1
|
Barchi A, Mandarino FV, Yacoub MR, Albarello L, Massimino L, Savarino EV, Ungaro F, Passaretti S, Masclee GMC, Danese S, Bredenoord AJ, Vespa E. From Pathogenesis to Treatment: Targeting Type-2 Inflammation in Eosinophilic Esophagitis. Biomolecules 2024; 14:1080. [PMID: 39334846 PMCID: PMC11429508 DOI: 10.3390/biom14091080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder of the esophagus. EoE shares a common pathogenetic mechanism with other chronic disorders pertaining to the type 2 inflammatory spectrum, such as atopic dermatitis (AD), allergic rhinitis (AR), asthma, and chronic rhinosinusitis with nasal polyps (CRSwNP). The recent advancements in EoE pathogenesis understanding have unveiled new molecular targets implied within the "atopic march" picture as well as specific to EoE. These discoveries have led to the clinical evaluation of several novel drugs (monoclonal antibodies and immune modulators), specifically aimed at the modulation of Th2 inflammation. In this comprehensive review, we have focused on the subtle mechanisms of type 2 inflammatory disorders, highlighting the similarities and differences with EoE, taking a deeper look into the evolving field of biologic therapies, already approved or under current investigation.
Collapse
Affiliation(s)
- Alberto Barchi
- Gastroenterology and Digestive Endoscopy, Motility Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
- Gastroenterology & Hepatology, Amsterdam University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Francesco Vito Mandarino
- Gastroenterology and Digestive Endoscopy, Motility Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Mona-Rita Yacoub
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Albarello
- Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Massimino
- Gastroenterology and Digestive Endoscopy, Motility Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology, and Gastroenterology, University of Padua, 35128 Padua, Italy
- Gastroenterology Unit, Azienda Ospedale Università di Padova, 35128 Padua, Italy
| | - Federica Ungaro
- Gastroenterology and Digestive Endoscopy, Motility Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Sandro Passaretti
- Gastroenterology and Digestive Endoscopy, Motility Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Gwen M C Masclee
- Gastroenterology & Hepatology, Amsterdam University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Silvio Danese
- Gastroenterology and Digestive Endoscopy, Motility Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Albert J Bredenoord
- Gastroenterology & Hepatology, Amsterdam University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Edoardo Vespa
- Gastroenterology and Digestive Endoscopy, Motility Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
2
|
Hanzawa S, Sugiura M, Nakae S, Masuo M, Morita H, Matsumoto K, Takeda K, Okumura K, Nakamura M, Ohno T, Miyazaki Y. The Prostaglandin D2 Receptor CRTH2 Contributes to Airway Hyperresponsiveness during Airway Inflammation Induced by Sensitization without an Adjuvant in Mice. Int Arch Allergy Immunol 2024; 185:752-760. [PMID: 38599205 DOI: 10.1159/000537840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/13/2024] [Indexed: 04/12/2024] Open
Abstract
INTRODUCTION Prostaglandin D2 (PGD2), which is produced mainly by Th2 cells and mast cells, promotes a type-2 immune response by activating Th2 cells, mast cells, eosinophils, and group 2 innate lymphoid cells (ILC2s) via its receptor, chemoattractant receptor-homologous molecules on Th2 cells (CRTH2). However, the role of CRTH2 in models of airway inflammation induced by sensitization without adjuvants, in which both IgE and mast cells may play major roles, remain unclear. METHODS Wild-type (WT) and CRTH2-knockout (KO) mice were sensitized with ovalbumin (OVA) without an adjuvant and then challenged intranasally with OVA. Airway inflammation was assessed based on airway hyperresponsiveness (AHR), lung histology, number of leukocytes, and levels of type-2 cytokines in the bronchoalveolar lavage fluid (BALF). RESULTS AHR was significantly reduced after OVA challenge in CRTH2 KO mice compared to WT mice. The number of eosinophils, levels of type-2 cytokines (IL-4, IL-5, and IL-13) in BALF, and IgE concentration in serum were decreased in CRTH2 KO mice compared to WT mice. However, lung histological changes were comparable between WT and CRTH2 KO mice. CONCLUSION CRTH2 is responsible for the development of asthma responses in a mouse model of airway inflammation that features prominent involvement of both IgE and mast cells.
Collapse
Affiliation(s)
- Satoshi Hanzawa
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Respiratory Medicine, Shuuwa General Hospital, Saitama, Japan
| | - Makiko Sugiura
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Respiratory Medicine, Tokyo Metropolitan Ohtsuka Hospital, Tokyo, Japan
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, Japan
| | - Masahiro Masuo
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Respiratory Medicine, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuyoshi Takeda
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Laboratory of Cell Biology, Biomedical Research Core Facilities, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Ko Okumura
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Atopy Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Masataka Nakamura
- Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsukuni Ohno
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
3
|
Akinnusi PA, Olubode SO, Adebesin AO, Alade AA, Nwoke VC, Shodehinde SA. Optimal molecular binding data and pharmacokinetic profiles of novel potential triple-action inhibitors of chymase, spleen tyrosine kinase, and prostaglandin D2 receptor in the treatment of asthma. J Genet Eng Biotechnol 2023; 21:113. [PMID: 37947895 PMCID: PMC10638233 DOI: 10.1186/s43141-023-00577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Asthma is a chronic and complex pulmonary condition that affects the airways. A total of 250,000 asthma-related deaths are recorded annually and several proteins including chymase, spleen tyrosine kinase, and prostaglandin D2 receptor have been implicated in the pathophysiology of asthma. Different anti-inflammatory drugs have been developed for the treatment of asthma, particularly corticosteroids, but the associated adverse reactions cannot be overlooked. It is therefore of interest to identify and develop small molecule inhibitors of the integral proteins associated with asthma that have very little or no side effects. Herein, a molecular modeling approach was employed to screen the bioactive compounds in Chromolaena odorata and identify compounds with high binding affinity to the protein targets. RESULTS Five compounds were identified after rigorous and precise molecular screening namely (-)-epicatechin, chlorogenic acid, ombuine, quercetagetin, and quercetin 3-O-rutinoside. These compounds generally showed impressive binding to all the targets understudy. However, chlorogenic acid, quercetagetin, and quercetin 3-O-rutinoside showed better prospects in terms of triple-action inhibition. Further pulmonary and oral pharmacokinetics showed positive results for all the reported compounds. The generated pharmacophore model showed hydrogen bond donor, hydrogen bond acceptor, and aromatic rings as basic structural features required for triple action inhibition. CONCLUSION These findings suggest that these compounds could be explored as triple-action inhibitors of the protein targets. They are, therefore, recommended for further analysis.
Collapse
Affiliation(s)
| | | | | | | | - Victor Chinedu Nwoke
- Department of Biochemistry, Enugu State University of Science and Technology, Enugu, Nigeria
| | | |
Collapse
|
4
|
Glaubitz J, Asgarbeik S, Lange R, Mazloum H, Elsheikh H, Weiss FU, Sendler M. Immune response mechanisms in acute and chronic pancreatitis: strategies for therapeutic intervention. Front Immunol 2023; 14:1279539. [PMID: 37881430 PMCID: PMC10595029 DOI: 10.3389/fimmu.2023.1279539] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common inflammatory diseases of the gastrointestinal tract and a steady rising diagnosis for inpatient hospitalization. About one in four patients, who experience an episode of AP, will develop chronic pancreatitis (CP) over time. While the initiating causes of pancreatitis can be complex, they consistently elicit an immune response that significantly determines the severity and course of the disease. Overall, AP is associated with a significant mortality rate of 1-5%, which is caused by either an excessive pro-inflammation, or a strong compensatory inhibition of bacterial defense mechanisms which lead to a severe necrotizing form of pancreatitis. At the time-point of hospitalization the already initiated immune response is the only promising common therapeutic target to treat or prevent a severe disease course. However, the complexity of the immune response requires fine-balanced therapeutic intervention which in addition is limited by the fact that a significant proportion of patients is in danger of development or progress to recurrent and chronic disease. Based on the recent literature we survey the disease-relevant immune mechanisms and evaluate appropriate and promising therapeutic targets for the treatment of acute and chronic pancreatitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matthias Sendler
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| |
Collapse
|
5
|
Yin R, Huang KX, Huang LA, Ji M, Zhao H, Li K, Gao A, Chen J, Li Z, Liu T, Shively JE, Kandeel F, Li J. Indole-Based and Cyclopentenylindole-Based Analogues Containing Fluorine Group as Potential 18F-Labeled Positron Emission Tomography (PET) G-Protein Coupled Receptor 44 (GPR44) Tracers. Pharmaceuticals (Basel) 2023; 16:1203. [PMID: 37765011 PMCID: PMC10534865 DOI: 10.3390/ph16091203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Recently, growing evidence of the relationship between G-protein coupled receptor 44 (GPR44) and the inflammation-cancer system has garnered tremendous interest, while the exact role of GPR44 has not been fully elucidated. Currently, there is a strong and urgent need for the development of non-invasive in vivo GPR44 positron emission tomography (PET) radiotracers that can be used to aid the exploration of the relationship between inflammation and tumor biologic behavior. Accordingly, the choosing and radiolabeling of existing GPR44 antagonists containing a fluorine group could serve as a viable method to accelerate PET tracers development for in vivo imaging to this purpose. The present study aims to evaluate published (2000-present) indole-based and cyclopentenyl-indole-based analogues of the GPR44 antagonist to guide the development of fluorine-18 labeled PET tracers that can accurately detect inflammatory processes. The selected analogues contained a crucial fluorine nuclide and were characterized for various properties including binding affinity, selectivity, and pharmacokinetic and metabolic profile. Overall, 26 compounds with favorable to strong binding properties were identified. This review highlights the potential of GPR44 analogues for the development of PET tracers to study inflammation and cancer development and ultimately guide the development of targeted clinical therapies.
Collapse
Affiliation(s)
- Runkai Yin
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Kelly X. Huang
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Lina A. Huang
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Melinda Ji
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Hanyi Zhao
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Kathy Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Anna Gao
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Jiaqi Chen
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Zhixuan Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Tianxiong Liu
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - John E. Shively
- Department of Immunology & Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Junfeng Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
6
|
Jing S, Liu W, Yang K, Lin Y, Yao X, Sun G. The randomized, single- and multiple- ascending dose studies of the safety, tolerability, pharmacokinetics of CSPCHA115 in healthy Chinese subjects. Clin Transl Sci 2023; 16:447-458. [PMID: 36495036 PMCID: PMC10014699 DOI: 10.1111/cts.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/16/2022] [Accepted: 10/28/2022] [Indexed: 12/14/2022] Open
Abstract
CSPCHA115 is a highly selective and potent antagonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2). This study aimed to evaluate the pharmacokinetics (PKs), safety, and tolerability of single and multiple ascending doses of CSPCHA115 in Chinese healthy subjects. Two phase I studies both adopted a randomized, double-blind, placebo-controlled, single-center, and ascending-dose design. In the single ascending dose (SAD) study, subjects were randomly allocated to receive a single dose of CSPCHA115 (25-1000 mg) or a placebo. In the multiple ascending dose (MAD) study, 100, 200, 400, or 600 mg of CSPCHA115 or placebo were given to subjects once daily for 7 days. PK parameters were estimated by noncompartmental analysis. Safety was assessed by monitoring treatment-emergent adverse events (TEAEs), clinical laboratory tests, electrocardiograms, vital signs, and physical examinations throughout the study period. Forty-eight healthy subjects were enrolled in the SAD study, and 40 healthy subjects were in the MAD study. Following single and multiple administrations, CSPCHA115 was rapidly absorbed with a median time to maximum concentration of ~0.5-3.5 h; and the systemic exposure of CSPCHA115 generally increased dose-proportionally within the dose range studied. Steady-state was approximately achieved by day 5, and <1.5-fold accumulation was observed following multiple doses. Mean terminal half-life was ~8.16-16.43 h after a single dose. CSPCHA115 was well-tolerated in both studies, with a low overall incidence of TEAEs. The most common TEAE related to CSPCHA115 was hypertriglyceridemia. No significant safety concerns were identified in healthy subjects.
