1
|
Parwani K, Mandal P. Advanced glycation end products and insulin resistance in diabetic nephropathy. VITAMINS AND HORMONES 2024; 125:117-148. [PMID: 38997162 DOI: 10.1016/bs.vh.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Insulin resistance is a central hallmark that connects the metabolic syndrome and diabetes to the resultant formation of advanced glycation end products (AGEs), which further results in the complications of diabetes, including diabetic nephropathy. Several factors play an important role as an inducer to diabetic nephropathy, and AGEs elicit their harmful effects via interacting with the receptor for AGEs Receptor for AGEs, by induction of pro-inflammatory cytokines, oxidative stress, endoplasmic reticulum stress and fibrosis in the kidney tissues leading to the loss of renal function. Insulin resistance results in the activation of other alternate pathways governed by insulin, which results in the hypertrophy of the renal cells and tissue remodeling. Apart from the glucose uptake and disposal, insulin dependent PI3K and Akt also upregulate the expression of endothelial nitric oxide synthase, that results in increasing the bioavailability of nitric oxide in the vascular endothelium, which further results in tissue fibrosis. Considering the global prevalence of diabetic nephropathy, and the impact of protein glycation, various inhibitors and treatment avenues are being developed, to prevent the progression of diabetic complications. In this chapter, we discuss the role of glycation in insulin resistance and further its impact on the kidney.
Collapse
Affiliation(s)
- Kirti Parwani
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science & Technology, Gujarat, India
| | - Palash Mandal
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science & Technology, Gujarat, India.
| |
Collapse
|
2
|
Abstract
Metabolic syndrome (MetS), i.e. a cluster of physiological and biochemical abnormalities can lead to diabetic nephropathy (DN). Insulin resistance, impaired fasting glucose are the main signs and symptoms of MetS. Excess sugar can induce various substantial structural changes like formation of advanced glycation end products (AGEs). AGEs are formed due to reaction of reducing sugars with amino groups of proteins, lipids and nucleic acids. AGEs when bound to the receptor for advanced glycation end products (RAGE) activate increased production of pro-inflammatory markers like interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-α) along with induction of endoplasmic reticulum (ER) stress. Accumulation of AGEs, enhanced reactive oxygen species (ROS) generation and activation of protein kinase C (PKC), are considered to induce glomerular hypertrophy, podocyte apoptosis, therefore contributing to the development and progression of DN. In this review, we decipher different biochemical and physiological factors that link AGEs and DN.
Collapse
Affiliation(s)
- Kirti Parwani
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Palash Mandal
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| |
Collapse
|
3
|
Shi Y, Ni J, Tao M, Ma X, Wang Y, Zang X, Hu Y, Qiu A, Zhuang S, Liu N. Elevated expression of HDAC6 in clinical peritoneal dialysis patients and its pathogenic role on peritoneal angiogenesis. Ren Fail 2021; 42:890-901. [PMID: 32862739 PMCID: PMC7472510 DOI: 10.1080/0886022x.2020.1811119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peritoneal dialysis (PD) is an important renal replacement therapy for end-stage renal disease (ESRD) patients. However, its complications, such as peritoneal fibrosis (PF) and angiogenesis can cause ultrafiltration failure and PD termination. Histone deacetylase 6 (HDAC6) has been demonstrated to be involved in PF. However, its underlying role in peritoneal angiogenesis is still unknown and clinical value needs to be explored. In this study, we analyzed the expression of HDAC6 in the peritoneum from patients with non-PD and PD-related peritonitis and dialysis effluent from stable PD patients. Our study revealed that HDAC6 expressed highly in the peritoneum with peritonitis and co-stained with α-smooth muscle actin (α-SMA), a biomarker of the myofibroblast. And the level of HDAC6 in the dialysate increased with time and positively correlated with transforming growth factor-β1 (TGF-β1), interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF), and negatively with cancer antigen 125 (CA125). In vitro, blockading HDAC6 with a selective inhibitor tubastatin A (TA) or silencing HDAC6 with a small interfering RNA (siRNA) prominently decreased IL-6-stimulated VEGF expression in cultured human peritoneal mesothelial cells (HPMCs), and inhibited proliferation and vasoformation of human umbilical vein endothelial cells (HUVECs). TA or HDAC6 siRNA also suppressed the expression of Wnt1, β-catenin, and the phosphorylation of STAT3 in IL-6-treated HPMCs. In summary, HDAC6 inhibition protects against PD-induced angiogenesis through suppression of IL-6/STAT3 and Wnt1/β-catenin signaling pathway, subsequently reducing the VEGF production and angiogenesis. It could become a new therapeutic target or forecast biomarker for PF, inflammation, and angiogenesis in the future.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Ni
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Nephrology, Baoshan Branch of Shanghai First People's Hospital, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiujuan Zang
- Department of Nephrology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Shi Y, Hu Y, Cui B, Zhuang S, Liu N. Vascular endothelial growth factor-mediated peritoneal neoangiogenesis in peritoneal dialysis. Perit Dial Int 2021; 42:25-38. [PMID: 33823711 DOI: 10.1177/08968608211004683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Peritoneal dialysis (PD) is an important renal replacement therapy for patients with end-stage renal diseases, which is limited by peritoneal neoangiogenesis leading to ultrafiltration failure (UFF). Vascular endothelial growth factor (VEGF) and its receptors are key angiogenic factors involved in almost every step of peritoneal neoangiogenesis. Impaired mesothelial cells are the major sources of VEGF in the peritoneum. The expression of VEGF will be up-regulated in specific pathological conditions in PD patients, such as with non-biocompatible peritoneal dialysate, uremia and inflammation, and so on. Other working cells (i.e. vascular endothelial cells, macrophages and adipocytes) can also stimulate the secretion of VEGF. Meanwhile, hypoxia and activation of complement system further aggravate peritoneal injury and contribute to neoangiogenesis. There are several signalling pathways participating in VEGF-mediated peritoneal neoangiogenesis including tumour growth factor-β, Wnt/β-catenin, Notch and interleukin-6/signal transducer and activator of transcription 3. Moreover, VEGF is highly expressed in dialysate effluent of long-term PD patients and is associated with peritoneal transport function, which supports its role in the alteration of peritoneal structure and function. In this review, we systematically summarize the angiogenic effect of VEGF and evaluate it as a potential target for the prevention of peritoneal neoangiogenesis and UFF. Preservation of the peritoneal membrane using targeted therapy of VEGF-mediated peritoneal neoangiogenesis may increase the longevity of the PD modality for those who require life-long dialysis.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binbin Cui
