1
|
Girma A. Biology of human respiratory syncytial virus: Current perspectives in immune response and mechanisms against the virus. Virus Res 2024; 350:199483. [PMID: 39396572 PMCID: PMC11513633 DOI: 10.1016/j.virusres.2024.199483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Human respiratory syncytial virus (hRSV) remains a leading cause of morbidity and mortality in infants, young children, and older adults. hRSV infection's limited treatment and vaccine options significantly increase bronchiolitis' morbidity rates. The severity and outcome of viral infection hinge on the innate immune response. Developing vaccines and identifying therapeutic interventions suitable for young children, older adults, and pregnant women relies on comprehending the molecular mechanisms of viral PAMP recognition, genetic factors of the inflammatory response, and antiviral defense. This review covers fundamental elements of hRSV biology, diagnosis, pathogenesis, and the immune response, highlighting prospective options for vaccine development.
Collapse
Affiliation(s)
- Abayeneh Girma
- Department of Biology, College of Natural and Computational Sciences, Mekdela Amba University, P.O. Box 32, Tulu Awuliya, Ethiopia.
| |
Collapse
|
2
|
Mondell E, Nino G, Hong X, Wang X, Gutierrez MJ. Immune Biomarkers at Birth Predict Lower Respiratory Tract Infection Risk in a Large Birth Cohort. Pathogens 2024; 13:765. [PMID: 39338956 PMCID: PMC11435078 DOI: 10.3390/pathogens13090765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Lower respiratory tract infections (LRTIs) remain the leading cause of infant morbidity and mortality worldwide and affect long-term respiratory health. Identifying immunological determinants of LRTI susceptibility may help stratify disease risk and identify therapies. This study aimed to identify neonatal immunological factors predicting LRTI risk in infancy. Cord blood plasma from 191 neonates from the Boston Birth Cohort was analyzed for 28 soluble immune factors. LRTI was defined as bronchiolitis, bronchitis, or pneumonia during the first year of life. Welch's t-test demonstrated significantly higher log10 transformed concentrations of IL-17 and IFNγ in the LRTI group compared to neonates without LRTI in the first year of life (p < 0.05). Risk associations were determined using multivariate survival models. There were 29 infants with LRTIs. High cord blood levels of IFNγ (aHR = 2.35, 95% CI 1.07-5.17), TNF-β (aHR = 2.86, 95% CI 1.27-6.47), MIP-1α (aHR = 2.82, 95% CI 1.22-6.51), and MIP-1β (aHR = 2.34, 95% CI 1.05-5.20) were associated with a higher risk of LRTIs. RANTES was associated with a lower risk (aHR = 0.43, 95% CI 0.19-0.97). Soluble immune factors linked to antiviral immunity (IFNγ) and cytokines mediating inflammatory responses (TNF-β), and cell homing (MIP-1α/b), at birth were associated with an increased risk of LRTIs during infancy.
Collapse
Affiliation(s)
- Ethan Mondell
- School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Gustavo Nino
- Division of Pulmonary and Sleep Medicine, Children’s National Hospital, George Washington University, Washington, DC 20010, USA;
- Center for Genetic Medicine Research, Children’s Research Institute, Washington, DC 20010, USA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (X.H.); (X.W.)
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (X.H.); (X.W.)
- Division of General Pediatrics and Adolescent Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Maria J. Gutierrez
- Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Savino F, Dini M, Clemente A, Calvi C, Pau A, Galliano I, Gambarino S, Bergallo M. Nasopharyngeal and Peripheral Blood Type II Interferon Signature Evaluation in Infants during Respiratory Syncytial Virus Infection. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:259. [PMID: 38399546 PMCID: PMC10890591 DOI: 10.3390/medicina60020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: In this study, we applied one-step real time rt-PCR technology type II INF signature to blood and nasopharyngeal (NPS) swabs of acute early recovery children < 1 years hospitalized for bronchiolitis with laboratory-confirmed RSV infection. Materials and Methods: A prospective observational case-control study was conducted in 2021-2022. The study took place in Children Hospital "Regina Margherita", Torino Italy. The study included 66 infants, of which 30 patients were hospitalized for bronchiolitis due to RSV infection and 36 age-matched controls. Inclusion criteria included a positive RSV test for infants with bronchiolitis. We collected peripheral blood and nasopharyngeal swabs for relative quantification of type II Interferon signature by One-Step Multiplex PCR real time. Results: IFN levels were downregulated in the peripheral blood of bronchiolitis patients; these data were not confirmed in the nasopharyngeal swab. There was no correlation between NPS and the type II IFN score in peripheral blood. Conclusions: our study shows for the first time that type II IFN score was significant reduced in peripheral blood of infants with bronchiolitis by RSV compared to age-matched healthy controls; in the NPS swab this resulted downregulation was not statistically significant and the type II IFN score in the NPS swab can be used as marker of resolution of infection or improvement of clinical conditions.
Collapse
Affiliation(s)
- Francesco Savino
- Early Infancy Special Care Unit, Regina Margherita Children Hospital, A.O.U. Città della Salute e della Scienza di Torino, 10126 Torino, Italy;
| | - Maddalena Dini
- Paediatric Laboratory, Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10136 Turin, Italy; (M.D.); (A.C.); (C.C.); (A.P.); (I.G.)
- BioMole srl, Via Quarello 15/A, 10135 Turin, Italy
| | - Anna Clemente
- Paediatric Laboratory, Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10136 Turin, Italy; (M.D.); (A.C.); (C.C.); (A.P.); (I.G.)
| | - Cristina Calvi
- Paediatric Laboratory, Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10136 Turin, Italy; (M.D.); (A.C.); (C.C.); (A.P.); (I.G.)
- Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children’s Hospital, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Anna Pau
- Paediatric Laboratory, Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10136 Turin, Italy; (M.D.); (A.C.); (C.C.); (A.P.); (I.G.)
| | - Ilaria Galliano
- Paediatric Laboratory, Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10136 Turin, Italy; (M.D.); (A.C.); (C.C.); (A.P.); (I.G.)
- Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children’s Hospital, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Stefano Gambarino
- Paediatric Laboratory, Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10136 Turin, Italy; (M.D.); (A.C.); (C.C.); (A.P.); (I.G.)
- BioMole srl, Via Quarello 15/A, 10135 Turin, Italy
| | - Massimiliano Bergallo
- Paediatric Laboratory, Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10136 Turin, Italy; (M.D.); (A.C.); (C.C.); (A.P.); (I.G.)
- BioMole srl, Via Quarello 15/A, 10135 Turin, Italy
- Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children’s Hospital, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| |
Collapse
|
4
|
Volpe S, Irish J, Palumbo S, Lee E, Herbert J, Ramadan I, Chang EH. Viral infections and chronic rhinosinusitis. J Allergy Clin Immunol 2023; 152:819-826. [PMID: 37574080 PMCID: PMC10592176 DOI: 10.1016/j.jaci.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Viral infections are the most common cause of upper respiratory infections; they frequently infect adults once or twice and children 6 to 8 times annually. In most cases, these infections are self-limiting and resolve. However, many patients with chronic rhinosinusitis (CRS) relay that their initiating event began with an upper respiratory infection that progressed in both symptom severity and duration. Viruses bind to sinonasal epithelia through specific receptors, thereby entering cells and replicating within them. Viral infections stimulate interferon-mediated innate immune responses. Recent studies suggest that viral infections may also induce type 2 immune responses and stimulate the aberrant production of cytokines that can result in loss of barrier function, which is a hallmark in CRS. The main purpose of this review will be to highlight common viruses and their associated binding receptors and highlight pathophysiologic mechanisms associated with alterations in mucociliary clearance, epithelial barrier function, and dysfunctional immune responses that might lead to a further understanding of the pathogenesis of CRS.
