1
|
Weidinger D, Jamal Jameel K, Alisch D, Jacobsen J, Bürger P, Ruhe M, Yusuf F, Rohde S, Störtkuhl K, Kaufmann P, Kronsbein J, Peters M, Hatt H, Giannakis N, Knobloch J. OR2AT4 and OR1A2 counterregulate molecular pathophysiological processes of steroid-resistant inflammatory lung diseases in human alveolar macrophages. Mol Med 2022; 28:150. [PMID: 36503361 PMCID: PMC9743598 DOI: 10.1186/s10020-022-00572-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Therapeutic options for steroid-resistant non-type 2 inflammation in obstructive lung diseases are lacking. Alveolar macrophages are central in the progression of these diseases by releasing proinflammatory cytokines, making them promising targets for new therapeutic approaches. Extra nasal expressed olfactory receptors (ORs) mediate various cellular processes, but clinical data are lacking. This work investigates whether ORs in human primary alveolar macrophages could impact pathophysiological processes and could be considered as therapeutic targets. METHODS Human primary alveolar macrophages were isolated from bronchoalveolar lavages of 50 patients with pulmonary diseases. The expression of ORs was validated using RT-PCR, immunocytochemical staining, and Western blot. Changes in intracellular calcium levels were analyzed in real-time by calcium imaging. A luminescent assay was used to measure the cAMP concentration after OR stimulation. Cytokine secretion was measured in cell supernatants 24 h after stimulation by ELISA. Phagocytic ability was measured by the uptake of fluorescent-labeled beads by flow cytometry. RESULTS We demonstrated the expression of functional OR2AT4 and OR1A2 on mRNA and protein levels. Both ORs were primarily located in the plasma membrane. Stimulation with Sandalore, the ligand of OR2AT4, and Citronellal, the ligand of OR1A2, triggered a transient increase of intracellular calcium and cAMP. In the case of Sandalore, this calcium increase was based on a cAMP-dependent signaling pathway. Stimulation of alveolar macrophages with Sandalore and Citronellal reduced phagocytic capacity and release of proinflammatory cytokines. CONCLUSION These are the first indications for utilizing olfactory receptors as therapeutic target molecules in treating steroid-resistant lung diseases with non-type 2 inflammation.
Collapse
Affiliation(s)
- Daniel Weidinger
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Kaschin Jamal Jameel
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Desiree Alisch
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Julian Jacobsen
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Paul Bürger
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Matthias Ruhe
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Faisal Yusuf
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Simon Rohde
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Klemens Störtkuhl
- grid.5570.70000 0004 0490 981XAG Physiology of Senses, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Peter Kaufmann
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Juliane Kronsbein
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Marcus Peters
- grid.5570.70000 0004 0490 981XDepartment of Molecular Immunology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Hanns Hatt
- grid.5570.70000 0004 0490 981XDepartment of Cell Physiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Nikolaos Giannakis
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Jürgen Knobloch
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| |
Collapse
|
2
|
Lonicerae Japonicae Flos Attenuates Neutrophilic Inflammation by Inhibiting Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11091781. [PMID: 36139855 PMCID: PMC9495740 DOI: 10.3390/antiox11091781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Lonicerae japonicae flos (LJ) is an Asian traditional herb that is used as a dietary supplement, tea, and beverage to clear heat and quench thirst. However, no studies investigated its effect on activated human neutrophils, which played a crucial role in the bad prognosis of coronavirus disease of 2019 (COVID-19) patients by aggravating lung inflammation and respiratory failure. Herein, we evaluated the anti-inflammatory effect of LJ ethanol extract (LJEE) on human neutrophils activated by N-formyl-methionyl-leucyl-phenylalanine (fMLF). Our experimental results indicated that LJEE suppressed fMLF-activated superoxide anion (O2•−) generation, the expression of CD11b, and cell adhesion and migration, as well as the formation of neutrophil extracellular traps in human neutrophils. Further in-depth mechanical investigation revealed that pretreatment with LJEE accelerated the Ca2+ clearance, but did not affect the phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (Akt) in activated human neutrophils. In addition, LJEE displayed a dose-dependent reactive oxygen species (ROS) scavenger activity, which assisted its anti-inflammatory activity. From the bioassay-coupled chromatographic profile, chlorogenic acids were found to dominate the anti-inflammatory effects of LJEE. Moreover, LJ water extract (LJWE) demonstrated an interrupting effect on the severe acute respiratory syndrome coronavirus-2 spike protein (SARS-CoV-2-Spike)/angiotensin-converting enzyme 2 (ACE2) binding. In conclusion, the obtained results not only supported the traditional use of LJ for heat-clearance, but also suggested its potential application in daily health care during the COVID-19 pandemic.
Collapse
|
3
|
Korinek M, Hsieh PS, Chen YL, Hsieh PW, Chang SH, Wu YH, Hwang TL. Randialic acid B and tomentosolic acid block formyl peptide receptor 1 in human neutrophils and attenuate psoriasis-like inflammation in vivo. Biochem Pharmacol 2021; 190:114596. [PMID: 33964283 DOI: 10.1016/j.bcp.2021.114596] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Psoriasis is a long-lasting inflammatory skin disease lacking proper cure. Dysregulated activation of neutrophils is a major pathogenic factor in psoriasis. Formyl peptide receptor 1 (FPR1) triggers neutrophil activation in response to bacteria- or mitochondria-derived N-formyl peptides, but its significance in neutrophilic psoriasis remains unknown. In this study, we discovered two derivatives of ursolic acid, 3β-hydroxyurs-12,18-dien-28-oic acid (randialic acid B, RAB) and 3β-hydroxyurs-12,19-dien-28-oic acid (tomentosolic acid, TA), as FPR1 inhibitors in human neutrophils with ability to suppress psoriatic symptoms in mice. Both RAB and TA, triterpenoids of traditional medicinal plant Ilex kaushue, selectively inhibited reactive oxygen species production, elastase release, and CD11b expression in human neutrophils activated by FPR1, but not non-FPR1 agonists. Importantly, RAB and TA inhibited the binding of N-formyl peptide to FPR1 in human neutrophils, neutrophil-like THP-1 cells, and hFPR1-transfected HEK293 cells, indicating FPR1 antagonism. Moreover, in assays induced by various concentrations of FPR1 agonist, both RAB and TA acted competitively for its binding to the FPR1 receptor. The FPR1-downstream signaling such as Ca2+ mobilisation and activation of Akt and MAPKs was also competitively inhibited. In addition, imiquimod-induced psoriasis-like symptoms, including epidermal hyperplasia, desquamation with scaling, neutrophil skin infiltration, and transepidermal water loss were significantly reduced by both RAB and TA. The results illustrate a possible role of human neutrophils FPR1 receptor in psoriasis-like inflammation. Accordingly, triterpenoids RAB and TA represent novel FPR1 antagonists and exhibit therapeutic potential for treating neutrophilic inflammatory skin diseases.
Collapse
Affiliation(s)
- Michal Korinek
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Pei-Shan Hsieh
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Li Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
| | - Pei-Wen Hsieh
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Shih-Hsin Chang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
| | - Yi-Hsiu Wu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
| |
Collapse
|
4
|
Serov D, Tikhonova I, Safronova V, Astashev M. Calcium activity in response to nAChR ligands in murine bone marrow granulocytes with different Gr-1 expression. Cell Biol Int 2021; 45:1533-1545. [PMID: 33739565 DOI: 10.1002/cbin.11593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022]
Abstract
Polymorphonuclear neutrophilic granulocytes (PMNs) are the largest proportion of leukocytes in adult human blood that perform numerous functions, including phagocytosis, degranulation, generation of reactive oxygen species, and NETosis. Excessive neutrophil activity associates with hyperinflammation and tissue damage during pathologies such as inflammatory bowel disease, diabetes mellitus, tuberculosis, and coronavirus disease 2019. Nicotinic acetylcholine receptors (nAChRs) can modulate immune cells, including neutrophils, functions, therefore, nAChR ligands are considered as the potent agents for therapy of inflammation. Earlier it was shown, that about 30% of PMNs from the acute inflammatory site responded to nicotine by calcium spikes. In this study, we studied the generation of calcium spikes in murine granulocytes with different maturity level (evaluated by Gr-1 expression) isolated from bone marrow in response to ligands of nAChRs in control and under chronic nicotine consumption. It was found that nearly 20%-25% cells in the granulocyte population responded to nicotine or selective antagonists of different type of nAChRs (α-cobratoxin, GIC, and Vc1.1). We demonstrated that in the control group Ca2+ -mobilizing activity was regulated through α7 and α9α10 nAChRs in immature granulocytes (Gr-1int ), whereas in mature granulocytes (Gr-1hi ) it was regulated through α7, α3β2, and α9-contained nAChRs. Sensitivity of PMNs to nicotine depended on their maturity level after chronic nicotine consumption. Gr-1int cells responded to nicotine through α7 and α9-contained nAChRs, while Gr-1hi did not respond to nicotine. Thus, calcium response to nAChR ligands in bone marrow PMNs depends on their maturity level.
Collapse
Affiliation(s)
- Dmitriy Serov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia
| | - Irina Tikhonova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Valentina Safronova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Maksim Astashev
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia
| |
Collapse
|
5
|
Messerer DAC, Schmidt H, Frick M, Huber-Lang M. Ion and Water Transport in Neutrophil Granulocytes and Its Impairment during Sepsis. Int J Mol Sci 2021; 22:1699. [PMID: 33567720 PMCID: PMC7914618 DOI: 10.3390/ijms22041699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Neutrophil granulocytes are the vanguard of innate immunity in response to numerous pathogens. Their activity drives the clearance of microbe- and damage-associated molecular patterns, thereby contributing substantially to the resolution of inflammation. However, excessive stimulation during sepsis leads to cellular unresponsiveness, immunological dysfunction, bacterial expansion, and subsequent multiple organ dysfunction. During the short lifespan of neutrophils, they can become significantly activated by complement factors, cytokines, and other inflammatory mediators. Following stimulation, the cells respond with a defined (electro-)physiological pattern, including depolarization, calcium influx, and alkalization as well as with increased metabolic activity and polarization of the actin cytoskeleton. Activity of ion transport proteins and aquaporins is critical for multiple cellular functions of innate immune cells, including chemotaxis, generation of reactive oxygen species, and phagocytosis of both pathogens and tissue debris. In this review, we first describe the ion transport proteins and aquaporins involved in the neutrophil ion-water fluxes in response to chemoattractants. We then relate ion and water flux to cellular functions with a focus on danger sensing, chemotaxis, phagocytosis, and oxidative burst and approach the role of altered ion transport protein expression and activity in impaired cellular functions and cell death during systemic inflammation as in sepsis.
Collapse
Affiliation(s)
- David Alexander Christian Messerer
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, 89081 Ulm, Germany;
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Ulm, 89081 Ulm, Germany
| | - Hanna Schmidt
- Institute of General Physiology, Ulm University, 89081 Ulm, Germany; (H.S.); (M.F.)
- Department of Pediatrics and Adolescent Medicine, University Hospital of Ulm, 89081 Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, 89081 Ulm, Germany; (H.S.); (M.F.)
