1
|
Atta H, Alzahaby N, Hamdy NM, Emam SH, Sonousi A, Ziko L. New trends in synthetic drugs and natural products targeting 20S proteasomes in cancers. Bioorg Chem 2023; 133:106427. [PMID: 36841046 DOI: 10.1016/j.bioorg.2023.106427] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/15/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
Cancer is a global health challenge that remains to be a field of extensive research aiming to find new anticancer therapeutics. The 20S proteasome complex is one of the targets of anticancerdrugs, as it is correlated with several cancer types. Herein, we aim to discuss the 20S proteasome subunits and investigatethe currently studied proteasome inhibitors targeting the catalytically active proteasome subunits. In this review, we summarize the proteindegradation mechanism of the 20S proteasome complex and compareit with the 26S proteasome complex. Afterwards, the localization of the 20S proteasome is summarized as well as its use as a diagnosticandprognostic marker. The FDA-approved proteasome inhibitors (PIs) under clinical trials are summarized and their current limited use in solid tumors is also reviewed in addition to the expression of theβ5 subunit in differentcell lines. The review discusses in-silico analysis of the active subunit of the 20S proteasome complex. For development of new proteasome inhibitor drugs, the natural products inhibiting the 20S proteasome are summarized, as well as novel methodologies and challenges for the natural product discovery and current information about the biosynthetic gene clusters encoding them. We herein briefly summarize some resistancemechanismsto the proteasomeinhibitors. Additionally, we focus on the three main classes of proteasome inhibitors: 1] boronic acid, 2] beta-lactone and 3] epoxide inhibitor classes, as well as other PI classes, and their IC50 values and their structure-activity relationship (SAR). Lastly,we summarize several future prospects of developing new proteasome inhibitors towards the treatment of tumors, especially solid tumors.
Collapse
Affiliation(s)
- Hind Atta
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt
| | - Nouran Alzahaby
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - Soha H Emam
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Amr Sonousi
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Laila Ziko
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt; Biology Department, School of Sciences and Engineering, American University in Cairo, Egypt.
| |
Collapse
|
2
|
Bonhoure A, Henry L, Bich C, Blanc L, Bergeret B, Bousquet M, Coux O, Stoebner P, Vidal M. Extracellular
20S
proteasome secreted via microvesicles can degrade poorly folded proteins and inhibit Galectin‐3 agglutination activity. Traffic 2022; 23:287-304. [DOI: 10.1111/tra.12840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Anne Bonhoure
- Laboratory of Pathogen Host Interactions Université Montpellier, CNRS Montpellier France
| | - Laurent Henry
- Institut des Biomolécules Max Mousseron Université Montpellier, CNRS Montpellier France
| | - Claudia Bich
- Institut des Biomolécules Max Mousseron Université Montpellier, CNRS Montpellier France
| | - Lionel Blanc
- The Feinstein Institutes for Medical Research Manhasset New York USA
| | - Blanche Bergeret
- Institut des Biomolécules Max Mousseron Université Montpellier, CNRS Montpellier France
| | - Marie‐Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale Université Toulouse, CNRS, UPS Toulouse France
| | - Olivier Coux
- Centre de Recherche en Biologie cellulaire de Montpellier Univ. Montpellier, CNRS Montpellier France
| | - Pierre‐Emmanuel Stoebner
- Service de Dermatologie, CHU Nîmes Nîmes France
- Institut de Recherche en Cancérologie de Montpellier (IRCM) Université Montpellier Montpellier France
| | - Michel Vidal
- Laboratory of Pathogen Host Interactions Université Montpellier, CNRS Montpellier France
| |
Collapse
|
3
|
Upregulated Proteasome Subunits in COVID-19 Patients: A Link with Hypoxemia, Lymphopenia and Inflammation. Biomolecules 2022; 12:biom12030442. [PMID: 35327634 PMCID: PMC8946050 DOI: 10.3390/biom12030442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Severe COVID-19 disease leads to hypoxemia, inflammation and lymphopenia. Viral infection induces cellular stress and causes the activation of the innate immune response. The ubiquitin-proteasome system (UPS) is highly implicated in viral immune response regulation. The main function of the proteasome is protein degradation in its active form, which recognises and binds to ubiquitylated proteins. Some proteasome subunits have been reported to be upregulated under hypoxic and hyperinflammatory conditions. Here, we conducted a prospective cohort study of COVID-19 patients (n = 44) and age-and sex-matched controls (n = 20). In this study, we suggested that hypoxia could induce the overexpression of certain genes encoding for subunits from the α and β core of the 20S proteasome and from regulatory particles (19S and 11S) in COVID-19 patients. Furthermore, the gene expression of proteasome subunits was associated with lymphocyte count reduction and positively correlated with inflammatory molecular and clinical markers. Given the importance of the proteasome in maintaining cellular homeostasis, including the regulation of the apoptotic and pyroptotic pathways, these results provide a potential link between COVID-19 complications and proteasome gene expression.