Collapse
Affiliation(s)
- Shan Jing
- Clinical Pharmacology Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wenfang Liu
- Clinical Pharmacology Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Kexu Yang
- Clinical Pharmacology Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yang Lin
- Clinical Pharmacology Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xuekun Yao
- Clinical Science Division, CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, China
| | - Guilan Sun
- Clinical Science Division, CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, China
| |
Collapse
|
7
|
Lv X, Gao Z, Tang W, Qin J, Wang W, Liu J, Li M, Teng F, Yi L, Dong J, Wei Y. Trends of therapy in the treatment of asthma. Ther Adv Respir Dis 2023; 17:17534666231155748. [PMID: 36942731 PMCID: PMC10031615 DOI: 10.1177/17534666231155748] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND To better understand the development of therapy for asthma, grasp the core paradigm associated with the transformation of cognition of asthma treatment and asthma, explore potential and effective therapies for asthma, discover new biomarkers and mechanisms related to asthma treatment, find novel targets for anti-asthma drugs, and predict the future trends of asthma therapy, we used a bibliometric analysis to research articles related to the therapies for asthma published from 1983 to 2022. METHODS A comprehensive search was conducted to analyze the articles associated with therapy for asthma with the help of the Web of Science Core Collection (WOSCC) database from January 1, 1983 to August 14, 2022. The CiteSpace 6.1.R2 software and VOS viewer 6.1.8 software were utilized to analyze the overall structure of the network, network clusters, links between clusters, key nodes, and pathways. RESULTS A total of 3902 publications related to therapies on asthma were published in 3211 academic journals by a total of 14,655 authors in 3476 organizations from 87 countries or regions from 1983 to 2022. The United States published the most articles (n = 1143), followed by England (n = 574) and China (n = 405). However, the centrality of China was 0.4, higher than the United States (centrality = 0.16) and Singapore (centrality = 0.11). Akdis Cezmi published the most papers. Journal of Allergy and Clinical Immunology published the most studies on therapies for asthma. Asthma was the most frequent keyword (n = 594). The betweenness centrality value of keywords that were greater than 0.1 included airway inflammation (centrality = 0.22), double blind (centrality = 0.18), asthma (centrality = 0.17), inflammation (centrality = 0.12), and inhaled corticosteroid (centrality = 0.11). CONCLUSIONS The results from this biometric review provide insight into the development of therapy for asthma, the paradigm of recognition of this field, the approach of discovering new targets, exploration and combination of new mechanisms, and the frontier trend of this field in future.
Collapse
Affiliation(s)
- Xiaodi Lv
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhen Gao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jiaqi Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Mihui Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Pezeshki PS, Nowroozi A, Razi S, Rezaei N. Asthma and Allergy. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Farne H, Glanville N, Johnson N, Kebadze T, Aniscenko J, Regis E, Zhu J, Trujillo-Torralbo MB, Kon OM, Mallia P, Prevost AT, Edwards MR, Johnston SL, Singanayagam A, Jackson DJ. Effect of CRTH2 antagonism on the response to experimental rhinovirus infection in asthma: a pilot randomised controlled trial. Thorax 2022; 77:950-959. [PMID: 34716281 PMCID: PMC9510426 DOI: 10.1136/thoraxjnl-2021-217429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/24/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND AIMS The chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) antagonist timapiprant improved lung function and asthma control in a phase 2 study, with evidence suggesting reduced exacerbations. We aimed to assess whether timapiprant attenuated or prevented asthma exacerbations induced by experimental rhinovirus (RV) infection. We furthermore hypothesised that timapiprant would dampen RV-induced type 2 inflammation and consequently improve antiviral immune responses. METHODS Atopic patients with partially controlled asthma on maintenance inhaled corticosteroids were randomised to timapiprant (n=22) or placebo (n=22) and challenged with RV-A16 3 weeks later. The primary endpoint was the cumulative lower respiratory symptom score over the 14 days post infection. Upper respiratory symptoms, spirometry, airway hyperresponsiveness, exhaled nitric oxide, RV-A16 virus load and soluble mediators in upper and lower airways samples, and CRTH2 staining in bronchial biopsies were additionally assessed before and during RV-A16 infection. RESULTS Six subjects discontinued the study and eight were not infected; outcomes were assessed in 16 timapiprant-treated and 14 placebo-treated, successfully infected subjects. There were no differences between treatment groups in clinical exacerbation severity including cumulative lower respiratory symptom score day 0-14 (difference 3.0 (95% CI -29.0 to 17.0), p=0.78), virus load, antiviral immune responses, or RV-A16-induced airway inflammation other than in the bronchial biopsies, where CRTH2 staining was increased during RV-A16 infection in the placebo-treated but not the timapiprant-treated group. Timapiprant had a favourable safety profile, with no deaths, serious adverse events or drug-related withdrawals. CONCLUSION Timapiprant treatment had little impact on the clinicopathological changes induced by RV-A16 infection in partially controlled asthma.
Collapse
Affiliation(s)
- Hugo Farne
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Nicholas Johnson
- Imperial Clinical Trials Unit, Imperial College London, London, UK
| | - Tata Kebadze
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Julia Aniscenko
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Eteri Regis
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jie Zhu
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Onn Min Kon
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Patrick Mallia
- National Heart and Lung Institute, Imperial College London, London, UK
| | - A Toby Prevost
- Imperial Clinical Trials Unit, Imperial College London, London, UK
| | - Michael R Edwards
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Aran Singanayagam
- National Heart and Lung Institute, Imperial College London, London, UK
| | - David J Jackson
- Guy’s Severe Asthma Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, London, UK
| |
Collapse
|
10
|
Eosinophilic inflammation: An Appealing Target for Pharmacologic Treatments in Severe Asthma. Biomedicines 2022; 10:biomedicines10092181. [PMID: 36140282 PMCID: PMC9496162 DOI: 10.3390/biomedicines10092181] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022] Open
Abstract
Severe asthma is characterized by different endotypes driven by complex pathologic mechanisms. In most patients with both allergic and non-allergic asthma, predominant eosinophilic airway inflammation is present. Given the central role of eosinophilic inflammation in the pathophysiology of most cases of severe asthma and considering that severe eosinophilic asthmatic patients respond partially or poorly to corticosteroids, in recent years, research has focused on the development of targeted anti-eosinophil biological therapies; this review will focus on the unique and particular biology of the eosinophil, as well as on the current knowledge about the pathobiology of eosinophilic inflammation in asthmatic airways. Finally, current and prospective anti-eosinophil therapeutic strategies will be discussed, examining the reason why eosinophilic inflammation represents an appealing target for the pharmacological treatment of patients with severe asthma.
Collapse
|
11
|
Fonseka CL, Hardman CS, Woo J, Singh R, Nahler J, Yang J, Chen YL, Kamaladasa A, Silva T, Salimi M, Gray N, Dong T, Malavige GN, Ogg GS. Dengue virus co-opts innate type 2 pathways to escape early control of viral replication. Commun Biol 2022; 5:735. [PMID: 35869167 PMCID: PMC9306424 DOI: 10.1038/s42003-022-03682-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 07/06/2022] [Indexed: 12/13/2022] Open
Abstract
Mast cell products and high levels of type 2 cytokines are associated with severe dengue disease. Group 2 innate lymphoid cells (ILC2) are type-2 cytokine-producing cells that are activated by epithelial cytokines and mast cell-derived lipid mediators. Through ex vivo RNAseq analysis, we observed that ILC2 are activated during acute dengue viral infection, and show an impaired type I-IFN signature in severe disease. We observed that circulating ILC2 are permissive for dengue virus infection in vivo and in vitro, particularly when activated through prostaglandin D2 (PGD2). ILC2 underwent productive dengue virus infection, which was inhibited through CRTH2 antagonism. Furthermore, exogenous IFN-β induced expression of type I-IFN responsive anti-viral genes by ILC2. PGD2 downregulated type I-IFN responsive gene and protein expression; and urinary prostaglandin D2 metabolite levels were elevated in severe dengue. Moreover, supernatants from activated ILC2 enhanced monocyte infection in a GM-CSF and mannan-dependent manner. Our results indicate that dengue virus co-opts an innate type 2 environment to escape early type I-IFN control and facilitate viral dissemination. PGD2 downregulates type I-IFN induced anti-viral responses in ILC2. CRTH2 antagonism may be a therapeutic strategy for dengue-associated disease.
Collapse
Affiliation(s)
- Chathuranga L Fonseka
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Medicine, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | - Clare S Hardman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jeongmin Woo
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Randeep Singh
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Janina Nahler
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jiahe Yang
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Yi-Ling Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Achala Kamaladasa
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Tehani Silva
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- General Sir John Kotelawala Defence University, Rathmalana, Sri Lanka
| | - Maryam Salimi
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicki Gray
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Gathsaurie N Malavige
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Graham S Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
The impact of CRTH2 antagonist OC 000459 on pulmonary function of asthma patients: a meta-analysis of randomized controlled trials. Postepy Dermatol Alergol 2021; 38:566-571. [PMID: 34658695 PMCID: PMC8501448 DOI: 10.5114/ada.2020.92296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/23/2019] [Indexed: 12/01/2022] Open
Abstract
Introduction The chemoattractant receptor expressed on T-helper (Th) type 2 cells (CRTH2) antagonist OC 000459 showed the potential in improving pulmonary function of asthma patients. Aim We conducted a systematic review and meta-analysis to explore the impact of CRTH2 antagonist OC 000459 on pulmonary function for asthma. Material and methods PubMed, Embase, Web of science, EBSCO, and Cochrane library databases were systematically searched. This meta-analysis included randomized controlled trials (RCTs) assessing the effect of CRTH2 antagonist OC 000459 on pulmonary function for asthma. Two investigators independently searched articles, extracted data, and assessed the quality of included studies. Results Four RCTs were included in the meta-analysis. Overall, compared with the control intervention for asthma patients, CRTH2 antagonist OC 000459 could significantly improve FEV1 (SMD = 0.22; 95% CI: 0.02–0.42; p = 0.03), peak expiratory flow (SMD = 0.22; 95% CI: 0.01–0.42; p = 0.04) and reduce the respiratory tract infection (RR = 0.47; 95% CI: 0.26–0.85; p = 0.01), but revealed no remarkable effect on predicted FEV1 (SMD = 0.14; 95% CI: –0.18 to 0.45; p = 0.39), or treatment-related adverse events (RR = 0.84; 95% CI: 0.52–1.36; p = 0.48). Conclusions CRTH2 antagonist OC 000459 might be effective and safe to improve pulmonary function in asthma patients.