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, 89081 Ulm, Germany;
| |
Collapse
|
6
|
Milling S, Spedding M, Maffia P. Guide to Immunopharmacology: a database to boost immunology education, research and therapy. Immunology 2020; 160:1-2. [PMID: 32297319 PMCID: PMC7160655 DOI: 10.1111/imm.13201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the era of big data, the establishment of a free database, containing all the immune drug targets and associated cell types, is of great value. To this aim, the Guide to Immunopharmacology has been created in a joint effort between the International Union of Basic and Clinical Pharmacology (IUPHAR) and the International Union of Immunological Societies (IUIS). Here we highlight the structure and content of the database, which includes up‐to‐date quantitative information on the fundamental science underlying each immune target. A set of practical examples and tools for data mining are summarized to support immune research into drug discovery and therapeutics.
Collapse
Affiliation(s)
- Simon Milling
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Pasquale Maffia
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
7
|
Activation of β 2 adrenergic receptor signaling modulates inflammation: a target limiting the progression of kidney diseases. Arch Pharm Res 2020; 44:49-62. [PMID: 33155167 DOI: 10.1007/s12272-020-01280-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/24/2020] [Indexed: 12/15/2022]
Abstract
Beta 2 adrenergic receptor (β2-AR)-agonists, widely used as bronchodilators, have demonstrated wide-spectrum anti-inflammatory properties in both immune and non-immune cells in various tissues. Their anti-inflammatory properties are mediated primarily, but not exclusively, via activation of the canonical β2-AR signaling pathway (β2-AR/cAMP/PKA). As non-canonical β2-AR signaling also occurs, several inconsistent findings on the anti-inflammatory effect of β2-agonists are notably present. Increasing amounts of evidence have unveiled the alternative mechanisms of the β2-AR agonists in protecting the tissues against injuries, i.e., by augmenting mitochondria biogenesis and SIRT1 activity, and by attenuating fibrotic signaling. This review mainly covers the basic mechanisms of the anti-inflammatory effects of β2-AR activation along with its limitations. Specifically, we summarized the role of β2-AR signaling in regulating kidney function and in mediating the progression of acute and chronic kidney diseases. Given their versatile protective effects, β2-agonists can be a promising avenue in the treatment of kidney diseases.
Collapse
|
8
|
Matlung HL, Babes L, Zhao XW, van Houdt M, Treffers LW, van Rees DJ, Franke K, Schornagel K, Verkuijlen P, Janssen H, Halonen P, Lieftink C, Beijersbergen RL, Leusen JHW, Boelens JJ, Kuhnle I, van der Werff Ten Bosch J, Seeger K, Rutella S, Pagliara D, Matozaki T, Suzuki E, Menke-van der Houven van Oordt CW, van Bruggen R, Roos D, van Lier RAW, Kuijpers TW, Kubes P, van den Berg TK. Neutrophils Kill Antibody-Opsonized Cancer Cells by Trogoptosis. Cell Rep 2019; 23:3946-3959.e6. [PMID: 29949776 DOI: 10.1016/j.celrep.2018.05.082] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/30/2018] [Accepted: 05/23/2018] [Indexed: 02/07/2023] Open
Abstract
Destruction of cancer cells by therapeutic antibodies occurs, at least in part, through antibody-dependent cellular cytotoxicity (ADCC), and this can be mediated by various Fc-receptor-expressing immune cells, including neutrophils. However, the mechanism(s) by which neutrophils kill antibody-opsonized cancer cells has not been established. Here, we demonstrate that neutrophils can exert a mode of destruction of cancer cells, which involves antibody-mediated trogocytosis by neutrophils. Intimately associated with this is an active mechanical disruption of the cancer cell plasma membrane, leading to a lytic (i.e., necrotic) type of cancer cell death. Furthermore, this mode of destruction of antibody-opsonized cancer cells by neutrophils is potentiated by CD47-SIRPα checkpoint blockade. Collectively, these findings show that neutrophil ADCC toward cancer cells occurs by a mechanism of cytotoxicity called trogoptosis, which can be further improved by targeting CD47-SIRPα interactions.
Collapse
Affiliation(s)
- Hanke L Matlung
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Liane Babes
- Immunology Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Xi Wen Zhao
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Michel van Houdt
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Louise W Treffers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Dieke J van Rees
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Katka Franke
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Karin Schornagel
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Verkuijlen
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Hans Janssen
- Division of Cell Biology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Pasi Halonen
- Division of Molecular Carcinogenesis and the NKI Robotics and Screening Center, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis and the NKI Robotics and Screening Center, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis and the NKI Robotics and Screening Center, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jeanette H W Leusen
- Immunotherapy Laboratory, Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jaap J Boelens
- U-DANCE, Laboratory for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands; Department of Pediatrics, Blood and Marrow Transplantation Program, UMC Utrecht, Utrecht, the Netherlands
| | - Ingrid Kuhnle
- Department of Pediatrics, University Medicine Göttingen, Göttingen, Germany
| | | | - Karl Seeger
- Department of Pediatric Oncology/Hematology, Otto-Heubner-Center for Pediatric and Adolescent Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sergio Rutella
- Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Daria Pagliara
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Takashi Matozaki
- Department of Biochemistry and Molecular Biology, Division of Molecular and Cellular Signaling, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Eiji Suzuki
- Department of Breast Surgery, Kyoto University Hospital, Kyoto, Japan
| | | | - Robin van Bruggen
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rene A W van Lier
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Kubes
- Immunology Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Molecular Cell Biology and Immunology, VU Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Jin H, Ma N, Li X, Kang M, Guo M, Song L. Application of GC/MS-Based Metabonomic Profiling in Studying the Therapeutic Effects of Aconitum carmichaeli with Ampelopsis japonica Extract on Collagen-Induced Arthritis in Rats. Molecules 2019; 24:molecules24101934. [PMID: 31137469 PMCID: PMC6571615 DOI: 10.3390/molecules24101934] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/11/2019] [Accepted: 05/16/2019] [Indexed: 11/16/2022] Open
Abstract
Aconitum carmichaeli with Ampelopsis japonica (AA) is a classical traditional Chinese medicine (TCM) formula. There are a lot of examples showing that AA can be used to treat rheumatoid arthritis, but its mechanism of action is still not completely clear. In this research, collagen-induced arthritis (CIA) was chosen as a rheumatoid arthritis (RA) model. Rats of treated groups were continuously administered Aconitum carmichaeli (AC), Ampelopsis japonica (AJ) and Aconitum carmichaeli + Ampelopsis japonica (AA) orally once a day from the day after the onset of arthritis (day 7) until day 42. The results showed that AA not only significantly reduced paw swelling, but also improved the levels of TNF-α and IL-6 in serum. GC-MS-based urine metabonomics was established to analysis metabolic profiles and 21 biomarkers of RA rats were identified by the Partial Least Squares Discriminant Analysis (PLS-DA) and Support Vector Machine (SVM) methods. The prediction rate of the SVM method for the 21 biomarkers was 100%. Twenty of 21 biomarkers, including D-galactose, inositol and glycerol, gradually returned to normal levels after administration of AA. Metabolomic Pathway Analysis (MetPA) generated three related metabolic pathways-galactose metabolism, glycerolipid metabolism and inositol phosphate metabolism-which explain the mechanism of AA treatment of rheumatoid arthritis. This research provides a better understanding of the therapeutic effects and possible therapeutic mechanism of action of a complex TCM (AA) on rheumatoid arthritis.
Collapse
Affiliation(s)
- Hua Jin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jian Kang Chan Ye Yuan, Jinghai Dist., Tianjin 301617, China.
| | - Ningning Ma
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jian Kang Chan Ye Yuan, Jinghai Dist., Tianjin 301617, China.
| | - Xin Li
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jian Kang Chan Ye Yuan, Jinghai Dist., Tianjin 301617, China.
| | - Mingqin Kang
- Changchun Customs (Former Jilin Inspection and Quarantine Bureau), Changchun 130012, China.
| | - Maojuan Guo
- Department of Pathology, School of integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jian Kang Chan Ye Yuan, Jinghai Dist., Tianjin 301617, China.
| | - Lili Song
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jian Kang Chan Ye Yuan, Jinghai Dist., Tianjin 301617, China.
| |
Collapse
|
10
|
Williams RJ, Karpuzoglu E, Connell H, Hurley DJ, Holladay SD, Gogal RM. Lead alters intracellular protein signaling and suppresses pro-inflammatory activation in TLR4 and IFNR-stimulated murine RAW 264.7 cells, in vitro. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:279-298. [PMID: 30890031 DOI: 10.1080/15287394.2019.1591315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lead (Pb) is a persistent environmental pollutant that has a structure and charge similar to many ions, such as calcium, that are essential for normal cellular function. Pb may compete with calcium for protein binding sites and inhibit signaling pathways within the cell affecting many organ systems including the immune system. The aim of the current study was to assess whether the calcium/calmodulin pathway is a principal target of environmentally relevant Pb during pro-inflammatory activation in a RAW 264.7 macrophage cell line. RAW 264.7 cells were cultured with 5 μM Pb(NO3)2, LPS, rIFNγ, or LPS+rIFNγ for 12, 24, or 48 hr. Intracellular protein signaling and multiple functional endpoints were investigated to determine Pb-mediated effects on macrophage function. Western blot analysis revealed that Pb initially modulated nuclear localization of NFκB p65 and cytoplasmic phosphorylation of CaMKIV accompanied by increased phosphorylation of STAT1β at 24 hr. Macrophage proliferation was significantly decreased at 12 hr in the presence of Pb, while nitric oxide (NO) was significantly reduced at 12 and 24 hr. Cells cultured with Pb for 12, 24, or 48 hr exhibited altered cytokine levels after specific stimuli activation. Our findings are in agreement with previous reports suggesting that macrophage pro-inflammatory responses are significantly modulated by Pb. Further, Pb-induced phosphorylation of CaMKIV (pCaMKIV), observed in the present study, may be a contributing factor in metal-induced autophagy noted in our previous study with this same cell line.
Collapse
Affiliation(s)
- R J Williams
- a Department of Veterinary Biosciences & Diagnostic Imaging, College of Veterinary Medicine , University of Georgia , Athens , GA , USA
| | - E Karpuzoglu
- a Department of Veterinary Biosciences & Diagnostic Imaging, College of Veterinary Medicine , University of Georgia , Athens , GA , USA
| | - H Connell
- b Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, Pharmacy South , University of Georgia , Athens , GA , USA
| | - D J Hurley
- c Department of Population Health, College of Veterinary Medicine , University of Georgia , Athens , GA , USA
| | - S D Holladay
- a Department of Veterinary Biosciences & Diagnostic Imaging, College of Veterinary Medicine , University of Georgia , Athens , GA , USA
| | - R M Gogal
- a Department of Veterinary Biosciences & Diagnostic Imaging, College of Veterinary Medicine , University of Georgia , Athens , GA , USA
| |
Collapse
|
11
|
Yao LJ, Jalil J, Attiq A, Hui CC, Zakaria NA. The medicinal uses, toxicities and anti-inflammatory activity of Polyalthia species (Annonaceae). JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:303-325. [PMID: 30316887 DOI: 10.1016/j.jep.2018.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/04/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polyalthia is one of the largest and notable genera in Annonaceae family. Polyalthia species have been widely used in folklore medicine for the treatment of rheumatic fever, gastrointestinal ulcer and generalized body pain. Numerous in vitro and in vivo studies on Polyalthia Species have also corroborated the significant anti-inflammatory potential of its extracts and secondary metabolites. AIM OF THE STUDY This review is an attempt to assess the anti-inflammatory activity of Polyalthia species by giving critical appraisal and establishing evidences of their traditional uses. Moreover this review will highlight the lead compounds for future drug development that can serve as a potential anti-inflammatory drug with comparative efficacy and minimum side effects. MATERIALS AND METHODS An extensive literature review, focusing the anti-inflammatory potential of Polyalthia species was conducted using the following databases:PubMed, ScienceDirect, SpringerLink, Ovid, Scopus and ProQuest, as well as the locally available books, journals and relevant documents. The reference lists of retrieved papers were also searched for additional studies. RESULTS The Polyalthia species have shown significant anti-inflammatory activity through various mechanism of action. The most significant anti-inflammatory mechanism includes the inhibition of nuclear factor kappa B (NF-κB), prostaglandins (PGs), pro-inflammatory cytokines, inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS). The data suggests that hydroxycleroda-3,13-dien-15,16-olide and 16-oxocleroda-3,13-dien-15-oic acid, quercetin, rutin, spinasterol, α-spinasterol, goniothalamin and (-)-5-hydroxygoniothalamin are the most potent anti-inflammatory compounds from Polyalthia species with comparable IC50 with positive controls. CONCLUSIONS Numerous pharmacological studies have supported the use of Polyalthia species against pain, rheumatic fever, haemorrhages and inflammation in traditional medicine. Flavonoids, diterpenoids, sterols and styrylpyrones from genus Polyalthia are the most significant class of compounds with potent anti-inflammatory activity. Secondary metabolites from these classes should be brought into further research to fill the gaps of knowledge in pharmacokinetics, pharmacodynamics, bioavailability, and toxicity in order to convert the pre-clinical results into clinical data for further investigation.