Collapse
Affiliation(s)
- Sophia Volpe
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Joseph Irish
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Sunny Palumbo
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Eric Lee
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Jacob Herbert
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Ibrahim Ramadan
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Eugene H Chang
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz.
| |
Collapse
|
5
|
Hurme P, Komulainen M, Tulkki M, Leino A, Rückert B, Turunen R, Vuorinen T, Akdis M, Akdis CA, Jartti T. Cytokine expression in rhinovirus- vs. respiratory syncytial virus-induced first wheezing episode and its relation to clinical course. Front Immunol 2022; 13:1044621. [PMID: 36451824 PMCID: PMC9702984 DOI: 10.3389/fimmu.2022.1044621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 09/26/2023] Open
Abstract
Rhinovirus (RV) and respiratory syncytial virus (RSV) are common causes of bronchiolitis. Unlike an RSV etiology, an RV etiology is associated with a markedly increased risk of asthma. We investigated the cytokine profiles of RV- and RSV-induced first wheezing episode and their correlation with prognosis. We recruited 52 sole RV- and 11 sole RSV-affected children with a severe first wheezing episode. Peripheral blood mononuclear cells (PBMCs) were isolated during acute illness and 2 weeks later and stimulated in vitro with anti-CD3/anti-CD28. Culture medium samples were analyzed for 56 different cytokines by multiplex ELISA. Recurrences were prospectively followed for 4 years. In adjusted analyses, the cytokine response from PBMCs in the RV group was characterized by decreased expression of interleukin 1 receptor antagonist (IL-1RA), interleukin 1 beta (IL-1β), and monocyte chemoattractant protein-1 (MCP-1) and increased expression of eosinophil chemotactic protein 2 (eotaxin-2), thymus- and activation-regulated chemokine (TARC), and epithelial-derived neutrophil-activating peptide 78 (ENA-78) in the acute phase and increased expression of fractalkine in the convalescent phase compared to those in the RSV group. An analysis of the change in cytokine expression between study points revealed an increased expression of fractalkine and IL-1β and decreased expression of I-309 (CCL1) and TARC in the RV group compared to those in the RSV group.. Considering hospitalization time, a significant non-adjusted group × cytokine interaction was observed in the levels of interferon gamma (IFN-γ), macrophage-derived chemokine (MDC), IL-1RA, and vascular endothelial growth factor (VEGF), indicating that a higher expression of cytokine was associated with shorter hospitalization time in the RSV group but not in the RV group. A significant interaction was also found in interleukin 6 (IL-6), but the cytokine response was not associated with hospitalization time in the RSV or RV group. In the RV group, increased expression of I-309 (CCL1) and TARC was associated with fewer relapses within 2 months, and decreased expression of interleukin 13 (IL-13) and increased expression of I-309 (CCL1) were associated with less relapses within 12 months. Differences in cytokine response from PBMCs were observed between RV- and RSV-induced first severe wheezing episode. Our findings also reveal new biomarkers for short- and medium-term prognosis in first-time wheezing children infected with RV or RSV.
Collapse
Affiliation(s)
- Pekka Hurme
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Miisa Komulainen
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Marleena Tulkki
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Annamari Leino
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Riitta Turunen
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- New Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tytti Vuorinen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Tuomas Jartti
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
6
|
IFN-γ Attenuates Eosinophilic Inflammation but Is Not Essential for Protection against RSV-Enhanced Asthmatic Comorbidity in Adult Mice. Viruses 2022; 14:v14010147. [PMID: 35062354 PMCID: PMC8778557 DOI: 10.3390/v14010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/10/2022] Open
Abstract
The susceptibility to respiratory syncytial virus (RSV) infection in early life has been associated with a deficient T-helper cell type 1 (Th1) response. Conversely, healthy adults generally do not exhibit severe illness from RSV infection. In the current study, we investigated whether Th1 cytokine IFN-γ is essential for protection against RSV and RSV-associated comorbidities in adult mice. We found that, distinct from influenza virus, prior RSV infection does not induce significant IFN-γ production and susceptibility to secondary Streptococcus pneumoniae infection in adult wild-type (WT) mice. In ovalbumin (OVA)-induced asthmatic mice, RSV super-infection increases airway neutrophil recruitment and inflammatory lung damage but has no significant effect on OVA-induced eosinophilia. Compared with WT controls, RSV infection of asthmatic Ifng−/− mice results in increased airway eosinophil accumulation. However, a comparable increase in eosinophilia was detected in house dust mite (HDM)-induced asthmatic Ifng−/− mice in the absence of RSV infection. Furthermore, neither WT nor Ifng−/− mice exhibit apparent eosinophil infiltration during RSV infection alone. Together, these findings indicate that, despite its critical role in limiting eosinophilic inflammation during asthma, IFN-γ is not essential for protection against RSV-induced exacerbation of asthmatic inflammation in adult mice.
Collapse
|
7
|
Streptococcus pneumoniae serotype 22F infection in respiratory syncytial virus infected neonatal lambs enhances morbidity. PLoS One 2021; 16:e0235026. [PMID: 33705390 PMCID: PMC7951856 DOI: 10.1371/journal.pone.0235026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/22/2021] [Indexed: 11/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the primary cause of viral bronchiolitis resulting in hospitalization and a frequent cause of secondary respiratory bacterial infection, especially by Streptococcus pneumoniae (Spn) in infants. While murine studies have demonstrated enhanced morbidity during a viral/bacterial co-infection, human meta-studies have conflicting results. Moreover, little knowledge about the pathogenesis of emerging Spn serotype 22F, especially the co-pathologies between RSV and Spn, is known. Here, colostrum-deprived neonate lambs were divided into four groups. Two of the groups were nebulized with RSV M37, and the other two groups were mock nebulized. At day three post-RSV infection, one RSV group (RSV/Spn) and one mock-nebulized group (Spn only) were inoculated with Spn intratracheally. At day six post-RSV infection, bacterial/viral loads were assessed along with histopathology and correlated with clinical symptoms. Lambs dually infected with RSV/Spn trended with higher RSV titers, but lower Spn. Additionally, lung lesions were observed to be more frequent in the RSV/Spn group characterized by increased interalveolar wall thickness accompanied by neutrophil and lymphocyte infiltration and higher myeloperoxidase. Despite lower Spn in lungs, co-infected lambs had more significant morbidity and histopathology, which correlated with a different cytokine response. Thus, enhanced disease severity during dual infection may be due to lesion development and altered immune responses rather than bacterial counts.
Collapse
|
8
|
Dias CF, Rigo MM, Escouto DC, Porto B, Mattiello R. Association between TNF-α and IFN-γ levels and severity of acute viral bronchiolitis. Int Rev Immunol 2021; 40:433-440. [PMID: 33616469 DOI: 10.1080/08830185.2021.1889534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Acute bronchiolitis caused by the respiratory syncytial virus triggers an inflammatory response with the production and release of several pro-inflammatory cytokines. Evidence suggests that their levels are associated with the severity of the infection. This systematic review and meta-analysis aim to assess whether the levels of TNF-α and IFN-γ are associated with the severity of acute viral bronchiolitis. We searched MEDLINE libraries (via PUBMED), EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL), Scientific Electronic Library Online (SciELO), Latin American Caribbean Health Sciences Literature (LILACS), Cumulative Index to Nursing and Allied Health Literature (CINAHL), Web of Science, and the gray literature through April 2020. Random effect models were used for general and subgroup analysis. In total, six studies were included with a total of 744 participants. The mean TNF-α levels between the severe group did not differ from the control group 0.14 (95% CI: -0.53 to 0.82, I2 = 91%, p < 0.01); the heterogeneity was high. The results remained insignificant when the analyses were performed including only studies with high quality 0.25 (95% CI: -0.46 to 0.96, I2 = 92%, p < 0.01) I2 = 95%, p = 0.815), when TNF-α was nasal 0.60 (95% CI: -0.49 to 1.69), I2 = 94%, p < 0.01), or serum -0.08 (95% CI: -0.48 to 0.31), I2 = 29%, p = 0.24). In the analysis of studies measuring IFN-γ, there was also no significance of -0.67 (95% CI: -1.56 to 0.22, I2 = 76%, p = 0.04). In conclusion, this meta-analysis suggests that the most severe patients do not have different mean TNF-α and IFN-γ values than patients with mild disease, but the heterogeneity of the studies was high. Supplemental data for this article is available online at https://doi.org/10.1080/08830185.2021.1889534.
