1
|
Brinkert K, Hedtfeld S, Burhop A, Gastmeier R, Gad P, Wedekind D, Kloth C, Rothschuh J, Lachmann N, Hetzel M, Jirmo AC, Lopez-Rodriguez E, Brandenberger C, Hansen G, Schambach A, Ackermann M, Tümmler B, Munder A. Rescue from Pseudomonas aeruginosa Airway Infection via Stem Cell Transplantation. Mol Ther 2020; 29:1324-1334. [PMID: 33279724 DOI: 10.1016/j.ymthe.2020.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/21/2020] [Accepted: 11/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which lead to impaired ion transport in epithelial cells. Although lung failure due to chronic infection is the major comorbidity in individuals with cystic fibrosis, the role of CFTR in non-epithelial cells has not been definitively resolved. Given the important role of host defense cells, we evaluated the Cftr deficiency in pulmonary immune cells by hematopoietic stem cell transplantation in cystic fibrosis mice. We transplanted healthy bone marrow stem cells and could reveal a stable chimerism of wild-type cells in peripheral blood. The outcome of stem cell transplantation and the impact of healthy immune cells were evaluated in acute Pseudomonas aeruginosa airway infection. In this study, mice transplanted with wild-type cells displayed better survival, lower lung bacterial numbers, and a milder disease course. This improved physiology of infected mice correlated with successful intrapulmonary engraftment of graft-derived alveolar macrophages, as seen by immunofluorescence microscopy and flow cytometry of graft-specific leucocyte surface marker CD45 and macrophage marker CD68. Given the beneficial effect of hematopoietic stem cell transplantation and stable engraftment of monocyte-derived CD68-positive macrophages, we conclude that replacement of mutant Cftr macrophages attenuates airway infection in cystic fibrosis mice.
Collapse
Affiliation(s)
- Kerstin Brinkert
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Silke Hedtfeld
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Annina Burhop
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Rena Gastmeier
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Pauline Gad
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Wedekind
- Institute of Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Christina Kloth
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Justin Rothschuh
- Institute of Pharmacology, Hannover Medical School, 30625 Hannover, Germany
| | - Nico Lachmann
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; REBIRTH Research Center for Translational and Regenerative Medicine, 30625 Hannover, Germany
| | - Miriam Hetzel
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; REBIRTH Research Center for Translational and Regenerative Medicine, 30625 Hannover, Germany
| | - Adan Chari Jirmo
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany; Institute of Functional Anatomy, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Christina Brandenberger
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany; Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
| | - Gesine Hansen
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; REBIRTH Research Center for Translational and Regenerative Medicine, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mania Ackermann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; REBIRTH Research Center for Translational and Regenerative Medicine, 30625 Hannover, Germany
| | - Burkhard Tümmler
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Antje Munder
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| |
Collapse
|
2
|
Mulcahy EM, Cooley MA, McGuire H, Asad S, Fazekas de St Groth B, Beggs SA, Roddam LF. Widespread alterations in the peripheral blood innate immune cell profile in cystic fibrosis reflect lung pathology. Immunol Cell Biol 2019; 97:416-426. [PMID: 30633378 DOI: 10.1111/imcb.12230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/30/2018] [Accepted: 12/09/2018] [Indexed: 11/26/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations to the CF transmembrane conductance regulator (CFTR) gene. CFTR is known to be expressed on multiple immune cell subtypes, dendritic cells, monocytes/macrophages, neutrophils and lymphocytes. We hypothesized that the lack of CFTR expression on peripheral blood innate immune cells would result in an altered cell profile in the periphery and that this profile would reflect lung pathology. We performed a flow cytometric phenotypic investigation of innate immune cell proportions in peripheral blood collected from 17 CF patients and 15 age-matched healthy controls. We observed significant differences between CF patients and controls in the relative proportions of natural killer (NK) cells, monocytes and their subsets, with significant correlations observed between proportions of NK and monocyte cell subsets and lung function (forced expiratory volume in 1 sec, % predicted; FEV1% predicted) in CF patients. This study demonstrates the widespread nature of immune dysregulation in CF and provides a basis for identification of potential therapeutic targets. Modulation of the distinct CF-related immune cell phenotype identified could also be an important biomarker for evaluating CFTR-targeted drug efficacy.