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Abstract
During peritoneal dialysis, peritoneal cells are repeatedly exposed to a non-physiologic hypertonic environment with high glucose content and low pH. Current sterile dialysis solutions cause inflammation in the submesothelial compact zone, leading to fibrosis, angiogenesis, and, eventually, ultrafiltration failure. Although the normal interstitium separates the peritoneal microvasculature from the dialysis fluid and makes transperitoneal transport less efficient, changes in the submesothelial compact zone can result in progressive increases in solute transfer and ultrafiltration diminution. This peritoneal dysfunction will further be amplified with the development of an epithelial-to-mesenchymal transition of mesothelial cells and dissipation of the osmotic driving force through the increased area and solute transport that accompany neoangiogenesis of the submesothelial microvasculature. The alteration of the peritoneal membrane can be further aggravated by peritonitis, advanced glycation end-products, and glucose degradation products. Furthermore, new data are emerging to support a proinflammatory role for peritoneal adipocytes.
Collapse
Affiliation(s)
- Kar Neng Lai
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, PR China
| | - Sydney C.W. Tang
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, PR China
| | - Joseph C.K. Leung
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
6
|
Abstract
Peritoneal fibrosis (PF) is an important issue in peritoneal dialysis (PD) because it remains one of the leading causes of patient drop-out from PD. In this review, we focus on in vitro approaches to the pathogenesis and therapeutic potential of PF and on associated clinical implications. Representative Asian studies, initiated since mid-1990s, that have investigated matrix accumulation in peritoneal tissue possibly leading to PF in the PD population will be highlighted as examples to learn how to apply this research tool. As compared with data from well-designed clinical trials, observations from in vitro models may be far from becoming solid evidence; however, they do cast new light on options for investigations into therapeutic pharmaceuticals.
Collapse
Affiliation(s)
- Kuan-Yu Hung
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuan-Dun Wu
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tun-Jun Tsai
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Roumeliotis S, Dounousi E, Salmas M, Eleftheriadis T, Liakopoulos V. Unfavorable Effects of Peritoneal Dialysis Solutions on the Peritoneal Membrane: The Role of Oxidative Stress. Biomolecules 2020; 10:biom10050768. [PMID: 32423139 PMCID: PMC7277773 DOI: 10.3390/biom10050768] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
One of the main limitations to successful long-term use of peritoneal dialysis (PD) as a renal replacement therapy is the harmful effects of PD solutions to the structure and function of the peritoneal membrane (PM). In PD, the PM serves as a semipermeable membrane that, due to exposure to PD solutions, undergoes structural alterations, including peritoneal fibrosis, vasculopathy, and neoangiogenesis. In recent decades, oxidative stress (OS) has emerged as a novel risk factor for mortality and cardiovascular disease in PD patients. Moreover, it has become evident that OS plays a pivotal role in the pathogenesis and development of the chronic, progressive injury of the PM. In this review, we aimed to present several aspects of OS in PD patients, including the pathophysiologic effects on the PM, clinical implications, and possible therapeutic antioxidant strategies that might protect the integrity of PM during PD therapy.
Collapse
Affiliation(s)
- Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Evangelia Dounousi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Marios Salmas
- Department of Anatomy, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | | | - Vassilios Liakopoulos
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Correspondence: ; Tel.: +30-2310-994-694
| |
Collapse
|
8
|
The glucose degradation product methylglyoxal induces immature angiogenesis in patients undergoing peritoneal dialysis. Biochem Biophys Res Commun 2020; 525:767-772. [PMID: 32147098 DOI: 10.1016/j.bbrc.2020.02.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022]
Abstract
The accumulation of glucose degradation products (GDPs) can lead to tissue damage in patients with diabetes and those undergoing long-term peritoneal dialysis (PD). Angiogenesis is occasionally observed in the peritoneal membrane of patients undergoing PD, where it is associated with failure of ultrafiltration. To investigate the mechanism underlying the influence of angiogenesis on fluid absorption, we evaluated the effects of accumulation of the glucose degradation product methylglyoxal (MGO) on angiogenesis in vitro, and analyzed the association with angiogenesis in the peritoneal membrane. To this end, we measured the levels of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF)-BB in cultured endothelial and smooth muscle cells after administration of MGO. The expression of PDGF-BB mRNA and protein decreased significantly after exposure to MGO, while the expression of VEGF mRNA increased (both P < 0.01). The expression of PDGF-Rβ mRNA in cultured smooth muscle cells did not change after administration of MGO, although the expression of VEGF mRNA increased (P < 0.01). We also evaluated the associations between the number of capillary vessels, peritoneal function, and the degree of MGO deposition using peritoneum samples collected from patients undergoing PD. The number of immature capillary vessels was significantly associated with peritoneal dysfunction and the degree of MGO accumulation (both P < 0.01). In conclusion, MGO enhances the production of VEGF and suppresses the production of PDGF-BB, potentially leading to disturbance of angiogenesis in the peritoneal membrane. Accumulation of MGO in the peritoneum may cause immature angiogenesis and peritoneal dysfunction.