Collapse
Affiliation(s)
- Carolina Frizzera Dias
- Pontifícia Universidade Católica, Porto Alegre, Rio Grande do Sul, Brazil.,Universidade Federal do Espírito Santo, Vitoria, Espirito Santo, Brazil
| | | | | | - Bárbara Porto
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rita Mattiello
- Pontifícia Universidade Católica, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Rinchai D, Altman MC, Konza O, Hässler S, Martina F, Toufiq M, Garand M, Kabeer BSA, Palucka K, Mejias A, Ramilo O, Bedognetti D, Mariotti‐Ferrandiz E, Klatzmann D, Chaussabel D. Definition of erythroid cell-positive blood transcriptome phenotypes associated with severe respiratory syncytial virus infection. Clin Transl Med 2020; 10:e244. [PMID: 33377660 PMCID: PMC7733317 DOI: 10.1002/ctm2.244] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/31/2022] Open
Abstract
Biomarkers to assess the risk of developing severe respiratory syncytial virus (RSV) infection are needed. We conducted a meta-analysis of 490 unique profiles from six public RSV blood transcriptome datasets. A repertoire of 382 well-characterized transcriptional modules was used to define dominant host responses to RSV infection. The consolidated RSV cohort was stratified according to four traits: "interferon response" (IFN), "neutrophil-driven inflammation" (Infl), "cell cycle" (CC), and "erythrocytes" (Ery). We identified eight prevalent blood transcriptome phenotypes, of which three Ery+ phenotypes comprised higher proportions of patients requiring intensive care. This finding confirms on a larger scale data from one of our earlier reports describing an association between an erythrocyte signature and RSV disease severity. Further contextual interpretation made it possible to associate this signature with immunosuppressive states (late stage cancer, pharmacological immunosuppression), and with a population of fetal glycophorin A+ erythroid precursors. Furthermore, we posit that this erythrocyte cell signature may be linked to a population of immunosuppressive erythroid cells previously described in the literature, and that overabundance of this cell population in RSV patients may underlie progression to severe disease. These findings outline potential priority areas for biomarker development and investigations into the immune biology of RSV infection. The approach that we developed and employed here should also permit to delineate prevalent blood transcriptome phenotypes in other settings.
Collapse
Affiliation(s)
| | - Matthew C. Altman
- Benaroya Research InstituteSeattleWashington
- University of WashingtonSeattleWashington
| | - Oceane Konza
- Biotherapy (CIC‐BTi) and Inflammation‐Immunopathology‐Biotherapy Department (i2B)AP‐HP, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Signe Hässler
- Biotherapy (CIC‐BTi) and Inflammation‐Immunopathology‐Biotherapy Department (i2B)AP‐HP, Hôpital Pitié‐SalpêtrièreParisFrance
- Immunology‐Immunopathology‐Immunotherapy (i3)Sorbonne UniversitéINSERMParisFrance
| | - Federica Martina
- Biotherapy (CIC‐BTi) and Inflammation‐Immunopathology‐Biotherapy Department (i2B)AP‐HP, Hôpital Pitié‐SalpêtrièreParisFrance
| | | | | | | | | | - Asuncion Mejias
- Division of Infectious DiseasesNationwide Children's HospitalColumbusOhio
| | - Octavio Ramilo
- Division of Infectious DiseasesNationwide Children's HospitalColumbusOhio
| | - Davide Bedognetti
- Sidra MedicineDohaQatar
- Department of Internal Medicine and Medical SpecialtiesUniversity of GenoaGenoaItaly
| | | | - David Klatzmann
- Biotherapy (CIC‐BTi) and Inflammation‐Immunopathology‐Biotherapy Department (i2B)AP‐HP, Hôpital Pitié‐SalpêtrièreParisFrance
- Immunology‐Immunopathology‐Immunotherapy (i3)Sorbonne UniversitéINSERMParisFrance
| | | |
Collapse
|
10
|
Kitcharoensakkul M, Bacharier LB, Yin-Declue H, Boomer JS, Sajol G, Leung MK, Wilson B, Schechtman KB, Atkinson JP, Green JM, Castro M. Impaired tumor necrosis factor-α secretion by CD4 T cells during respiratory syncytial virus bronchiolitis associated with recurrent wheeze. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:30-39. [PMID: 31901157 PMCID: PMC7016853 DOI: 10.1002/iid3.281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/06/2019] [Accepted: 12/07/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Infants with severe respiratory syncytial virus (RSV) bronchiolitis have an increased risk of recurrent wheezing and asthma. We aimed to evaluate the relationships between regulatory T cell (Treg) percentage and cytokine production of in vitro-stimulated CD4+ T cells during acute bronchiolitis and the development of recurrent wheezing in the first 3 years of life. METHODS We obtained peripheral blood from 166 infants hospitalized with their first episode of RSV-confirmed bronchiolitis. Granzyme B (GZB) expression, and interleukin-10, interferon-γ, tumor necrosis factor-α (TNF-α), IL-4, and IL-5 production by in vitro anti-CD3/CD28- and anti-CD3/CD46-activated CD4+ T cells, and percentage of peripheral Treg (CD4+CD25hi Foxp3hi ) cells were measured by flow cytometry. Wheezing was assessed every 6 months. Recurrent wheezing was defined as three or more episodes following the initial RSV bronchiolitis. RESULTS Sixty-seven percent (n = 111) of children had wheezing after their initial RSV infection, with 30% having recurrent wheezing. The percentage of peripheral Treg (CD4+CD25hi Foxp3hi ) cells was not significantly different between the wheezing groups. Decreased TNF-α production from anti-CD3/CD28- and anti-CD3/CD46- activated CD4+ T cells was observed in the recurrent wheezers, compared with nonwheezers (p = .048 and .03, respectively). There were no significant differences in the GZB+ CD4+ T cells and production of other inflammatory cytokines between these groups. CONCLUSIONS We demonstrated lower TNF-α production by in vitro stimulated CD4+ T cells during severe RSV bronchiolitis in children that subsequently developed recurrent wheezing, compared with children with no subsequent wheeze. These findings support the role of CD4+ T cell immunity in the development of subsequent wheezing in these children.
Collapse
Affiliation(s)
- Maleewan Kitcharoensakkul
- The Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Leonard B Bacharier
- The Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Huiqing Yin-Declue
- The Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jonathan S Boomer
- The Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Geneline Sajol
- The Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Marilyn K Leung
- The Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Brad Wilson
- The Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Kenneth B Schechtman
- The Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - John P Atkinson
- The Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | | | - Mario Castro
- The Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, Kansas
| |
Collapse
|
11
|
Ramos-Fernández JM, Moreno-Pérez D, Antúnez-Fernández C, Milano-Manso G, Cordón-Martínez AM, Urda-Cardona A. Lower lymphocyte response in severe cases of acute bronchiolitis due to respiratory syncytial virus. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2018. [DOI: 10.1016/j.anpede.2017.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
12
|
Altered regulatory cytokine profiles in cases of pediatric respiratory syncytial virus infection. Cytokine 2018; 103:57-62. [PMID: 29324262 PMCID: PMC7130056 DOI: 10.1016/j.cyto.2017.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022]
Abstract
Objectives Regulatory cytokines are associated with viral infection. The objective of this study was to evaluate the relation between serum regulatory cytokines concentrations and respiratory syncytial virus (RSV) disease. Methods We enrolled 325 children aged < 24 months who were diagnosed with acute respiratory tract infection. Twenty age-matched healthy children were enrolled as controls. Nasopharyngeal swabs were analyzed to identify virus by reverse transcription polymerase chain reaction, and blood samples were taken to quantify the regulatory cytokine concentrations, including interleukin (IL)-35, IL-10 and transforming growth factor (TGF)-β1 using the Bio-Plex immunoassay or enzyme-linked immunosorbent assay. Results RSV disease was associated with a great regulatory cytokine response than healthy children, among 89 RSV-infected patients, serum IL-35 (P = .0001) and IL-10 (P = .006) was significantly elevated in comparison with healthy controls. Young children (0< age ≤6 months) with RSV infection had significantly lower IL-35 and IL-10 expression but needed more oxygen therapy and more severe disease comparing with older children (12< age <24 months). Comparing with mild group, the expression levels of IL-10 were significantly lower in children with moderate and severe disease (P = .012 and P = .005, respectively). And levels of IL-10 was inversely associated with total duration of RSV infection symptoms (r = − 0.311, P = .019). Conclusion Children with RSV infected had increased serum regulatory cytokine IL-10 and IL-35 concentrations. Elevated expression of IL-10 and IL-35 were contributed to protect hypoxia and reduce the severity of disease.
