C caused microtubule disruption, phosphatidylserine externalization, PARP cleavage, DNA fragmentation, and cell cycle arrest on TNBC cells. In addition, P3C triggered dephosphorylation of CREB, p38, ERK, STAT3, and Fyn, and hyperphosphorylation of JNK and NF-kB in TNBC cells, indicating the inactivation of both p38MAPK/STAT3 and ERK1/2/CREB signaling pathways. In support of our in vitro assays, transcriptome analyses of two distinct TNBC cell lines (MDA-MB-231 and MDA-MB-468 cells) treated with P3C revealed 28 genes similarly affected by the treatment implicated in apoptosis, oxidative stress, protein kinase modulation, and microtubule stability.
Collapse
Affiliation(s)
- Denisse A. Gutierrez
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Lisett Contreras
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Paulina J. Villanueva
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Edgar A. Borrego
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Karla Morán-Santibañez
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Jessica D. Hess
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Rebecca DeJesus
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Manuel Larragoity
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Ana P. Betancourt
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Jonathon E. Mohl
- Department of Bioinformatics, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA;
| | - Elisa Robles-Escajeda
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Khodeza Begum
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Sourav Roy
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Robert A. Kirken
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Armando Varela-Ramirez
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| | - Renato J. Aguilera
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968-0519, USA; (D.A.G.); (L.C.); (P.J.V.); (E.A.B.); (K.M.-S.); (J.D.H.); (R.D.); (M.L.); (A.P.B.); (E.R.-E.); (K.B.); (S.R.); (R.A.K.); (A.V.-R.)
| |
Collapse
|
25
|
Liang J, Liu XH, Chen XM, Song XL, Li W, Huang Y. Emerging Roles of Non-Coding RNAs in Childhood Asthma. Front Pharmacol 2022; 13:856104. [PMID: 35656293 PMCID: PMC9152219 DOI: 10.3389/fphar.2022.856104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease in children characterized by airway inflammation, airway hyperresponsiveness and airway remodeling. Childhood asthma is usually associated with allergy and atopy, unlike adult asthma, which is commonly associated with obesity, smoking, etc. The pathogenesis and diagnosis of childhood asthma also remains more challenging than adult asthma, such as many diseases showing similar symptoms may coexist and be confused with asthma. In terms of the treatment, although most childhood asthma can potentially be self-managed and controlled with drugs, approximately 5-10% of children suffer from severe uncontrolled asthma, which carries significant health and socioeconomic burdens. Therefore, it is necessary to explore the pathogenesis of childhood asthma from a new perspective. Studies have revealed that non-coding RNAs (ncRNAs) are involved in the regulation of respiratory diseases. In addition, altered expression of ncRNAs in blood, and in condensate of sputum or exhalation affects the progression of asthma via regulating immune response. In this review, we outline the regulation and pathogenesis of asthma and summarize the role of ncRNAs in childhood asthma. We also hold promise that ncRNAs may be used for the development of biomarkers and support a new therapeutic strategy for childhood asthma.
Collapse
Affiliation(s)
- Juan Liang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xiao-Hua Liu
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xue-Mei Chen
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xiu-Ling Song
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Wen Li
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuge Huang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
26
|
Xia T, Ma J, Sun Y, Sun Y. Androgen receptor suppresses inflammatory response of airway epithelial cells in allergic asthma through MAPK1 and MAPK14. Hum Exp Toxicol 2022; 41:9603271221121320. [PMID: 35982617 DOI: 10.1177/09603271221121320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Dysfunction of airway epithelial cells in patients with asthma is closely with the occurrence and development of allergic asthma. Finding the differences of airway epithelium between asthmatic patients and normal patients is helpful to find out new treatment strategies. METHODS First, three original microarray datasets (GSE89809, GSE41861, GSE104468) from the Gene Expression Omnibus (GEO) dataset were used to assess differentially expressed genes in the epithelial tissues between patients with allergic asthma and healthy controls. Then, 10 ng/mL TGF-β1 treated BEAS-2B cells and rats with ovalbumin induced allergic asthma were performed to confirm our assumption from the gene expression analysis with microarrays. RESULTS Top ten hub significant difference genes were obtained by Cytohubba plug-in from GSE41861, and found that androgen receptor (AR) was closely associated with the mitogen-activated protein kinase (MAPK) pathway, especially MAPK1 and MAPK14. After treated with the TGF-β1 treated BEAS-2B cells and rats with allergic asthma, we found that 5α-dihydrotestosterone (5α-DHT), AR agonist, significantly decreased the Th2 inflammation (IL-25 and IL-33), MAPK1 and MAPK14 proteins expression in vitro and in vivo. The roles of 5α-DHT were similar with the results of chicanine (a p38 MAPK and ERK1/2 inhibitor), but the roles of 5α-DHT were masked by the C16-PAF (a MAPK and MEK/ERK activator) treatment. CONCLUSION Androgen receptor limits the secretion of Th2 inflammatory factors by downregulating MAPK1 and MAPK14 in the TGF-β1 treated BEAS-2B cells and rats with ovalbumin induced allergic asthma, which plays a critical role for the therapeutics of patients with asthma.
Collapse
Affiliation(s)
- T Xia
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, China
| | - J Ma
- Department of Child Healthcare, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, China
| | - Y Sun
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, China
| | - Y Sun
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, China
| |
Collapse
|
27
|
Theodorou J, Nowak E, Böck A, Salvermoser M, Beerweiler C, Zeber K, Kulig P, Tsang MS, Wong CK, Wong GWK, Roponen M, Kumbrink J, Alhamdan F, Michel F, Garn H, Tosevski V, Schaub B. Mitogen-activated protein kinase signaling in childhood asthma development and environment-mediated protection. Pediatr Allergy Immunol 2022; 33:e13657. [PMID: 34455626 DOI: 10.1111/pai.13657] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND While childhood asthma prevalence is rising in Westernized countries, farm children are protected. The mitogen-activated protein kinase (MAPK) pathway with its negative regulator dual-specificity phosphatase-1 (DUSP1) is presumably associated with asthma development. OBJECTIVES We aimed to investigate the role of MAPK signaling in childhood asthma and its environment-mediated protection, including a representative selection of 232 out of 1062 children from two cross-sectional cohorts and one birth cohort study. METHODS Peripheral blood mononuclear cells (PBMC) from asthmatic and healthy children were cultured upon stimulation with farm-dust extracts or lipopolysaccharide. In subgroups, gene expression was analyzed by qPCR (PBMCs, cord blood) and NanoString technology (dendritic cells). Protein expression of phosphorylated MAPKs was measured by mass cytometry. Histone acetylation was investigated by chromatin immunoprecipitation. RESULTS Asthmatic children expressed significantly less DUSP1 (p = .006) with reduced acetylation at histone H4 (p = .012) compared with healthy controls. Farm-dust stimulation upregulated DUSP1 expression reaching healthy levels and downregulated inflammatory MAPKs on gene and protein levels (PBMCs; p ≤ .01). Single-cell protein analysis revealed downregulated pMAPKs upon farm-dust stimulation in B cells, NK cells, monocytes, and T-cell subpopulations. CONCLUSION Lower DUSP1 baseline levels in asthmatic children and anti-inflammatory regulation of MAPK in several immune cell types by farm-dust stimulation indicate a regulatory function for DUSP1 for future therapy contributing to anti-inflammatory characteristics of farming environments.