Collapse
|
13
|
Painter JD, Akbari O. Type 2 Innate Lymphoid Cells: Protectors in Type 2 Diabetes. Front Immunol 2021; 12:727008. [PMID: 34489979 PMCID: PMC8416625 DOI: 10.3389/fimmu.2021.727008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 innate lymphoid cells (ILC2) are the innate counterparts of Th2 cells and are critically involved in the maintenance of homeostasis in a variety of tissues. Instead of expressing specific antigen receptors, ILC2s respond to external stimuli such as alarmins released from damage. These cells help control the delicate balance of inflammation in adipose tissue, which is a determinant of metabolic outcome. ILC2s play a key role in the pathogenesis of type 2 diabetes mellitus (T2DM) through their protective effects on tissue homeostasis. A variety of crosstalk takes place between resident adipose cells and ILC2s, with each interaction playing a key role in controlling this balance. ILC2 effector function is associated with increased browning of adipose tissue and an anti-inflammatory immune profile. Trafficking and maintenance of ILC2 populations are critical for tissue homeostasis. The metabolic environment and energy source significantly affect the number and function of ILC2s in addition to affecting their interactions with resident cell types. How ILC2s react to changes in the metabolic environment is a clear determinant of the severity of disease. Treating sources of metabolic instability via critical immune cells provides a clear avenue for modulation of systemic homeostasis and new treatments of T2DM.
Collapse
Affiliation(s)
- Jacob D Painter
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Oyesola OO, Shanahan MT, Kanke M, Mooney BM, Webb LM, Smita S, Matheson MK, Campioli P, Pham D, Früh SP, McGinty JW, Churchill MJ, Cahoon JL, Sundaravaradan P, Flitter BA, Mouli K, Nadjsombati MS, Kamynina E, Peng SA, Cubitt RL, Gronert K, Lord JD, Rauch I, von Moltke J, Sethupathy P, Tait Wojno ED. PGD2 and CRTH2 counteract Type 2 cytokine-elicited intestinal epithelial responses during helminth infection. J Exp Med 2021; 218:e20202178. [PMID: 34283207 PMCID: PMC8294949 DOI: 10.1084/jem.20202178] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/28/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
Type 2 inflammation is associated with epithelial cell responses, including goblet cell hyperplasia, that promote worm expulsion during intestinal helminth infection. How these epithelial responses are regulated remains incompletely understood. Here, we show that mice deficient in the prostaglandin D2 (PGD2) receptor CRTH2 and mice with CRTH2 deficiency only in nonhematopoietic cells exhibited enhanced worm clearance and intestinal goblet cell hyperplasia following infection with the helminth Nippostrongylus brasiliensis. Small intestinal stem, goblet, and tuft cells expressed CRTH2. CRTH2-deficient small intestinal organoids showed enhanced budding and terminal differentiation to the goblet cell lineage. During helminth infection or in organoids, PGD2 and CRTH2 down-regulated intestinal epithelial Il13ra1 expression and reversed Type 2 cytokine-mediated suppression of epithelial cell proliferation and promotion of goblet cell accumulation. These data show that the PGD2-CRTH2 pathway negatively regulates the Type 2 cytokine-driven epithelial program, revealing a mechanism that can temper the highly inflammatory effects of the anti-helminth response.
Collapse
Affiliation(s)
- Oyebola O. Oyesola
- Department of Immunology, University of Washington, Seattle, WA
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Michael T. Shanahan
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Matt Kanke
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | | | - Lauren M. Webb
- Department of Immunology, University of Washington, Seattle, WA
| | - Shuchi Smita
- Department of Immunology, University of Washington, Seattle, WA
| | | | - Pamela Campioli
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Duc Pham
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Simon P. Früh
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - John W. McGinty
- Department of Immunology, University of Washington, Seattle, WA
| | - Madeline J. Churchill
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | | | | | - Becca A. Flitter
- Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, CA
| | - Karthik Mouli
- Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, CA
| | | | - Elena Kamynina
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Seth A. Peng
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Rebecca L. Cubitt
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Karsten Gronert
- Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, CA
| | - James D. Lord
- Benaroya Research Institute at Virginia Mason Medical Center, Division of Gastroenterology, Seattle, WA
| | - Isabella Rauch
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | | | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | | |
Collapse
|
15
|
Oyesola OO, Tait Wojno ED. Prostaglandin regulation of type 2 inflammation: From basic biology to therapeutic interventions. Eur J Immunol 2021; 51:2399-2416. [PMID: 34396535 PMCID: PMC8843787 DOI: 10.1002/eji.202048909] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/11/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022]
Abstract
Type 2 immunity is critical for the protective and repair responses that mediate resistance to parasitic helminth infection. This immune response also drives aberrant inflammation during atopic diseases. Prostaglandins are a class of critical lipid mediators that are released during type 2 inflammation and are integral in controlling the initiation, activation, maintenance, effector functions, and resolution of Type 2 inflammation. In this review, we explore the roles of the different prostaglandin family members and the receptors they bind to during allergen‐ and helminth‐induced Type 2 inflammation and the mechanism through which prostaglandins promote or suppress Type 2 inflammation. Furthermore, we discuss the potential role of prostaglandins produced by helminth parasites in the regulation of host–pathogen interactions, and how prostaglandins may regulate the inverse relationship between helminth infection and allergy. Finally, we discuss opportunities to capitalize on our understanding of prostaglandin pathways to develop new therapeutic options for humans experiencing Type 2 inflammatory disorders that have a significant prostaglandin‐driven component including allergic rhinitis and asthma.
Collapse
Affiliation(s)
- Oyebola O Oyesola
- Department of Immunology, University of Washington, Seattle, WA, 98117, USA
| | - Elia D Tait Wojno
- Department of Immunology, University of Washington, Seattle, WA, 98117, USA
| |
Collapse
|
16
|
Yang D, Guo X, Liu T, Li Y, Du Z, Liu C. Efficacy and Safety of Prostaglandin D2 Receptor 2 Antagonism with Fevipiprant for Patients with Asthma: a Systematic Review and Meta-analysis of Randomized Controlled Trials. Curr Allergy Asthma Rep 2021; 21:39. [PMID: 34387775 DOI: 10.1007/s11882-021-01017-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Accumulating evidence has shown that prostaglandin D2 (PGD2)-chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) pathway plays an important role in promoting eosinophilic airway inflammation in asthma. We aimed to assess the efficacy and safety of CRTH2 antagonist fevipiprant in patients with persistent asthma compared with placebo. RECENT FINDINGS We identified eligible studies by searching PubMed, EMBASE, the Cochrane Central Register of Controlled Trials and ClinicalTrials.gov. The study was registered as CRD 42020221714 ( http://www.crd.york.ac.uk/PROSPERO ). Ten randomized controlled trials with 7902 patients met our inclusion criteria. A statistically significant benefit of fevipiprant compared with placebo was shown in improving forced expiratory volume in 1 s (MD 0.05 L, 95% CI: 0.02 to 0.07; p < 0.0001), Asthma Control Questionnaire score (MD -0.10, 95% CI: -0.16 to -0.04; p = 0.001), and Asthma Quality of Life Questionnaire score (MD 0.08, 95% CI: 0.03 to 0.13; p = 0.003). Fevipiprant decreased number of patients with at least one asthma exacerbation requiring administration of systemic corticosteroids for 3 days or more (RR 0.86, 95% CI: 0.77 to 0.97; p = 0.01). Some benefits were a little more pronounced in the high eosinophil population (with an elevated blood eosinophil count or sputum eosinophil percentage) and in the 450 mg dose group. Fevipiprant was well tolerated with no safety issues compared with placebo. Fevipiprant could safely improve asthma outcomes compared to placebo. However, most of the differences didn't reach the minimal clinically important difference (MCID), thus the clinical benefits remained to be confirmed.
Collapse
Affiliation(s)
- Dan Yang
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Xinning Guo
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Ting Liu
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Yina Li
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Zhuman Du
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Chuntao Liu
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China.
| |
Collapse
|
17
|
Molecular basis for lipid recognition by the prostaglandin D 2 receptor CRTH2. Proc Natl Acad Sci U S A 2021; 118:2102813118. [PMID: 34341104 DOI: 10.1073/pnas.2102813118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prostaglandin D2 (PGD2) signals through the G protein-coupled receptor (GPCR) CRTH2 to mediate various inflammatory responses. CRTH2 is the only member of the prostanoid receptor family that is phylogenetically distant from others, implying a nonconserved mechanism of lipid action on CRTH2. Here, we report a crystal structure of human CRTH2 bound to a PGD2 derivative, 15R-methyl-PGD2 (15mPGD2), by serial femtosecond crystallography. The structure revealed a "polar group in"-binding mode of 15mPGD2 contrasting the "polar group out"-binding mode of PGE2 in its receptor EP3. Structural comparison analysis suggested that these two lipid-binding modes, associated with distinct charge distributions of ligand-binding pockets, may apply to other lipid GPCRs. Molecular dynamics simulations together with mutagenesis studies also identified charged residues at the ligand entry port that function to capture lipid ligands of CRTH2 from the lipid bilayer. Together, our studies suggest critical roles of charge environment in lipid recognition by GPCRs.
Collapse
|
18
|
Martins Costa Gomes G, de Gouveia Belinelo P, Starkey MR, Murphy VE, Hansbro PM, Sly PD, Robinson PD, Karmaus W, Gibson PG, Mattes J, Collison AM. Cord blood group 2 innate lymphoid cells are associated with lung function at 6 weeks of age. Clin Transl Immunology 2021; 10:e1296. [PMID: 34306680 PMCID: PMC8292948 DOI: 10.1002/cti2.1296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/27/2021] [Accepted: 05/21/2021] [Indexed: 11/21/2022] Open
Abstract
Objective Offspring born to mothers with asthma in pregnancy are known to have lower lung function which tracks with age. Human group 2 innate lymphoid cells (ILC2) accumulate in foetal lungs, at 10‐fold higher levels compared to adult lungs. However, there are no data on foetal ILC2 numbers and the association with respiratory health outcomes such as lung function in early life. We aimed to investigate cord blood immune cell populations from babies born to mothers with asthma in pregnancy. Methods Cord blood from babies born to asthmatic mothers was collected, and cells were stained in whole cord blood. Analyses were done using traditional gating approaches and computational methodologies (t‐distributed stochastic neighbour embedding and PhenoGraph algorithms). At 6 weeks of age, the time to peak tidal expiratory flow as a percentage of total expiratory flow time (tPTEF/tE%) was determined as well as Lung Clearance Index (LCI), during quiet natural sleep. Results Of 110 eligible infants (March 2017 to November 2019), 91 were successfully immunophenotyped (82.7%). Lung function was attempted in 61 infants (67.0%), and 43 of those infants (70.5% of attempted) had technically acceptable tPTEF/tE% measurements. Thirty‐four infants (55.7% of attempted) had acceptable LCI measurements. Foetal ILC2 numbers with increased expression of chemoattractant receptor‐homologous molecule (CRTh2), characterised by two distinct analysis methodologies, were associated with poorer infant lung function at 6 weeks of age.” Conclusion Foetal immune responses may be a surrogate variable for or directly influence lung function outcomes in early life.