Collapse
|
13
|
Ramos-Fernández JM, Moreno-Pérez D, Antúnez-Fernández C, Milano-Manso G, Cordón-Martínez AM, Urda-Cardona A. [Lower lymphocyte response in severe cases of acute bronchiolitis due to respiratory syncytial virus]. An Pediatr (Barc) 2017; 88:315-321. [PMID: 28818563 DOI: 10.1016/j.anpedi.2017.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/01/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022] Open
Abstract
INTRODUCTION Acute bronchiolitis (AB) of the infant has a serious outcome in 6-16% of the hospital admitted cases. Its pathogenesis and evolution is related to the response of the T lymphocytes. The objective of the present study is to determine if the lower systemic lymphocytic response is related to a worse outcome of AB in hospitalised infants. PATIENTS AND METHOD Retrospective observational-analytical study of cases-controls nested in a cohort of patients admitted due to RSV-AB between the period from October 2010 to March 2015. Those with a full blood count in the first 48hours of respiratory distress were included. Infants with underlying disease, bacterial superinfection, and premature infants <32 weeks of gestation were excluded. The main dichotomous variable was PICU admission. Other variables were: gender, age, post-menstrual age, gestational and post-natal tobacco exposure, admission month, type of lactation, and days of onset of respiratory distress. Lymphocyte counts were categorised by quartiles. Bivariate analysis was performed with the main variable and then by logistic regression to analyse confounding factors. RESULTS The study included 252 infants, of whom 6.6% (17) required PICU admission. The difference in mean±SD of lymphocytes for patients admitted to and not admitted to PICU was 4,044±1755 and 5,035±1786, respectively (Student-t test, P<.05). An association was found between PICU admission and lymphocyte count <3700/ml (Chi-squared, P=.019; OR: 3.2) and it was found to be maintained in the logistic regression, regardless of age and all other studied factors (Wald 4.191 P=.041, OR: 3.8). CONCLUSIONS A relationship was found between lymphocytosis <3700/ml in the first days of respiratory distress and a worse outcome in previously healthy infants <12 months and gestational age greater than 32 weeks with RSV-AB.
Collapse
Affiliation(s)
- José Miguel Ramos-Fernández
- Unidad de Gestión Clínica de Pediatría, Grupo de Investigación IBIMA, Hospital Materno-Infantil Regional Universitario de Málaga, Málaga, España.
| | - David Moreno-Pérez
- Infectología Pediátrica e Inmunodeficiencias, Unidad de Gestión Clínica de Pediatría, Hospital Materno-Infantil Regional Universitario de Málaga, Grupo de Investigación IBIMA, Departamento de Pediatría y Farmacología, Facultad de Medicina de la Universidad de Málaga, Málaga, España
| | - Cristina Antúnez-Fernández
- Unidad de Gestión Clínica de Pediatría, Grupo de Investigación IBIMA, Hospital Materno-Infantil Regional Universitario de Málaga, Málaga, España
| | - Guillermo Milano-Manso
- Unidad de Gestión Clínica de Cuidados Críticos y Urgencias, Hospital Materno-Infantil Regional Universitario de Málaga, Grupo de Investigación IBIMA, Departamento de Pediatría y Farmacología, Facultad de Medicina de la Universidad de Málaga, Málaga, España
| | - Ana María Cordón-Martínez
- Unidad de Gestión Clínica de Pediatría, Grupo de Investigación IBIMA, Hospital Materno-Infantil Regional Universitario de Málaga, Málaga, España
| | - Antonio Urda-Cardona
- Unidad de Gestión Clínica de Pediatría, Grupo de Investigación IBIMA, Hospital Materno-Infantil Regional Universitario de Málaga, Málaga, España
| |
Collapse
|
14
|
Connors TJ, Ravindranath TM, Bickham KL, Gordon CL, Zhang F, Levin B, Baird JS, Farber DL. Airway CD8(+) T Cells Are Associated with Lung Injury during Infant Viral Respiratory Tract Infection. Am J Respir Cell Mol Biol 2017; 54:822-30. [PMID: 26618559 DOI: 10.1165/rcmb.2015-0297oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Infants and young children are disproportionately susceptible to severe complications from respiratory viruses, although the underlying mechanisms remain unknown. Recent studies show that the T cell response in the lung is important for protective responses to respiratory infections, although details on the infant/pediatric respiratory immune response remain sparse. The objectives of the present study were to characterize the local versus systemic immune response in infants and young children with respiratory failure from viral respiratory tract infections and its association to disease severity. Daily airway secretions were sampled from infants and children 4 years of age and younger receiving mechanical ventilation owing to respiratory failure from viral infection or noninfectious causes. Samples were examined for immune cell composition and markers of T cell activation. These parameters were then correlated with clinical disease severity. Innate immune cells and total CD3(+) T cells were present in similar proportions in airway aspirates derived from infected and uninfected groups; however, the CD8:CD4 T cell ratio was markedly increased in the airways of patients with viral infection compared with uninfected patients, and specifically in infected infants with acute lung injury. T cells in the airways were phenotypically and functionally distinct from those in blood with activated/memory phenotypes and increased cytotoxic capacity. We identified a significant increase in airway cytotoxic CD8(+) T cells in infants with lung injury from viral respiratory tract infection that was distinct from the T cell profile in circulation and associated with increasing disease severity. Airway sampling could therefore be diagnostically informative for assessing immune responses and lung damage.
Collapse
Affiliation(s)
- Thomas J Connors
- 1 Department of Pediatrics and.,2 Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York
| | | | - Kara L Bickham
- 2 Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York
| | - Claire L Gordon
- 2 Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York
| | - Feifan Zhang
- 3 Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York; and Departments of
| | - Bruce Levin
- 3 Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York; and Departments of
| | | | - Donna L Farber
- 2 Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York.,4 Surgery and.,5 Microbiology and Immunology, Columbia University Medical Center, New York, New York
| |
Collapse
|
15
|
Raiden S, Sananez I, Remes-Lenicov F, Pandolfi J, Romero C, De Lillo L, Ceballos A, Geffner J, Arruvito L. Respiratory Syncytial Virus (RSV) Infects CD4+ T Cells: Frequency of Circulating CD4+ RSV+ T Cells as a Marker of Disease Severity in Young Children. J Infect Dis 2017; 215:1049-1058. [PMID: 28199704 DOI: 10.1093/infdis/jix070] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/31/2017] [Indexed: 12/21/2022] Open
Abstract
Background Although human airway epithelial cells are the main target of respiratory syncytial virus (RSV), it also infects immune cells, such as macrophages and B cells. Whether T cells are permissive to RSV infection is unknown. We sought to analyze the permissiveness of CD4+ T cells to RSV infection. Methods CD4+ and CD8+ T cells from cord blood, healthy young children, and adults were challenged by RSV or cocultured with infected HEp-2 cells. Infection, phenotype, and cytokine production by T cells were analyzed by flow cytometry or enzyme-linked immunosorbent assay. Expression of RSV antigens by circulating CD4+ T cells from infected children was analyzed by flow cytometry, and disease severity was defined by standard criteria. Results CD4+ and CD8+ T cells were productively infected by RSV. Infection decreased interleukin 2 and interferon γ production as well as the expression of CD25 and Ki-67 by activated CD4+ T cells. Respiratory syncytial virus antigens were detected in circulating CD4+ and CD8+ T cells during severe RSV infection of young children. Interestingly, the frequency of CD4+ RSV+ T cells positively correlated with disease severity. Conclusions Respiratory syncytial virus infects CD4+ and CD8+ T cells and compromises T-cell function. The frequency of circulating CD4+ RSV+ T cells might represent a novel marker of severe infection.