Collapse
Affiliation(s)
- Johanna Theodorou
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children´s Hospital, University Hospital, LMU Munich, Munich, Germany.,Member of German Center for Lung Research - DZL, LMU Munich, Munich, Germany
| | - Elisabeth Nowak
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children´s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Andreas Böck
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children´s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Michael Salvermoser
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children´s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Claudia Beerweiler
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children´s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Kathrin Zeber
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children´s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Paulina Kulig
- Mass Cytometry Facility, University of Zurich, Zurich, Switzerland
| | - Miranda S Tsang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Gary W K Wong
- Department of Pediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jörg Kumbrink
- Institute of Pathology, Medical Faculty, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany
| | - Fahd Alhamdan
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Marburg, Germany
| | - Florian Michel
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Marburg, Germany
| | - Holger Garn
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Marburg, Germany
| | - Vinko Tosevski
- Mass Cytometry Facility, University of Zurich, Zurich, Switzerland
| | - Bianca Schaub
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children´s Hospital, University Hospital, LMU Munich, Munich, Germany.,Member of German Center for Lung Research - DZL, LMU Munich, Munich, Germany
| |
Collapse
|
28
|
Choi EH, Hwang D. Association Study of NDFIP2 Genetic Polymorphism with Asthma in the Korean Population. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2021. [DOI: 10.15324/kjcls.2021.53.3.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Eun Hye Choi
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Korea
| | - Dahyun Hwang
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Korea
| |
Collapse
|
29
|
Yatagai Y, Oshima H, Sakamoto T, Shigemasa R, Kitazawa H, Hyodo K, Masuko H, Iijima H, Naito T, Saito T, Hirota T, Tamari M, Hizawa N. Expression quantitative trait loci for ETV4 and MEOX1 are associated with adult asthma in Japanese populations. Sci Rep 2021; 11:18791. [PMID: 34552174 PMCID: PMC8458279 DOI: 10.1038/s41598-021-98348-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/06/2021] [Indexed: 12/04/2022] Open
Abstract
ETS variant transcription factor 4 (ETV4) is a recently identified transcription factor that regulates gene expression-based biomarkers of asthma and IL6 production in an airway epithelial cell line. Given that ETV4 has not yet been implicated in asthma genetics, we performed genetic association studies of adult asthma in the ETV4 region using two independent Japanese cohorts (a total of 1532 controls and 783 cases). SNPs located between ETV4 and mesenchyme homeobox 1 (MEOX1) were significantly associated with adult asthma, including rs4792901 and rs2880540 (P = 5.63E−5 and 2.77E−5, respectively). The CC haplotype of these two SNPs was also significantly associated with adult asthma (P = 8.43E−7). Even when both SNPs were included in a logistic regression model, the association of either rs4792901 or rs2880540 remained significant (P = 0.013 or 0.007, respectively), suggesting that the two SNPs may have independent effects on the development of asthma. Both SNPs were expression quantitative trait loci, and the asthma risk alleles at both SNPs were correlated with increased levels of ETV4 mRNA expression. In addition, the asthma risk allele at rs4792901 was associated with increased serum IL6 levels (P = 0.041) in 651 healthy adults. Our findings imply that ETV4 is involved in the pathogenesis of asthma, possibly through the heightened production of IL6.
Collapse
Affiliation(s)
- Yohei Yatagai
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hisayuki Oshima
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tohru Sakamoto
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Rie Shigemasa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Haruna Kitazawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kentaro Hyodo
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hironori Masuko
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | | | | | - Takefumi Saito
- National Hospital Organization Ibaraki Higashi National Hospital, Ibaraki, Japan
| | - Tomomitsu Hirota
- Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Mayumi Tamari
- Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Nobuyuki Hizawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
30
|
Sahu R, Upadhayay S, Mehan S. Inhibition of extracellular regulated kinase (ERK)-1/2 signaling pathway in the prevention of ALS: Target inhibitors and influences on neurological dysfunctions. Eur J Cell Biol 2021; 100:151179. [PMID: 34560374 DOI: 10.1016/j.ejcb.2021.151179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Cell signal transduction pathways are essential modulators of several physiological and pathological processes in the brain. During overactivation, these signaling processes may lead to disease progression. Abnormal protein kinase activation is associated with several biological dysfunctions that facilitate neurodegeneration under different biological conditions. As a result, these signaling pathways are essential in understanding brain disorders' development or progression. Recent research findings indicate the crucial role of extracellular signal-regulated kinase-1/2 (ERK-1/2) signaling during the neuronal development process. ERK-1/2 is a key component of its mitogen-activated protein kinase (MAPK) group, controlling certain neurological activities by regulating metabolic pathways, cell proliferation, differentiation, and apoptosis. ERK-1/2 also influences neuronal elastic properties, nerve growth, and neurological and cognitive processing during brain injuries. The primary goal of this review is to elucidate the activation of ERK1/2 signaling, which is involved in the development of several ALS-related neuropathological dysfunctions. ALS is a rare neurological disorder category that mainly affects the nerve cells responsible for regulating voluntary muscle activity. ALS is progressive, which means that the symptoms are getting worse over time, and there is no cure for ALS and no effective treatment to avoid or reverse. Genetic abnormalities, oligodendrocyte degradation, glial overactivation, and immune deregulation are associated with ALS progression. Furthermore, the current review also identifies ERK-1/2 signaling inhibitors that can promote neuroprotection and neurotrophic effects against the clinical-pathological presentation of ALS. As a result, in the future, the potential ERK-1/2 signaling inhibitors could be used in the treatment of ALS and related neurocomplications.
Collapse
Affiliation(s)
- Rakesh Sahu
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shubham Upadhayay
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
31
|
Hamed O, Joshi R, Michi AN, Kooi C, Giembycz MA. β 2-Adrenoceptor Agonists Promote ERK1/2 Dephosphorylation in Human Airway Epithelial Cells by Canonical, cAMP-driven Signaling Independently of β-Arrestin 2. Mol Pharmacol 2021; 100:388-405. [PMID: 34341099 DOI: 10.1124/molpharm.121.000294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022] Open
Abstract
Chronic use of β2-adrenoceptor agonists as a monotherapy in asthma is associated with a loss of disease control and an increased risk of mortality. Herein, we tested the hypothesis that β2-adrenoceptor agonists, including formoterol, promote biased, β-arrestin 2 (βArr2)-dependent activation of the mitogen-activated protein (MAP) kinases, ERK1/2, in human airway epithelial cells and, thereby, effect changes in gene expression that could contribute to their adverse clinical outcomes. Three airway epithelial cell models were used: the BEAS-2B cell line, human primary bronchial epithelial cells (HBEC) grown in submersion culture and HBEC that were highly differentiated at an air-liquid interface. Unexpectedly, treatment of all epithelial cell models with formoterol decreased basal ERK1/2 phosphorylation. This was mediated by cAMP-dependent protein kinase and involved the inactivation of C-rapidly-activated fibrosarcoma, which attenuated down-stream ERK1/2 activity, and the induction of dual-specificity phosphatase-1. Formoterol also inhibited the basal expression of early growth response-1, an ERK1/2-regulated gene that controls cell growth and repair in the airways. Neither carvedilol, a β2-adrenoceptor agonist biased towards βArr2, nor formoterol promoted ERK1/2 phosphorylation in BEAS-2B cells although β2-adrenoceptor desensitization was compromised in ARRB2-deficient cells. Collectively, these results contest the hypothesis that formoterol activates ERK1/2 in airway epithelia by nucleating a βArr2 signaling complex; instead, they indicate that β2-adrenoceptor agonists inhibit constitutive ERK1/2 activity in a cAMP-dependent manner. These findings are the antithesis of results obtained using acutely challenged native and engineered HEK293 cells, which have been used extensively to study mechanisms of ERK1/2 activation, and highlight the cell-type-dependence of β2-adrenoceptor-mediated signaling. Significance Statement It has been proposed that the adverse-effects of β2-adrenoceptor agonist monotherapy in asthma are mediated by genomic mechanisms that occur principally in airway epithelial cells and are the result of β-arrestin 2-dependent activation of ERK1/2. This study shows that β2-adrenoceptor agonists, paradoxically, reduced ERK1/2 phosphorylation in airway epithelia by disrupting upstream Ras-C-Raf complex formation and inducing DUSP1. Moreover, these effects were PKA-dependent suggesting that β2-adrenoceptor agonists were not biased toward β-arrestin 2 and acted via canonical, cAMP-dependent signaling.