Collapse
Affiliation(s)
- Gabriela Martins Costa Gomes
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia
| | - Patricia de Gouveia Belinelo
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia
| | - Malcolm R Starkey
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia.,Priority Research Centre for Healthy Lungs - Hunter Medical Research Institute University of Newcastle Newcastle NSW Australia.,Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
| | - Vanessa E Murphy
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs - Hunter Medical Research Institute University of Newcastle Newcastle NSW Australia.,Centenary UTS Centre for Inflammation Centenary Institute Sydney NSW Australia
| | - Peter D Sly
- Child Health Research Centre University of Queensland Brisbane QLD Australia
| | - Paul D Robinson
- Department of Respiratory Medicine The Children's Hospital at Westmead Sydney NSW Australia
| | | | - Peter G Gibson
- Priority Research Centre for Healthy Lungs - Hunter Medical Research Institute University of Newcastle Newcastle NSW Australia.,Sleep Medicine Department John Hunter Hospital Newcastle NSW Australia
| | - Joerg Mattes
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia.,Paediatric Respiratory & Sleep Medicine Department John Hunter Children's Hospital Newcastle NSW Australia
| | - Adam M Collison
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia
| |
Collapse
|
19
|
Amison RT, Page CP. Novel pharmacological therapies for the treatment of bronchial asthma. Minerva Med 2021; 113:31-50. [PMID: 34236157 DOI: 10.23736/s0026-4806.21.07559-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Asthma has long been recognised as a chronic inflammatory disease of the airways, often in response to inhaled allergens prompting inappropriate activation of the immune response. involving a range of cells including mast cells, Th2 lymphocytes and eosinophils and a wide range of inflammatory mediators. First-line therapy for treatment of persistent asthma involves the use of inhaled corticosteroids (ICS) in combination with inhaled β2-agonists enabling both the control of the underlying airways inflammation and a reduction of airway hyperresponsiveness. However, many patients remain symptomatic despite high-dose therapy. There is therefore a continued unmet clinical need to develop specifically new anti-inflammatory therapies for patients with asthma, either as an add-on therapy to ICS or as replacement monotherapies. The success of fixed dose combination inhalers containing both a bronchodilator and an anti-inflammatory drug has also led to the development of "bifunctional" drugs which are molecules specifically designed to have two distinct pharmacological actions based on distinct pharmacophores. In this review we will discuss these different pharmacological approaches under development for the treatment of bronchial asthma and the available pre-clinical and clinical data.
Collapse
Affiliation(s)
- Richard T Amison
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK -
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| |
Collapse
|
20
|
Aranez V, Ambrus J. Immunologic Adverse Effects of Biologics for the Treatment of Atopy. Clin Rev Allergy Immunol 2021; 59:220-230. [PMID: 31301006 DOI: 10.1007/s12016-019-08739-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The use of biologic agents as therapies for atopic diseases such as asthma and atopic dermatitis has increased greatly in recent years. The biological agents used to treat atopic diseases are for the most part monoclonal antibodies that suppress the immune response and reduce inflammation by targeting particular cytokines or other molecules involved in Th1, Th2, or Th17 immune reactions. Various side effects and rare complications have been reported from these agents. In this review, we discuss mechanisms of various adverse effects for the biologic agents currently in use or in development for atopic and inflammatory diseases. Monoclonal antibodies targeting the Th1 and Th17 pathways have been associated with significant side effects, partially due to their ability to cause significant impairment in immune responses to pathogens because of the immunologic alterations that they produce. Biologicals targeting Th2-mediated inflammation have had fewer reported side effects, though many are new and emerging drugs whose adverse effects may remain to be fully elucidated with more use. Therefore, continued long-term safety monitoring is required. As with all therapies, the risks associated with side effects of biologics must be balanced against the benefits these drugs offer for treating atopic diseases. One of the most apparent benefits is the steroid-sparing effect of well-chosen biologic therapy used to treat severe atopic disease. In contrast with the quite favorable safety profile of currently available biologics that target the Th2-mediated immune response, chronic systemic corticosteroid use is associated with significant side effects, many of which impact the majority of patients who are placed on long-term steroid therapy.
Collapse
Affiliation(s)
- Vivian Aranez
- Department of Medicine, Rochester General Hospital, Rochester, NY, USA.
- , Rochester, USA.
| | - Julian Ambrus
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
21
|
Nucera F, Lo Bello F, Shen SS, Ruggeri P, Coppolino I, Di Stefano A, Stellato C, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Curr Med Chem 2021; 28:2577-2653. [PMID: 32819230 DOI: 10.2174/0929867327999200819145327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Federica Lo Bello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Sj S Shen
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Paolo Ruggeri
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Irene Coppolino
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Antonino Di Stefano
- Division of Pneumology, Cyto- Immunopathology Laboratory of the Cardio-Respiratory System, Clinical Scientific Institutes Maugeri IRCCS, Veruno, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Phil M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Gaetano Caramori
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| |
Collapse
|
22
|
Lessons learned from targeting eosinophils in human disease. Semin Immunopathol 2021; 43:459-475. [PMID: 33891135 DOI: 10.1007/s00281-021-00849-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/02/2021] [Indexed: 02/08/2023]
Abstract
Eosinophils are a minor subset of the granulocyte lineage distinguished by their unique morphology, phenotype, cytoplasmic contents, and function. Evolutionarily, these are ancient cells whose existence has been conserved within vertebrates for millions of years, suggesting that their contribution to innate immunity and other pathologic and homeostatic responses are important to the host. Knowledge regarding the role of eosinophils in health and disease took a leap forward in 2004 with the creation of mouse strains deficient in eosinophils. This advance was paralleled in humans using pharmacology, namely, with the development of drugs capable of selectively reducing and sometimes even eliminating human eosinophils in those receiving these agents. As a result, a more definitive picture of what eosinophils do, and do not do, is emerging. This review will summarize recent advances in our understanding of the role of eosinophils in human disease by focusing mainly on data from clinical studies with anti-eosinophil therapies, even though the first of such agents, mepolizumab, was only approved in the USA in November 2015. Information regarding both efficacy and safety will be highlighted, and where relevant, intriguing data from animal models will also be mentioned, especially if there are conflicting effects seen in humans.
Collapse
|
23
|
Cusack RP, Whetstone CE, Xie Y, Ranjbar M, Gauvreau GM. Regulation of Eosinophilia in Asthma-New Therapeutic Approaches for Asthma Treatment. Cells 2021; 10:cells10040817. [PMID: 33917396 PMCID: PMC8067385 DOI: 10.3390/cells10040817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Asthma is a complex and chronic inflammatory disease of the airways, characterized by variable and recurring symptoms, reversible airflow obstruction, bronchospasm, and airway eosinophilia. As the pathophysiology of asthma is becoming clearer, the identification of new valuable drug targets is emerging. IL-5 is one of these such targets because it is the major cytokine supporting eosinophilia and is responsible for terminal differentiation of human eosinophils, regulating eosinophil proliferation, differentiation, maturation, migration, and prevention of cellular apoptosis. Blockade of the IL-5 pathway has been shown to be efficacious for the treatment of eosinophilic asthma. However, several other inflammatory pathways have been shown to support eosinophilia, including IL-13, the alarmin cytokines TSLP and IL-33, and the IL-3/5/GM-CSF axis. These and other alternate pathways leading to airway eosinophilia will be described, and the efficacy of therapeutics that have been developed to block these pathways will be evaluated.
Collapse
|
24
|
Cavagnero KJ, Doherty TA. Lipid-mediated innate lymphoid cell recruitment and activation in aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol 2021; 126:135-142. [PMID: 32950684 PMCID: PMC7855910 DOI: 10.1016/j.anai.2020.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To synthesize investigations into the role of lipid-mediated recruitment and activation of group 2 innate lymphoid cells (ILC2s) in aspirin-exacerbated respiratory disease (AERD). DATA SOURCES A comprehensive literature review of reports pertaining to cellular mechanisms, cytokine, and lipid mediators in AERD, as well as ILC2 activation and recruitment, was performed using PubMed and Google Scholar. STUDY SELECTIONS Selections of studies were based on reports of lipid mediators in AERD, cytokine mediators in AERD, type 2 effector cells in AERD, platelets in AERD, AERD treatment, ILC2s in allergic airway disease, and ILC2 activation, inhibition, and trafficking. RESULTS The precise mechanisms of AERD pathogenesis are not well understood. Greater levels of proinflammatory lipid mediators and type 2 cytokines are found in tissues derived from patients with AERD relative to controls. After pathognomonic cyclooxygenase-1 inhibitor reactions, proinflammatory mediator concentrations (prostaglandin D2 and cysteinyl leukotrienes) are rapidly increased, as are ILC2 levels in the nasal mucosa. The ILC2s, which potently generate type 2 cytokines in response to lipid mediator stimulation, may play a key role in AERD pathogenesis. CONCLUSION Although the literature suggests that lipid-mediated ILC2 activation may occur in AERD, there is a dearth of definitive evidence. Future investigations leveraging novel next-generation single-cell sequencing approaches along with recently developed AERD murine models will better define lipid mediator-induced ILC2 trafficking in patients with AERD.
Collapse
Affiliation(s)
- Kellen J Cavagnero
- Department of Medicine, University of California, San Diego, La Jolla, California; Department of Dermatology, University of California, San Diego, La Jolla, California
| | - Taylor A Doherty
- Department of Medicine, University of California, San Diego, La Jolla, California; Veterans Affairs San Diego Health Care System, La Jolla, California.
| |
Collapse
|
25
|
Sokolowska M, Rovati GE, Diamant Z, Untersmayr E, Schwarze J, Lukasik Z, Sava F, Angelina A, Palomares O, Akdis CA, O’Mahony L, Sanak M, Dahlen S, Woszczek G. Current perspective on eicosanoids in asthma and allergic diseases: EAACI Task Force consensus report, part I. Allergy 2021; 76:114-130. [PMID: 32279330 DOI: 10.1111/all.14295] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 12/25/2022]
Abstract
Eicosanoids are biologically active lipid mediators, comprising prostaglandins, leukotrienes, thromboxanes, and lipoxins, involved in several pathophysiological processes relevant to asthma, allergies, and allied diseases. Prostaglandins and leukotrienes are the most studied eicosanoids and established inducers of airway pathophysiology including bronchoconstriction and airway inflammation. Drugs inhibiting the synthesis of lipid mediators or their effects, such as leukotriene synthesis inhibitors, leukotriene receptors antagonists, and more recently prostaglandin D2 receptor antagonists, have been shown to modulate features of asthma and allergic diseases. This review, produced by an European Academy of Allergy and Clinical Immunology (EAACI) task force, highlights our current understanding of eicosanoid biology and its role in mediating human pathology, with a focus on new findings relevant for clinical practice, development of novel therapeutics, and future research opportunities.