Collapse
|
9
|
Abstract
Peritoneal dialysis (PD) solutions using glucose as osmotic agent have been used for more than two decades as effective treatment for patients with end-stage renal disease. Although alternative osmotic agents such as amino acids and macromolecular solutions, including polypeptides and glucose polymers, are now available, glucose is still the most widely used osmotic agent in PD. It has been shown to be safe, effective, readily metabolized, and inexpensive. On the other hand, it is widely assumed that exposure of the peritoneal membrane to high glucose concentrations contributes to both structural and functional changes in the dialyzed peritoneal membrane. As in diabetes, glucose, either directly or indirectly through the generation of glucose degradation products or the formation of advanced glycation end products, may contribute to peritoneal membrane failure. Although efforts to reduce glucose toxicity have been made for years, only a few suggestions, such as dual-bag systems with bicarbonate as buffer system, have found broader acceptance. Recently, some interesting new approaches to the problem of glucose-related toxicity have been made, but further investigations will be necessary before they can be used clinically. This review will focus on adverse effects of glucose in PD solutions and summarize different aspects of glucotoxicity and potential therapeutic interventions.
Collapse
Affiliation(s)
- Thomas Sitter
- Department of Nephrology, Medizinische Poliklinik–Innenstadt, Klinikum der Universität München, Germany
| | - Matthias Sauter
- Department of Nephrology, Medizinische Poliklinik–Innenstadt, Klinikum der Universität München, Germany
| |
Collapse
|
10
|
Shi J, Yu M, Sheng M. Angiogenesis and Inflammation in Peritoneal Dialysis: The Role of Adipocytes. Kidney Blood Press Res 2017; 42:209-219. [PMID: 28478435 DOI: 10.1159/000476017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/07/2017] [Indexed: 11/19/2022] Open
Abstract
Chronic inflammation and angiogenesis are the most common complications in patients undergoing maintenance peritoneal dialysis (PD), resulting in progressive peritoneum remolding and, eventually, utrafiltration failure. Contributing to the deeper tissue under the peritoneal membrane, adipocytes play a neglected role in this process. Some adipokines act as inflammatory and angiogenic promoters, while others have the opposite effects. Adipokines, together with inflammatory factors and other cytokines, modulate inflammation and neovascularization in a coordinated fashion. This review will also emphasize cellular regulators and their crosstalk in long-term PD. Understanding the molecular mechanism, targeting changes in adipocytes and regulating adipokine secretion will help extend therapeutic methods for preventing inflammation and angiogenesis in PD.
Collapse
|
11
|
Pischetsrieder M, Gensberger-Reigl S, Atzenbeck L, Weigel I. Chemistry and clinical relevance of carbohydrate degradation in drugs. Drug Discov Today 2016; 21:1620-1631. [PMID: 27320689 DOI: 10.1016/j.drudis.2016.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/29/2016] [Accepted: 06/08/2016] [Indexed: 11/15/2022]
Abstract
Carbohydrate degradation products are formed during heat sterilization in drugs containing (poly-)glucose as osmotic agents. Given this situation, peritoneal dialysis fluids (PDFs) and infusion fluids are of particular clinical relevance, because these drugs deliver process contaminants either over a longer period or directly into the circulation of patients who are critically ill. For the development of suitable mitigation strategies, it is important to understand the reaction mechanisms of carbohydrate degradation during sterilization and how the resulting products interact with physiological targets at the molecular level. Furthermore, reliable, comprehensive, and highly sensitive quantification methods are required for product control and toxicological evaluation.
Collapse
Affiliation(s)
- Monika Pischetsrieder
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Schuhstr. 19, 91052, Erlangen, Germany.
| | - Sabrina Gensberger-Reigl
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Schuhstr. 19, 91052, Erlangen, Germany
| | - Lisa Atzenbeck
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Schuhstr. 19, 91052, Erlangen, Germany
| | - Ingrid Weigel
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Schuhstr. 19, 91052, Erlangen, Germany
| |
Collapse
|
12
|
Effluent Tenascin-C Levels Reflect Peritoneal Deterioration in Peritoneal Dialysis: MAJOR IN PD Study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:241098. [PMID: 26770971 PMCID: PMC4684852 DOI: 10.1155/2015/241098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/04/2015] [Accepted: 10/29/2015] [Indexed: 01/03/2023]
Abstract
Peritoneal deterioration causing structural changes and functional decline is a major complication of peritoneal dialysis (PD). The aim of this study was to explore effluent biomarkers reflecting peritoneal deterioration. In an animal study, rats were intraperitoneally administered with PD fluids adding 20 mM methylglyoxal (MGO) or 20 mM formaldehyde (FA) every day for 21 days. In the MGO-treated rats, tenascin-C (TN-C) levels in the peritoneal effluents were remarkably high and a cluster of TN-C-positive mesothelial cells with epithelial-to-mesenchymal transition- (EMT-) like change excessively proliferated at the peritoneal surface, but not in the FA-treated rats. Effluent matrix metalloproteinase-2 (MMP-2) levels increased in both the MGO- and FA-treated rats. In a clinical study at 18 centers between 2006 and 2013, effluent TN-C and MMP-2 levels were quantified in 182 PD patients with end-stage renal disease. Peritoneal function was estimated using the peritoneal equilibration test (PET). From the PET results, the D/P Cr ratio was correlated with effluent levels of TN-C (ρ = 0.57, p < 0.001) and MMP-2 (ρ = 0.73, p < 0.001). We suggest that TN-C in the effluents may be a diagnostic marker for peritoneal deterioration with EMT-like change in mesothelial cells in PD.