Collapse
Affiliation(s)
- Omar Hamed
- Physiology & Pharmacology, University of Calgary, Canada
| | - Radhika Joshi
- Physiology & Pharmacology, University of Calgary, Canada
| | - Aubrey N Michi
- Physiology & Pharmacology, University of Calgary, Canada
| | - Cora Kooi
- Physiology & Pharmacology, University of Calgary, Canada
| | | |
Collapse
|
32
|
Gregório JF, Rodrigues-Machado MDG, Santos RAS, Carvalho Ribeiro IA, Nunes OM, Aguiar Oliveira IF, Vasconcelos AV, Campagnole-Santos MJ, Magalhães GS. ASTHMA: ROLE OF THE ANGIOTENSIN-(1-7)/MAS PATHWAY IN PATHOPHYSIOLOGY AND THERAPY. Br J Pharmacol 2021; 178:4428-4439. [PMID: 34235725 DOI: 10.1111/bph.15619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/06/2021] [Accepted: 06/30/2021] [Indexed: 11/29/2022] Open
Abstract
The incidence of asthma is a global health problem, requiring studies aimed at developing new treatments to improve clinical management, thereby reducing personal and economic burdens on the health system. Therefore, the discovery of mediators that promote anti-inflammatory and pro-resolutive events are highly desirable to improve lung function and quality of life in asthmatic patients. In that regard, experimental studies have shown that the Angiotensin-(1-7)/Mas receptor of the renin-angiotensin system (RAS) is a potential candidate for the treatment of asthma. Therefore, we reviewed findings related to the function of the Angiotensin-(1-7)/Mas pathway in regulating the processes associated with inflammation and exacerbations in asthma, including leukocyte influx, fibrogenesis, pulmonary dysfunction and resolution of inflammation. Thus, knowledge of the role of the Angiotensin-(1-7)/Mas can help pave the way for the development of new treatments for this disease with high morbidity and mortality through new experimental and clinical trials.
Collapse
Affiliation(s)
- Juliana Fabiana Gregório
- Department of Physiology and Biophysics, National Institute of Science and Technology - INCT-Nanobiopharmaceutical, Biological Sciences Institute, Federal University of Minas Gerais
| | | | - Robson A S Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology - INCT-Nanobiopharmaceutical, Biological Sciences Institute, Federal University of Minas Gerais
| | | | - Olivia Mendonça Nunes
- Medical Sciences Faculty of Minas Gerais, Post-Graduation Program in Health Sciences, Belo Horizonte, Brazil
| | | | - Ana Victoria Vasconcelos
- Medical Sciences Faculty of Minas Gerais, Post-Graduation Program in Health Sciences, Belo Horizonte, Brazil
| | - Maria José Campagnole-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology - INCT-Nanobiopharmaceutical, Biological Sciences Institute, Federal University of Minas Gerais
| | - Giselle Santos Magalhães
- Department of Physiology and Biophysics, National Institute of Science and Technology - INCT-Nanobiopharmaceutical, Biological Sciences Institute, Federal University of Minas Gerais.,Medical Sciences Faculty of Minas Gerais, Post-Graduation Program in Health Sciences, Belo Horizonte, Brazil
| |
Collapse
|
33
|
Tiwari A, Wang AL, Li J, Lutz SM, Kho AT, Weiss ST, Tantisira KG, McGeachie MJ. Seasonal Variation in miR-328-3p and let-7d-3p Are Associated With Seasonal Allergies and Asthma Symptoms in Children. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:576-588. [PMID: 34212545 PMCID: PMC8255344 DOI: 10.4168/aair.2021.13.4.576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/26/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE MicroRNAs (miRs) are small non-coding RNA molecules of around 18-22 nucleotides that are key regulators of many biologic processes, particularly inflammation. The purpose of this study was to determine the association of circulating miRs from asthmatic children with seasonal variation in allergic inflammation and asthma symptoms. METHODS We used available small RNA sequencing on blood serum from 398 children with mild-to-moderate asthma from the Childhood Asthma Management Program. We used seasonal asthma symptom data at the study baseline and allergen affection status from baseline skin prick tests as primary outcomes. We identified differentially expressed (DE) miRs between pairs of seasons using DESeq2. Regression analysis was used to identify associations between allergy status to specific seasonal allergens and DE miRs in 4 seasons and between seasonal asthma symptom data and DE miRs. We performed pathway enrichment analysis for target genes of the DE miRs using DAVID. RESULTS After quality control, 398 samples underwent differential analysis between the 4 seasons. We found 52 unique miRs from a total of 81 DE miRs across seasons. Further investigation of the association between these miRs and sensitization to seasonal allergens using skin prick tests revealed that 26 unique miRs from a total of 38 miRs were significantly associated with a same-season allergen. Comparison between seasonal asthma symptom data revealed that 2 of these 26 miRs also had significant associations with asthma symptoms in the same seasons: miR-328-3p (P < 0.03) and let-7d-3p (P < 0.05). Enrichment analysis showed that the most enriched pathway clusters were Rap1, Ras, and MAPK signaling pathways. CONCLUSION Our results show seasonal variation in miR-328-3p and let-7d-3p are significantly associated with seasonal asthma symptoms and seasonal allergies. These indicate a potentially protective role for let-7d-3p and a deleterious role for miR-328-3p in asthmatics sensitized to mulberry. Further work will determine whether these miRs are drivers or results of the allergic response.