Collapse
Affiliation(s)
- Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - G. Enrico Rovati
- Department of Pharmaceutical Sciences University of Milan Milan Italy
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology Skane University Hospital Lund Sweden
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Jargen Schwarze
- Child Life and Health and Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Zuzanna Lukasik
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
| | - Florentina Sava
- London North Genomic Laboratory Hub Great Ormond Street Hospital for Children NHS Foundation Trust London UK
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Liam O’Mahony
- Departments of Medicine and Microbiology APC Microbiome Ireland University College Cork Cork Ireland
| | - Marek Sanak
- Department of Medicine Jagiellonian University Medical College Krakow Poland
| | - Sven‐Erik Dahlen
- Institute of Environmental Medicine Karolinska Institute Stockholm Sweden
- Centre for Allergy Research Karolinska Institute Stockholm Sweden
| | - Grzegorz Woszczek
- MRC/Asthma UK Centre in Allergic Mechanisms of Asthma School of Immunology & Microbial Sciences King's College London London UK
| |
Collapse
|
26
|
Lyly A, Laulajainen-Hongisto A, Gevaert P, Kauppi P, Toppila-Salmi S. Monoclonal Antibodies and Airway Diseases. Int J Mol Sci 2020; 21:E9477. [PMID: 33322143 PMCID: PMC7763928 DOI: 10.3390/ijms21249477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibodies, biologics, are a relatively new treatment option for severe chronic airway diseases, asthma, allergic rhinitis, and chronic rhinosinusitis (CRS). In this review, we focus on the physiological and pathomechanisms of monoclonal antibodies, and we present recent study results regarding their use as a therapeutic option against severe airway diseases. Airway mucosa acts as a relative barrier, modulating antigenic stimulation and responding to environmental pathogen exposure with a specific, self-limited response. In severe asthma and/or CRS, genome-environmental interactions lead to dysbiosis, aggravated inflammation, and disease. In healthy conditions, single or combined type 1, 2, and 3 immunological response pathways are invoked, generating cytokine, chemokine, innate cellular and T helper (Th) responses to eliminate viruses, helminths, and extracellular bacteria/fungi, correspondingly. Although the pathomechanisms are not fully known, the majority of severe airway diseases are related to type 2 high inflammation. Type 2 cytokines interleukins (IL) 4, 5, and 13, are orchestrated by innate lymphoid cell (ILC) and Th subsets leading to eosinophilia, immunoglobulin E (IgE) responses, and permanently impaired airway damage. Monoclonal antibodies can bind or block key parts of these inflammatory pathways, resulting in less inflammation and improved disease control.
Collapse
Affiliation(s)
- Annina Lyly
- Inflammation Centre, Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, P.O. Box 160, 00029 HUS Helsinki, Finland;
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, 00029 HUS Helsinki, Finland;
| | - Anu Laulajainen-Hongisto
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, 00029 HUS Helsinki, Finland;
| | - Philippe Gevaert
- Department of Otorhinolaryngology, Upper Airway Research Laboratory, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Paula Kauppi
- Heart and Lung Center, Pulmonary Department, University of Helsinki and Helsinki University Hospital, 00029 HUS Helsinki, Finland;
| | - Sanna Toppila-Salmi
- Inflammation Centre, Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, P.O. Box 160, 00029 HUS Helsinki, Finland;
- Medicum, Haartman Institute, University of Helsinki, 00029 HUS Helsinki, Finland
| |
Collapse
|
27
|
Issahaku AR, Agoni C, Soremekun OS, Kubi PA, Kumi RO, Olotu FA, Soliman MES. Same Target, Different Therapeutic Outcomes: The Case of CAY10471 and Fevipiprant on CRTh2 Receptor in Treatment of Allergic Rhinitis and Asthma. Comb Chem High Throughput Screen 2020; 22:521-533. [PMID: 31538888 DOI: 10.2174/1386207322666190919113006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/12/2019] [Accepted: 07/28/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Prostaglandin 2 (PGD2) mediated signalling of Chemoattractant Receptorhomologous molecule expressed on Th2 cells (CRTh2) receptor has been implicated in the recruitment of inflammatory cells. This explains the design of highly selective compounds with innate abilities to antagonize PGD2-CRTh2 interactions and prevent pro-inflammatory allergies such as rhinitis and uncontrolled asthma. The development of PGD2-competitive CRTh2 binders; CAY10471 and Fevipiprant represent remarkable therapeutic progress even though they elicit disparate pharmacological propensities despite utilizing the same binding pocket. METHODS & RESULTS In this study, we seek to pinpoint the underlying phenomenon associated with differential CRTh2 therapeutic inhibition by CAY10471 and Fevipiprant using membraneembedded molecular dynamics simulation. Findings revealed that the common carboxylate group of both compounds elicited strong attractive charges with active site Arg170 and Lys210. Interestingly, a distinctive feature was the steady occurrence of high-affinity salt-bridges and an Arg170-mediated pi-cation interaction with the tetrahydrocarbozole ring of CAY10471. Further investigations into the active site motions of both ligands revealed that CAY10471 was relatively more stable. Comparative binding analyses also revealed that CAY10471 exhibited higher ΔG, indicating the cruciality of the ring stabilization role mediated by Arg170. Moreover, conformational analyses revealed that the inhibitory activity of CAY10471 was more prominent on CRTh2 compared to Fevipiprant. CONCLUSIONS These findings could further advance the strategic design of novel CRTh2 binders in the treatment of diseases related to pro-inflammatory allergies.
Collapse
Affiliation(s)
- Abdul R Issahaku
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Opeyemi S Soremekun
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Patrick A Kubi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Ransford O Kumi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
28
|
Martin MJ, Beasley R, Harrison TW. Towards a personalised treatment approach for asthma attacks. Thorax 2020; 75:1119-1129. [PMID: 32839286 DOI: 10.1136/thoraxjnl-2020-214692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 12/16/2022]
Abstract
Asthma attacks (exacerbations) are common, accounting for over 90 000 UK hospital admissions per annum. They kill nearly 1500 people per year in the UK, have significant associated direct and indirect costs and lead to accelerated and permanent loss of lung function. The recognition of asthma as a heterogeneous condition with multiple phenotypes has revolutionised the approach to the long-term management of the condition, with greater emphasis on personalised treatment and the introduction of the treatable traits concept. In contrast asthma attacks are poorly defined and understood and our treatment approach consists of bronchodilators and systemic corticosteroids. This review aims to explore the current limitations in the description, assessment and management of asthma attacks. We will outline the risk factors for attacks, strategies to modify this risk and describe the recognised characteristics of attacks as a first step towards the development of an approach for phenotyping and personalising the treatment of these critically important events. By doing this, we hope to gradually improve asthma attack treatment and reduce the adverse effects associated with recurrent courses of corticosteroids.
Collapse
Affiliation(s)
- Matthew J Martin
- Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - Richard Beasley
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Tim W Harrison
- Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, UK
| |
Collapse
|
29
|
Brightling CE, Brusselle G, Altman P. The impact of the prostaglandin D 2 receptor 2 and its downstream effects on the pathophysiology of asthma. Allergy 2020; 75:761-768. [PMID: 31355946 DOI: 10.1111/all.14001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/24/2019] [Accepted: 07/17/2019] [Indexed: 02/03/2023]
Abstract
Current research suggests that the prostaglandin D2 (PGD2 ) receptor 2 (DP2 ) is a principal regulator in the pathophysiology of asthma, because it stimulates and amplifies the inflammatory response in this condition. The DP2 receptor can be activated by both allergic and nonallergic stimuli, leading to several pro-inflammatory events, including eosinophil activation and migration, release of the type 2 cytokines interleukin (IL)-4, IL-5 and IL-13 from T helper 2 (Th2) cells and innate lymphoid cells type 2 (ILCs), and increased airway smooth muscle mass via recruitment of mesenchymal progenitors to the airway smooth muscle bundle. Activation of the DP2 receptor pathway has potential downstream effects on asthma pathophysiology, including on airway epithelial cells, mucus hypersecretion, and airway remodelling, and consequently might impact asthma symptoms and exacerbations. Given the broad distribution of DP2 receptors on immune and structural cells involved in asthma, this receptor is being explored as a novel therapeutic target.
Collapse
Affiliation(s)
| | - Guy Brusselle
- Department of Respiratory Diseases Ghent University Hospital Ghent Belgium
| | - Pablo Altman
- Novartis Pharmaceuticals Corporation East Hanover NJ USA
| |
Collapse
|
30
|
Issahaku AR, Agoni C, Kumi RO, Olotu FA, Soliman MES. Lipid-Embedded Molecular Dynamics Simulation Model for Exploring the Reverse Prostaglandin D2 Agonism of CT-133 towards CRTH2 in the Treatment of Type-2 Inflammation Dependent Diseases. Chem Biodivers 2020; 17:e1900548. [PMID: 32034875 DOI: 10.1002/cbdv.201900548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
Chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) has been involved in several inflammation dependent diseases by mediating the chemotaxis of pro-inflammatory cells in response to allergy and other responses through PGD2 ligation. This CRTH2-PGD2 signaling pathway has become a target for treating allergic and type 2 inflammation dependent diseases, with many inhibitors developed to target the PGD2 binding pocket. One of such inhibitors is the ramatroban analog, CT-133, which exhibited therapeutic potency cigarette smoke-induced acute lung injury in patients. Nonetheless, the molecular mechanism and structural dynamics that accounts for its therapeutic prowess remain unclear. Employing computational tools, this study revealed that although the carboxylate moiety in CT-133 and the native agonist PGD2 aided in their stability within the CRTH2 binding pocket, the tetrahydrocarbazole group of CT-133 engaged in strong interactions with binding pocket residues which could have formed as the basis of the antagonistic advantage of CT-133. Tetrahydrocarbazole group interactions also enhanced the relative stability CT-133 within the binding pocket which consequently favored CT-133 binding affinity. CT-133 binding also induced an inactive or 'desensitized' state in the helix 8 of CRTH2 which could conversely favor the recruitment of arrestin. These revelations would aid in the speedy development of small molecule inhibitors of CRTH2 in the treatment of type 2 inflammation dependent diseases.