Collapse
Affiliation(s)
- Emily M Mulcahy
- School of Medicine, University of Tasmania, Hobart, TAS, Australia.,Royal Hobart Hospital, Hobart, TAS, Australia
| | | | - Helen McGuire
- Centenary Institute, Newtown, NSW, Australia.,Discipline of Pathology, University of Sydney, Sydney, NSW, Australia
| | | | - Barbara Fazekas de St Groth
- Centenary Institute, Newtown, NSW, Australia.,Discipline of Pathology, University of Sydney, Sydney, NSW, Australia
| | - Sean A Beggs
- School of Medicine, University of Tasmania, Hobart, TAS, Australia.,Royal Hobart Hospital, Hobart, TAS, Australia
| | - Louise F Roddam
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
3
|
Bruscia EM, Bonfield TL. Cystic Fibrosis Lung Immunity: The Role of the Macrophage. J Innate Immun 2016; 8:550-563. [PMID: 27336915 DOI: 10.1159/000446825] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/16/2016] [Indexed: 01/04/2023] Open
Abstract
Cystic fibrosis (CF) pathophysiology is hallmarked by excessive inflammation and the inability to efficiently resolve lung infections, contributing to major morbidity and eventually the mortality of patients with this disease. Macrophages (MΦs) are major players in lung homeostasis through their diverse contributions to both the innate and adaptive immune networks. The setting of MΦ function and activity in CF is multifaceted, encompassing the response to the unique environmental cues in the CF lung as well as the intrinsic changes resulting from CFTR dysfunction. The complexity is further enhanced with the identification of modifier genes, which modulate the CFTR contribution to disease, resulting in epigenetic and transcriptional shifts in MΦ phenotype. This review focuses on the contribution of MΦ to lung homeostasis, providing an overview of the diverse literature and various perspectives on the role of these immune guardians in CF.
Collapse
Affiliation(s)
- Emanuela M Bruscia
- Section of Respiratory Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Conn., USA
| | | |
Collapse
|
4
|
Microfluidic chambers for monitoring leukocyte trafficking and humanized nano-proresolving medicines interactions. Proc Natl Acad Sci U S A 2012. [PMID: 23185003 DOI: 10.1073/pnas.1210269109] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Leukocyte trafficking plays a critical role in determining the progress and resolution of inflammation. Although significant progress has been made in understanding the role of leukocyte activation in inflammation, dissecting the interactions between different leukocyte subpopulations during trafficking is hampered by the complexity of in vivo conditions and the lack of detail of current in vitro assays. To measure the effects of the interactions between neutrophils and monocytes migrating in response to various chemoattractants, at single-cell resolution, we developed a microfluidic platform that replicates critical features of focal inflammation sites. We integrated an elastase assay into the focal chemotactic chambers (FCCs) of our device that enabled us to distinguish between phlogistic and nonphlogistic cell recruitment. We found that lipoxin A(4) and resolvin D1, in solution or incorporated into nano-proresolving medicines, reduced neutrophil and monocyte trafficking toward leukotriene B(4). Lipoxin A(4) also reduced the elastase release from homogenous and heterogenous mixtures of neutrophils and monocytes. Surprisingly, the effect of resolvin D1 on heterogenous mixtures was antisynergistic, resulting in a transient spike in elastase activity, which was quickly terminated, and the degraded elastin removed by the leukocytes inside the FCCs. Therefore, the microfluidic assay provides a robust platform for measuring the effect of leukocyte interactions during trafficking and for characterizing the effects of inflammation mediators.