Collapse
Affiliation(s)
- Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alberta L Wang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jiang Li
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sharon M Lutz
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA, USA
| | - Alvin T Kho
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Tiwari A, Rahi S, Mehan S. Elucidation of Abnormal Extracellular Regulated Kinase (ERK) Signaling and Associations with Syndromic and Non-syndromic Autism. Curr Drug Targets 2021; 22:1071-1086. [PMID: 33081671 DOI: 10.2174/1389450121666201020155010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 11/22/2022]
Abstract
Autism is a highly inherited and extremely complex disorder in which results from various cases indicate chromosome anomalies, unusual single-gene mutations, and multiplicative effects of particular gene variants, characterized primarily by impaired speech and social interaction and restricted behavior. The precise etiology of Autism Spectrum Disorder (ASD) is currently unclear. The extracellular signal-regulated kinase (ERK) signaling mechanism affects neurogenesis and neuronal plasticity during the development of the central nervous mechanism. In this regard, the pathway of ERK has recently gained significant interest in the pathogenesis of ASD. The mutation occurs in a few ERK components. Besides, the ERK pathway dysfunction lies in the upstream of modified translation and contributes to synapse pathology in syndromic types of autism. In this review, we highlight the ERK pathway as a target for neurodevelopmental disorder autism. In addition, we summarize the regulation of the ERK pathway with ERK inhibitors in neurological disorders. In conclusion, a better understanding of the ERK signaling pathway provides a range of therapeutic options for autism spectrum disorder.
Collapse
Affiliation(s)
- Aarti Tiwari
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Saloni Rahi
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
35
|
Kwon EK, Choi Y, Yoon IH, Won HK, Sim S, Lee HR, Kim HS, Ye YM, Shin YS, Park HS, Ban GY. Oleoylethanolamide induces eosinophilic airway inflammation in bronchial asthma. Exp Mol Med 2021; 53:1036-1045. [PMID: 34079051 PMCID: PMC8257664 DOI: 10.1038/s12276-021-00622-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/31/2022] Open
Abstract
Asthma is a chronic eosinophilic inflammatory disease with an increasing prevalence worldwide. Endocannabinoids are known to have immunomodulatory biological effects. However, the contribution of oleoylethanolamide (OEA) to airway inflammation remains to be elucidated. To investigate the effect of OEA, the expression of proinflammatory cytokines was measured by RT-qPCR and ELISA in airway epithelial (A549) cells. The numbers of airway inflammatory cells and cytokine levels in bronchoalveolar lavage fluid, airway hyperresponsiveness, and type 2 innate lymphoid cells (ILC2s) were examined in BALB/c mice after 4 days of OEA treatment. Furthermore, eosinophil activation after OEA treatment was evaluated by measuring cellular CD69 levels in eosinophils from human peripheral eosinophils using flow cytometry. OEA induced type 2 inflammatory responses in vitro and in vivo. OEA increased the levels of proinflammatory cytokines, such as IL-6, IL-8, and IL-33, in A549 cells. In addition, it also induced eosinophilic inflammation, the production of IL-4, IL-5, IL-13, and IL-33 in bronchoalveolar lavage fluid, and airway hyperresponsiveness. OEA increased the numbers of IL-5- or IL-13-producing ILC2s in a mouse model. Finally, we confirmed that OEA increased CD69 expression (an eosinophil activation marker) on purified eosinophils from patients with asthma compared to those from healthy controls. OEA may play a role in the pathogenesis of asthma by activating ILC2s and eosinophils.
Collapse
Affiliation(s)
- Eun-Kyung Kwon
- Department of Pulmonary, Allergy and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Il-Hee Yoon
- VHS Veterans Medical Research Institute, VHS Medical Center, Seoul, Korea
| | - Ha-Kyeong Won
- Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | - Soyoon Sim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | | | - Hyoung Su Kim
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Young-Min Ye
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Ga-Young Ban
- Department of Pulmonary, Allergy and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea. .,Allergy and Clinical Immunology Research Center, Hallym University College of Medicine, Dongtan, Korea.
| |
Collapse
|
36
|
Halder S, Ghosh S, Chattopadhyay J, Chatterjee S. Bistability in cell signalling and its significance in identifying potential drug targets. Bioinformatics 2021; 37:4156-4163. [PMID: 34021761 DOI: 10.1093/bioinformatics/btab395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/09/2021] [Accepted: 05/20/2021] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Bistability is one of the salient dynamical features in various all-or-none kinds of decision-making processes. The presence of bistability in a cell signalling network plays a key role in input-output (I/O) relation. Our study is aiming to capture and emphasise the role of motif structure influencing the I/O relation between two nodes in the context of bistability. Here, a model-based analysis is made to investigate the critical conditions responsible for the emergence of different bistable protein-protein interaction (PPI) motifs and their possible applications to find the potential drug targets. RESULTS The global sensitivity analysis is used to identify sensitive parameters and their role in maintaining the bistability. Additionally, the bistable switching through hysteresis is explored to develop an understanding of the underlying mechanisms involved in the cell signalling processes, when significant motifs exhibiting bistability have emerged. Further, we elaborate the application of the results by the implication of the emerged PPI motifs to identify potential drug-targets in three cancer networks, which is validated with existing databases. The influence of stochastic perturbations that could hinder desired functionality of any signalling networks is also described here. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Suvankar Halder
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, India
| | - Sumana Ghosh
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, India
| | - Joydev Chattopadhyay
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata-700108, India
| | - Samrat Chatterjee
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, India
| |
Collapse
|
37
|
Khuleshwari K, Vijay P. Genistein enhances expression of extracellular regulated kinases (ERK) 1/2, and learning and memory of mouse. IBRO Neurosci Rep 2021; 10:90-95. [PMID: 33842915 PMCID: PMC8019993 DOI: 10.1016/j.ibneur.2021.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/20/2021] [Indexed: 01/08/2023] Open
Abstract
Genistein (GEN) is a well known phytoestrogen. It acts through estrogen receptor (ER) and performs plethora of functions in the brain. ERK1/2 is an activated kinase which involves in neuron differentiation, adult neurogenesis and several brain functions including learning and memory. However, GEN dependent expression of ERK1/2 and its effect in learning and memory of mice are unknown. In this study, Swiss albino male mice of 25weeks weighing 30 g were used for the experiments. Mice were placed in two groups- control (C) and genistein treated (GEN). Treated group received GEN dissolved in sesame oil (1 mg/kg/day) whereas the control group received sesame oil only. To study the effects of GEN on learning and memory, open-field (OF) test and novel object recognition (NOR) test were performed. Moreover, immunoblotting (IB) was performed to check the expression of ERK1/2 in the mouse brain of both groups. In the OF test, no significant change was observed in motor activity and anxiety in GEN treated mice as compared to control. Moreover, NOR test suggested that entry towards the dissimilar object was higher in case of GEN treated mice as compared to control. These findings suggest higher learning and memory of GEN treated mice than of control. IB showed that the expression of ERK1/2 was significantly high in GEN treated mouse brain as compared to control. Such study may be helpful to understand GEN mediated learning and memory involving ERK1/2.