Collapse
Affiliation(s)
- Abdul Rashid Issahaku
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Ransford O Kumi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
31
|
Abstract
There are multiple proinflammatory pathways in the pathogenesis of asthma. These include both innate and adaptive inflammation, in addition to inflammatory and physiologic responses mediated by eicosanoids. An important component of the innate allergic immune response is ILC2 activated by interleukin (IL)-33, thymic stromal lymphopoietin, and IL-25 to produce IL-5 and IL-13. In terms of the adaptive T-lymphocyte immunity, CD4+ Th2 and IL-17-producing cells are critical in the inflammatory responses in asthma. Last, eicosanoids involved in asthma pathogenesis include prostaglandin D2 and the cysteinyl leukotrienes that promote smooth muscle constriction and inflammation that propagate allergic responses.
Collapse
Affiliation(s)
- R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, VUMC, T-1218 MCN, 1161 21st Avenue South, Nashville, TN 37232-2650, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, VUMC, T-1218 MCN, 1161 21st Avenue South, Nashville, TN 37232-2650, USA.
| | - Mark A Aronica
- Department of Pathobiology, Respiratory Institute, Cleveland Clinic Lerner College of Medicine, CWRU, 9500 Euclid Avenue, NB2-85, Cleveland, OH 44195, USA
| |
Collapse
|
32
|
Abstract
Prostanoids (prostaglandins, prostacyclin and thromboxane) belong to the oxylipin family of biologically active lipids generated from arachidonic acid (AA). Protanoids control numerous physiological and pathological processes. Cyclooxygenase (COX) is a rate-limiting enzyme involved in the conversion of AA into prostanoids. There are two COX isozymes: the constitutive COX-1 and the inducible COX-2. COX-1 and COX-2 have similar structures, catalytic activities, and subcellular localizations but differ in patterns of expression and biological functions. Non-selective COX-1/2 or traditional, non-steroidal anti-inflammatory drugs (tNSAIDs) target both COX isoforms and are widely used to relieve pain, fever and inflammation. However, the use of NSAIDs is associated with various side effects, particularly in the gastrointestinal tract. NSAIDs selective for COX-2 inhibition (coxibs) were purposefully designed to spare gastrointestinal toxicity, but predisposed patients to increased cardiovascular risks. These health complications from NSAIDs prompted interest in the downstream effectors of the COX enzymes as novel drug targets. This chapter describes various safety issues with tNSAIDs and coxibs, and discusses the current development of novel classes of drugs targeting the prostanoid pathway, including nitrogen oxide- and hydrogen sulfide-releasing NSAIDs, inhibitors of prostanoid synthases, dual inhibitors, and prostanoid receptor agonists and antagonists.
Collapse
|
33
|
|
34
|
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that is associated with airway hyperresponsiveness and airflow limitation. Although asthma was once simply categorized as atopic or nonatopic, emerging analyses over the last few decades have revealed a variety of asthma endotypes that are attributed to numerous pathophysiological mechanisms. The classification of asthma by endotype is primarily routed in different profiles of airway inflammation that contribute to bronchoconstriction. Many asthma therapeutics target G protein-coupled receptors (GPCRs), which either enhance bronchodilation or prevent bronchoconstriction. Short-acting and long-acting β 2-agonists are widely used bronchodilators that signal through the activation of the β 2-adrenergic receptor. Short-acting and long-acting antagonists of muscarinic acetylcholine receptors are used to reduce bronchoconstriction by blocking the action of acetylcholine. Leukotriene antagonists that block the signaling of cysteinyl leukotriene receptor 1 are used as an add-on therapy to reduce bronchoconstriction and inflammation induced by cysteinyl leukotrienes. A number of GPCR-targeting asthma drug candidates are also in different stages of development. Among them, antagonists of prostaglandin D2 receptor 2 have advanced into phase III clinical trials. Others, including antagonists of the adenosine A2B receptor and the histamine H4 receptor, are in early stages of clinical investigation. In the past decade, significant research advancements in pharmacology, cell biology, structural biology, and molecular physiology have greatly deepened our understanding of the therapeutic roles of GPCRs in asthma and drug action on these GPCRs. This review summarizes our current understanding of GPCR signaling and pharmacology in the context of asthma treatment. SIGNIFICANCE STATEMENT: Although current treatment methods for asthma are effective for a majority of asthma patients, there are still a large number of patients with poorly controlled asthma who may experience asthma exacerbations. This review summarizes current asthma treatment methods and our understanding of signaling and pharmacology of G protein-coupled receptors (GPCRs) in asthma therapy, and discusses controversies regarding the use of GPCR drugs and new opportunities in developing GPCR-targeting therapeutics for the treatment of asthma.
Collapse
Affiliation(s)
- Stacy Gelhaus Wendell
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Hao Fan
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| |
Collapse
|
35
|
Orimo K, Saito H, Matsumoto K, Morita H. Innate Lymphoid Cells in the Airways: Their Functions and Regulators. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:381-398. [PMID: 32141254 PMCID: PMC7061164 DOI: 10.4168/aair.2020.12.3.381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/28/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022]
Abstract
Since the airways are constantly exposed to various pathogens and foreign antigens, various kinds of cells in the airways—including structural cells and immune cells—interact to form a precise defense system against pathogens and antigens that involve both innate immunity and acquired immunity. Accumulating evidence suggests that innate lymphoid cells (ILCs) play critical roles in the maintenance of tissue homeostasis, defense against pathogens and the pathogenesis of inflammatory diseases, especially at body surface mucosal sites such as the airways. ILCs are activated mainly by cytokines, lipid mediators and neuropeptides that are produced by surrounding cells, and they produce large amounts of cytokines that result in inflammation. In addition, ILCs can change their phenotype in response to stimuli from surrounding cells, which enables them to respond promptly to microenvironmental changes. ILCs exhibit substantial heterogeneity, with different phenotypes and functions depending on the organ and type of inflammation, presumably because of differences in microenvironments. Thus, ILCs may be a sensitive detector of microenvironmental changes, and analysis of their phenotype and function at local sites may enable us to better understand the microenvironment in airway diseases. In this review, we aimed to identify molecules that either positively or negatively influence the function and/or plasticity of ILCs and the sources of the molecules in the airways in order to examine the pathophysiology of airway inflammatory diseases and facilitate the issues to be solved.
Collapse
Affiliation(s)
- Keisuke Orimo
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
36
|
Aberumand B, Ellis AK. Asthma and the Biologics Revolution, Part 2: Failures and the Future Potential. CURRENT TREATMENT OPTIONS IN ALLERGY 2019. [DOI: 10.1007/s40521-019-00233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Rudulier CD, Tonti E, James E, Kwok WW, Larché M. Modulation of CRTh2 expression on allergen-specific T cells following peptide immunotherapy. Allergy 2019; 74:2157-2166. [PMID: 31077596 PMCID: PMC6817377 DOI: 10.1111/all.13867] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/15/2019] [Accepted: 03/01/2019] [Indexed: 12/28/2022]
Abstract
Background Allergen immunotherapy using synthetic peptide T‐cell epitopes (Cat‐PAD) from the major cat allergen Fel d 1 has been shown, in allergen exposure studies, to significantly reduce symptoms of allergic rhinoconjunctivitis in cat‐allergic subjects. However, the immunological mechanisms underlying clinical benefit remain only partially understood. Since previous studies of whole allergen immunotherapy demonstrated a reduction in the frequency of allergen‐specific (MHC II tetramer+) CD4+ T cells expressing the chemokine receptor CRTh2, we assessed the impact of Cat‐PAD on the frequency and functional phenotype of Fel d 1‐specific CD4+ T cells. Methods Using before and after treatment samples from subjects enrolled in a randomized, double‐blind, placebo‐controlled trial of Cat‐PAD, we employed Fel d 1 MHC II tetramers and flow cytometry to analyze the expression of chemokine receptors CCR3, CCR4, CCR5, CXCR3, and CRTh2, together with markers of memory phenotype (CD27 and CCR7) on Fel d 1‐specific CD4+ T cells. Results No statistically significant change in the frequency of Fel d 1‐specific CD4+ T cells, nor in their expression of chemokine receptors or memory phenotype, was observed. However, a significant reduction in cell surface expression of CRTh2 was observed between the placebo and active groups (P = 0.047). Conclusions Peptide immunotherapy with Cat‐PAD does not significantly alter the frequency or phenotype of Fel d 1‐CD4+ T cells, but may decrease their expression of CRTh2.
Collapse
Affiliation(s)
- Christopher D. Rudulier
- Department of Medicine, Division of Clinical Immunology & Allergy McMaster University Hamilton Ontario Canada
| | - Elena Tonti
- Department of Medicine, Division of Clinical Immunology & Allergy McMaster University Hamilton Ontario Canada
| | - Eddie James
- Benaroya Research Institute at Virginia Mason Seattle Washington
| | - William W. Kwok
- Benaroya Research Institute at Virginia Mason Seattle Washington
| | - Mark Larché
- Department of Medicine, Division of Clinical Immunology & Allergy McMaster University Hamilton Ontario Canada
- Department of Medicine, Division of Respirology Firestone Institute for Respiratory Health, The Research Institute at St. Joe’s Hamilton Ontario Canada
| |
Collapse
|
38
|
Efthimiou J, Poll C, Barnes PJ. Dual mechanism of action of T2 inhibitor therapies in virally induced exacerbations of asthma: evidence for a beneficial counter-regulation. Eur Respir J 2019; 54:13993003.02390-2018. [PMID: 31000674 DOI: 10.1183/13993003.02390-2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/29/2019] [Indexed: 01/21/2023]
Abstract
Biological agents such as omalizumab and monoclonal antibodies (mAbs) that inhibit type 2 (T2) immunity significantly reduce exacerbations, which are mainly due to viral infections, when added to inhaled corticosteroids in patients with severe asthma. The mechanisms for the therapeutic benefit of T2 inhibitors in reducing virally induced exacerbations, however, remain to be fully elucidated. Pre-clinical and clinical evidence supports the existence of a close counter-regulation of the high-affinity IgE receptor and interferon (IFN) pathways, and a potential dual mechanism of action and therapeutic benefit for omalizumab and other T2 inhibitors that inhibit IgE activity, which may enhance the prevention and treatment of virally induced asthma exacerbations. Similar evidence regarding some novel T2 inhibitor therapies, including mAbs and small-molecule inhibitors, suggests that such a dual mechanism of action with enhancement of IFN production working through non-IgE pathways might also exist. The specific mechanisms for this dual effect could be related to the close counter-regulation between T2 and T1 immune pathways, and potential key underlying mechanisms are discussed. Further basic research and better understanding of these underlying counter-regulatory mechanisms could provide novel therapeutic targets for the prevention and treatment of virally induced asthma exacerbations, as well as T2- and non-T2-driven asthma. Future clinical research should examine the effects of T2 inhibitors on IFN responses and other T1 immune pathways, in addition to any effects on the frequency and severity of viral and other infections and related exacerbations in patients with asthma as a priority.