Collapse
|
13
|
Methylglyoxal and Advanced Glycation End-Products Promote Cytokines Expression in Peritoneal Mesothelial Cells Via MAPK Signaling. Am J Med Sci 2015; 349:105-9. [DOI: 10.1097/maj.0000000000000394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Notsu M, Yamaguchi T, Okazaki K, Tanaka KI, Ogawa N, Kanazawa I, Sugimoto T. Advanced glycation end product 3 (AGE3) suppresses the mineralization of mouse stromal ST2 cells and human mesenchymal stem cells by increasing TGF-β expression and secretion. Endocrinology 2014; 155:2402-10. [PMID: 24758301 DOI: 10.1210/en.2013-1818] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In diabetic patients, advanced glycation end products (AGEs) cause bone fragility because of deterioration of bone quality. We previously showed that AGEs suppressed the mineralization of mouse stromal ST2 cells. TGF-β is abundant in bone, and enhancement of its signal causes bone quality deterioration. However, whether TGF-β signaling is involved in the AGE-induced suppression of mineralization during the osteoblast lineage remains unknown. We therefore examined the roles of TGF-β in the AGE-induced suppression of mineralization of ST2 cells and human mesenchymal stem cells. AGE3 significantly (P < .001) inhibited mineralization in both cell types, whereas transfection with small interfering RNA for the receptor for AGEs (RAGEs) significantly (P < .05) recovered this process in ST2 cells. AGE3 increased (P < .001) the expression of TGF-β mRNA and protein, which was partially antagonized by transfection with RAGE small interfering RNA. Treatment with a TGF-β type I receptor kinase inhibitor, SD208, recovered AGE3-induced decreases in osterix (P < .001) and osteocalcin (P < .05) and antagonized the AGE3-induced increase in Runx2 mRNA expression in ST2 cells (P < .001). Moreover, SD208 completely and dose dependently rescued AGE3-induced suppression of mineralization in both cell types. In contrast, SD208 intensified AGE3-induced suppression of cell proliferation as well as AGE3-induced apoptosis in proliferating ST2 cells. These findings indicate that, after cells become confluent, AGE3 partially inhibits the differentiation and mineralization of osteoblastic cells by binding to RAGE and increasing TGF-β expression and secretion. They also suggest that TGF-β adversely affects bone quality not only in primary osteoporosis but also in diabetes-related bone disorder.
Collapse
Affiliation(s)
- Masakazu Notsu
- Internal Medicine 1, Shimane University Faculty of Medicine, Shimane 693-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Yokoi H, Kasahara M, Mori K, Kuwabara T, Toda N, Yamada R, Namoto S, Yamamoto T, Seki N, Souma N, Yamaguchi T, Sugawara A, Mukoyama M, Nakao K. Peritoneal fibrosis and high transport are induced in mildly pre-injured peritoneum by 3,4-dideoxyglucosone-3-ene in mice. Perit Dial Int 2012; 33:143-54. [PMID: 23123666 DOI: 10.3747/pdi.2011.00033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Peritoneal dialysis (PD) solution contains high concentrations of glucose and glucose degradation products (GDPs). One of several GDPs--3,4-dideoxyglucosone-3-ene (3,4-DGE)--was recently identified as the most reactive and toxic GDP in PD fluids. In vitro, 3,4-DGE has been shown to induce mesothelial cell damage; however, its role in peritoneal fibrosis in vivo remains unclear. In the present study, we intraperitoneally administered chlorhexidine gluconate (CG) for mild peritoneal injury, and we then injected 3,4-DGE [38 μmol/L (low concentration) or 145 μmol/L (high concentration)] 5 times weekly for 4 weeks. Significant thickening of the parietal peritoneal membrane was observed only when treatment with low or high concentrations of 3,4-DGE occurred after CG administration, but not when either CG or 3,4-DGE alone was given. The combination of CG and 3,4-DGE also caused upregulation of messenger RNA expression of transforming growth factor β1, connective tissue growth factor, fibronectin, collagen type 1 α1 chain, alpha smooth muscle actin (α-SMA), vascular endothelial growth factor 164, NADPH oxidase 1 and 4, p22phox, p47phox, and gp91phox in peritoneal tissue. Treatment with CG alone was sufficient to cause significant F4/80-positive macrophage infiltration, appearance of α-SMA-positive cells, and vessel formation in the submesothelial layer. Addition of 3,4-DGE markedly enhanced those changes and induced apoptosis, mainly in leukocytes. The concentration of 3,4-DGE in the abdominal cavity declined more rapidly in CG-treated mice than in PBS-treated mice. Peritoneal membrane permeability determined by peritoneal equilibration test showed high transport conditions in peritoneum treated with both CG and 3,4-DGE. These results indicate that, when mild peritoneal damage is already present, 3,4-DGE causes peritoneal thickening and fibrosis, resulting in deterioration of peritoneal membrane function.