Collapse
Affiliation(s)
- Kurrey Khuleshwari
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, MP-484 887, India
| | - Paramanik Vijay
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, MP-484 887, India
| |
Collapse
|
38
|
Wang J, Li T, Cai H, Jin L, Li R, Shan L, Cai W, Jiang J. Protective effects of total flavonoids from Qu Zhi Qiao (fruit of Citrus paradisi cv. Changshanhuyou) on OVA-induced allergic airway inflammation and remodeling through MAPKs and Smad2/3 signaling pathway. Biomed Pharmacother 2021; 138:111421. [PMID: 33752061 DOI: 10.1016/j.biopha.2021.111421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/06/2021] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
Allergic asthma is one of the inflammatory diseases, which has become a major public health problem. Qu zhi qiao (QZQ), a dry and immature fruit of Citrus paradisi cv. Changshanhuyou, has various flavonoids with pharmacological properties. However, there is a knowledge gap on the pharmacological properties of QZQ on allergic asthma. Therefore, here, we explored the efficacy and mechanism of total flavonoids from QZQ (TFCH) on allergic asthma. We extracted and purified TFCH and conducted animal experiments using an Ovalbumin (OVA)-induced mice model. Bronchoalveolar lavage fluid and Swiss-Giemsa staining were used to count different inflammatory cells in allergic asthma mice. We conducted histopathology and immunohistochemistry to evaluate the changes in the lungs of allergic asthma mice. Moreover, we used ELISA assays to analyze chemokines and inflammatory cytokines. Furthermore, western blot analyses were conducted to elucidate the mechanism of TFCH on allergic asthma. We established that TFCH has anti-inflammatory effects and inhibits airway remodeling, providing a potential therapeutic strategy for allergic asthma.
Collapse
Affiliation(s)
- Jianping Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310006, China; Songyang County People's Hospital, Lishui 323400, China
| | - Ting Li
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Haiying Cai
- Shaoxing people's Hospital, Shaoxing 312000, China
| | - Liangyan Jin
- Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Run Li
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Letian Shan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310006, China.
| | - Wei Cai
- Department of Chinese Materia Medica, Zhejiang Pharmaceutical College, Ningbo 315100, China
| | - Jianping Jiang
- Zhejiang You-du Biotech Limited Company, Quzhou 324200, China; Department of Pharmacy, School of Medicine, Zhejiang University City College, 310015 China.
| |
Collapse
|
39
|
Magalhães GS, Gregório JF, Cançado Ribeiro ATP, Baroni IF, Vasconcellos AVDO, Nakashima GP, Oliveira IFA, de Matos NA, Castro TDF, Bezerra FS, Sinisterra RD, Pinho V, Teixeira MM, Santos RAS, Rodrigues-Machado MG, Campagnole-Santos MJ. Oral Formulation of Angiotensin-(1-7) Promotes Therapeutic Actions in a Model of Eosinophilic and Neutrophilic Asthma. Front Pharmacol 2021; 12:557962. [PMID: 33762930 PMCID: PMC7982577 DOI: 10.3389/fphar.2021.557962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
The presence of eosinophils and neutrophils in the lungs of asthmatic patients is associated with the severity of the disease and resistance to corticosteroids. Thus, defective resolution of eosinophilic and neutrophilic inflammation is importantly related to exacerbation of asthma. In this study, we investigated a therapeutic action of angiotensin-(1-7) (Ang-(1-7)) in a model of asthma induced by ovalbumin (OVA) and lipopolysaccharide (LPS). Balb-c mice were sensitized and challenged with OVA. Twenty-three hours after the last OVA challenge, experimental groups received LPS, and 1 h and 7 h later, mice were treated with oral formulation of Ang-(1-7). On the next day, 45 h after the last challenge with OVA, mice were subjected to a test of motor and exploratory behavior; 3 h later, lung function was evaluated, and bronchoalveolar lavage fluid (BALF) and lungs were collected. Motor and exploratory activities were lower in OVA + LPS-challenged mice. Treatment with Ang-(1-7) improved these behaviors, normalized lung function, and reduced eosinophil, neutrophil, myeloperoxidase (MPO), eosinophilic peroxidase (EPO), and ERK1/2 phosphorylation (p-ERK1/2) in the lungs. In addition, Ang-(1-7) decreased the deposition of mucus and extracellular matrix in the airways. These results extended those of previous studies by demonstrating that oral administration of Ang-(1-7) at the peak of pulmonary inflammation can be valuable for the treatment of neutrophil- and eosinophil-mediated asthma. Therefore, these findings potentially provide a new drug to reverse the natural history of the disease, unlike the current standards of care that manage the disease symptoms at best.
Collapse
Affiliation(s)
- Giselle Santos Magalhães
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Post-Graduation Program in Health Sciences, Medical Sciences Faculty of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Fabiana Gregório
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Isis Felippe Baroni
- Post-Graduation Program in Health Sciences, Medical Sciences Faculty of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Ruben D Sinisterra
- Chemistry Department, Institute of Exact Sciences, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Maria José Campagnole-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
40
|
Wong E, Xu F, Joffre J, Nguyen N, Wilhelmsen K, Hellman J. ERK1/2 Has Divergent Roles in LPS-Induced Microvascular Endothelial Cell Cytokine Production and Permeability. Shock 2021; 55:349-356. [PMID: 32826812 PMCID: PMC8139579 DOI: 10.1097/shk.0000000000001639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Endothelial cells play a major role in inflammatory responses to infection and sterile injury. Endothelial cells express Toll-like receptor 4 (TLR4) and are activated by LPS to express inflammatory cytokines/chemokines, and to undergo functional changes, including increased permeability. The extracellular signal-regulated kinase 1/2 (ERK1/2) mediates pro-inflammatory signaling in monocytes and macrophages, but the role of ERK1/2 in LPS-induced activation of microvascular endothelial cells has not been defined. We therefore studied the role of ERK1/2 in LPS-induced inflammatory activation and permeability of primary human lung microvascular endothelial cells (HMVEC). Inhibition of ERK1/2 augmented LPS-induced IL-6 and vascular cell adhesion protein (VCAM-1) production by HMVEC. ERK1/2 siRNA knockdown also augmented IL-6 production by LPS-treated HMVEC. Conversely, ERK1/2 inhibition abrogated permeability and restored cell-cell junctions of LPS-treated HMVEC. Consistent with the previously described pro-inflammatory role for ERK1/2 in leukocytes, inhibition of ERK1/2 reduced LPS-induced cytokine/chemokine production by primary human monocytes. Our study identifies a complex role for ERK1/2 in TLR4-activation of HMVEC, independent of myeloid differentiation primary response gene (MyD88) and TIR domain-containing adaptor inducing IFN-β (TRIF) signaling pathways. The activation of ERK1/2 limits LPS-induced IL-6 production by HMVEC, while at the same time promoting HMVEC permeability. Conversely, ERK1/2 activation promotes IL-6 production by human monocytes. Our results suggest that ERK1/2 may play an important role in the nuanced regulation of endothelial cell inflammation and vascular permeability in sepsis and injury.