Collapse
Affiliation(s)
- Lui Jin Yao
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Ali Attiq
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chiew Chia Hui
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Aimi Zakaria
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Yang SC, Chang SH, Hsieh PW, Huang YT, Ho CM, Tsai YF, Hwang TL. Dipeptide HCH6-1 inhibits neutrophil activation and protects against acute lung injury by blocking FPR1. Free Radic Biol Med 2017; 106:254-269. [PMID: 28232203 DOI: 10.1016/j.freeradbiomed.2017.02.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/24/2017] [Accepted: 02/17/2017] [Indexed: 12/12/2022]
Abstract
Formyl peptide receptor 1 (FPR1) is an emerging therapeutic target for the discovery of drugs to treat neutrophilic inflammatory diseases. However, development of FPR1 antagonists for clinical use is still inadequate. The purpose of this study was to identify a synthetic dipeptide N-(N-benzoyl-L-tryptophanyl)-D-phenylanlanine methyl ester (HCH6-1) as a FPR1 inhibitor and to investigate its protective effects against acute lung injury (ALI). HCH6-1 inhibited superoxide anion generation, elastase release, and chemotaxis in human neutrophils specifically activated by formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLF), an FPR1 agonist. HCH6-1 produced right shifts in the concentration-response curves of fMLF, suggesting that HCH6-1 was a competitive antagonist of FPR1. Indeed, HCH6-1 bound to FPR1 in human neutrophils and neutrophil-like THP-1 as well as hFPR1-transfected HEK293 cells. Also, the FPR1 downstream signaling pathways were competitively inhibited by HCH6-1. Furthermore, HCH6-1 prevented pulmonary neutrophil infiltration and edema along with alveolar damage in LPS-induced ALI in mice. Our findings suggest that HCH6-1, a FPR1 antagonist, may have potential as a new therapeutic agent for treating FPR1-involved inflammatory lung diseases.
Collapse
Affiliation(s)
- Shun-Chin Yang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan; Division of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shih-Hsin Chang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Pei-Wen Hsieh
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Division of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Yin-Ting Huang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiu-Ming Ho
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan
| | - Yung-Fong Tsai
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Division of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| |
Collapse
|
13
|
McMahon F, Banville N, Bergin DA, Smedman C, Paulie S, Reeves E, Kavanagh K. Activation of Neutrophils via IP3 Pathway Following Exposure to Demodex-Associated Bacterial Proteins. Inflammation 2016; 39:425-433. [PMID: 26433579 DOI: 10.1007/s10753-015-0264-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rosacea is a chronic inflammatory condition that predominantly affects the skin of the face. Sera from rosacea patients display elevated reactivity to proteins from a bacterium (Bacillus oleronius) originally isolated from a Demodex mite from a rosacea patient suggesting a possible role for bacteria in the induction and persistence of this condition. This work investigated the ability of B. oleronius proteins to activate neutrophils and demonstrated activation via the IP3 pathway. Activated neutrophils displayed increased levels of IP1 production, F-actin formation, chemotaxis, and production of the pro-inflammatory cytokines IL-1β and IL-6 following stimulation by pure and crude B. oleronius protein preparations (2 μg/ml), respectively. In addition, neutrophils exposed to pure and crude B. oleronius proteins (2 μg/ml) demonstrated increased release of internally stored calcium (Ca(2+)), a hallmark of the IP3 pathway of neutrophil activation. Neutrophils play a significant role in the inflammation associated with rosacea, and this work demonstrates how B. oleronius proteins can induce neutrophil recruitment and activation.
Collapse
Affiliation(s)
- Fred McMahon
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Nessa Banville
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - David A Bergin
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | | | | | - Emer Reeves
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Co. Kildare, Ireland.
| |
Collapse
|
14
|
Ganda E, Bisinotto R, Vasquez A, Teixeira A, Machado V, Foditsch C, Bicalho M, Lima F, Stephens L, Gomes M, Dias J, Bicalho R. Effects of injectable trace mineral supplementation in lactating dairy cows with elevated somatic cell counts. J Dairy Sci 2016; 99:7319-7329. [DOI: 10.3168/jds.2016-10989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/17/2016] [Indexed: 11/19/2022]
|
15
|
Hasan MA, Ahn WG, Song DK. N-acetyl-L-cysteine and cysteine increase intracellular calcium concentration in human neutrophils. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:449-57. [PMID: 27610031 PMCID: PMC5014991 DOI: 10.4196/kjpp.2016.20.5.449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/21/2016] [Accepted: 04/28/2016] [Indexed: 11/28/2022]
Abstract
N-acetyl-L-cysteine (NAC) and cysteine have been implicated in a number of human neutrophils' functional responses. However, though Ca2+ signaling is one of the key signalings contributing to the functional responses of human neutrophils, effects of NAC and cysteine on intracellular calcium concentration ([Ca2+]i) in human neutrophils have not been investigated yet. Thus, this study was carried out with an objective to investigate the effects of NAC and cysteine on [Ca2+]i in human neutrophils. We observed that NAC (1 µM ~ 1 mM) and cysteine (10 µM ~ 1 mM) increased [Ca2+]i in human neutrophils in a concentration-dependent manner. In NAC pre-supplmented buffer, an additive effect on N-formyl-methionine-leucine-phenylalanine (fMLP)-induced increase in [Ca2+]i in human neutrophils was observed. In Ca2+-free buffer, NAC- and cysteine-induced [Ca2+]i increase in human neutrophils completely disappeared, suggesting that NAC- and cysteine-mediated increase in [Ca2+]i in human neutrophils occur through Ca2+ influx. NAC- and cysteine-induced [Ca2+]i increase was effectively inhibited by calcium channel inhibitors SKF96365 (10 µM) and ruthenium red (20 µM). In Na+-free HEPES, both NAC and cysteine induced a marked increase in [Ca2+]i in human neutrophils, arguing against the possibility that Na+-dependent intracellular uptake of NAC and cysteine is necessary for their [Ca2+]i increasing activity. Our results show that NAC and cysteine induce [Ca2+]i increase through Ca2+ influx in human neutrophils via SKF96365- and ruthenium red-dependent way.
Collapse
Affiliation(s)
- Md Ashraful Hasan
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Won-Gyun Ahn
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Dong-Keun Song
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
16
|
Ma S, Lin Y, Deng B, Zheng Y, Hao C, He R, Ding F. Endothelial bioreactor system ameliorates multiple organ dysfunction in septic rats. Intensive Care Med Exp 2016; 4:23. [PMID: 27447715 PMCID: PMC4958089 DOI: 10.1186/s40635-016-0097-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The endothelium is a potentially valuable target for sepsis therapy. We have previously studied an extracorporeal endothelial cell therapy system, called the endothelial bioreactor (EBR), which prolonged the survival time of endotoxemia sepsis in swine. To further study of the therapeutic effects and possible mechanisms, we established a miniature EBR system for septic rats induced by cecal ligation and puncture (CLP). METHODS In the miniature EBR system, the extracorporeal circulation first passed through a mini-hemofilter, and the ultrafiltrate (UF) was separated, then the UF passed through an EBR (a 1-mL cartridge containing approximately 2 × 10(6) endothelial cells grown on microcarriers) and interact with endothelial cells. Eighteen hours after CLP, the rats were treated for 4 h with this extracorporeal system containing either endothelial cells (EBR group) or no cells (sham EBR group). Physiologic and biochemical parameters, cytokines, endothelial functions, and 7-day survival time were monitored. In vitro, the pulmonary endothelial cells of the septic rats were treated with the EBR system and the resulting changes in their functions were monitored. RESULTS The EBR system ameliorated CLP-induced sepsis compared with the sham EBR system. After CLP, the 7-day survival rate of sham-treated rats was only 25.0 %, while in the EBR-treated group, it increased to 57.1 % (p = 0.04). The EBR system protected the liver and renal function and ameliorated the kidney and lung injury. Meanwhile, this therapy reduced pulmonary vascular leakage and alleviated the infiltration of inflammatory cells in the lungs, especially neutrophils. Furthermore, after the EBR treatment both in vivo and in vitro, the expression of intercellular adhesion molecule-1 and the secretion of CXCL1 and CXCL2 of pulmonary endothelium decreased, which helped to alleviate the adhesion and chemotaxis of neutrophils. In addition, the EBR system decreased CD11b expression and intracellular free calcium level of peripheral blood neutrophils, modulated the activation of these neutrophils. CONCLUSIONS The EBR system significantly ameliorated CLP-induced sepsis and improved survival and organ functions. Compared with the sham EBR system, this extracorporeal endothelial therapy may be involved in modulating the function of pulmonary endothelial cells, reducing the adhesion and chemotaxis of neutrophil, and modulating the activation of peripheral blood neutrophils.
Collapse
Affiliation(s)
- Shuai Ma
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China.,Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuli Lin
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bo Deng
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China.,Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yin Zheng
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China.,Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Chuanming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Rui He
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Feng Ding
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
17
|
DeSouza-Vieira T, Guimarães-Costa A, Rochael NC, Lira MN, Nascimento MT, Lima-Gomez PDS, Mariante RM, Persechini PM, Saraiva EM. Neutrophil extracellular traps release induced by Leishmania: role of PI3Kγ, ERK, PI3Kσ, PKC, and [Ca2+]. J Leukoc Biol 2016; 100:801-810. [PMID: 27154356 DOI: 10.1189/jlb.4a0615-261rr] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 04/12/2016] [Indexed: 12/19/2022] Open
Abstract
Upon in vitro stimulation, neutrophils undergo a cell death named netosis. This process is characterized by extracellular release of chromatin scaffold associated with granular and cytoplasmic proteins, which together, ensnare and kill microbes. We have previously described that interaction of Leishmania amazonensis with human neutrophils leads to the release of neutrophil extracellular traps, which trap and kill the parasite. However, the signaling leading to Leishmania induced netosis is still unknown. Thus, we sought to evaluate signaling events that drive L. amazonensis induced neutrophil extracellular trap release from human neutrophils. Here, we found that PI3K, independently of protein kinase B, has a role in parasite-induced netosis. We also described that the main isoforms involved are PI3Kγ and PI3Kδ, which work in reactive oxygen species-dependent and -independent ways, respectively. We demonstrated that activation of ERK downstream of PI3Kγ is important to trigger reactive oxygen species-dependent, parasite-induced netosis. Pharmacological inhibition of protein kinase C also significantly decreased parasite-induced neutrophil extracellular trap release. Intracellular calcium, regulated by PI3Kδ, represents an alternative reactive oxygen species-independent pathway of netosis stimulated by L. amazonensis Finally, intracellular calcium mobilization and reactive oxygen species generation are the major regulators of parasite-induced netosis. Our results contribute to a better understanding of the signaling behind netosis induced by interactions between Leishmania and neutrophils.