Collapse
Affiliation(s)
- Hideki Yokoi
- Department of Medicine and Clinical Science,Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Song F, Schmidt AM. Glycation and insulin resistance: novel mechanisms and unique targets? Arterioscler Thromb Vasc Biol 2012; 32:1760-5. [PMID: 22815341 DOI: 10.1161/atvbaha.111.241877] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple biochemical, metabolic, and signal transduction pathways contribute to insulin resistance. In this review, we present evidence that the posttranslational process of protein glycation may play a role in insulin resistance. The posttranslational modifications, the advanced glycation end products (AGEs), are formed and accumulated by endogenous and exogenous mechanisms. AGEs may contribute to insulin resistance by a variety of mechanisms, including generation of tumor necrosis factor-α direct modification of the insulin molecule, thereby leading to its impaired action, generation of oxidative stress, and impairment of mitochondrial function, as examples. AGEs may stimulate signal transduction via engagement of cellular receptors, such as receptor for AGEs. AGE-receptor for AGE interaction perpetuates AGE formation and cellular stress via induction of inflammation, oxidative stress, and reduction in the expression and activity of the enzyme glyoxalase I that detoxifies the AGE precursor, methylglyoxal. Once set in motion, glycation-promoting mechanisms may stimulate ongoing AGE production and target tissue stresses that reduce insulin responsiveness. Strategies to limit AGE accumulation and action may contribute to the prevention of insulin resistance and its consequences.
Collapse
Affiliation(s)
- Fei Song
- Division of Endocrinology, Department of Medicine, New York University School of Medicine, 550 First Ave, Smilow 901C, New York, NY 10016, USA
| | | |
Collapse
|
17
|
Tong M, Wang Y, Wang Y, Chen H, Wang C, Yang L, Axelsson J, Lindholm B. Genistein attenuates advanced glycation end product-induced expression of fibronectin and connective tissue growth factor. Am J Nephrol 2012; 36:34-40. [PMID: 22699679 DOI: 10.1159/000339168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/24/2012] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To investigate the effect of advanced glycation end products (AGEs) on the expression of connective tissue growth factor (CTGF) and fibronectin (FN) in human peritoneal mesothelial cells (HPMC). To observe the effect of genistein (Gen) on the expression of CTGF and FN in HPMC induced by AGEs. METHODS First, HPMC were stimulated with different concentrations of AGEs (0, 200, 600 and 1,000 mg/l) for 48 h; the expression of FN was detected by reverse transcription-polymerase chain reaction (RT-PCR). Second, HPMC were divided into the following groups: (1) control group, (2) AGE-treated group (600 mg/l AGEs) and (3) Gen-treated groups with 600 mg/l AGEs and 25, 50 and 100 µMGen, respectively. The expression of messenger RNA (mRNA) for FN and CTGF was measured by RT-PCR; the expression of FN and CTGF protein was detected by enzyme-linked immunosorbent assay (ELISA) after 48 h. RESULTS The expression of FN mRNA in HPMC increased in a dose-dependent manner after induction with AGEs. Compared with controls, 600 mg/l AGEs markedly promoted the expression of mRNA and protein for FN and CTGF. Compared with the AGE-treated group (600 mg/l), 25, 50, and 100 µM Gen significantly inhibited the expression of mRNA and protein for FN and CTGF. CONCLUSION AGEs can markedly increase the expression of mRNA and protein for FN and CTGF; however, Gen can inhibit the expression of FN and CTGF mRNA and protein stimulated by AGEs, which implies that Gen probably decreases the accumulation of extracellular matrix through inhibiting the expression of CTGF, and it may play a role in anti-peritoneal fibrosis.
Collapse
Affiliation(s)
- Mengli Tong
- Division of Renal Medicine, Guangxin Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Mittelmaier S, Niwa T, Pischetsrieder M. Chemical and physiological relevance of glucose degradation products in peritoneal dialysis. J Ren Nutr 2012; 22:181-5. [PMID: 22200439 DOI: 10.1053/j.jrn.2011.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 10/13/2011] [Indexed: 01/25/2023] Open
Abstract
Fibrosis and vascular sclerosis are main complications that limit the long-term application of peritoneal dialysis (PD). Low biocompatibility has been largely attributed to the presence of glucose degradation products (GDPs), which are formed during the heat sterilization of PD fluids. GDPs readily modify proteins in the peritoneum, leading to a decline of their biological function. After absorption, GDPs can also promote systemic protein glycation. Additionally, GDPs may augment DNA glycation, a process enhanced in uremia. Apart from their glycating activity, GDPs induce cytotoxicity and interfere with cell signaling in peritoneal mesothelial cells. Targeted screening revealed the nature of the 6 major GDPs with α-dicarbonyl structure as 3-deoxyglucosone, 3-deoxygalactosone, glucosone, glyoxal, methylglyoxal, and 3,4-dideoxyglucosone-3-ene. Valid quantification of these GDPs was achieved by ultrahigh-performance liquid chromatography/diode array detector/tandem mass spectrometry. Identification and quantification of single GDPs allow a structure-dependent risk evaluation. As a consequence, PD fluids and processes can be improved to reduce the GDP burden of patients undergoing PD.