Collapse
Affiliation(s)
| | - Chris Poll
- Independent Respiratory Scientist, Cambridge, UK
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
39
|
Helfrich S, Mindt BC, Fritz JH, Duerr CU. Group 2 Innate Lymphoid Cells in Respiratory Allergic Inflammation. Front Immunol 2019; 10:930. [PMID: 31231357 PMCID: PMC6566538 DOI: 10.3389/fimmu.2019.00930] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022] Open
Abstract
Millions of people worldwide are suffering from allergic inflammatory airway disorders. These conditions are regarded as a consequence of multiple imbalanced immune events resulting in an inadequate response with the exact underlying mechanisms still being a subject of ongoing research. Several cell populations have been proposed to be involved but it is becoming increasingly evident that group 2 innate lymphoid cells (ILC2s) play a key role in the initiation and orchestration of respiratory allergic inflammation. ILC2s are important mediators of inflammation but also tissue remodeling by secreting large amounts of signature cytokines within a short time period. Thereby, ILC2s instruct innate but also adaptive immune responses. Here, we will discuss the recent literature on allergic inflammation of the respiratory tract with a focus on ILC2 biology. Furthermore, we will highlight different therapeutic strategies to treat pulmonary allergic inflammation and their potential influence on ILC2 function as well as discuss the perspective of using human ILC2s for diagnostic purposes.
Collapse
Affiliation(s)
- Sofia Helfrich
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Barbara C Mindt
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada.,McGill University Research Centre on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada.,FOCiS Centre of Excellence in Translational Immunology (CETI), McGill University, Montréal, QC, Canada
| | - Jörg H Fritz
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada.,McGill University Research Centre on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada.,FOCiS Centre of Excellence in Translational Immunology (CETI), McGill University, Montréal, QC, Canada.,Department of Physiology, McGill University, Montréal, QC, Canada
| | - Claudia U Duerr
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
40
|
Méndez-Enríquez E, Hallgren J. Mast Cells and Their Progenitors in Allergic Asthma. Front Immunol 2019; 10:821. [PMID: 31191511 PMCID: PMC6548814 DOI: 10.3389/fimmu.2019.00821] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/28/2019] [Indexed: 12/16/2022] Open
Abstract
Mast cells and their mediators have been implicated in the pathogenesis of asthma and allergy for decades. Allergic asthma is a complex chronic lung disease in which several different immune cells, genetic factors and environmental exposures influence the pathology. Mast cells are key players in the asthmatic response through secretion of a multitude of mediators with pro-inflammatory and airway-constrictive effects. Well-known mast cell mediators, such as histamine and bioactive lipids are responsible for many of the physiological effects observed in the acute phase of allergic reactions. The accumulation of mast cells at particular sites of the allergic lung is likely relevant to the asthma phenotype, severity and progression. Mast cells located in different compartments in the lung and airways have different characteristics and express different mediators. According to in vivo experiments in mice, lung mast cells develop from mast cell progenitors induced by inflammatory stimuli to migrate to the airways. Human mast cell progenitors have been identified in the blood circulation. A high frequency of circulating human mast cell progenitors may reflect ongoing pathological changes in the allergic lung. In allergic asthma, mast cells become activated mainly via IgE-mediated crosslinking of the high affinity receptor for IgE (FcεRI) with allergens. However, mast cells can also be activated by numerous other stimuli e.g. toll-like receptors and MAS-related G protein-coupled receptor X2. In this review, we summarize research with implications on the role and development of mast cells and their progenitors in allergic asthma and cover selected activation pathways and mast cell mediators that have been implicated in the pathogenesis. The review places an emphasis on describing mechanisms identified using in vivo mouse models and data obtained by analysis of clinical samples.
Collapse
Affiliation(s)
- Erika Méndez-Enríquez
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
41
|
Oliver ET, Chichester K, Devine K, Sterba PM, Wegner C, Vonakis BM, Saini SS. Effects of an Oral CRTh2 Antagonist (AZD1981) on Eosinophil Activity and Symptoms in Chronic Spontaneous Urticaria. Int Arch Allergy Immunol 2019; 179:21-30. [PMID: 30879003 PMCID: PMC6500753 DOI: 10.1159/000496162] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Approximately 50% of patients with chronic spontaneous urticaria (CSU) experience symptoms that are not fully controlled by antihistamines, indicating an unmet clinical need. OBJECTIVE To evaluate the effects of the selective CRTh2 antagonist AZD1981 on symptoms and targeted leukocytes in adults with persistent CSU despite treatment with H1-antihistamines. METHODS We performed a single-center, randomized, placebo-controlled study involving adult CSU subjects with symptoms despite daily antihistamines. The subjects underwent a 2-week placebo run-in and 4 weeks of double-blinded therapy with either AZD1981 40 mg TID or placebo, followed by a 2-week placebo washout. The primary objective was to assess the effect of AZD1981 on CSU signs and symptoms. Secondary objectives included the effects of AZD1981 on prostaglandin D2 (PGD2)-induced eosinophil shape change, circulating leukocyte subsets, CRTh2 expression on blood leukocytes, and total blood leukocyte histamine content. RESULTS Twenty-eight subjects were randomized to AZD1981 or placebo, with 26 subjects completing the study. The urticaria activity scores declined during the treatment phase in both groups, and they were significantly reduced in the AZD1981 group at the end of washout. AZD1981 treatment increased circulating eosinophils and significantly impaired PGD2-mediated eosinophil shape change. CRTh2 surface expression rose significantly on blood basophils during active treatment. No serious adverse events were observed. CONCLUSIONS This is the first study to examine the efficacy of a CRTh2 antagonist in antihistamine-refractory CSU. AZD1981 treatment was well tolerated, effectively inhibited PGD2-mediated eosinophil shape change, shifted numbers of circulating eosinophils, and reduced weekly itch scores more than hives during treatment and into washout. Further studies are needed to determine whether inhibition of the PGD2/CRTh2 pathway will be an -effective treatment for CSU.
Collapse
Affiliation(s)
- Eric Tyrell Oliver
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,
| | - Kris Chichester
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelly Devine
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Patricia Meghan Sterba
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Craig Wegner
- Scientific Partnering and Alliances, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts, USA
| | - Becky Marie Vonakis
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarbjit Singh Saini
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
42
|
Pulmonary group 2 innate lymphoid cells: surprises and challenges. Mucosal Immunol 2019; 12:299-311. [PMID: 30664706 PMCID: PMC6436699 DOI: 10.1038/s41385-018-0130-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 02/04/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) are a recently described subset of innate lymphocytes with important immune and homeostatic functions at multiple tissue sites, especially the lung. These cells expand locally after birth and during postnatal lung maturation and are present in the lung and other peripheral organs. They are modified by a variety of processes and mediate inflammatory responses to respiratory pathogens, inhaled allergens and noxious particles. Here, we review the emerging roles of ILC2s in pulmonary homeostasis and discuss recent and surprising advances in our understanding of how hormones, age, neurotransmitters, environmental challenges, and infection influence ILC2s. We also review how these responses may underpin the development, progression and severity of pulmonary inflammation and chronic lung diseases and highlight some of the remaining challenges for ILC2 biology.
Collapse
|
43
|
Géhin M, Lott D, Farine H, Issac M, Strasser D, Sidharta P, Dingemanse J. Pharmacokinetics, pharmacodynamics, tolerability and prediction of clinically effective dose of ACT‐774312: A novel CRTH2 antagonist. Basic Clin Pharmacol Toxicol 2019; 124:711-721. [DOI: 10.1111/bcpt.13197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Martine Géhin
- Department of Clinical Pharmacology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| | - Dominik Lott
- Department of Clinical Pharmacology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| | - Hervé Farine
- Department of Translational Science Biology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| | - Milena Issac
- Department of Clinical Pharmacology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| | - Daniel Strasser
- Department of Translational Science Biology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| | - Patricia Sidharta
- Department of Clinical Pharmacology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| | - Jasper Dingemanse
- Department of Clinical Pharmacology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| |
Collapse
|
44
|
Kao CC, Parulekar AD. Spotlight on fevipiprant and its potential in the treatment of asthma: evidence to date. J Asthma Allergy 2019; 12:1-5. [PMID: 30662272 PMCID: PMC6324611 DOI: 10.2147/jaa.s167973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Asthma is a heterogeneous disease, which may be classified into phenotypes and endotypes based on clinical characteristics and molecular mechanisms. The best described endotype of severe asthma is type 2 (T2)-high asthma, characterized by release of inflammatory cytokines by T helper 2 (TH2) cells and type 2 innate lymphoid cells cells. Prostaglandin D2 contributes to T2 inflammation through binding of the G-protein-coupled receptor chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2). Fevipiprant is an oral competitive antagonist of CRTH2. Early-phase trials have demonstrated safety and potential efficacy in patients with asthma, specifically, improvement in FEV1 and eosinophilic airway inflammation. However, no clear biomarker identified patients who responded favorably to fevipiprant, although patients with moderate-to-severe asthma and evidence of T2 inflammation may be more likely to respond to treatment. Additional studies are needed to determine the efficacy and target population for use of this drug in patients with asthma.
Collapse
Affiliation(s)
- Christina C Kao
- Section of Pulmonary, Critical Care, and Sleep, Department of Medicine, Baylor College of Medicine, Houston, TX, USA,
| | - Amit D Parulekar
- Section of Pulmonary, Critical Care, and Sleep, Department of Medicine, Baylor College of Medicine, Houston, TX, USA,
| |
Collapse
|
45
|
Marone G, Galdiero MR, Pecoraro A, Pucino V, Criscuolo G, Triassi M, Varricchi G. Prostaglandin D 2 receptor antagonists in allergic disorders: safety, efficacy, and future perspectives. Expert Opin Investig Drugs 2018; 28:73-84. [PMID: 30513028 DOI: 10.1080/13543784.2019.1555237] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Prostaglandin D2 (PGD2) is a major cyclooxygenase mediator that is synthesized by activated human mast cells and other immune cells. The biological effects of PGD2 are mediated by D-prostanoid (DP1), DP2 (CRTH2) and thromboxane prostanoid (TP) receptors that are expressed on several immune and non-immune cells involved in allergic inflammation. PGD2 exerts various proinflammatory effects relevant to the pathophysiology of allergic disorders. Several selective, orally active, DP2 receptor antagonists and a small number of DP1 receptor antagonists are being developed for the treatment of allergic disorders. AREAS COVERED The role of DP2 and DP1 receptor antagonists in the treatment of asthma and allergic rhinitis. EXPERT OPINION Head-to-head studies that compare DP1 antagonists with the standard treatment for allergic rhinitis are necessary to verify the role of these novel drugs as mono- or combination therapies. Further clinical trials are necessary to verify whether DP2 antagonists as monotherapies or, more likely, as add-on therapies, will be effective for the treatment of different phenotypes of adult and childhood asthma. Long-term studies are necessary to evaluate the safety of targeted anti-PGD2 treatments.