Collapse
|
5
|
Müller C, Braag SA, Herlihy JD, Wasserfall CH, Chesrown SE, Nick HS, Atkinson MA, Flotte TR. Enhanced IgE allergic response to Aspergillus fumigatus in CFTR-/- mice. J Transl Med 2006; 86:130-40. [PMID: 16424881 DOI: 10.1038/labinvest.3700379] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To gain insight into aberrant cytokine regulation in cystic fibrosis (CF), we compared the phenotypic manifestations of allergen challenge in gut-corrected CFTR-deficient mice with background-matched C57Bl6 (B6) mice. Aspergillus fumigatus (Af) antigen was used to mimic allergic bronchopulmonary aspergillosis, a peculiar hyper-IgE syndrome with a high prevalence in CF patients. CFTR-/-, C57BL/6 and FVB/NJ mice were sensitized with Af antigen by serial intraperitoneal injections. Control mice were mock sensitized with PBS. Challenges were performed by inhalation of Af antigen aerosol. After Af antigen challenge, histologic analysis showed goblet cell hyperplasia and lymphocytic infiltration in both strains. However, total serum IgE levels were markedly elevated in CF mice. Sensitized CF mice showed a five-fold greater IgE response to sensitization as compared with B6- and FVB-sensitized controls. Additional littermate controls to fully normalize for B6-FVB admixture in the strain background confirmed the role of CFTR mutation in the hyper-IgE syndrome. Cytokine mRNA levels of IL-5 and GM-CSF in the bronchoalveolar lavage (BAL) fluid, and BAL cell differentials indicated that CFTR mutation caused a shift from an IL-5-predominant to an IL-4-predominant cytokine profile. This system models a very specific type of airway inflammation in CF and could provide insights into pathogenesis and treatment of the disease.
Collapse
Affiliation(s)
- Christian Müller
- Department of Pediatrics, Center for Immunology and Transplantation and Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32610-0296, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Moss RB, Hsu YP, Olds L. Cytokine dysregulation in activated cystic fibrosis (CF) peripheral lymphocytes. Clin Exp Immunol 2000; 120:518-25. [PMID: 10844532 PMCID: PMC1905557 DOI: 10.1046/j.1365-2249.2000.01232.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies demonstrate in vivo and in vitro cytokine dysregulation in CF epithelial cells. To see if these abnormalities may be generalized to other cells expressing cystic fibrosis transmembrane conductance regulator (CFTR) but not directly exposed to local inflammation, we studied mRNA transcription, intracellular protein production and extracellular secretion of IL-2, IL-4, IL-5, IL-10 and interferon-gamma (IFN-gamma) from freshly isolated blood mononuclear and CD4+ T cells from CF patients and controls. Cells were activated by phorbol myristate acetate (PMA) and anti-CD3, PMA-ionomycin, or lipopolysaccharide (LPS) and assessed for cytokine mRNA transcription by semiquantitative reverse transcriptase-polymerase chain reaction, intracellular protein production by flow cytometry, and secretion by supernatant ELISA. Cytokine expression was highly stimulus-dependent. CF cells showed higher IL-10 transcription than control cells after maximal activation by LPS (P = 0.01); despite this, cytokine production and secretion were equivalent to controls. CF cells showed lower cellular IL-10 production after PMA-anti-CD3 activation (P = 0.002). CF cells secreted less IFN-gamma than control cells after maximal activation by PMA-anti-CD3 (1836 +/- 273 pg/ml versus 9635 +/- 3437 pg/ml, P = 0.04). IL-2, IL-4 and IL-5 regulation was similar to controls. We conclude that CF mononuclear cells show selective cytokine dysregulation after maximal activation, namely reduced IFN-gamma secretion and increased IL-10 mRNA without increased production or secretion. These findings extend defects described in respiratory epithelial cells to circulating immunoregulatory cells, suggesting a link between CF genotype and cytokine dysregulation.