Collapse
Affiliation(s)
- Thiago DeSouza-Vieira
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Anderson Guimarães-Costa
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Natalia C Rochael
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Maria N Lira
- Laboratório de Imunobiofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Michelle T Nascimento
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Phillipe de Souza Lima-Gomez
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Rafael M Mariante
- Laboratório de Neurogênese, Departamento de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil; and Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | - Pedro M Persechini
- Laboratório de Imunobiofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Elvira M Saraiva
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil;
| |
Collapse
|
18
|
Henríquez C, Riquelme TT, Vera D, Julio-Kalajzić F, Ehrenfeld P, Melvin JE, Figueroa CD, Sarmiento J, Flores CA. The calcium-activated potassium channel KCa3.1 plays a central role in the chemotactic response of mammalian neutrophils. Acta Physiol (Oxf) 2016; 216:132-45. [PMID: 26138196 DOI: 10.1111/apha.12548] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/13/2015] [Accepted: 06/24/2015] [Indexed: 12/27/2022]
Abstract
AIM Neutrophils are the first cells to arrive at sites of injury. Nevertheless, many inflammatory diseases are characterized by an uncontrolled infiltration and action of these cells. Cell migration depends on volume changes that are governed by ion channel activity, but potassium channels in neutrophil have not been clearly identified. We aim to test whether KCa3.1 participates in neutrophil migration and other relevant functions of the cell. METHODS Cytometer and confocal measurements to determine changes in cell volume were used. Cells isolated from human, mouse and horse were tested for KCa3.1-dependent chemotaxis. Chemokinetics, calcium handling and release of reactive oxygen species were measured to determine the role of KCa3.1 in those processes. A mouse model was used to test for neutrophil recruitment after acute lung injury in vivo. RESULTS We show for the first time that KCa3.1 is expressed in mammalian neutrophils. When the channel is inhibited by a pharmacological blocker or by genetic silencing, it profoundly affects cell volume regulation, and chemotactic and chemokinetic properties of the cells. We also demonstrated that pharmacological inhibition of KCa3.1 did not affect calcium entry or reactive oxygen species production in neutrophils. Using a mouse model of acute lung injury, we observed that Kca3.1(-/-) mice are significantly less effective at recruiting neutrophils into the site of inflammation. CONCLUSIONS These results demonstrate that KCa3.1 channels are key actors in the migration capacity of neutrophils, and its inhibition did not affect other relevant cellular functions.
Collapse
Affiliation(s)
- C. Henríquez
- Instituto de Farmacología; Facultad de Medicina Veterinaria; Universidad Austral de Chile; Valdivia Chile
| | | | - D. Vera
- Centro de Estudios Científicos (CECs); Valdivia Chile
| | - F. Julio-Kalajzić
- Centro de Estudios Científicos (CECs); Valdivia Chile
- Pontificia Universidad Católica de Valparaíso; Valparaíso Chile
| | - P. Ehrenfeld
- Institutos de Anatomía; Histología y Patología; Universidad Austral de Chile; Valdivia Chile
| | - J. E. Melvin
- Secretory Mechanisms and Dysfunction Section; National Institute of Dental and Craniofacial Research; National Institutes of Health; Bethesda MD USA
| | - C. D. Figueroa
- Institutos de Anatomía; Histología y Patología; Universidad Austral de Chile; Valdivia Chile
| | - J. Sarmiento
- Instituto de Fisiología; Facultad de Medicina; Universidad Austral de Chile; Valdivia Chile
| | - C. A. Flores
- Centro de Estudios Científicos (CECs); Valdivia Chile
| |
Collapse
|
19
|
Husain M, Kyjovska ZO, Bourdon-Lacombe J, Saber AT, Jensen KA, Jacobsen NR, Williams A, Wallin H, Halappanavar S, Vogel U, Yauk CL. Carbon black nanoparticles induce biphasic gene expression changes associated with inflammatory responses in the lungs of C57BL/6 mice following a single intratracheal instillation. Toxicol Appl Pharmacol 2015; 289:573-88. [PMID: 26551751 PMCID: PMC7103116 DOI: 10.1016/j.taap.2015.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 01/08/2023]
Abstract
Inhalation of carbon black nanoparticles (CBNPs) causes pulmonary inflammation; however, time course data to evaluate the detailed evolution of lung inflammatory responses are lacking. Here we establish a time-series of lung inflammatory response to CBNPs. Female C57BL/6 mice were intratracheally instilled with 162 μg CBNPs alongside vehicle controls. Lung tissues were examined 3h, and 1, 2, 3, 4, 5, 14, and 42 days (d) post-exposure. Global gene expression and pulmonary inflammation were assessed. DNA damage was evaluated in bronchoalveolar lavage (BAL) cells and lung tissue using the comet assay. Increased neutrophil influx was observed at all time-points. DNA strand breaks were increased in BAL cells 3h post-exposure, and in lung tissues 2-5d post-exposure. Approximately 2600 genes were differentially expressed (± 1.5 fold; p ≤ 0.05) across all time-points in the lungs of exposed mice. Altered transcript levels were associated with immune-inflammatory response and acute phase response pathways, consistent with the BAL profiles and expression changes found in common respiratory infectious diseases. Genes involved in DNA repair, apoptosis, cell cycle regulation, and muscle contraction were also differentially expressed. Gene expression changes associated with inflammatory response followed a biphasic pattern, with initial changes at 3h post-exposure declining to base-levels by 3d, increasing again at 14 d, and then persisting to 42 d post-exposure. Thus, this single CBNP exposure that was equivalent to nine 8-h working days at the current Danish occupational exposure limit induced biphasic inflammatory response in gene expression that lasted until 42 d post-exposure, raising concern over the chronic effects of CBNP exposure.
Collapse
Affiliation(s)
- Mainul Husain
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada.
| | - Zdenka O Kyjovska
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| | - Julie Bourdon-Lacombe
- Water and Air Quality Bureau, Safe Environments Directorate, HECSB, Health Canada, Ottawa, ON, Canada.
| | - Anne T Saber
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| | - Keld A Jensen
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada.
| | - Håkan Wallin
- National Research Centre for the Working Environment, Copenhagen, Denmark; Institute of Public Health, University of Copenhagen, Denmark.
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada.
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark; Institute of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark.
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
20
|
Green tea polyphenol extract in vivo attenuates inflammatory features of neutrophils from obese rats. Eur J Nutr 2015; 55:1261-74. [PMID: 26031433 DOI: 10.1007/s00394-015-0940-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/22/2015] [Indexed: 01/11/2023]
Abstract
PURPOSE Our study aimed to evaluate whether obesity induced by cafeteria diet changes the neutrophil effector/inflammatory function and whether treatment with green tea extract (GT) can improve neutrophil function. METHODS Male Wistar rats were treated with GT by gavage (12 weeks/5 days/week; 500 mg/kg of body weight), and obesity was induced by cafeteria diet (8 weeks). Neutrophils were obtained from the peritoneal cavity (injection of oyster glycogen). The following analyses were performed: phagocytic capacity, chemotaxis, myeloperoxidase activity (MPO), hypochlorous acid (HOCl), superoxide anion (O 2 (·-) ), hydrogen peroxide (H2O2), IL-1β, IL-6 and TNFα, mRNA levels of inflammatory genes, calcium mobilisation, activities of antioxidant enzymes, hexokinase and G6PDH. RESULTS Neutrophils from obese rats showed a significant decrease in migration capacity, H2O2 and HOCl production, MPO activity and O 2 (·-) production. Phagocytosis and CD11b mRNA levels were increased, while inflammatory cytokines release remained unmodified. mRNA levels of TLR4 and IκK were enhanced. Treatment of obese rats with GT increased neutrophil migration, MPO activity, H2O2, HOCl and O 2 (·-) production, whereas TNF-α and IL-6 were decreased (versus obese). Similar reductions in TLR4, IκK and CD11b mRNA were observed. Catalase and hexokinase were increased by obesity, while SOD and G6PDH were decreased. Treatment with GT reduced catalase and increased the GSH/GSSG ratio. CONCLUSION In response to a cafeteria diet, we found a decreased chemotaxis, H2O2 release, MPO activity and HOCl production. We also showed a significant immunomodulatory effect of GT on the obese condition recovering some of these factors such H2O2 and HOCl production, also reducing the levels of inflammatory cytokines.
Collapse
|
21
|
Johnston H, Brown DM, Kanase N, Euston M, Gaiser BK, Robb CT, Dyrynda E, Rossi AG, Brown ER, Stone V. Mechanism of neutrophil activation and toxicity elicited by engineered nanomaterials. Toxicol In Vitro 2015; 29:1172-84. [PMID: 25962642 DOI: 10.1016/j.tiv.2015.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 02/03/2023]
Abstract
The effects of nanomaterials (NMs) on biological systems, especially their ability to stimulate inflammatory responses requires urgent investigation. We evaluated the response of the human differentiated HL60 neutrophil-like cell line to NMs. It was hypothesised that NM physico-chemical characteristics would influence cell responsiveness by altering intracellular Ca2+ concentration [Ca2+]i and reactive oxygen species production. Cells were exposed (1.95-125 μg/ml, 24 h) to silver (Ag), zinc oxide (ZnO), titanium dioxide (TiO2), multi-walled carbon nanotubes (MWCNTs) or ultrafine carbon black (ufCB) and cytotoxicity assessed (alamar blue assay). Relatively low (TiO2, MWCNTs, ufCB) or high (Ag, ZnO) cytotoxicity NMs were identified. Sub-lethal impacts of NMs on cell function were investigated for selected NMs only, namely TiO2, Ag and ufCB. Only Ag stimulated cell activation. Within minutes, Ag stimulated an increase in [Ca2+]i (in Fura-2 loaded cells), and a prominent inward ion current (assessed by electrophysiology). Within 2-4 h, Ag increased superoxide anion release and stimulated cytokine production (MCP-1, IL-8) that was diminished by Ca2+ inhibitors or trolox. Light microscopy demonstrated that cells had an activated phenotype. In conclusion NM toxicity was ranked; Ag>ufCB>TiO2, and the battery of tests used provided insight into the mechanism of action of NM toxicity to guide future testing strategies.