Collapse
Affiliation(s)
- Stefan Mittelmaier
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | |
Collapse
|
19
|
Lai KN, Lam MF, Leung JCK, Chan LY, Lam CWK, Chan IHS, Chan HW, Li CS, Wong SSH, Ho YW, Cheuk A, Tong MKL, Tang SCW. A study of the clinical and biochemical profile of peritoneal dialysis fluid low in glucose degradation products. Perit Dial Int 2011; 32:280-91. [PMID: 22045098 DOI: 10.3747/pdi.2010.00176] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Although peritoneal dialysis (PD) is a widely accepted form of renal replacement therapy, concerns remain regarding the bioincompatible nature of standard PD fluid (PDF). Short-term studies of new biocompatible PDFs low in glucose degradation products (GDPs) reveal divergent results with respect to peritoneal integrity. METHODS We studied 125 patients on maintenance PD who were assigned, by simple randomization, to receive either conventional or low-GDP PDF at PD initiation. Parameters of dialysis adequacy and peritoneal transport of small solutes were determined at initiation and after a period of maintenance PD at the time when serum and overnight effluent dialysate were simultaneously collected and assayed for various cytokines, chemokines, adipokines, and cardiac biomarkers. All patients were further followed prospectively for an average of 15 months from the day of serum and effluent collection to determine patient survival and cardiovascular events. RESULTS Patients treated with conventional or low-GDP PDF were matched for sex, age, duration of dialysis, dialysis adequacy, and incidence of cardiovascular disease or diabetes. After an average of 2.3 years of PD treatment, the weekly total and peritoneal creatinine clearance, and the total and peritoneal Kt/V were comparable in the groups. However, urine output was higher in patients using low-GDP PDF despite there having been no difference between the groups at PD initiation. Patients using low-GDP PDF also experienced a slower rate of decline of residual glomerular filtration and urine output than did patients on conventional PDF. Compared with serum concentrations, effluent concentrations of tumor necrosis factor α, hepatocyte growth factor, macrophage migration inhibitory factor, interleukins 8 and 6, C-reactive protein, and leptin were found to be higher in both groups of patients after long-term PD, suggesting that the peritoneal cavity was the major source of those mediators. Compared with patients on low-GDP PDF, patients on conventional fluid showed elevated leptin and reduced adiponectin levels in serum and effluent. The effluent concentration of interleukin 8 was significantly lower in patients using low-GDP PDF. The survival rate and incidence of cardiovascular complications did not differ between these groups after maintenance PD for an average of 3.6 years. CONCLUSIONS It appears that low-GDP PDF results in an improvement of local peritoneal homeostasis through a reduction of chronic inflammatory status in the peritoneum.
Collapse
Affiliation(s)
- Kar Neng Lai
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yamaguchi Y, Ishigaki T, Sano K, Miyamoto KI, Nomura S, Horiuchi T. Three-Dimensional Invasion of Epithelial–Mesenchymal Transition–Positive Human Peritoneal Mesothelial Cells into Collagen Gel is Promoted by the Concentration Gradient of Fibronectin. Perit Dial Int 2011; 31:477-85. [DOI: 10.3747/pdi.2010.00166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background In long-term peritoneal dialysis, myofibroblast-like cells found in the interstitium of the peritoneum are assumed to be a transformed type of mesothelial cell—epithelial-mesenchymal transition-positive [EMT(+)] human peritoneal mesothelial cells (HPMCs)—because they express a mesothelial marker, cytokeratin. However, no direct evidence about how these cells are able to invade from the mesothelium has yet been obtained. Aim In this study, we aimed to verify whether EMT(+) HPMCs would, in vitro, invade three-dimensionally along certain chemotactic factors. Methods We used reverse-transcriptase polymerase chain reaction to measure expression of Snail, E-cadherin, α5-integrin, and matrix metalloproteinase 2 (MMP2) messenger RNA (mRNA) in HPMCs exposed to 10 ng/mL transforming growth factor β1 (TGFβ1) and how that expression corresponds to cell motility, as represented by a video movie. We used the Transwell (12 μm pore diameter: Sigma-Aldrich, Tokyo, Japan) to construct a three-dimensional (3D) cell migration chamber. In the lower chamber, a concentration gradient of fibronectin (FN) or albumin(Alb) was formed in 0.1% type I collagen by diffusion ( C0 = 22 nmol/L; concentration gradient: C / C0 = 0.7). All cells beneath the membrane were counted 72 hours after 5x104 EMT(+) HPMCs (HPMCs after a 48-hour exposure to 10 ng/mL TGFβ1) had been spread in the upper chamber. Results After 72 hours, the increased motility of HPMCs resulting from their exposure to 10 ng/mL TGFβ1 had returned to baseline, but they retained an elongated morphology. Expression of Snail and MMP2 mRNA reached maximum at 24 hours. Expression of E-cadherin declined, and expression of α5-integrin increased continuously. In the 3D invasion study, significantly enhanced invasion by EMT(+) but not EMT(-) HPMCs was clearly seen in the presence of a FN concentration gradient ( p < 0.01), although invasion by EMT(+) and EMT(-) HPMCs in the absence of a FN concentration gradient was not statistically significantly different. Compared with the EMT(+) control (no concentration gradient), invasion by EMT(+) HPMCs was 2.1 ± 0.5 times (p < 0.05) and 1.4 ± 0.4 times (p = nonsignificant) higher along the FN and Alb concentration gradients respectively. Increased invasion along the FN concentration gradient was significantly inhibited (p < 0.05) when the HPMCs were pre-incubated with 5 μg/mL RGDS (a blocker for α5-integrin to FN). Conclusions We conclude that EMT(+) HPMCs invade collagen gel along the FN concentration gradient because of specific binding to RGDS receptors, which bind integrins such as α5-integrin, upregulating invasion-related gene expression associated with synthesis of the cytoskeleton protein α smooth muscle actin.