Collapse
Affiliation(s)
- R B Moss
- Department of Paediatrics, Stanford University School of Medicine, Palo Alto, CA 94304-5786, USA.
| | | | | |
Collapse
|
7
|
Schwiebert LM, Estell K, Propst SM. Chemokine expression in CF epithelia: implications for the role of CFTR in RANTES expression. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C700-10. [PMID: 10069998 DOI: 10.1152/ajpcell.1999.276.3.c700] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To delineate the mechanisms that facilitate leukocyte migration into the cystic fibrosis (CF) lung, expression of chemokines, including interleukin-8 (IL-8), monocyte chemoattractant protein-1 (MCP-1), and RANTES, was compared between CF and non-CF airway epithelia. The findings presented herein demonstrate that, under either basal conditions or tumor necrosis factor-alpha (TNF-alpha)- and/or interferon-gamma (IFN-gamma)-stimulated conditions, a consistent pattern of differences in the secretion of IL-8 and MCP-1 between CF and non-CF epithelial cells was not observed. In contrast, CF epithelial cells expressed no detectable RANTES protein or mRNA under basal conditions or when stimulated with TNF-alpha and/or IFN-gamma (P </= 0.05), unlike their non-CF counterparts. Correction of the CF transmembrane conductance regulator (CFTR) defect in CF airway epithelial cells restored the induction of RANTES protein and mRNA by TNF-alpha in combination with IFN-gamma (P </= 0.05) but had little effect on IL-8 or MCP-1 production compared with mock controls. Transfection studies utilizing RANTES promoter constructs suggested that CFTR activates the RANTES promoter via a nuclear factor-kappaB-mediated pathway. Together, these results suggest that 1) RANTES expression is altered in CF epithelia and 2) epithelial expression of RANTES, but not IL-8 or MCP-1, is dependent on CFTR.
Collapse
Affiliation(s)
- L M Schwiebert
- Department of Physiology and Biophysics, University of Alabama, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
8
|
Bédard M, McClure CD, Schiller NL, Francoeur C, Cantin A, Denis M. Release of interleukin-8, interleukin-6, and colony-stimulating factors by upper airway epithelial cells: implications for cystic fibrosis. Am J Respir Cell Mol Biol 1993; 9:455-62. [PMID: 7691110 DOI: 10.1165/ajrcmb/9.4.455] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cystic fibrosis (CF) is characterized by a dramatic neutrophil recruitment and repeated Pseudomonas infections in the lungs. To evaluate cytokine releasibility by airway epithelial cells in the context of CF, we studied primary nasal epithelial cells isolated from the upper airways and continuous epithelial cell lines from normal and CF subjects. Relatively low levels of interleukin (IL)-8, IL-6, and granulocyte/macrophage colony-stimulating factor (GM-CSF) were produced spontaneously by primary epithelial cells (< 50 pg/10(6) cells) and higher levels of colony-stimulating factor-1 (CSF-1) (1 to 2 ng/10(6) cells). Cells were stimulated with substances that are likely to be present in the inflamed lungs of CF patients-namely, the proinflammatory monokines IL-1 and tumor necrosis factor-alpha (TNF alpha) as well as neutrophil elastase and bacterial products from Pseudomonas (mucoid exopolysaccharide [MEP] and rhamnolipids). Both IL-1 and TNF alpha induced a dose-dependent release of IL-6 (5 to 10 ng/10(6) cells) and GM-CSF (2 to 3 ng/10(6) cells) by primary epithelial cells from eight normal volunteers. The TNF alpha/IL-1-stimulated GM-CSF release was blocked by the addition of 1 microM dexamethasone, whereas basal CSF-1 release was unaffected. Neutrophil elastase was a potent inducer of IL-8 and GM-CSF both in primary epithelial cells and in cell lines. Dexamethasone (1 microM) did not inhibit elastase-induced IL-8 release in either normal or CF epithelial cells. Rhamnolipids and MEP were found to stimulate the copious release of IL-8, GM-CSF, and IL-6 from epithelial cells, in a steroid-sensitive fashion.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Bédard
- Department of Anatomy and Cellular Biology, Faculty of Medicine, University of Sherbrooke, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- K Grimwood
- Department of Paediatrics, Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|