Collapse
Affiliation(s)
- Helinor Johnston
- School of Life Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom.
| | - David M Brown
- School of Life Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Nilesh Kanase
- School of Life Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Matthew Euston
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Birgit K Gaiser
- School of Life Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Calum T Robb
- School of Life Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom; MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Elisabeth Dyrynda
- School of Life Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Adriano G Rossi
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Euan R Brown
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Vicki Stone
- School of Life Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
22
|
Guillaume D, Huynh TNT, Denhez C, Nguyen KPP, Belaaouaj A. Triterpenoids as Neutrophil Elastase Inhibitors. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neutrophile elastase has the capacity to degrade elastin, a protein found in the connective tissue of the lungs. Unchecked elastase leads to pulmonary pathologies. Therefore, the development of elastase inhibitors is currently actively pursued in the therapeutic field. Several triterpenoids have been reported as inhibitors against elastase or its release. Such compounds could be valuable for the design of new drugs. This review is aimed at giving a comprehensive insight into the recent work performed in the field of triterpenoid-induced elastase inhibition.
Collapse
Affiliation(s)
- Dom Guillaume
- Department of Medicinal Chemistry, CNRS-URCA, School of Medicine-Pharmacy, 51 rue Cognacq-Jay, 51100 Reims, France
| | - Thi Ngoc Tram Huynh
- Department of Medicinal Chemistry, CNRS-URCA, School of Medicine-Pharmacy, 51 rue Cognacq-Jay, 51100 Reims, France
- Department of Organic Chemistry, University of Science, National University, Ho Chi Minh City, 227 Nguyen Van Cu Str., Dist. 5, Ho Chi Minh City 748355, Vietnam
| | - Clément Denhez
- Department of Medicinal Chemistry, CNRS-URCA, School of Medicine-Pharmacy, 51 rue Cognacq-Jay, 51100 Reims, France
| | - Kim Phi Phung Nguyen
- Department of Organic Chemistry, University of Science, National University, Ho Chi Minh City, 227 Nguyen Van Cu Str., Dist. 5, Ho Chi Minh City 748355, Vietnam
| | - Azzaq Belaaouaj
- Inserm U1111 - CNRS UMR5308, Hôpital Lyon Sud, 165, Chemin du Grand Revoyet, 69495 Pierre Benite, France
| |
Collapse
|
23
|
Cysteinyl leukotriene receptor-1 antagonists as modulators of innate immune cell function. J Immunol Res 2014; 2014:608930. [PMID: 24971371 PMCID: PMC4058211 DOI: 10.1155/2014/608930] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 12/20/2022] Open
Abstract
Cysteinyl leukotrienes (cysLTs) are produced predominantly by cells of the innate immune system, especially basophils, eosinophils, mast cells, and monocytes/macrophages. Notwithstanding potent bronchoconstrictor activity, cysLTs are also proinflammatory consequent to their autocrine and paracrine interactions with G-protein-coupled receptors expressed not only on the aforementioned cell types, but also on Th2 lymphocytes, as well as structural cells, and to a lesser extent neutrophils and CD8+ cells. Recognition of the involvement of cysLTs in the immunopathogenesis of various types of acute and chronic inflammatory disorders, especially bronchial asthma, prompted the development of selective cysLT receptor-1 (cysLTR1) antagonists, specifically montelukast, pranlukast, and zafirlukast. More recently these agents have also been reported to possess secondary anti-inflammatory activities, distinct from cysLTR1 antagonism, which appear to be particularly effective in targeting neutrophils and monocytes/macrophages. Underlying mechanisms include interference with cyclic nucleotide phosphodiesterases, 5′-lipoxygenase, and the proinflammatory transcription factor, nuclear factor kappa B. These and other secondary anti-inflammatory mechanisms of the commonly used cysLTR1 antagonists are the major focus of the current review, which also includes a comparison of the anti-inflammatory effects of montelukast, pranlukast, and zafirlukast on human neutrophils in vitro, as well as an overview of both the current clinical applications of these agents and potential future applications based on preclinical and early clinical studies.
Collapse
|
24
|
Intracellular secretory leukoprotease inhibitor modulates inositol 1,4,5-triphosphate generation and exerts an anti-inflammatory effect on neutrophils of individuals with cystic fibrosis and chronic obstructive pulmonary disease. BIOMED RESEARCH INTERNATIONAL 2013; 2013:560141. [PMID: 24073410 PMCID: PMC3773400 DOI: 10.1155/2013/560141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/01/2013] [Accepted: 07/15/2013] [Indexed: 02/01/2023]
Abstract
Secretory leukoprotease inhibitor (SLPI) is an anti-inflammatory protein present in respiratory secretions. Whilst epithelial cell SLPI is extensively studied, neutrophil associated SLPI is poorly characterised. Neutrophil function including chemotaxis and degranulation of proteolytic enzymes involves changes in cytosolic calcium (Ca2+) levels which is mediated by production of inositol 1,4,5-triphosphate (IP3) in response to G-protein-coupled receptor (GPCR) stimuli. The aim of this study was to investigate the intracellular function of SLPI and the mechanism-based modulation of neutrophil function by this antiprotease. Neutrophils were isolated from healthy controls (n = 10), individuals with cystic fibrosis (CF) (n = 5) or chronic obstructive pulmonary disease (COPD) (n = 5). Recombinant human SLPI significantly inhibited fMet-Leu-Phe (fMLP) and interleukin(IL)-8 induced neutrophil chemotaxis (P < 0.05) and decreased degranulation of matrix metalloprotease-9 (MMP-9), hCAP-18, and myeloperoxidase (MPO) (P < 0.05). The mechanism of inhibition involved modulation of cytosolic IP3 production and downstream Ca2+ flux. The described attenuation of Ca2+ flux was overcome by inclusion of exogenous IP3 in electropermeabilized cells. Inhibition of IP3 generation and Ca2+ flux by SLPI may represent a novel anti-inflammatory mechanism, thus strengthening the attractiveness of SLPI as a potential therapeutic molecule in inflammatory airway disease associated with excessive neutrophil influx including CF, non-CF bronchiectasis, and COPD.
Collapse
|
25
|
Husain M, Saber AT, Guo C, Jacobsen NR, Jensen KA, Yauk CL, Williams A, Vogel U, Wallin H, Halappanavar S. Pulmonary instillation of low doses of titanium dioxide nanoparticles in mice leads to particle retention and gene expression changes in the absence of inflammation. Toxicol Appl Pharmacol 2013; 269:250-62. [DOI: 10.1016/j.taap.2013.03.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/11/2013] [Accepted: 03/21/2013] [Indexed: 01/20/2023]
|
26
|
Tintinger GR, Anderson R, Feldman C. Pharmacological approaches to regulate neutrophil activity. Semin Immunopathol 2013; 35:395-409. [PMID: 23494251 DOI: 10.1007/s00281-013-0366-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/07/2013] [Indexed: 12/14/2022]
Abstract
Although indispensable in host defense against microbial pathogens, misdirected hyperacute and chronic activation of neutrophils presents the potential hazard of tissue damage, organ dysfunction, and carcinogenesis. In many clinical settings, particularly inflammatory disorders of the airways, over-reactivity of neutrophils is exacerbated by their relative resistance to conventional, pharmacological anti-inflammatory therapies, including, but not limited to, corticosteroids. Notwithstanding their sheer numbers, which can increase rapidly and dramatically during inflammatory responses, these cells are not only pre-programmed to release reactive oxygen species, proteinases, and eicosanoids/prostanoids immediately on exposure to pro-inflammatory stimuli but may also subsequently undergo the process of netosis, thereby enhancing and protracting their inflammatory potential. All of these mechanisms are likely to underpin the resistance of neutrophils to pharmacological control and have triggered the search for alternatives to corticosteroids. In addition to macrolides and adenosine 3',5'-cyclic adenosine monophospate-elevating agents, more recent innovations in the control of neutrophilic inflammation include activators of histone deacetylases and antagonists of chemokine receptors, as well as monoclonal antibodies which target neutrophil-activating cytokines and their receptors. These and other neutrophil-targeted strategies represent the focus of the current review.
Collapse
Affiliation(s)
- G R Tintinger
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa.
| | | | | |
Collapse
|
27
|
Teles LMB, Aquino EN, Neves ACD, Garcia CHS, Roepstorff P, Fontes B, Castro MS, Fontes W. Comparison of the neutrophil proteome in trauma patients and normal controls. Protein Pept Lett 2012; 19:663-72. [PMID: 22519539 PMCID: PMC3382372 DOI: 10.2174/092986612800493977] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/12/2011] [Accepted: 12/14/2011] [Indexed: 01/11/2023]
Abstract
Background: Neutrophils have an impressive array of microbicidal weapons, and in the presence of a pathogen, progress from a quiescent state in the bloodstream to a completely activated state. Failure to regulate this activation, for example, when the blood is flooded with cytokines after severe trauma, causes inappropriate neutrophil activation that paradoxically, is associated with tissue and organ damage. Acidic proteomic maps of quiescent human neutrophils were analyzed and compared to those of activated neutrophils from severe trauma patients. The analysis revealed 114 spots whose measured volumes differed between activated and quiescent neutrophils, with 27 upregulated and 87 downregulated in trauma conditions. Among the identified proteins, grancalcin, S100-A9 and CACNB2 reinforce observed correlations between motility and ion flux, ANXA3, SNAP, FGD1 and Zfyve19 are involved in vesicular transport and exocytosis, and GSTP1, HSPA1 HSPA1L, MAOB, UCH-L5, and PPA1 presented evidence that activated neutrophils may have diminished protection against oxidative damage and are prone to apoptosis. These are discussed, along with proteins involved in cytoskeleton reorganization, reactive oxygen species production, and ion flux. Proteins such as Zfyve19, MAOB and albumin- like protein were described for the first time in the neutrophil. In this work we achieved the identification of several proteins potentially involved in inflammatory signaling after trauma, as well as proteins described for the first time in neutrophils. | ![]() |
Collapse
Affiliation(s)
- Liz M B Teles
- Laboratory of Biochemistry and Protein Chemistry, Cell Biology Department, University of Brasília, Brasilia, DF, Brazil. CEP 70910-900
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Pino CJ, Yevzlin AS, Tumlin J, Humes HD. Cell-based strategies for the treatment of kidney dysfunction: a review. Blood Purif 2012; 34:117-23. [PMID: 23095410 PMCID: PMC3836365 DOI: 10.1159/000341649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Conventional treatment of acute and chronic renal diseases has focused on solute removal. Novel strategies aim to treat the multifactorial disease states of acute kidney injury and chronic kidney disease by mitigating inflammation. Cell-based technologies for the treatment of kidney dysfunction fall under two broad categories: cell therapy and cell processing. Cell therapy utilizes cells that are isolated, cultured outside of the body, and reintroduced as therapy, leveraging beneficial metabolic and synthetic functions. For example, renal tubule cells have been used to provide gluconeogenesis, ammoniagenesis, metabolism of glutathione, catabolism of important peptide hormones, growth factors, and cytokines critical to multiorgan homeostasis and immunomodulation to treat renal dysfunction. Cell processing focuses on altering the characteristics of cell populations inside the body to provide therapy. The selective cytopheretic device is an example of this novel therapeutic strategy that aims to modulate the innate immune response during organ dysfunction, additional organ injury, by binding and deactivating leukocytes. In this review, both cell therapy and cell processing approaches will be discussed in the context of acute kidney injury and chronic renal disease.