Collapse
Affiliation(s)
- Youhei Yamaguchi
- Division of Chemistry for Materials, Faculty of Engineering, Graduate School of Mie University, Tsu, Japan
| | - Tatsuya Ishigaki
- Division of Chemistry for Materials, Faculty of Engineering, Graduate School of Mie University, Tsu, Japan
| | - Koushi Sano
- Division of Chemistry for Materials, Faculty of Engineering, Graduate School of Mie University, Tsu, Japan
| | - Kei-Ichi Miyamoto
- Division of Chemistry for Materials, Faculty of Engineering, Graduate School of Mie University, Tsu, Japan
| | - Shinsuke Nomura
- Division of Therapeutic Blood Purification, Mie University School of Medicine, Tsu, Japan
| | - Takashi Horiuchi
- Division of Chemistry for Materials, Faculty of Engineering, Graduate School of Mie University, Tsu, Japan
| |
Collapse
|
21
|
Perl J, Nessim SJ, Bargman JM. The biocompatibility of neutral pH, low-GDP peritoneal dialysis solutions: benefit at bench, bedside, or both? Kidney Int 2011; 79:814-24. [DOI: 10.1038/ki.2010.515] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Identification and quantification of the glucose degradation product glucosone in peritoneal dialysis fluids by HPLC/DAD/MSMS. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:877-82. [PMID: 20189892 DOI: 10.1016/j.jchromb.2010.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 01/29/2010] [Accepted: 02/03/2010] [Indexed: 11/22/2022]
Abstract
Glucose degradation products (GDPs) formed during heat sterilization of peritoneal dialysis (PD) fluids exert cytotoxic effects and promote the formation of advanced glycation end-products in the peritoneal cavity. As a result, long-term application of continuous ambulatory peritoneal dialysis is limited. The composition and concentration of GDPs in PD fluids must be known to evaluate their biological effects. The present study describes a targeted screening for novel GDPs in PD fluids. For this purpose, dicarbonyl compounds were converted with o-phenylenediamine to give the respective quinoxaline derivatives, which were selectively monitored by HPLC/diode array detector. Glucosone was thereby identified as a novel major GDP in PD fluids. Product identity was confirmed by LC/MSMS analysis using independently synthesized glucosone as a reference compound. Furthermore, a method was developed to quantify glucosone in PD fluids by HPLC/UV after derivatization with o-phenylenediamine. The method's limit of detection was 0.6 microM and the limit of quantitation 1.1 microM. A linear calibration curve was obtained between 1.1 and 113.9 microM (R(2)=0.9999). Analyzed at three different concentration levels, recovery varied between 95.6% and 102.0%. The coefficient of variation ranged between 0.4% and 4.7%. The method was then applied to the measurement of glucosone in typical PD fluids. Glucosone levels in double chamber bag PD fluids varied between not detectable and 6.7 microM. In single chamber bag fluids, glucosone levels ranged between 28.7 and 40.7 microM.
Collapse
|
23
|
JING SUN, KEZHOU YU, HONG ZHANG, QUN WANG, RONG WANG. Effect of renin-angiotensin system inhibitors on prevention of peritoneal fibrosis in peritoneal dialysis patients. Nephrology (Carlton) 2010; 15:27-32. [DOI: 10.1111/j.1440-1797.2009.01162.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Frischmann M, Spitzer J, Fünfrocken M, Mittelmaier S, Deckert M, Fichert T, Pischetsrieder M. Development and validation of an HPLC method to quantify 3,4-dideoxyglucosone-3-ene in peritoneal dialysis fluids. Biomed Chromatogr 2009; 23:843-51. [DOI: 10.1002/bmc.1194] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Hirahara I, Ishibashi Y, Kaname S, Kusano E, Fujita T. Methylglyoxal induces peritoneal thickening by mesenchymal-like mesothelial cells in rats. Nephrol Dial Transplant 2008; 24:437-47. [PMID: 18790810 DOI: 10.1093/ndt/gfn495] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The epithelial-to-mesenchymal transition (EMT) of mesothelial cells was observed in patients on peritoneal dialysis and may be involved in peritoneal thickening. Conventional peritoneal dialysis fluids (PDFs) that contain glucose degradation products (GDPs), such as methylglyoxal (MGO) and formaldehyde (FA), are bioincompatible. The aim of this study is to analyse the participation of EMT in peritoneal thickening induced by GDPs in rats. METHODS Rat mesothelial cells were cultured with various GDPs, and the gene expression of Snail was analysed by polymerase chain reaction (PCR). Sprague-Dawley rats were administered intraperitoneally 20 mM MGO/PDFs, 20 mM FA/PDFs or 0.1% chlorhexidine gluconate (CHX)/15% ethanol/saline every day for 21 days. On Day 22, the expression of transforming growth factor-beta (TGF-beta), collagen 1, matrix metalloproteinase-2 (MMP-2), vascular endothelial growth factor (VEGF), Snail and receptor for advanced glycation end-products (RAGE) was analysed by PCR, enzyme-linked immunoassay or immunohistological staining. RESULTS In cell-culture experiments, the expression of Snail was enhanced by MGO, but not FA. In rats treated with 20 mM MGO, peritoneal fibrous thickening with the proliferation of mesenchymal-like mesothelial cells was observed. The expression of TGF-beta, collagen 1, MMP-2, VEGF, Snail and RAGE increased significantly (P < 0.01). In FA- or CHX-treated rats, the peritoneum was thickened with sparse collagen fibres, but mesenchymal-like mesothelial cells were not observed. CONCLUSIONS MGO induced peritoneal fibrous thickening with the proliferation of mesenchymal-like mesothelial cells in vivo. These cells may be transdifferentiated from mesothelial cells by EMT via Snail and play an important role in peritoneal fibrous thickening.