Collapse
Affiliation(s)
- Giancarlo Marone
- a Department of Public Health , University of Naples Federico II , Naples , Italy.,b Monaldi Hospital Pharmacy , Naples , Italy
| | - Maria Rosaria Galdiero
- c Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples , Italy.,d WAO Center of Excellence , Naples , Italy
| | - Antonio Pecoraro
- c Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples , Italy.,d WAO Center of Excellence , Naples , Italy
| | - Valentina Pucino
- e William Harvey Research Institute, Barts and The London School of Medicine &Dentistry , Queen Mary University of London , London , UK
| | - Gjada Criscuolo
- c Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples , Italy.,d WAO Center of Excellence , Naples , Italy
| | - Maria Triassi
- a Department of Public Health , University of Naples Federico II , Naples , Italy
| | - Gilda Varricchi
- c Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples , Italy.,d WAO Center of Excellence , Naples , Italy
| |
Collapse
|
46
|
Yang J, Luo J, Yang L, Yang D, Wang D, Liu B, Huang T, Wang X, Liang B, Liu C. Efficacy and safety of antagonists for chemoattractant receptor-homologous molecule expressed on Th2 cells in adult patients with asthma: a meta-analysis and systematic review. Respir Res 2018; 19:217. [PMID: 30413187 PMCID: PMC6230288 DOI: 10.1186/s12931-018-0912-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/15/2018] [Indexed: 02/05/2023] Open
Abstract
Background Chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) antagonists are novel agents for asthma but with controversial efficacies in clinical trials. Therefore, we conducted a meta-analysis to determine the roles of CRTH2 antagonists in asthma. Methods We searched in major databases for RCTs comparing CRTH2 antagonists with placebo in asthma. Fixed- or random-effects model was performed to calculate mean differences (MD), risk ratio (RR) or risk difference (RD) and 95% confidence interval (CI). Results A total of 14 trails with 4671 participants were included in our final analysis. Instead of add-on treatment of CRTH2 antagonists to corticosteroids, CRTH2 antagonist monotherapy significantly improved pre-bronchodilator FEV1 (MD = 0.09, 95% CI 0.04 to 0.15, P = 0.0005), FEV1% predicted (MD = 3.65, 95% CI 1.15 to 6.14, P = 0.004), and AQLQ (MD = 0.25, 95% CI 0.09 to 0.41, P = 0.002), and reduced asthma exacerbations (RR = 0.45, 95% CI 0.23 to 0.85, P = 0.01). Rescue use of SABA was significantly decreased in both CRTH2 antagonist monotherapy (MD = − 0.04, 95% CI -0.05 to − 0.03, P < 0.00001) and as add-on to corticosteroids (MD = − 0.78, 95% CI -1.47 to − 0.09, P = 0.03). Adverse events were similar between the intervention and placebo groups. Conclusions CRTH2 antagonist monotherapy can safely improve lung function and quality of life, and reduce asthma exacerbations and SABA use in asthmatics. Electronic supplementary material The online version of this article (10.1186/s12931-018-0912-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Yang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China.,Department of Respiratory Medicine, Mianyang Central Hospital, Mianyang, 621099, China
| | - Jian Luo
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Ling Yang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Dan Yang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Dan Wang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Bicui Liu
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Tingxuan Huang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Xiaohu Wang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Binmiao Liang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China.
| | - Chuntao Liu
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China.
| |
Collapse
|
47
|
Murillo JC, Dimov V, Gonzalez-Estrada A. An evaluation of fevipiprant for the treatment of asthma: a promising new therapy? Expert Opin Pharmacother 2018; 19:2087-2093. [PMID: 30394155 DOI: 10.1080/14656566.2018.1540589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Asthma is a heterogeneous disease characterized by chronic airway inflammation that affects more than 230 million people worldwide. Current guidelines recommend an escalating stepwise decision model for the management of asthma. However, disease control continues to be a challenge, particularly in patients with severe asthma. Biologics have proven to be an effective add-on treatment especially in eosinophilic or type 2 airway disease. Comparatively, pre-biologics may represent a successful novel therapy. Fevipiprant (QAW039) is a selective, reversible, antagonist of the prostaglandin D2 receptor (DP2). Areas covered: The authors review the mechanism of action of fevipiprant as well as its pharmacokinetics, pharmacodynamics, tolerability, efficacy, and safety. Comparative therapies are also described. A comprehensive literature review was performed using: the PubMed central database, U.S. National Institutes of Health's National Library of Medicine database (NIH/NLM) and the NLM clinical trials database. Expert opinion: Fevipipiprant is a promising prebiologic therapy with convenient dosing, oral administration, and an acceptable safety profile. However, the spectrum of asthmatic patients that may benefit from this therapy is somehow limited to (i.e. moderate to severe eosinophilic asthma). Results from phase III clinical trials are needed to assess whether fevipiprant would lead to a reduction in exacerbation rates and perhaps broaden the target population.
Collapse
Affiliation(s)
- Juan Carlos Murillo
- a Division of Allergy, Asthma, and Clinical Immunology , Mayo Clinic , Scottsdale , Arizona , USA
| | - Ves Dimov
- b Department of Allergy and Clinical Immunology , Cleveland Clinic , Weston , Florida , USA
| | - Alexei Gonzalez-Estrada
- c Division of Pulmonary, Allergy, and Sleep Medicine , Mayo Clinic , Jacksonville , Florida , USA
| |
Collapse
|
48
|
Zhu L, Ciaccio CE, Casale TB. Potential new targets for drug development in severe asthma. World Allergy Organ J 2018; 11:30. [PMID: 30386455 PMCID: PMC6203275 DOI: 10.1186/s40413-018-0208-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023] Open
Abstract
In recent years there has been increasing recognition of varying asthma phenotypes that impact treatment response. This has led to the development of biological therapies targeting specific immune cells and cytokines in the inflammatory cascade. Currently, there are two primary asthma phenotypes, Type 2 hi and Type 2 lo, which are defined by eosinophilic and neutrophilic/pauci- granulocytic pattern of inflammation respectively. Most biologics focus on Type 2 hi asthma, including all four biologics approved for treatment of uncontrolled asthma in the United States — omalizumab, mepolizumab, reslizumab, and benralizumab. Potential new targets for drug development are being investigated, such as IL-13, IL-4α receptor, CRTH2, TSLP, IL-25, IL-13, IL-17A receptor, and CXCR2/IL-8. This review will discuss the role of these molecules on the inflammatory response in uncontrolled asthma and the emerging biologics that address them. Through the delineation of distinct immunological mechanisms in severe asthma, targeted biologics are promising new therapies that have the potential to improve asthma control and quality of life.
Collapse
Affiliation(s)
- Linda Zhu
- 1Department of Internal Medicine, The University of Chicago, Chicago, IL USA.,Department of Internal Medicine, NorthShore Health System, Chicago, IL USA
| | - Christina E Ciaccio
- Department of Internal Medicine, NorthShore Health System, Chicago, IL USA.,3Department of Pediatrics, The University of Chicago, 5841 South Maryland Avenue MC 5042, Chicago, IL 60637 USA
| | - Thomas B Casale
- 4Department of Medicine, The University of South Florida, Tampa, Florida, USA
| |
Collapse
|
49
|
Nakagome K, Nagata M. Involvement and Possible Role of Eosinophils in Asthma Exacerbation. Front Immunol 2018; 9:2220. [PMID: 30323811 PMCID: PMC6172316 DOI: 10.3389/fimmu.2018.02220] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/07/2018] [Indexed: 01/21/2023] Open
Abstract
Eosinophils are involved in the development of asthma exacerbation. Recent studies have suggested that sputum and blood eosinophil counts are important factors for predicting asthma exacerbation. In severe eosinophilic asthma, anti-interleukin (IL)-5 monoclonal antibody decreases blood eosinophil count and asthma exacerbation frequency. However, even in the absence of IL-5, eosinophilic airway inflammation can be sufficiently maintained by the T helper (Th) 2 network, which comprises a cascade of vascular cell adhesion molecule-1/CC chemokines/eosinophil growth factors, including granulocyte-macrophage colony-stimulating factor (GM-CSF). Periostin, an extracellular matrix protein and a biomarker of the Th2 immune response in asthma, directly activates eosinophils in vitro. A major cause of asthma exacerbation is viral infection, especially rhinovirus (RV) infection. The expression of intercellular adhesion molecule (ICAM)-1, a cellular receptor for the majority of RVs, on epithelial cells is increased after RV infection, and adhesion of eosinophils to ICAM-1 can upregulate the functions of eosinophils. The expressions of cysteinyl leukotrienes (cysLTs) and CXCL10 are upregulated in virus-induced asthma. CysLTs can directly provoke eosinophilic infiltration in vivo and activate eosinophils in vitro. Furthermore, eosinophils express the CXC chemokine receptor 3, and CXCL10 activates eosinophils in vitro. Both eosinophils and neutrophils contribute to the development of severe asthma or asthma exacerbation. IL-8, which is an important chemoattractant for neutrophils, is upregulated in some cases of severe asthma. Lipopolysaccharide (LPS), which induces IL-8 from epithelial cells, is also increased in the lower airways of corticosteroid-resistant asthma. IL-8 or LPS-stimulated neutrophils increase the transbasement membrane migration of eosinophils, even in the absence of chemoattractants for eosinophils. Therefore, eosinophils are likely to contribute to the development of asthma exacerbation through several mechanisms, including activation by Th2 cytokines, such as IL-5 or GM-CSF or by virus infection-related proteins, such as CXCL10, and interaction with other cells, such as neutrophils.
Collapse
Affiliation(s)
- Kazuyuki Nakagome
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan.,Allergy Center, Saitama Medical University, Saitama, Japan
| | - Makoto Nagata
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan.,Allergy Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
50
|
Wang L, Yao D, Deepak RNVK, Liu H, Xiao Q, Fan H, Gong W, Wei Z, Zhang C. Structures of the Human PGD 2 Receptor CRTH2 Reveal Novel Mechanisms for Ligand Recognition. Mol Cell 2018; 72:48-59.e4. [PMID: 30220562 DOI: 10.1016/j.molcel.2018.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/25/2018] [Accepted: 08/06/2018] [Indexed: 12/31/2022]
Abstract
The signaling of prostaglandin D2 (PGD2) through G-protein-coupled receptor (GPCR) CRTH2 is a major pathway in type 2 inflammation. Compelling evidence suggests the therapeutic benefits of blocking CRTH2 signaling in many inflammatory disorders. Currently, a number of CRTH2 antagonists are under clinical investigation, and one compound, fevipiprant, has advanced to phase 3 clinical trials for asthma. Here, we present the crystal structures of human CRTH2 with two antagonists, fevipiprant and CAY10471. The structures, together with docking and ligand-binding data, reveal a semi-occluded pocket covered by a well-structured amino terminus and different binding modes of chemically diverse CRTH2 antagonists. Structural analysis suggests a ligand entry port and a binding process that is facilitated by opposite charge attraction for PGD2, which differs significantly from the binding pose and binding environment of lysophospholipids and endocannabinoids, revealing a new mechanism for lipid recognition by GPCRs.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dandan Yao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - R N V Krishna Deepak
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138671, Singapore
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Qingpin Xiao
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138671, Singapore
| | - Weimin Gong
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|