Collapse
|
29
|
Pino CJ, Farokhrani A, Lou L, Smith PL, Johnston K, Buffington DA, Humes HD. Selective cytopheretic inhibitory device with regional citrate anticoagulation and portable sorbent dialysis. Artif Organs 2012; 37:203-10. [PMID: 23067378 DOI: 10.1111/j.1525-1594.2012.01541.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Selective cytopheretic inhibitory device (SCD) therapy is an immunomodulatory treatment provided by a synthetic biomimetic membrane in an extracorporeal circuit, which has shown promise in preclinical large animal models of severe sepsis as well as in clinical trials treating patients with acute kidney injury and multiple organ failure. During SCD therapy, citrate is administered to lower ionized calcium levels in blood for anticoagulation and inhibition of leukocyte activation. Historically, citrate has been known to interfere with sorbent dialysis, therefore, posing a potential issue for the use of SCD therapy with a portable dialysis system. This sorbent dialysis SCD (sorbent SCD) would be well suited for battlefield and natural disaster applications where the water supply for standard dialysis is limited, and the types of injuries in those settings would benefit from SCD therapy. In order to explore the compatibility of sorbent and SCD technologies, a uremic porcine model was tested with the Allient sorbent dialysis system (Renal Solutions Incorporated, Fresenius Medical Care, Warrendale, PA, USA) and concurrent SCD therapy with regional citrate anticoagulation. The hypothesis to be assessed was whether the citrate load required by the SCD could be metabolized prior to recirculation from systemic blood back into the therapeutic circuit. Despite the fact that the sorbent SCD maintained urea clearance without any adverse hematologic events, citrate load for SCD therapy caused an interaction with the sorbent column resulting in elevated, potentially toxic aluminum levels in dialysate and in systemic blood. Alternative strategies to implement sorbent-SCD therapy will be required, including development of alternate urease-sorbent column binding chemistry or further changes to the sorbent-SCD therapeutic circuit along with determining the minimum citrate concentration required for efficacious SCD treatment.
Collapse
|
30
|
The effects of a novel therapeutic device on acute kidney injury outcomes in the intensive care unit: a pilot study. ASAIO J 2012; 57:426-32. [PMID: 21317636 DOI: 10.1097/mat.0b013e31820a1494] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Despite decades of improvements in the provision of renal replacement therapy, the morbidity and mortality associated with acute kidney injury (AKI) in the intensive care unit (ICU) setting remains extremely high. Much of the morbidity and mortality of this disorder is the consequence of systemic cellular damage that results from immune dysregulation. This is a prospective, single-arm, single-center study designed to evaluate the safety and efficacy of treatment with a selective cytopheretic device (SCD) on clinical outcomes in AKI requiring renal replacement therapy in the ICU. The patients enrolled in the trial were compared with historical case-matched controls with respect to age and Sequential Organ Failure Assessment (SOFA) score. The mortality for the case-matched controls was 77.78%, whereas the mortality in the SCD treatment group was 22.22% (p = 0.027). Multiple regression analysis identified treatment with SCD as the only significant variable affecting mortality among age, SOFA score, average change in urine output over the first 7 days during or after treatment. Mean total urine output in the 10 subjects receiving SCD treatment increased from a baseline of approximately 500 ml/d to more than 2,000 ml/d by day 7 of treatment. The SCD represents a novel therapeutic approach to alter the acute inflammatory response seen in AKI, and further evaluation of the safety and efficacy of the device is being evaluated in a multicenter investigation in the United States under an Food and Drug Administration (FDA) approved investigational device exemption (IDE).
Collapse
|
31
|
Liao CH, Chen JJ, Lin JE, Liu CH, Tseng CP, Day YJ. 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,7-dimethoxy-4H-chromen-4-one (MSF-2) suppresses fMLP-mediated respiratory burst in human neutrophils by inhibiting phosphatidylinositol 3-kinase activity. J Cell Physiol 2011; 226:1519-30. [PMID: 20945388 DOI: 10.1002/jcp.22481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Respiratory burst mediates crucial bactericidal mechanism in neutrophils. However, undesirable respiratory burst leads to pathological inflammation and tissue damage. This study investigates the effect and the underlying mechanism of 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,7-dimethoxy-4H-chromen-4-one (MSF-2), a lignan extracted from the fruit of Melicope Semecarprifolia, on fMLP-induced respiratory burst in human neutrophils and suggests a possible therapeutic approach to ameliorate disease associated with neutrophil hyperactivation. MSF-2 inhibited fMLP-induced neutrophil superoxide anion production, cathepsin G release and migration in human neutrophils isolated from healthy volunteers, reflecting inhibition of phosphatidylinositol 3-kinase (PI3K) activation. Specifically, PI3K/AKT activation results in migration, degranulation and superoxide anion production in neutrophils. MSF-2 suppresses PI3K activation and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production, and consequently inhibits downstream activation of PDK1 and AKT. Further, PI3K also stimulates respiratory burst via PLC-dependent elevation of intracellular calcium. MSF-2 reduces fMLP-mediated PLCγ2 activation and intracellular calcium accumulation notably through extracellular calcium influx in a PI3K and PLC-dependent manner. However, MSF-2 is not a competitive or allosteric antagonist of fMLP. Additionally, in an in vivo study, MSF-2 prevents fMLP-induced neutrophil infiltration and inflammation in mice. In conclusion, MSF-2 opposes fMLP-mediated neutrophil activation and inflammation by inhibiting PI3K activation and subsequent activation of AKT and PLCγ2.
Collapse
Affiliation(s)
- Chang-Hui Liao
- Graduate Institute of Natural Products, College of Medicine, Chang-Gung University, Tao-Yuan, Taiwan.
| | | | | | | | | | | |
Collapse
|
32
|
Hayee B, Rahman FZ, Tempero J, McCartney S, Bloom SL, Segal AW, Smith AM. The neutrophil respiratory burst and bacterial digestion in Crohn's disease. Dig Dis Sci 2011; 56:1482-8. [PMID: 20936355 PMCID: PMC4568317 DOI: 10.1007/s10620-010-1426-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 09/09/2010] [Indexed: 12/31/2022]
Abstract
BACKGROUND Neutrophils are a key part of the innate immune defence against microbes, using the respiratory burst (RB) to optimise killing and digestion. Previous studies of the neutrophil RB in Crohn's disease (CD) have yielded conflicting results. METHODS Superoxide production in response to phorbol-myristyl acetate (PMA) was measured in neutrophils from 100 patients with CD compared to 50 healthy controls (HCs) and 50 patients with ulcerative colitis (UC). A further 22 CD and 10 HCs were studied using f-Met-Leu-Phe (fMLP), and digestion of E. coli by neutrophils was also evaluated. RESULTS The mean ± SEM PMA-stimulated RB (nmol O(2)/10(6) cells/min) was 10.86 ± 0.26 in HCs, 9.76 ± 0.23 in CD (P=0.02) and 10.04 ± 0.28 in UC (P=0.09 vs HC and 0.47 vs CD). No significant effect of age, gender or medication was observed. The RB in three patients with presumed CD was found to be in the range expected in patients with inherited neutrophil disorders. Stimulation with fMLP was calcium dependent and attenuated in patients on 5-ASA. Digestion of E. coli by neutrophils was not different in HC vs CD (21.6 vs 20.53%, P=0.60). CONCLUSION The significant reduction in neutrophil RB in CD does not appear to result in defective bacterial digestion and is therefore unlikely play a major role in pathogenesis. Three patients in this cohort of patients with presumed idiopathic CD were found to have a profound defect of the neutrophil RB. A high index of suspicion for such patients is prudent, as their prognosis can be improved by altering or augmenting the conventional treatment regimens employed for CD.
Collapse
Affiliation(s)
- Bu'Hussain Hayee
- Department of Molecular Medicine, University College London, WC1E 6JJ, London, UK.
| | | | | | | | | | | | | |
Collapse
|
33
|
A biomimetic membrane device that modulates the excessive inflammatory response to sepsis. PLoS One 2011; 6:e18584. [PMID: 21533222 PMCID: PMC3077371 DOI: 10.1371/journal.pone.0018584] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 03/04/2011] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Septic shock has a clinical mortality rate approaching fifty percent. The major clinical manifestations of sepsis are due to the dysregulation of the host's response to infection rather than the direct consequences of the invading pathogen. Central to this initial immunologic response is the activation of leukocytes and microvascular endothelium resulting in cardiovascular instability, lung injury and renal dysfunction. Due to the primary role of leukocyte activation in the sepsis syndrome, a synthetic biomimetic membrane, called a selective cytopheretic device (SCD), was developed to bind activated leukocytes. The incorporation of the SCD along an extracorporeal blood circuit coupled with regional anticoagulation with citrate to lower blood ionized calcium was devised to modulate leukocyte activation in sepsis. DESIGN Laboratory investigation. SETTING University of Michigan Medical School. SUBJECTS Pigs weighing 30-35 kg. INTERVENTIONS To assess the effect of the SCD in septic shock, pigs were administered 30×10(10) bacteria/kg body weight of Escherichia coli into the peritoneal cavity and within 1 hr were immediately placed in an extracorporeal circuit containing SCD. MEASUREMENTS AND MAIN RESULTS In this animal model, the SCD with citrate compared to control groups without the SCD or with heparin anticoagulation ameliorated the cardiovascular instability and lung sequestration of activated leukocytes, reduced renal dysfunction and improved survival time compared to various control groups. This effect was associated with minimal elevations of systemic circulating neutrophil activation. CONCLUSIONS These preclinical studies along with two favorable exploratory clinical trials form the basis of an FDA-approved investigational device exemption for a pivotal multicenter, randomized control trial currently underway.
Collapse
|
34
|
Reddy MVB, Hwang TL, Leu YL, Chiou WF, Wu TS. Inhibitory effects of Mannich bases of heterocyclic chalcones on NO production by activated RAW 264.7 macrophages and superoxide anion generation and elastase release by activated human neutrophils. Bioorg Med Chem 2011; 19:2751-6. [DOI: 10.1016/j.bmc.2011.02.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 10/18/2022]
|
35
|
Carrillo C, del Mar Cavia M, Roelofs H, Wanten G, Alonso-Torre SR. Activation of Human Neutrophils by Oleic Acid Involves the Production of Reactive Oxygen Species and a Rise in Cytosolic Calcium Concentration: a Comparison with N-6 Polyunsaturated Fatty Acids. Cell Physiol Biochem 2011; 28:329-38. [DOI: 10.1159/000331749] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2011] [Indexed: 12/26/2022] Open
|
36
|
Anderson R, Tintinger G, Cockeran R, Potjo M, Feldman C. Beneficial and Harmful Interactions of Antibiotics with Microbial Pathogens and the Host Innate Immune System. Pharmaceuticals (Basel) 2010; 3:1694-1710. [PMID: 27713324 PMCID: PMC4034004 DOI: 10.3390/ph3051694] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 04/26/2010] [Accepted: 05/24/2010] [Indexed: 11/30/2022] Open
Abstract
In general antibiotics interact cooperatively with host defences, weakening and decreasing the virulence of microbial pathogens, thereby increasing vulnerability to phagocytosis and eradication by the intrinsic antimicrobial systems of the host. Antibiotics, however, also interact with host defences by several other mechanisms, some harmful, others beneficial. Harmful activities include exacerbation of potentially damaging inflammatory responses, a property of cell-wall targeted agents, which promotes the release of pro-inflammatory microbial cytotoxins and cell-wall components. On the other hand, inhibitors of bacterial protein synthesis, especially macrolides, possess beneficial anti-inflammatory/cytoprotective activities, which result from interference with the production of microbial virulence factors/cytotoxins. In addition to these pathogen-directed, anti-inflammatory activities, some classes of antimicrobial agent possess secondary anti-inflammatory properties, unrelated to their conventional antimicrobial activities, which target cells of the innate immune system, particularly neutrophils. This is a relatively uncommon, potentially beneficial property of antibiotics, which has been described for macrolides, imidazole anti-mycotics, fluoroquinolones, and tetracyclines. Although of largely unproven significance in the clinical setting, increasing awareness of the pro-inflammatory and anti-inflammatory properties of antibiotics may contribute to a more discerning and effective use of these agents.