Collapse
Affiliation(s)
| | - Inés Sananez
- Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires.,Instituto de Inmunología, Genética y Metabolismo, CONICET, Universidad de Buenos Aires
| | - Federico Remes-Lenicov
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, and.,Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, CONICET, Universidad de Buenos Aires, Argentina
| | - Julieta Pandolfi
- Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires.,Instituto de Inmunología, Genética y Metabolismo, CONICET, Universidad de Buenos Aires
| | | | | | - Ana Ceballos
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, and.,Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, CONICET, Universidad de Buenos Aires, Argentina
| | - Jorge Geffner
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, and.,Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, CONICET, Universidad de Buenos Aires, Argentina
| | - Lourdes Arruvito
- Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires.,Instituto de Inmunología, Genética y Metabolismo, CONICET, Universidad de Buenos Aires
| |
Collapse
|
16
|
Lewandowska-Polak A, Brauncajs M, Paradowska E, Jarzębska M, Kurowski M, Moskwa S, Leśnikowski ZJ, Kowalski ML. Human parainfluenza virus type 3 (HPIV3) induces production of IFNγ and RANTES in human nasal epithelial cells (HNECs). JOURNAL OF INFLAMMATION-LONDON 2015; 12:16. [PMID: 25722655 PMCID: PMC4342099 DOI: 10.1186/s12950-015-0054-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/20/2015] [Indexed: 01/15/2023]
Abstract
Background Human parainfluenza virus type 3 (HPIV3), while infecting lower airway epithelial cells induces pneumonia and bronchiolitis in infants and children, and may lead to asthma exacerbations in children and adults. Respiratory viruses invading the airway epithelium activate innate immune response and induce inflammatory cytokine release contributing to the pathophysiology of upper and lower airway disorders. However, the effects of HPIV3 infection on nasal epithelial cells have not been well defined. The aim of this study was to evaluate the effect of the HPIV3 infection on cultured human nasal epithelial cells (HNECs) and the release of interferon gamma and other cytokines. Methods RPMI 2650, a human nasal epithelial cell line was cultured into confluence and was infected with HPIV3 (MOI of 0.1, 0.01 and 0.001). The protein release into supernatants and mRNA expression of selected cytokines were assessed 24, 48 and 72 h after infection. Cytokine concentrations in supernatants were measured by ELISA and expression of cytokine mRNA in RPMI 2650 cells confirmed by real time RT-PCR analysis. Results HNECs infection with HPIV3 did not induce cytotoxicity for at least 48 hours, but significantly increased IFN-γ protein concentration in the cell supernatants at 24 h and 48 h post infection (by 387% and 485% respectively as compared to mock infected cells). At 24 h a significant increase in expression of mRNA for IFNγ was observed. RANTES protein concentration and mRNA expression were significantly increased at 72 h after infection (mean protein concentration: 3.5 ± 1.4 pg/mL for 0.001 MOI, 10.8 ± 4.6 pg/mL for 0.01 MOI and 61.5 ± 18.4 pg/mL for 0.1 MOI as compared to 2.4 ± 1.3 pg/mL for uninfected cells). No measurable concentrations of TNF-α, IL-10, TSLP, IL-8, GM-CSF or eotaxin, were detected in virus infected cells supernatants. Conclusions HPIV3 effectively infects upper airway epithelial cells and the infection is associated with induction of IFN-γ and generation of RANTES.
Collapse
Affiliation(s)
- Anna Lewandowska-Polak
- Department of Immunology, Rheumatology and Allergy, Chair of Clinical Immunology and Microbiology, Medical University of Lodz, Lodz, Poland
| | - Małgorzata Brauncajs
- Department of Microbiology, Immunology and Laboratory Medicine, Chair of Clinical Immunology and Microbiology, Medical University of Lodz, Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Molecular Virology and Biological Chemistry, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Marzanna Jarzębska
- Department of Immunology, Rheumatology and Allergy, Chair of Clinical Immunology and Microbiology, Medical University of Lodz, Lodz, Poland
| | - Marcin Kurowski
- Department of Immunology, Rheumatology and Allergy, Chair of Clinical Immunology and Microbiology, Medical University of Lodz, Lodz, Poland ; Healthy Ageing Research Centre, Medical University of Lodz, Lodz, Poland
| | - Sylwia Moskwa
- Department of Microbiology, Immunology and Laboratory Medicine, Chair of Clinical Immunology and Microbiology, Medical University of Lodz, Lodz, Poland
| | - Zbigniew J Leśnikowski
- Laboratory of Molecular Virology and Biological Chemistry, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Marek L Kowalski
- Department of Immunology, Rheumatology and Allergy, Chair of Clinical Immunology and Microbiology, Medical University of Lodz, Lodz, Poland ; Healthy Ageing Research Centre, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
17
|
Abstract
Respiratory syncytial virus (RSV) is amongst the most important pathogenic infections of childhood and is associated with significant morbidity and mortality. Although there have been extensive studies of epidemiology, clinical manifestations, diagnostic techniques, animal models and the immunobiology of infection, there is not yet a convincing and safe vaccine available. The major histopathologic characteristics of RSV infection are acute bronchiolitis, mucosal and submucosal edema, and luminal occlusion by cellular debris of sloughed epithelial cells mixed with macrophages, strands of fibrin, and some mucin. There is a single RSV serotype with two major antigenic subgroups, A and B. Strains of both subtypes often co-circulate, but usually one subtype predominates. In temperate climates, RSV infections reflect a distinct seasonality with onset in late fall or early winter. It is believed that most children will experience at least one RSV infection by the age of 2 years. There are several key animal models of RSV. These include a model in mice and, more importantly, a bovine model; the latter reflects distinct similarity to the human disease. Importantly, the prevalence of asthma is significantly higher amongst children who are hospitalized with RSV in infancy or early childhood. However, there have been only limited investigations of candidate genes that have the potential to explain this increase in susceptibility. An atopic predisposition appears to predispose to subsequent development of asthma and it is likely that subsequent development of asthma is secondary to the pathogenic inflammatory response involving cytokines, chemokines and their cognate receptors. Numerous approaches to the development of RSV vaccines are being evaluated, as are the use of newer antiviral agents to mitigate disease. There is also significant attention being placed on the potential impact of co-infection and defining the natural history of RSV. Clearly, more research is required to define the relationships between RSV bronchiolitis, other viral induced inflammatory responses, and asthma.