Collapse
Affiliation(s)
- Erika Wong
- Department of Pediatrics, Division of Critical Care, UCSF Benioff Children’s Hospital, San Francisco, California, 94143
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, 94143
| | - Fengyun Xu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, 94143
| | - Jérémie Joffre
- Medical Intensive Care Unit, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, 75571 Paris cedex 12, France
| | - Nina Nguyen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, 94143
| | - Kevin Wilhelmsen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, 94143
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, 94143
| |
Collapse
|
41
|
Tiwari A, Khera R, Rahi S, Mehan S, Makeen HA, Khormi YH, Rehman MU, Khan A. Neuroprotective Effect of α-Mangostin in the Ameliorating Propionic Acid-Induced Experimental Model of Autism in Wistar Rats. Brain Sci 2021; 11:288. [PMID: 33669120 PMCID: PMC7996534 DOI: 10.3390/brainsci11030288] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Several studies have documented the role of hyper-activation of extracellular signal-regulated kinases (ERK) in Autism pathogenesis. Alpha-mangostin (AMG) is a phytoconstituents with anti-oxidants, anti-inflammatory, and ERK inhibition properties in many diseases. Our research aims to investigate the neuroprotective effect of AMG in the rat model of intracerebroventricular-propionic acid (ICV-PPA) induced autism with a confirmation of its effect on the ERK signaling. Autism was induced in Wistar rats (total 36 rats; 18 male/18 female) by multiple doses of PPA through ICV injection for 11 days. Actophotometer and beam walking tasks were used to evaluate animals' motor abilities, and the Morris water maze task was utilized to confirm the cognition and memory in animals. Long term administration of AMG 100 mg/kg and AMG 200mg/kg continued from day 12 to day 44 of the experiment. Before that, animals were sacrificed, brains isolated, morphological, gross pathological studies were performed, and neurochemical analysis was performed in the brain homogenates. Cellular and molecular markers, including ERK, myelin basic protein, apoptotic markers including caspase-3, Bax, Bcl-2, neuroinflammatory markers, neurotransmitters, and oxidative stress markers, have been tested throughout the brain. Thus, AMG reduces the overactivation of the ERK signaling and also restored autism-like behavioral and neurochemical alterations.
Collapse
Affiliation(s)
- Aarti Tiwari
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India; (A.T.); (R.K.); (S.R.)
| | - Rishabh Khera
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India; (A.T.); (R.K.); (S.R.)
| | - Saloni Rahi
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India; (A.T.); (R.K.); (S.R.)
| | - Sidharth Mehan
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India; (A.T.); (R.K.); (S.R.)
| | - Hafiz Antar Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Yahya H. Khormi
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Andleeb Khan
- Department of Pharmacology & Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
42
|
Lee BW, Ha JH, Ji Y, Jeong SH, Kim JH, Lee J, Park JY, Kwon HJ, Jung K, Kim JC, Ryu YB, Lee IC. Alnus hirsuta (Spach) Rupr. Attenuates Airway Inflammation and Mucus Overproduction in a Murine Model of Ovalbumin-Challenged Asthma. Front Pharmacol 2021; 12:614442. [PMID: 33643046 PMCID: PMC7902870 DOI: 10.3389/fphar.2021.614442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/05/2021] [Indexed: 02/05/2023] Open
Abstract
Alnus hirsuta (Spach) Rupr. (AH), a member of the Betulaceae family, is widely used in Eastern Asia of as a source of medicinal compounds for the treatment of hemorrhage, diarrhea, and alcoholism. In this study, we investigated the protective effects of a methanolic extract of AH branches against airway inflammation and mucus production in tumor necrosis factor (TNF)-α-stimulated NCI-H292 cells and in an ovalbumin (OVA)-challenged allergic asthma mouse model. Female BALB/c mice were injected with OVA (40 μg) and aluminum hydroxide (2 mg) on days 0 and 14 to induce allergic airway inflammation. The mice were then challenged with 1% OVA from days 21–23. Mice were treated with AH (50 and 100 mg/kg/day; 2% DMSO) or dexamethasone (positive control; 3 mg/kg/day) from days 18–23. AH treatment effectively attenuated airway resistance/hyperresponsiveness and reduced levels of T helper type 2 (Th2) cytokines, eotaxins, and number of inflammatory cells in bronchoalveolar lavage fluid, and immunoglobulin E in serums of OVA-challenged mice. In histological analysis, AH treatment significantly inhibited airway inflammation and mucus production in OVA-challenged mice. AH treatment downregulated the phosphorylation of I kappa B-alpha, p65 nuclear factor-kappa B (p65NF-κB), and mitogen-activated protein kinases with suppression of mucin 5AC (MUC5AC) in lung tissue. Moreover, AH treatment decreased the levels of pro-inflammatory cytokines and Th2 cytokines, as well as MUC5AC expression, and inhibited the phosphorylation of p65NF-κB in TNF-α-stimulated NCI-H292 cells. These results indicate that AH might represent a useful therapeutic agent for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Ba-Wool Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea.,Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Ji-Hye Ha
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea.,Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Yeongseon Ji
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Seong-Hun Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Ju-Hong Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Jihye Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Ji-Young Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Kyungsook Jung
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Jong-Choon Kim
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Young-Bae Ryu
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - In-Chul Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| |
Collapse
|
43
|
Suraya R, Nagano T, Katsurada M, Sekiya R, Kobayashi K, Nishimura Y. Molecular mechanism of asthma and its novel molecular target therapeutic agent. Respir Investig 2021; 59:291-301. [PMID: 33549541 DOI: 10.1016/j.resinv.2020.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Asthma is a chronic disease with major public health ramifications owing to its high morbidity and mortality rates, especially in severe and recurrent cases. Conventional therapeutic options could partially alleviate the burden of asthma, yet a novel approach is needed to completely control this condition. To do so, a comprehensive understanding of the molecular mechanism underlying asthma is essential to recognize and treat the major pathways that drive its pathophysiology. In this review, we will discuss the molecular mechanism of asthma, in particular focusing on the type of inflammatory responses it elicits, namely type 2 and non-type 2 asthma. Furthermore, we will discuss the novel therapeutic options that target the aberrant molecules found in asthma pathophysiology. We will specifically focus on the role of novel monoclonal antibody therapies recently developed, such as the anti-IgE, IL-5, IL-5Rα, and IL-4Rα antibodies, drugs that have been extensively studied preclinically and clinically.
Collapse
Affiliation(s)
- Ratoe Suraya
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo 650-0017, Japan.
| | - Masahiro Katsurada
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Reina Sekiya
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
44
|
Serum microRNAs as Tool to Predict Early Response to Benralizumab in Severe Eosinophilic Asthma. J Pers Med 2021; 11:jpm11020076. [PMID: 33525548 PMCID: PMC7912443 DOI: 10.3390/jpm11020076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Severe eosinophilic asthma poses a serious health and economic problem, so new therapy approaches have been developed to control it, including biological drugs such as benralizumab, which is a monoclonal antibody that binds to IL-5 receptor alpha subunit and depletes peripheral blood eosinophils rapidly. Biomarkers that predict the response to this drug are needed so that microRNAs (miRNAs) can be useful tools. This study was performed with fifteen severe eosinophilic asthmatic patients treated with benralizumab, and serum miRNAs were evaluated before and after treatment by semi-quantitative PCR (qPCR). Patients showed a clinical improvement after benralizumab administration. Additionally, deregulation of miR-1246, miR-5100 and miR-338-3p was observed in severe asthmatic patients after eight weeks of therapy, and a correlation was found between miR-1246 and eosinophil counts, including a number of exacerbations per year in these severe asthmatics. In silico pathway analysis revealed that these three miRNAs are regulators of the MAPK signaling pathway, regulating target genes implicated in asthma such as NFKB2, NFATC3, DUSP1, DUSP2, DUSP5 and DUSP16. In this study, we observed an altered expression of miR-1246, miR-5100 and miR-338-3p after eight weeks of benralizumab administration, which could be used as early response markers.