Collapse
Affiliation(s)
- Ronald Anderson
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa.
| | - Gregory Tintinger
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa.
- Division of Pulmonology, Department of Internal Medicine, Steve Biko Pretoria Academic Hospital and Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Riana Cockeran
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa.
| | - Moliehi Potjo
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa.
| | - Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
37
|
Calcium is required for coelomocyte activation in earthworms. Mol Immunol 2010; 47:2047-56. [PMID: 20439116 DOI: 10.1016/j.molimm.2010.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 11/21/2022]
Abstract
The role of calcium signaling in activation of both innate and adaptive immunity is basically important, however, the evolutionary aspects are not clarified yet. Currently limited data are available about calcium levels of coelomocytes, cellular mediators of earthworm immunity. We aimed to observe basal and induced Ca(2+) levels of coelomocyte subgroups after various stimulations in Eisenia fetida and Allolobophora caliginosa using a Ca(2+)-sensitive dye. E. fetida chloragocytes had the highest basal Ca(2+) levels among subpopulations; however there was no detectable Ca(2+) influx after any stimuli, while coelomocytes showed strong Ca(2+) increase after ionomycin treatment, which could be attenuated using phorbol ester. A. caliginosa coelomocytes showed a weak response to ionophore, while chloragocytes, similar to those in E. fetida, exhibited no changes after this stimulation. Intracellular calcium is mainly stored in the endoplasmic reticulum of coelomocytes as proved by thapsigargin treatments. Among several mitogens only phytohemagglutinin caused increased Ca(2+) level in E. fetida coelomocytes, but not in A. caliginosa coelomocytes. Moreover, the chemoattractant fMLP revealed calcium influx of Eisenia coelomocytes. For the first time we observed various basal Ca(2+) levels and sensibility to Ca(2+) influx inducers (including mitogens and chemoattractant) of coelomocyte subgroups using flow cytometry. These observations suggest that Ca(2+) influx and signal transduction may play crucial roles in the innate immunity of the earthworm.
Collapse
|
38
|
van der Hoeven D, Gizewski ET, Auchampach JA. Activation of the A(3) adenosine receptor inhibits fMLP-induced Rac activation in mouse bone marrow neutrophils. Biochem Pharmacol 2010; 79:1667-73. [PMID: 20149782 DOI: 10.1016/j.bcp.2010.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 02/01/2010] [Accepted: 02/02/2010] [Indexed: 01/03/2023]
Abstract
Adenosine is released from injured or hypoxic tissues where it exerts numerous anti-inflammatory effects including suppression of neutrophil functions. Although most previous work has implicated the A(2A)AR, we have recently shown that selective activation of the abundantly expressed A(3)AR inhibits neutrophil superoxide production and chemotaxis providing a potential mechanistic explanation for the efficacy of A(3)AR agonists in experimental animal models of inflammation. In this study, we hypothesized that the A(3)AR suppresses neutrophil functions by inhibiting the monomeric GTPase Rac, a central regulator of chemokine-directed neutrophil migration and superoxide production. We found that pre-treating neutrophils with the highly selective A(3)AR agonist CP-532,903 reduced fMLP-induced Rac activation using an ELISA-based assay that detects all three Rac isoforms. CP-532,903 also inhibited fMLP-induced F-actin formation, a downstream effector function of Rac relevant to neutrophil migration, but not activation of ERK1/2 or p38. Pre-treating neutrophils with CP-532,903 did not stimulate cAMP production or alter fMLP-induced calcium transients, implicating that A(3)AR stimulation does not inhibit Rac activation or neutrophil activities by suppressing Ca(2+) signaling, elevating the intracellular concentration of cAMP, or by cross-desensitizing fMLP receptors. Our results suggest that activation of the A(3)AR signals to suppress neutrophil functions by interfering with the monomeric GTPase Rac, thus contributing to the ant-inflammatory actions of adenosine.
Collapse
Affiliation(s)
- Dharini van der Hoeven
- Department of Pharmacology and Toxicology and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226, United States
| | | | | |
Collapse
|
39
|
Lin YK, Leu YL, Huang TH, Wu YH, Chung PJ, Su Pang JH, Hwang TL. Anti-inflammatory effects of the extract of indigo naturalis in human neutrophils. JOURNAL OF ETHNOPHARMACOLOGY 2009; 125:51-58. [PMID: 19559779 DOI: 10.1016/j.jep.2009.06.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/30/2009] [Accepted: 06/17/2009] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Indigo naturalis is used by traditional Chinese medicine to treat various inflammatory diseases. AIM OF THE STUDY Topical indigo naturalis ointment showed efficacy in treating psoriasis in our previous clinical studies. In this study, we investigated the anti-inflammatory effects of the extract of indigo naturalis (QD) and its main components indirubin, indigo, and tryptanthrin in human neutrophils. MATERIALS AND METHODS Superoxide anion (O2(.-)) generation and elastase release were measured by spectrophotometry. Some important signals including mitogen-activated protein kinase (MAPK), cAMP, and calcium were studied by Western blot analysis, an enzyme immunoassay, and spectrofluorometry. RESULTS QD significantly inhibited O2(.-) generation and elastase release in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-activated human neutrophils in a concentration-dependent fashion, while neither indirubin, indigo, nor tryptanthrin produced a comparable result. QD attenuated the FMLP-induced phosphorylation of extracellular regulated kinase, p38 MAPK, and c-Jun N-terminal kinase. Furthermore, QD inhibited calcium mobilization caused by FMLP. However, QD did not affect cellular cAMP levels. On the other hand, neither indirubin, indigo, nor tryptanthrin produced similar changes in human neutrophils. CONCLUSIONS Taken collectively, these findings indicate that QD, but not indirubin, indigo, or tryptanthrin, inhibited O2(.-) generation and elastase release in FMLP-induced human neutrophils, which was at least partially mediated by the inhibition of MAPK activation and regulation of calcium mobilization.
Collapse
Affiliation(s)
- Yin-Ku Lin
- Department of Traditional Chinese Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
40
|
Schepers E, Glorieux G, Dhondt A, Leybaert L, Vanholder R. Flow cytometric calcium flux assay: evaluation of cytoplasmic calcium kinetics in whole blood leukocytes. J Immunol Methods 2009; 348:74-82. [PMID: 19616551 DOI: 10.1016/j.jim.2009.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 06/23/2009] [Accepted: 07/09/2009] [Indexed: 11/18/2022]
Abstract
In leukocytes, as in many other cell types, cytoplasmic calcium ([Ca(2+)](i)) changes play a key role in a series of pathways leading to activation. Here we describe a flow cytometric method allowing the simultaneous kinetic analysis of changes in [Ca(2+)](i) in the three types of leukocytes, i.e. monocytes, granulocytes and lymphocytes. Heparinised whole blood was diluted in phosphate buffered saline with Ca(2+) and 1 mM sodium pyruvate and incubated with the Ca(2+) indicator fluo3-acetoxymethyl ester. Leukocytes were identified by labelling with the phycoerythrin-conjugated antibody against CD45, the leukocyte common antigen. Resuspension of the cells in PBS with or without Ca(2+) allowed us to detect the origin of Ca(2+) changes. During flow cytometric analysis only CD45-positive cells were counted and monocytes, granulocytes and lymphocytes were evaluated separately. Baseline fluorescence of the fluo3-Ca(2+)-complex was determined and changes in [Ca(2+)](i) after stimulation with the calcium ionophore A23187 or the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP) were recorded over a time period of 150 s. Stimulation with A23187 resulted in a rise in [Ca(2+)](i) in all three leukocyte subpopulations. This rise was sustained in the presence of extracellular Ca(2+) (Ca(2+)(ex)) but had a transient character in the absence of Ca(2+)(ex). For fMLP, [Ca(2+)](i) changes occurred only in monocytes and granulocytes and were transient irrespective of the presence or absence of Ca(2+)(ex). In conclusion, the present method is a simple, fast and easy tool to analyse in vitro [Ca(2+)](i) changes over time in leukocytes under physiologically relevant conditions, without the need for their isolation or the lysis of erythrocytes. The whole blood approach allows a continuous interaction between the different leukocyte subpopulations and other blood components and a minimum of preparative manipulations avoids artefactual activation of the cells. A distinction can be made between Ca(2+) release from the intracellular stores and the entry of Ca(2+) from outside the cell. The approach allows to evaluate the effect of various agonists on [Ca(2+)](i) changes in leukocytes, with physiological, patho-physiological or therapeutic purposes.
Collapse
Affiliation(s)
- Eva Schepers
- Renal Division, Department of Internal Medicine, University Hospital Gent, De Pintelaan 185, 9000 Gent, Belgium.
| | | | | | | | | |
Collapse
|
41
|
Olsen LF, Andersen AZ, Lunding A, Brasen JC, Poulsen AK. Regulation of glycolytic oscillations by mitochondrial and plasma membrane H+-ATPases. Biophys J 2009; 96:3850-61. [PMID: 19413991 DOI: 10.1016/j.bpj.2009.02.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 01/31/2009] [Accepted: 02/05/2009] [Indexed: 10/20/2022] Open
Abstract
We investigated the coupling between glycolytic and mitochondrial membrane potential oscillations in Saccharomyces cerevisiae under semianaerobic conditions. Glycolysis was measured as NADH autofluorescence, and mitochondrial membrane potential was measured using the fluorescent dye 3,3'-diethyloxacarbocyanine iodide. The responses of glycolytic and membrane potential oscillations to a number of inhibitors of glycolysis, mitochondrial electron flow, and mitochondrial and plasma membrane H(+)-ATPase were investigated. Furthermore, the glycolytic flux was determined as the rate of production of ethanol in a number of different situations (changing pH or the presence and absence of inhibitors). Finally, the intracellular pH was determined and shown to oscillate. The results support earlier work suggesting that the coupling between glycolysis and mitochondrial membrane potential is mediated by the ADP/ATP antiporter and the mitochondrial F(0)F(1)-ATPase. The results further suggest that ATP hydrolysis, through the action of the mitochondrial F(0)F(1)-ATPase and plasma membrane H(+)-ATPase, are important in regulating these oscillations. We conclude that it is glycolysis that drives the oscillations in mitochondrial membrane potential.