Collapse
Affiliation(s)
- Andrea T. Borchers
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6501, Davis, CA 95616 USA
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6501, Davis, CA 95616 USA
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6501, Davis, CA 95616 USA
| | - Laurel J. Gershwin
- Department of Pathology, Microbiology and Immunology, University of California, Davis, School of Veterinary Medicine, Davis, CA USA
| |
Collapse
|
18
|
Papin JF, Wolf RF, Kosanke SD, Jenkins JD, Moore SN, Anderson MP, Welliver RC. Infant baboons infected with respiratory syncytial virus develop clinical and pathological changes that parallel those of human infants. Am J Physiol Lung Cell Mol Physiol 2013; 304:L530-9. [PMID: 23418091 DOI: 10.1152/ajplung.00173.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection of the lower respiratory tract is the leading cause of respiratory failure among infants in the United States of America and annually results in >300,000 deaths worldwide. Despite the importance of RSV, there is no licensed vaccine, and no specific form of therapy. This is largely due to the absence of an appropriate animal model for the evaluation of vaccines and therapeutic agents. We inoculated anesthetized infant (4 wk) baboons (Papio anubis) with a human strain of RSV intranasally or intratracheally. Baboons were monitored daily for clinical changes. Anesthetized baboons were intubated at various intervals, and bronchoalveolar lavage (BAL) was performed for viral culture and determination of leukocyte counts. Sham-infected baboons served as controls. Necropsies were performed on infected baboons on days 1, 3, 5, 8, or 13 after inoculation, with pathological analysis and immunohistochemical staining of lung tissues to detect RSV antigen. Infected baboons developed tachypnea and reduced oxygenation peaking from 4 to 8 days after infection and persisting for ≥14 days. Virus was recoverable in BAL fluid up to 8 days following infection. Necropsy revealed intense interstitial pneumonia, sloughing of the bronchiolar epithelium, and obstruction of the bronchiolar lumen with inflammatory cells and sloughed epithelial cells. RSV antigen was identified in bronchiolar and alveolar epithelium. We conclude that RSV-infected infant baboons develop clinical and pathological changes that parallel those observed in human infants with RSV infection. The infant baboon represents a much-needed model for studying the pathogenesis of RSV infection and evaluating antivirals and vaccines.
Collapse
Affiliation(s)
- James F Papin
- Oklahoma Baboon Research Resource, Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Diaz PV, Pinto RA, Mamani R, Uasapud PA, Bono MR, Gaggero AA, Guerrero J, Goecke A. Increased expression of the glucocorticoid receptor β in infants with RSV bronchiolitis. Pediatrics 2012; 130:e804-11. [PMID: 23008453 DOI: 10.1542/peds.2012-0160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES The majority of studies on glucocorticoid treatment in respiratory syncytial virus (RSV) bronchiolitis concluded that there are no beneficial effects. We hypothesized that RSV-infected patients may have an increased glucocorticoid receptor (GR) β expression, the isoform that is unable to bind cortisol and exert an antiinflammatory action. METHODS By using real-time polymerase chain reaction, we studied the expression of α and β GR in the peripheral blood mononuclear cells obtained from 49 RSV-infected infants (<1 year of age) with severe (n = 29) and mild to moderate (n = 20) illness. In plasma, we analyzed the level of cortisol by radioimmunoassay and inflammatory cytokines interleukin (IL)-10, IL-6, tumor necrosis factor-α, IL-1β, IL-8, IL-12p70, IL-2, IL-4, IL-5, interferon-γ, and IL-17 by cytometric beads assay. Statistical analysis was performed by nonparametric analysis of variance. RESULTS We found a significant increase of β GR expression in patients with severe illness compared with those with mild disease (P < .001) and with a group of healthy controls (P < .01). The α:β GR ratio decreased significantly in infants with severe disease compared with those with mild illness (P < .01) and with normal controls (P < .001). The expression of β GR was positively correlated with the clinical score of severity (r = .54; P < .0001). CONCLUSIONS The decrease of the α:β GR ratio by an increase of β receptors expression is related to illness severity and may partly explain the insensitivity to corticoid treatment in RSV-infected infants. The increased expression of β GR could be a marker of disease severity.
Collapse
Affiliation(s)
- Patricia V Diaz
- Pathophysiology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Avda Salvador 486, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Holtzman MJ. Asthma as a chronic disease of the innate and adaptive immune systems responding to viruses and allergens. J Clin Invest 2012; 122:2741-8. [PMID: 22850884 DOI: 10.1172/jci60325] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Research on the pathogenesis of asthma has traditionally concentrated on environmental stimuli, genetic susceptibilities, adaptive immune responses, and end-organ alterations (particularly in airway mucous cells and smooth muscle) as critical steps leading to disease. The focus of this cascade has been the response to allergic stimuli. An alternative scheme suggests that respiratory viruses and the consequent response of the innate immune system also drives the development of asthma as well as related inflammatory diseases. This conceptual shift raises the possibility that sentinel cells such as airway epithelial cells, DCs, NKT cells, innate lymphoid cells, and macrophages also represent critical components of asthma pathogenesis as well as new targets for therapeutic discovery. A particular challenge will be to understand and balance the innate as well as the adaptive immune responses to defend the host against acute infection as well as chronic inflammatory disease.
Collapse
Affiliation(s)
- Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
21
|
Sumino K, Tucker J, Shahab M, Jaffee KF, Visness CM, Gern JE, Bloomberg GR, Holtzman MJ. Antiviral IFN-γ responses of monocytes at birth predict respiratory tract illness in the first year of life. J Allergy Clin Immunol 2012; 129:1267-1273.e1. [PMID: 22460071 PMCID: PMC3340511 DOI: 10.1016/j.jaci.2012.02.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/10/2012] [Accepted: 02/13/2012] [Indexed: 01/09/2023]
Abstract
Background Viral respiratory tract infections are the leading cause of acute illness during infancy and are closely linked to chronic inflammatory airway diseases later in life. However, the determinants of susceptibility to acute respiratory tract infections still need to be defined. Objective We investigated whether the individual variation in antiviral response at birth determines the risk for acute respiratory tract illness in the first year of life. Methods We studied 82 children who were enrolled in a birth cohort study of inner-city children with at least 1 parent with allergy or asthma. We cultured cord blood monocytes and assessed IFNG and CCL5 mRNA production at 24 hours after inoculation with respiratory syncytial virus. We also monitored the frequency of acute respiratory tract illness at 3-month intervals and analyzed nasal lavage samples for respiratory tract viruses at the time of illness during the first year. Results Respiratory tract infection was reported for 88% of subjects, and respiratory tract viruses were recovered in 74% of symptomatic children. We observed a wide range of antiviral responses in cord blood monocytes across the population. Furthermore, a decrease in production of IFNG (but not CCL5) mRNA in response to respiratory syncytial virus infection of monocytes was associated with a significant increase in the frequency of upper respiratory tract infections (r = −0.42, P < .001) and the prevalence of ear and sinus infections, pneumonias, and respiratory-related hospitalizations. Conclusion Individual variations in the innate immune response to respiratory tract viruses are detectable even at birth, and these differences predict the susceptibility to acute respiratory tract illness during the first year of life.
Collapse
Affiliation(s)
- Kaharu Sumino
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Rigaux P, Killoran KE, Qiu Z, Rosenberg HF. Depletion of alveolar macrophages prolongs survival in response to acute pneumovirus infection. Virology 2012; 422:338-45. [PMID: 22129848 PMCID: PMC3256929 DOI: 10.1016/j.virol.2011.10.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/24/2011] [Accepted: 10/31/2011] [Indexed: 12/30/2022]
Abstract
Alveolar macrophages are immunoregulatory effector cells that interact directly with respiratory virus pathogens in vivo. We examined the role of alveolar macrophages in acute infection with pneumonia virus of mice (PVM), a rodent pneumovirus that replicates the clinical sequelae of severe human respiratory syncytial virus disease. We show that PVM replicates in primary mouse macrophage culture, releasing infectious virions and proinflammatory cytokines. Alveolar macrophages isolated from PVM-infected mice express activation markers Clec43 and CD86, cytokines TNFα, IL-1, IL-6, and numerous CC and CXC chemokines. Alveolar macrophage depletion prior to PVM infection results in small but statistically significant increases in virus recovery but paradoxically prolonged survival. In parallel, macrophage depleted PVM-infected mice exhibit enhanced NK cell recruitment and increased production of IFNγ by NK, CD4(+) and CD8(+) T cells. These results suggest a protective, immunomodulatory role for IFNγ, as overproduction secondary to macrophage depletion may promote survival despite increased virus recovery.