Collapse
|
45
|
Pereira ABM, de Oliveira JR, Teixeira MM, da Silva PR, Rodrigues Junior V, Rogerio ADP. IL-27 regulates IL-4-induced chemokine production in human bronchial epithelial cells. Immunobiology 2020; 226:152029. [PMID: 33278712 DOI: 10.1016/j.imbio.2020.152029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 11/25/2022]
Abstract
IL-4 coordinates the Th2-type immune response in inflammatory diseases such as asthma. IL-27 can inhibit the development of both Th2 and Th1 cells. However, IL-27 can also drive naïve T cells to differentiate toward the Th1 phenotype. In this study, we investigated the effects of IL-27 on the activation of IL-4-induced human bronchial epithelial cells (BEAS-2B). Compared to controls, both IL-4 and IL-27 (25-100 ng/mL) increased the concentrations of CCL2 and IL-8 in a dose-dependent manner. However, compared to cells stimulated individually with IL-4 or IL-27, treatment with a combination of both cytokines reduced CCL2 and IL-8 concentrations in a dose- and time-dependent manner. IL-4 increased the activation of p38 MAPK, ERK1/2, STAT6 and NF-κB, while IL-27 increased the activation of p38 MAPK and ERK1/2 but not STAT6 and NF-κB. Compared to IL-4-stimulated cells, cells treated with both IL-27 and IL-4 displayed decreased activation of STAT6 and NF-κB but not ERK1/2 and p38 MAPK. Taken together, these results suggest that IL-27 plays a pro-inflammatory role when administered alone but downregulates bronchial epithelial cell activation when combined with IL-4. Therefore, IL-27 may be an interesting target for the treatment of Th2 inflammatory diseases.
Collapse
Affiliation(s)
- Aline Beatriz Mahler Pereira
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Jhony Robison de Oliveira
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Maxelle Martins Teixeira
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Paulo Roberto da Silva
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Virmondes Rodrigues Junior
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Alexandre de Paula Rogerio
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG 38025-350, Brazil.
| |
Collapse
|
46
|
Safar HA, El-Hashim AZ, Amoudy H, Mustafa AS. Mycobacterium tuberculosis-Specific Antigen Rv3619c Effectively Alleviates Allergic Asthma in Mice. Front Pharmacol 2020; 11:532199. [PMID: 33101014 PMCID: PMC7546857 DOI: 10.3389/fphar.2020.532199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/31/2020] [Indexed: 01/20/2023] Open
Abstract
Despite significant advances, asthma remains a cause of premature death, and current treatments are suboptimal. Antigen-specific Th2 cells and their cytokines are primary mediators of the pathophysiological changes seen in asthma. Studies in animal models have shown that mycobacteria can suppress the asthma phenotype by alteration of the Th1/Th2 cytokines ratio. In this study, utilizing a Th1 delivery system to modulate the allergic airway inflammation in a Th2-driven model of asthma, we evaluated the efficacy of immunization with Mycobacterium tuberculosis-specific antigen Rv3619c, either alone or in combination with low dose dexamethasone. The rv3619c gene was cloned in an expression plasmid pGES-TH-1, expressed in Escherichia coli, and the recombinant protein Rv3619c was purified to homogeneity using affinity chromatography. Mice were immunized with the recombinant protein emulsified in Freund's Incomplete Adjuvant (IFA) alone and in combination with low dose dexamethasone, and then challenged with ovalbumin (OVA). Airway inflammation was assessed by quantifying airway cytology, histological changes and Th2 cytokine (IL-5) secretion from splenocytes. OVA-specific IgE, IgG and IgG1 from sera was assessed, as well as pERK1/2 expression in the lung tissue. Immunization with recombinant Rv3619c alone inhibited the OVA-induced increase in total cell counts, eosinophil airway cell infiltration in BAL fluid, perivascular and peribronchial inflammation and fibrosis, and goblet cell hyper/metaplasia. In addition, Rv3619c/IFA inhibited the OVA-induced IL-5 in spleen cells, OVA-specific IgE, IgG, and IgG1 levels in sera, and pERK1/2 expression in lung tissue. Immunization with Rv3619c/IFA in combination with low dose dexamethasone resulted in an enhanced effect on some but not all the asthma features. Taken together, this study demonstrates that immunization with Rv3619c/IFA, alone or in combination with dexamethasone, may be an effective treatment strategy for the prevention of asthma.
Collapse
Affiliation(s)
- Hussain A Safar
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Ahmed Z El-Hashim
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait City, Kuwait
| | - Hanady Amoudy
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
47
|
Korde A, Ahangari F, Haslip M, Zhang X, Liu Q, Cohn L, Gomez JL, Chupp G, Pober JS, Gonzalez A, Takyar SS. An endothelial microRNA-1-regulated network controls eosinophil trafficking in asthma and chronic rhinosinusitis. J Allergy Clin Immunol 2020; 145:550-562. [PMID: 32035607 DOI: 10.1016/j.jaci.2019.10.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/25/2019] [Accepted: 10/16/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Airway eosinophilia is a prominent feature of asthma and chronic rhinosinusitis (CRS), and the endothelium plays a key role in eosinophil trafficking. To date, microRNA-1 (miR-1) is the only microRNA known to be regulated in the lung endothelium in asthma models. OBJECTIVE We sought to determine the role of endothelial miR-1 in allergic airway inflammation. METHODS We measured microRNA and mRNA expression using quantitative RT-PCR. We used ovalbumin and house dust mite models of asthma. Endothelium-specific overexpression of miR-1 was achieved through lentiviral vector delivery or induction of a transgene. Tissue eosinophilia was quantified by using Congo red and anti-eosinophil peroxidase staining. We measured eosinophil binding with a Sykes-Moore adhesion chamber. Target recruitment to RNA-induced silencing complex was assessed by using anti-Argonaute2 RNA immunoprecipitation. Surface P-selectin levels were measured by using flow cytometry. RESULTS Serum miR-1 levels had inverse correlations with sputum eosinophilia, airway obstruction, and number of hospitalizations in asthmatic patients and sinonasal tissue eosinophilia in patients with CRS. IL-13 stimulation decreased miR-1 levels in human lung endothelium. Endothelium-specific overexpression of miR-1 reduced airway eosinophilia and asthma phenotypes in murine models and inhibited IL-13-induced eosinophil binding to endothelial cells. miR-1 recruited P-selectin, thymic stromal lymphopoietin, eotaxin-3, and thrombopoietin receptor to the RNA-induced silencing complex; downregulated these genes in the lung endothelium; and reduced surface P-selectin levels in IL-13-stimulated endothelial cells. In our asthma and CRS cohorts, miR-1 levels correlated inversely with its target genes. CONCLUSION Endothelial miR-1 regulates eosinophil trafficking in the setting of allergic airway inflammation. miR-1 has therapeutic potential in asthmatic patients and patients with CRS.