Collapse
Affiliation(s)
- Lars Folke Olsen
- CelCom, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | | | | | | | | |
Collapse
|
42
|
STIM1 but not STIM2 is an essential regulator of Ca2+ influx-mediated NADPH oxidase activity in neutrophil-like HL-60 cells. Biochem Pharmacol 2009; 78:504-13. [PMID: 19433064 DOI: 10.1016/j.bcp.2009.05.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/29/2009] [Accepted: 05/04/2009] [Indexed: 12/14/2022]
Abstract
Extracellular Ca2+ entry, primarily mediated through store-operated Ca2+ entry (SOCE), is known to be a critical event for NADPH oxidase (NOX2) regulation in neutrophils. While defective NOX2 activity has been linked to various inflammatory diseases, regulatory mechanisms that control Ca2+ influx-induced NOX2 activation are poorly understood in SOCE. The role of STIM1, a Ca2+ sensor that transduces the store depletion signal to the plasma membrane, seems well established and supported by numerous studies in non-phagocytic cells. Here, in neutrophil-like HL-60 cells we used a siRNA approach to delineate the effect of STIM1 knock-down on NOX2 activity regulated by Ca2+ influx. Because the function of the STIM1 homolog, STIM2, is still unclear, we determined the consequence of STIM2 knock-down on Ca2+ and NOX2. STIM1 and STIM2 knock-down was effective and isoform specific when assayed by real-time PCR and Western blotting. Consistent with a unique role of STIM1 in the regulation of SOCE, STIM1, but not STIM2, siRNA significantly decreased Ca2+ influx induced by fMLF or the SERCA pump inhibitor thapsigargin. A redistribution of STIM1, originally localized intracellularly, near the plasma membrane was observed by confocal microscopy upon stimulation by fMLF. Inhibition of STIM1-induced SOCE led to a marked decrease in NOX2 activity while STIM2 siRNA had no effect. Thus, our results provide evidence for a role of STIM1 protein in the control of Ca2+ influx in neutrophils excluding a STIM2 involvement in this process. It also places STIM1 as a key modulator of NOX2 activity with a potential interest for anti-inflammatory pharmacological development.
Collapse
|
43
|
Hwang TL, Su YC, Chang HL, Leu YL, Chung PJ, Kuo LM, Chang YJ. Suppression of superoxide anion and elastase release by C18 unsaturated fatty acids in human neutrophils. J Lipid Res 2009; 50:1395-408. [PMID: 19295184 DOI: 10.1194/jlr.m800574-jlr200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The structure-activity relationship of 18-carbon fatty acids (C(18) FAs) on human neutrophil functions and their underlying mechanism were investigated. C(18) unsaturated (U)FAs potently inhibited superoxide anion production, elastase release, and Ca(2+) mobilization at concentrations of <10 microM in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-activated human neutrophils. However, neither saturated FA nor esterified UFAs inhibited these neutrophil functions. The inhibitory potencies of C(18) UFAs decreased in the following order: C(18):1 > C(18):2 > C(18):3 > C(18):4. Notably, the potency of attenuating Ca(2+) mobilization was closely correlated with decreasing cellular responses. The inhibitions of Ca(2+) mobilization by C(18) UFAs were not altered in a Ca(2+)-containing Na(+)-deprived medium. Significantly, C(18) UFAs increased the activities of plasma membrane Ca(2+)-ATPase (PMCA) in neutrophils and isolated cell membranes. In contrast, C(18) UFAs failed to alter either the cAMP level or phosphodiesterase activity. Moreover, C(18) UFAs did not reduce extracellular Ba(2+) entry in FMLP- and thapsigargin-activated neutrophils. In summary, the inhibition of neutrophil functions by C(18) UFAs is attributed to the blockade of Ca(2+) mobilization through modulation of PMCA. We also suggest that both the free carboxy group and the number of double bonds of the C(18) UFA structure are critical to providing the potent anti-inflammatory properties in human neutrophils.
Collapse
Affiliation(s)
- Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Hwang TL, Li GL, Lan YH, Chia YC, Hsieh PW, Wu YH, Wu YC. Potent inhibition of superoxide anion production in activated human neutrophils by isopedicin, a bioactive component of the Chinese medicinal herb Fissistigma oldhamii. Free Radic Biol Med 2009; 46:520-8. [PMID: 19100830 DOI: 10.1016/j.freeradbiomed.2008.11.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/23/2008] [Accepted: 11/18/2008] [Indexed: 01/15/2023]
Abstract
Fissistigma oldhamii is widely used in traditional Chinese medicine to treat rheumatoid arthritis. Activation of neutrophils is a key feature of inflammatory diseases. Herein, the anti-inflammatory functions of isopedicin, a flavanone derived from F. oldhamii, and its underlying mechanisms were investigated in human neutrophils. Isopedicin potently and concentration-dependently inhibited superoxide anion (O(2)(*)(-)) production in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-activated human neutrophils with an IC(50) value of 0.34+/-0.03 microM. Furthermore, isopedicin displayed no superoxide-scavenging ability, and it failed to alter subcellular NADPH oxidase activity. The inhibitory effect of isopedicin on O(2)(*)(-) production was reversed by protein kinase A (PKA) inhibitors. Moreover, isopedicin increased cAMP formation and PKA activity in FMLP-activated human neutrophils, which occurred through the inhibition of phosphodiesterase (PDE) activity but not an increase in adenylate cyclase function. In addition, isopedicin reduced FMLP-induced phosphorylation of extracellular regulated kinase and c-Jun N-terminal kinase, which was reversed by the PKA inhibitor. In contrast, isopedicin failed to alter FMLP-induced phosphorylation of p38 mitogen-activated protein kinase and calcium mobilization. In summary, these results demonstrate that inhibition of O(2)(*)(-) production in human neutrophils by isopedicin is associated with an elevation of cellular cAMP and activation of PKA through its inhibition of cAMP-specific PDE.
Collapse
Affiliation(s)
- Tsong-Long Hwang
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Hsu MF, Chang LC, Huang LJ, Kuo SC, Lee HY, Lu MC, Wang JP. The influence of acetylshikonin, a natural naphthoquinone, on the production of leukotriene B4 and thromboxane A2 in rat neutrophils. Eur J Pharmacol 2009; 607:234-43. [PMID: 19232341 DOI: 10.1016/j.ejphar.2009.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/20/2009] [Accepted: 02/09/2009] [Indexed: 12/11/2022]
Abstract
Both A23187 and formyl-Met-Leu-Phe (fMLP) induced the release of arachidonic acid and the production of thromboxane B(2) and leukotriene B(4) from rat neutrophils that were inhibited by acetylshikonin in a concentration-dependent manner. Acetylshikonin blocked exogenous arachidonic acid-induced leukotriene B(4) and thromboxane B(2) production in neutrophils and inhibited the enzymatic activity of ram seminal vesicles cyclooxygenase and human recombinant 5-lipoxygenase, whereas it had no effect on cytosolic phospholipase A(2) activity, in cell-free systems. 3-Morpholinosydnonimine- and 13S-hydroperoxy-9Z,11E-octadecadienoic acid (13-HpODE)-mediated dihydrorhodamine 123 oxidation (to assess the lipid peroxide and peroxynitrite scavenging activity) was reduced by acetylshikonin. The membrane recruitment of cytosolic phospholipase A(2) was inhibited, but the phosphorylation of cytosolic phospholipase A(2) was enhanced, by acetylshikonin in the A23187-induced response. Acetylshikonin alone stimulated extracellular signal regulated kinase (ERK) phosphorylation and enhanced this response in cells stimulated with A23187 and fMLP. The phosphorylation of ERKs and cytosolic phospholipase A(2) was attenuated by U0126, a mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor. Acetylshikonin facilitated both A23187- and fMLP-mediated translocation of 5-lipoxygenase to the membrane. Acetylshikonin attenuated both fMLP- and ionomycin-mediated [Ca(2+)](i) elevation. These results indicate that the inhibition of eicosanoid production by acetylshikonin is due to the attenuation of cytosolic phospholipase A(2) membrane recruitment via the decrease in [Ca(2+)](i) and to the blockade of cyclooxygenase and 5-lipoxygenase activity.
Collapse
Affiliation(s)
- Mei-Feng Hsu
- Department of Biochemistry, China Medical University, Taichung 404, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
46
|
Simon SI, Sarantos MR, Green CE, Schaff UY. Leucocyte recruitment under fluid shear: mechanical and molecular regulation within the inflammatory synapse. Clin Exp Pharmacol Physiol 2008; 36:217-24. [PMID: 19018799 DOI: 10.1111/j.1440-1681.2008.05083.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
1. Nature has evolved an exquisite system for regulation of leucocyte recruitment at sites of tissue inflammation. Mechanical energy translated to the red and white blood cells transports them from large arteries down to the microcirculation. 2. Neutrophils overcome the drag forces of blood flow by forming selectin and integrin adhesive bonds with the endothelium that coats the vessel wall. Leucocyte adhesion receptors have evolved unique mechanical and chemical properties that optimize for sequential binding and uptake of traction forces. 3. In the present brief review, we address how dispersive forces acting on a neutrophil in shear flow function to stabilize and synchronize bond formation within a macromolecular membrane complex we denote the inflammatory synapse.
Collapse
Affiliation(s)
- Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
47
|
Hsu MF, Chang LC, Chen SC, Kuo SC, Lee HY, Lu MC, Wang JP. Blockade of cytosolic phospholipase A2 and 5-lipoxygenase activation in neutrophils by a natural isoflavanquinone abruquinone A. Eur J Pharmacol 2008; 598:123-31. [DOI: 10.1016/j.ejphar.2008.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/29/2008] [Accepted: 09/09/2008] [Indexed: 01/22/2023]
|
48
|
Fickl H, Theron AJ, Anderson R, Mitchell TJ, Feldman C. Palladium Attenuates the Pro-Inflammatory Interactions of C5a, Interleukin-8 and Pneumolysin with Human Neutrophils. J Immunotoxicol 2008; 4:247-52. [DOI: 10.1080/15476910701385612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Navarro M, Hernández C, Vásquez F, Goitia H, Ojeda LE, Velásquez M, Fraile G. Syntheses, characterization, and biological evaluation of new zinc-and gold-chloroquine diphosphate complexes. TRANSIT METAL CHEM 2008. [DOI: 10.1007/s11243-008-9129-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
A comparative study of the effects of quercetin and its glucuronide and sulfate metabolites on human neutrophil function in vitro. Biochem Pharmacol 2008; 76:645-53. [PMID: 18639531 DOI: 10.1016/j.bcp.2008.06.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/17/2008] [Accepted: 06/18/2008] [Indexed: 11/23/2022]
Abstract
Exposure of neutrophils to either lipopolysaccharide (LPS) or N-formyl-methionyl-leucyl-phenylalanine (fMLP) is associated with changes in the expression of cell adhesion molecules and elevation of intracellular calcium ions. Although dietary flavonoids are reported to possess anti-inflammatory properties, little is known regarding the effect of their metabolites. We have investigated the effects of quercetin and its major metabolites on LPS and fMLP-stimulated human neutrophils using concentrations comparable to those reported in feeding studies on human volunteers. The metabolite quercetin 3-glucuronide caused a significant reduction in fMLP-evoked calcium influx in human neutrophils (approximately 35%), while neither quercetin 3'-sulfate nor quercetin produced a similar change. Acute exposure of human neutrophils to LPS altered cell shape and surface expression of CD16, but neither of these events were significantly altered by quercetin, quercetin 3-glucuronide nor quercetin 3'-sulfate. In addition, LPS caused a fivefold up-regulation in the expression of beta(2)-integrin (CD11b/Mac 1) and a concomitant 70% down-regulation of L-selectin (CD62L) adhesion molecule expression in human neutrophils. Neither effect was altered by quercetin, quercetin 3-glucuronide or quercetin 3'-sulfate. In conclusion, we found that acute exposure to quercetin and quercetin 3'-sulfate does not affect either expression of cell adhesion molecules or the elevation of intracellular calcium ions in response to LPS and fMLP in human neutrophils. However, quercetin 3-glucuronide reduced fMLP-evoked calcium responses. While this study highlights that metabolites of quercetin may possess different biological properties, dietary ingestion of quercetin is unlikely to exert a major effect on neutrophil function in vivo.
Collapse
|