Collapse
Affiliation(s)
| | | | | | - Helene F. Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
23
|
Delivery of cytokines by recombinant virus in early life alters the immune response to adult lung infection. J Virol 2010; 84:5294-302. [PMID: 20200251 DOI: 10.1128/jvi.02503-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the main cause of bronchiolitis, the major cause of hospitalization of infants. An ideal RSV vaccine would be effective for neonates, but the immune responses of infants differ markedly from those of adults, often showing a bias toward T-helper 2 (Th2) responses and reduced gamma interferon (IFN-gamma) production. We previously developed recombinant RSV vectors expressing IFN-gamma and interleukin-4 (IL-4) that allow us to explore the role of these key Th1 and Th2 cytokines during infection. The aim of the current study was to explore whether an immunomodulation of infant responses could enhance protection. The expression of IFN-gamma by a recombinant RSV vector (RSV/IFN-gamma) attenuated primary viral replication in newborn mice without affecting the development of specific antibody or T-cell responses. Upon challenge, RSV/IFN-gamma mice were protected from the exacerbated disease observed for mice primed with wild-type RSV; however, antiviral immunity was not enhanced. Conversely, the expression of IL-4 by recombinant RSV did not affect virus replication in neonates but greatly enhanced Th2 immune responses upon challenge without affecting weight loss. These studies demonstrate that it is possible to manipulate infant immune responses by using cytokine-expressing recombinant viruses and that neonatal deficiency in IFN-gamma responses may lead to enhanced disease during secondary infection.
Collapse
|
24
|
Alveolar macrophages are a major determinant of early responses to viral lung infection but do not influence subsequent disease development. J Virol 2008; 82:4441-8. [PMID: 18287232 DOI: 10.1128/jvi.02541-07] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Macrophages are abundant in the lower respiratory tract. They play a central role in the innate response to infection but may also modulate excessive inflammation. Both macrophages and ciliated epithelial cells respond to infection by releasing soluble mediators, leading to the recruitment of innate and adaptive effector cells. To study the role of lung macrophages in acute respiratory viral infection, we depleted them by the inhalation of clodronate liposomes in an established mouse model of respiratory syncytial virus (RSV) disease. Infection caused an immediate local release of inflammatory cytokines and chemokines, peaking on day 1, which was virtually abolished by clodronate liposome treatment. Macrophage depletion inhibited the activation (days 1 to 2) and recruitment (day 4) of natural killer (NK) cells and enhanced peak viral load in the lung (day 4). However, macrophage depletion did not affect the recruitment of activated CD4 or CD8 T cells, weight loss, or virus-induced changes in lung function. Therefore, lung macrophages play a central role in the early responses to viral infection but have remarkably little effect on the adaptive response occurring at the time of peak disease severity.
Collapse
|
25
|
Abstract
A pesar de que las infecciones respiratorias virales son el factor asociado con más frecuencia con la expresión del asma (independientemente del fenotipo, edad y fase de la historia natural asmática en la cual la infección ocurre) y de la fuerte asociación temporal existente entre las infecciones y las crisis obstructivas/asmáticas, el rol de los virus en la patogénesis del asma no está aún bien dilucidado. Los factores que explicarían esta conexión son heterogéneos y, a veces, contradictorios. Probablemente las alteraciones en la función y tamaño de la vía aérea, la desregulación (congénita y adquirida) del tono de la vía aérea, las alteraciones en la respuesta inmunitaria a las infecciones y las variantes genéticas en dicha respuesta sean los cuatro mecanismos principales implicados en la asociación entre las infecciones respiratorias virales y el posterior desarrollo del asma o sibilancias en los niños. Futuras estrategias terapéuticas y de prevención deberían considerar estos mecanismos.
Collapse
Affiliation(s)
- J A Castro-Rodríguez
- Neumólogo Pediatra, Facultad de Medicina, Pontificia Universidad Católica, Chile.
| |
Collapse
|
26
|
Lee YM, Miyahara N, Takeda K, Prpich J, Oh A, Balhorn A, Joetham A, Gelfand EW, Dakhama A. IFN-gamma production during initial infection determines the outcome of reinfection with respiratory syncytial virus. Am J Respir Crit Care Med 2007; 177:208-18. [PMID: 17962634 DOI: 10.1164/rccm.200612-1890oc] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Severe respiratory syncytial virus (RSV) bronchiolitis has been associated with deficient IFN-gamma production in humans, but the role of this cytokine in determining the outcome of reinfection is unknown. OBJECTIVES To define the role of IFN-gamma in the development of RSV-mediated airway hyperresponsiveness (AHR) and lung histopathology in mice. METHODS Wild-type (WT) and IFN-gamma knockout mice were infected with RSV in the newborn or weaning stages and reinfected 5 weeks later. Airway responses were assessed on Day 6 after the primary or secondary infection. MEASUREMENTS AND MAIN RESULTS Both WT and IFN-gamma knockout mice developed similar levels of AHR and airway inflammation after primary infection. After reinfection, IFN-gamma knockout mice, but not WT mice, developed AHR, airway eosinophilia, and mucus hyperproduction. Intranasal administration of IFN-gamma during primary infection but not during reinfection prevented the development of these altered airway responses on reinfection in IFN-gamma knockout mice. Adoptive transfer of WT T cells into IFN-gamma knockout mice before primary infection restored IFN-gamma production in the lungs and prevented the development of altered airway responses on reinfection. Treatment of mice with IFN-gamma during primary neonatal infection prevented the enhancement of AHR and the development of airway eosinophilia and mucus hyperproduction on reinfection. CONCLUSIONS IFN-gamma production during primary RSV infection is critical to the development of protection against AHR and lung histopathology on reinfection. Provision of IFN-gamma during primary infection in infancy may be a potential therapeutic approach to alter the course of RSV-mediated long-term sequelae.
Collapse
Affiliation(s)
- Young-Mok Lee
- Division of Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rothoeft T, Fischer K, Zawatzki S, Schulz V, Schauer U, Körner Rettberg C. Differential response of human naive and memory/effector T cells to dendritic cells infected by respiratory syncytial virus. Clin Exp Immunol 2007; 150:263-73. [PMID: 17892510 PMCID: PMC2219349 DOI: 10.1111/j.1365-2249.2007.03497.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In vitro studies have contributed substantially to the understanding of immunopathology of respiratory syncytial virus (RSV)-mediated disease. In the present study we compared the effect of RSV-infected dendritic cells on the time-course of the primary and memory/effector T cell response in vitro. Cultures with uninfected dendritic cells known to elicit T helper 2 (Th2) responses and with polyinosinic-polycytidylic acid (poly-IC)-stimulated dendritic cells known to elicit Th1 responses served as controls. At day 1 after stimulation there was a high proportion of interleukin (IL)-2 and tumour necrosis factor (TNF)-alpha-producing T cells with no difference in number of producing T cells as well as concentration of secreted cytokines between RSV-infected and control cultures. However, up to day 3 generation of IFN-gamma was reduced markedly. In addition, there was a reduced proliferation in RSV cultures. At day 7 the RSV-treated cultures showed a preponderance of IL-4 generation. At days 21-24, after three rounds of restimulation, memory/effector T cells matured under the influence of RSV were still not fully polarized but in contrast to the primary response displayed a predominance of Th1 cytokines. Contact with RSV-infected HEp-2 cells inhibited proliferation of T cells; memory effector T cells were less sensitive to contact inhibition than naive T cells. In addition, RSV inhibited the stimulated rearrangement of cortical actin more effectively in naive compared to memory T cells. In summary, we have shown that RSV infection of dendritic cells has a distinct modulatory effect on the primary response and a less pronounced effect on the memory response.