Collapse
Affiliation(s)
- Asawari Korde
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Farida Ahangari
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Maria Haslip
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn; Yale School of Nursing, Orange, Conn
| | - Xuchen Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Conn
| | - Qing Liu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Lauren Cohn
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Jose L Gomez
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Geoffrey Chupp
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | - Jordan S Pober
- Department of Immunobiology, Yale School of Medicine, New Haven, Conn
| | | | - Shervin S Takyar
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn.
| |
Collapse
|
48
|
Santana FPR, da Silva RC, Ponci V, Pinheiro AJMCR, Olivo CR, Caperuto LC, Arantes-Costa FM, Claudio SR, Ribeiro DA, Tibério IFLC, Lima-Neto LG, Lago JHG, Prado CM. Dehydrodieugenol improved lung inflammation in an asthma model by inhibiting the STAT3/SOCS3 and MAPK pathways. Biochem Pharmacol 2020; 180:114175. [PMID: 32717226 DOI: 10.1016/j.bcp.2020.114175] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Eugenol, a common phenylpropanoid derivative found in different plant species, has well-described anti-inflammatory effects associated with the development of occupational hypersensitive asthma. Dehydrodieugenol, a dimeric eugenol derivative, exhibits anti-inflammatory and antioxidant activities and can be found in the Brazilian plant species Nectandra leucantha (Lauraceae). The biological effects of dehydrodieugenol on lung inflammation remain unclear. PURPOSE This study aimed to investigate the effects of eugenol and dehydrodieugenol isolated from N. leucantha in an experimental model of asthma. METHODS In the present work, the toxic effects of eugenol and dehydrodieugenol on RAW 264.7 cells and their oxidant and inflammatory effects before lipopolysaccharide (LPS) exposure were tested. Then, male BALB/c mice were sensitized with ovalbumin through a 29-day protocol and treated with vehicle, eugenol, dehydrodieugenol or dexamethasone for eight days beginning on the 22nd day until the end of the protocol. Lung function; the inflammatory profile; and the protein expression of ERK1/2, JNK, p38, VAChT, STAT3, and SOCS3 in the lung were evaluated by immunoblotting. RESULTS Eugenol and dehydrodieugenol were nontoxic to cells. Both compounds inhibited NO release and the gene expression of IL-1β and IL-6 in LPS-stimulated RAW 264.7 cells. In OVA-sensitized animals, dehydrodieugenol reduced lung inflammatory cell numbers and the lung concentrations of IL-4, IL-13, IL-17, and IL-10. These anti-inflammatory effects were associated with inhibition of the JNK, p38 and ERK1/2, VAChT and STAT3/SOCS3 pathways. Moreover, treatment with dehydrodieugenol effectively attenuated airway hyperresponsiveness. CONCLUSION The obtained data demonstrate, for the first time, that dehydrodieugenol was more effective than eugenol in counteracting allergic airway inflammation in mice, especially its inhibition of the JNK, p38 and ERK1/2, components of MAPK pathway. Therefore, dehydrodieugenol can be considered a prototype for the development of new and effective agents for the treatment of asthmatic patients.
Collapse
Affiliation(s)
- Fernanda P R Santana
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, Brazil; Department of Medicine, School of Medicine, University of São Paulo, SP, Brazil
| | - Rafael C da Silva
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, Brazil
| | - Vitor Ponci
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, Brazil
| | - Aruanã J M C R Pinheiro
- Universidade CEUMA, São Luís, MA, Brazil; Programa de Pós-Graduação da Rede BIONORTE, Brazil
| | - Clarice R Olivo
- Department of Medicine, School of Medicine, University of São Paulo, SP, Brazil
| | - Luciana C Caperuto
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, Brazil
| | | | - Samuel R Claudio
- Department of Bioscience, Federal University of São Paulo, Santos, Brazil
| | - Daniel A Ribeiro
- Department of Bioscience, Federal University of São Paulo, Santos, Brazil
| | | | - Lídio G Lima-Neto
- Universidade CEUMA, São Luís, MA, Brazil; Programa de Pós-Graduação da Rede BIONORTE, Brazil
| | - João Henrique G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo André, SP, Brazil
| | - Carla M Prado
- Department of Bioscience, Federal University of São Paulo, Santos, Brazil.
| |
Collapse
|
49
|
Lee BW, Ha JH, Shin HG, Jeong SH, Kim JH, Lee J, Park JY, Kwon HJ, Jung K, Lee WS, Ryu YB, Jeong JH, Lee IC. Lindera obtusiloba Attenuates Oxidative Stress and Airway Inflammation in a Murine Model of Ovalbumin-Challenged Asthma. Antioxidants (Basel) 2020; 9:antiox9070563. [PMID: 32605045 PMCID: PMC7402094 DOI: 10.3390/antiox9070563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Lindera obtusiloba is widespread in northeast Asia and used for treatment of improvement of blood circulation and anti-inflammation. In this study, we investigated anti-inflammatory and anti-oxidant effects of the methanolic extract of L. obtusiloba leaves (LOL) in an ovalbumin (OVA)-challenged allergic asthma model and tumor necrosis factor (TNF)-α-stimulated NCI-H292 cell. Female BALB/c mice were sensitized with OVA by intraperitoneal injection on days 0 and 14, and airway-challenged with OVA from days 21 to 23. Mice were administered 50 and 100 mg/kg of LOL by oral gavage 1 h before the challenge. LOL treatment effectively decreased airway hyper-responsiveness and inhibited inflammatory cell recruitment, Th2 cytokines, mucin 5AC (MUC5AC) in bronchoalveolar lavage fluid in OVA-challenged mice, which were accompanied by marked suppression of airway inflammation and mucus production in the lung tissue. LOL pretreatment inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) with suppression of activator protein (AP)-1 and MUC5AC in the lung tissue. LOL also down-regulated expression of inflammatory cytokines, and inhibited the activation of NF-κB in TNF-α-stimulated NCI-H292 cells. LOL elevated the translocation of nuclear factor-erythroid 2-related factor (Nrf-2) into nucleus concurrent with increase of heme oxyngenase-1 (HO-1) and NAD(P)H quinine oxidoreductase 1 (NQO1). Moreover, LOL treatment exhibited a marked increase in the anti-oxidant enzymes activities, whereas effectively suppressed the production of reactive oxygen species and nitric oxide, as well as lipid peroxidation in lung tissue of OVA-challenged mice and TNF-α-stimulated NCI-H292 cells. These findings suggest that LOL might serve as a therapeutic agent for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Ba-Wool Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
| | - Ji-Hye Ha
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
| | - Han-Gyo Shin
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Seong-Hun Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Ju-Hong Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Jihye Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Ji-Young Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Kyungsook Jung
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Woo-Song Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Young-Bae Ryu
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61186, Korea
- Correspondence: (J.-H.J.); (I.-C.L.); Tel.: +82-61-379-2747 (J.-H.J.); +82-63-570-5241 (I.-C.L.); Fax: +82-62-232-9708 (J.-H.J.); +82-63-570-5239 (I.-C.L.)
| | - In-Chul Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
- Correspondence: (J.-H.J.); (I.-C.L.); Tel.: +82-61-379-2747 (J.-H.J.); +82-63-570-5241 (I.-C.L.); Fax: +82-62-232-9708 (J.-H.J.); +82-63-570-5239 (I.-C.L.)
| |
Collapse
|
50
|
Anti-inflammatory effect of Rosa laevigata extract on in vitro and in vivo model of allergic asthma via the suppression of IgE and related cytokines. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-019-00063-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|