Collapse
Affiliation(s)
- Ichiro Hirahara
- Division of Total Renal Care Medicine, Department of Nephrology and Endocrinology, University of Tokyo School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
26
|
Jandeleit-Dahm K, Watson A, Soro-Paavonen A. THE AGE/RAGE AXIS IN DIABETES-ACCELERATED ATHEROSCLEROSIS. Clin Exp Pharmacol Physiol 2008; 35:329-34. [DOI: 10.1111/j.1440-1681.2007.04875.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Lai KN. Somewhere Over the Rainbow: From Bedside to Bench. Int J Organ Transplant Med 2007. [DOI: 10.1016/s1561-5413(07)60002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Tomo T, Okabe E, Matsuyama K, Iwashita T, Yufu K, Nasu M. The effect of peritoneal rest in combination therapy of peritoneal dialysis and hemodialysis: using the cultured human peritoneal mesothelial cell model. J Artif Organs 2005; 8:125-9. [PMID: 16094518 DOI: 10.1007/s10047-005-0290-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 03/18/2005] [Indexed: 01/23/2023]
Abstract
The effects of peritoneal rest for 24 h during peritoneal dialysis and hemodialysis combination therapy were investigated using cultured human peritoneal mesothelial cell (HPMC) models. Cell activity was investigated by 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenylterazolium bromide (MTT) assay after exposing HPMCs to peritoneal dialysis fluids (PDFs) with different pH levels. The following PDFs (50 microl/well) were used for exposure durations of 30 or 240 min: acidic heat-sterilized PDFs (L-H PDF, pH 5.5) and neutral heat-sterilized PDFs (N-H PDF, pH 6.7). Control wells were exposed to M-199 Hanks medium containing 20% fetal bovine serum (FBS) for 30 or 240 min. Supernatants were then aspirated from each well and M-199 culture medium containing 20% FBS (50 microl) was added to each well to rest HPMCs for 24 h before investigation of MTT activity. The activity of HPMCs exposed to L-H PDF for 240 min decreased to approximately 20% and 15% when compared with controls (glucose concentrations of 1.36% and 3.86%, respectively; P < 0.01 versus control, Tukey-Kramer test), and to approximately 60% and 40% after exposure to N-H PDF for 240 min (glucose: 1.36% and 3.86%; P < 0.01). The activity of HPMCs exposed to L-H PDF for 240 min followed by rest was approximately 20% and 4% when compared with controls (glucose: 1.36% and 3.86%; P < 0.01) and was 93% and 96% when compared with controls after exposure to N-H PDF for 240 min followed by rest (glucose: 1.36% and 3.86%). These findings suggest that rest for 24 h after exposure to N-H PDF improves the activity of HPMCs.
Collapse
Affiliation(s)
- Tadashi Tomo
- Second Department of Internal Medicine, Faculty of Medicine, Oita University, 1-1 Hasama, Oita 879-5593, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Leung JCK, Chan LYY, Li FFK, Tang SCW, Chan KW, Chan TM, Lam MF, Wieslander A, Lai KN. Glucose degradation products downregulate ZO-1 expression in human peritoneal mesothelial cells: the role of VEGF. Nephrol Dial Transplant 2005; 20:1336-49. [PMID: 15814533 DOI: 10.1093/ndt/gfh814] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Glucose degradation products (GDPs) are formed during heat sterilization of peritoneal dialysis fluid and, to a lesser extent, during their prolonged storage. In vitro studies have demonstrated that GDPs impair functions of peritoneal mesothelial cells, including proliferation, viability and cytokine release. In the present study, we studied the acute effect of GDPs on the expression of tight junction-associated protein, zonula occludens protein 1 (ZO-1), in human peritoneal mesothelial cells (HPMC). The role of the vascular endothelial growth factor (VEGF) induced by GDPs in the expression of ZO-1 was also examined. METHODS HPMC were cultured with GDPs, including 2-furaldehyde (FurA), methylglyoxal (M-Glx) and 3,4-dideoxyglucosone-3-ene (3,4-DGE). The expression of ZO-1 and the synthesis of VEGF were examined. To define the role of VEGF on the regulation of ZO-1 expression, HPMC were cultured with GDPs in the presence or absence of neutralizing antibody to VEGF. The signal pathways involved in VEGF synthesis induced by GDPs were also characterized. RESULTS ZO-1 expression in HPMC was downregulated in a time- and dose-dependent manner following culture with subtoxic concentrations of GDPs (FurA, M-Glx and 3,4-DGE). All three GDPs increased VEGF synthesis in HPMC. Exogenous VEGF downregulated the expression of ZO-1 and neutralizing anti-VEGF antibody reversed the effect of GDPs on ZO-1 expression in HPMC, suggesting the action of GDPs on ZO-1 expression was mediated by VEGF. All three GDPs activated the p42/p44 mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) signal transduction pathways. The GDP-induced VEGF and transforming growth factor (TGF)-beta synthesis in HPMC was partially reduced by either the p42/p44 MAPK inhibitor (PD98059) or the PKC inhibitor (staurosporine). More importantly, the VEGF and TGF-beta synthesis induced by GDPs in HPMC was completely blocked by synergistic action of both inhibitors. CONCLUSIONS We have demonstrated that short-term exposure to GDPs downregulates ZO-1 expression in HPMC through the generation of VEGF. Our study provides evidence that GDPs can directly induce VEGF and TGF-beta production in HPMC through the activation of p42/44 MAPK and PKC signal transduction pathways.
Collapse
Affiliation(s)
- Joseph C K Leung
- Department of Medicine, University of Hong Kong, Room 409, Queen Mary Hospital, Pokfulam Road, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|