Collapse
Affiliation(s)
- T Rothoeft
- Klinik für Kinder und Jugendmedizin, der Ruhr Universität Bochum, im St. Josef Hospital, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Melendi GA, Laham FR, Monsalvo AC, Casellas JM, Israele V, Polack NR, Kleeberger SR, Polack FP. Cytokine profiles in the respiratory tract during primary infection with human metapneumovirus, respiratory syncytial virus, or influenza virus in infants. Pediatrics 2007; 120:e410-5. [PMID: 17671045 DOI: 10.1542/peds.2006-3283] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES We characterized the T helper cytokine profiles in the respiratory tract of infants infected with influenza virus, human metapneumovirus, and respiratory syncytial virus to examine whether these agents elicit similar cytokine responses and whether T helper type 2 polarization is associated with wheezing and severe disease. METHODS A prospective study of infants who were seeking medical help for acute upper and/or lower respiratory tract infection symptoms for the first time and were found to be infected with influenza, human metapneumovirus, or respiratory syncytial virus was performed. Respiratory viruses were detected in nasal secretions with reverse transcriptase-polymerase chain reaction assays. The study was performed in emergency departments and outpatient clinics in Buenos Aires, Argentina. T cell cytokine responses were determined in nasal secretions with immunoassays and reverse transcriptase-polymerase chain reaction assays. RESULTS Influenza elicited higher levels of interferon-gamma, interleukin-4, and interleukin-2 than did the other agents. Human metapneumovirus had the lowest interferon-gamma/interleukin-4 ratio (T helper type 2 bias). However, no association was found between T helper type 2 bias and overall wheezing or hospitalization rates. CONCLUSIONS These findings show that viral respiratory infections in infants elicit different cytokine responses and that the pathogeneses of these agents should be studied individually.
Collapse
|
29
|
Belnoue E, Fontannaz-Bozzotti P, Grillet S, Lambert PH, Siegrist CA. Protracted course of lymphocytic choriomeningitis virus WE infection in early life: induction but limited expansion of CD8+ effector T cells and absence of memory CD8+ T cells. J Virol 2007; 81:7338-50. [PMID: 17494081 PMCID: PMC1933347 DOI: 10.1128/jvi.00062-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Viral infections in human infants frequently follow a protracted course, with higher viral loads and delayed viral clearance compared to viral infections in older children. To identify the mechanisms responsible for this protracted pattern of infection, we developed an infant infection murine model using the well-characterized lymphocytic choriomeningitis virus (LCMV) WE strain in 2-week-old BALB/c mice. In contrast to adult mice, in which viral clearance occurred as expected 8 days after infection, LCMV titers persisted for several weeks after infection of infant mice. LCMV-specific effector CD8(+) T cells were elicited in infant mice and fully functional on day 7 but rapidly waned and could not be recovered from day 12 onwards. We show here that this results from the failure of LCMV-specific CD8(+) T cells to expand and the absence of protective LCMV-specific memory CD8(+) T cells. Under these early life conditions, viral control and clearance are eventually achieved only through LCMV-specific B cells that contribute to protect infant mice from early death or chronic infection.
Collapse
Affiliation(s)
- Elodie Belnoue
- World Health Organization Collaborating Center for Vaccinology and Neonatal Immunology, Department of Pathology-Immunology, University of Geneva, Centre Médical Universitaire, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Fjaerli HO, Bukholm G, Krog A, Skjaeret C, Holden M, Nakstad B. Whole blood gene expression in infants with respiratory syncytial virus bronchiolitis. BMC Infect Dis 2006; 6:175. [PMID: 17166282 PMCID: PMC1713240 DOI: 10.1186/1471-2334-6-175] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 12/13/2006] [Indexed: 11/21/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) is a major cause of viral bronchiolitis in infants worldwide, and environmental, viral and host factors are all of importance for disease susceptibility and severity. To study the systemic host response to this disease we used the microarray technology to measure mRNA gene expression levels in whole blood of five male infants hospitalised with acute RSV, subtype B, bronchiolitis versus five one year old male controls exposed to RSV during infancy without bronchiolitis. The gene expression levels were further evaluated in a new experiment using quantitative real-time polymerase chain reaction (QRT-PCR) both in the five infants selected for microarray and in 13 other infants hospitalised with the same disease. Results Among the 30 genes most differentially expressed by microarray nearly 50% were involved in immunological processes. We found the highly upregulated interferon, alpha-inducible protein 27 (IFI27) and the highly downregulated gene Charcot-Leyden crystal protein (CLC) to be the two most differentially expressed genes in the microarray study. When performing QRT-PCR on these genes IFI27 was upregulated in all but one infant, and CLC was downregulated in all 18 infants, and similar to that given by microarray. Conclusion The gene IFI27 is upregulated and the gene CLC is downregulated in whole blood of infants hospitalised with RSV, subtype B, bronchiolitis and is not reported before. More studies are needed to elucidate the specificity of these gene expressions in association with host response to this virus in bronchiolitis of moderate severity.
Collapse
Affiliation(s)
- Hans-Olav Fjaerli
- University of Oslo, Faculty Division Akershus University Hospital, Department of Paediatrics, Akershus University Hospital, Norway
| | - Geir Bukholm
- Institute of Clinical Epidemiology and Molecular Biology, Akershus University Hospital, Norway
| | - Anne Krog
- Institute of Clinical Epidemiology and Molecular Biology, Akershus University Hospital, Norway
| | - Camilla Skjaeret
- Institute of Clinical Epidemiology and Molecular Biology, Akershus University Hospital, Norway
| | | | - Britt Nakstad
- University of Oslo, Faculty Division Akershus University Hospital, Department of Paediatrics, Akershus University Hospital, Norway
| |
Collapse
|
31
|
Aberle JH, Aberle SW, Pracher E, Hutter HP, Kundi M, Popow-Kraupp T. Single versus dual respiratory virus infections in hospitalized infants: impact on clinical course of disease and interferon-gamma response. Pediatr Infect Dis J 2005; 24:605-10. [PMID: 15999001 DOI: 10.1097/01.inf.0000168741.59747.2d] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Dual respiratory viral infections are frequently associated with lower respiratory tract illness in infants. This study aimed to determine the impact of a dual respiratory viral infection on specific aspects of the infant's immune response and the clinical course of illness. METHODS A prospective study was performed with 772 infants hospitalized from October 2000 through July 2004. Sensitive polymerase chain reaction methodology revealed the presence of a single respiratory virus in 443 (57%) of 772 cases, whereas dual infections were identified in 153 (20%) of cases. From 250 infants with confirmed respiratory viral infection, fresh heparinized blood was analyzed for interferon-gamma (IFN-gamma) responses by flow cytometry. Of these, 191 patients had a single infection with respiratory syncytial virus (RSV), rhinoviruses, adenoviruses or influenza viruses; and 59 patients had a dual infection with RSV and rhinoviruses, RSV and adenoviruses, influenza viruses and rhinoviruses or adenoviruses and rhinoviruses. The clinical features and peripheral lymphocyte IFN-gamma responses were compared among infants with single or dual infections. RESULTS It was found that dual infections with non-RSV respiratory viruses induced peripheral blood mononuclear cell IFN-gamma responses that mimic those of single infections, whereas coinfection with RSV was associated with reduced IFN-gamma responses and a more severe clinical course of lower respiratory tract disease. CONCLUSIONS The results indicate that the clinical characteristics and the IFN-gamma response differ significantly in single and dual respiratory viral infection, depending on the nature of the simultaneously detected viruses. In dual infections, RSV involvement was associated with a decreased IFN-gamma response in peripheral blood mononuclear cell and an increase in severity of illness.
Collapse
Affiliation(s)
- Judith H Aberle
- Institute of Virology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|