Collapse
|
4
|
Wendt R, Lingitz MT, Laggner M, Mildner M, Traxler D, Graf A, Krotka P, Moser B, Hoetzenecker K, Kalbitz S, Lübbert C, Beige J, Ankersmit HJ. Clinical Relevance of Elevated Soluble ST2, HSP27 and 20S Proteasome at Hospital Admission in Patients with COVID-19. BIOLOGY 2021; 10:1186. [PMID: 34827178 PMCID: PMC8615143 DOI: 10.3390/biology10111186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022]
Abstract
Although, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) represents one of the biggest challenges in the world today, the exact immunopathogenic mechanism that leads to severe or critical Coronavirus Disease 2019 (COVID-19) has remained incompletely understood. Several studies have indicated that high systemic plasma levels of inflammatory cytokines result in the so-called "cytokine storm", with subsequent development of microthrombosis, disseminated intravascular coagulation, and multiorgan-failure. Therefore, we reasoned those elevated inflammatory molecules might act as prognostic factors. Here, we analyzed 245 serum samples of patients with COVID-19, collected at hospital admission. We assessed the levels of heat shock protein 27 (HSP27), soluble suppressor of tumorigenicity-2 (sST2) and 20S proteasome at hospital admission and explored their associations with overall-, 30-, 60-, 90-day- and in-hospital mortality. Moreover, we investigated their association with the risk of ventilation. We demonstrated that increased serum sST2 was uni- and multivariably associated with all endpoints. Furthermore, we also identified 20S proteasome as independent prognostic factor for in-hospital mortality (sST2, AUC = 0.73; HSP27, AUC = 0.59; 20S proteasome = 0.67). Elevated sST2, HSP27, and 20S proteasome levels at hospital admission were univariably associated with higher risk of invasive ventilation (OR = 1.8; p < 0.001; OR = 1.1; p = 0.04; OR = 1.03, p = 0.03, respectively). These findings could help to identify high-risk patients early in the course of COVID-19.
Collapse
Affiliation(s)
- Ralph Wendt
- Department of Infectious Diseases, Tropical Medicine, Nephrology and Rheumatology, St. Georg Hospital, Delitzscher Str. 141, 04129 Leipzig, Germany; (R.W.); (S.K.); (C.L.); (J.B.)
| | - Marie-Therese Lingitz
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.-T.L.); (M.L.); (M.M.); (D.T.); (B.M.)
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Maria Laggner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.-T.L.); (M.L.); (M.M.); (D.T.); (B.M.)
| | - Michael Mildner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.-T.L.); (M.L.); (M.M.); (D.T.); (B.M.)
- Department of Dermatology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Denise Traxler
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.-T.L.); (M.L.); (M.M.); (D.T.); (B.M.)
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Alexandra Graf
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Spitalg. 23, 1090 Vienna, Austria; (A.G.); (P.K.)
| | - Pavla Krotka
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Spitalg. 23, 1090 Vienna, Austria; (A.G.); (P.K.)
| | - Bernhard Moser
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.-T.L.); (M.L.); (M.M.); (D.T.); (B.M.)
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Konrad Hoetzenecker
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Sven Kalbitz
- Department of Infectious Diseases, Tropical Medicine, Nephrology and Rheumatology, St. Georg Hospital, Delitzscher Str. 141, 04129 Leipzig, Germany; (R.W.); (S.K.); (C.L.); (J.B.)
| | - Christoph Lübbert
- Department of Infectious Diseases, Tropical Medicine, Nephrology and Rheumatology, St. Georg Hospital, Delitzscher Str. 141, 04129 Leipzig, Germany; (R.W.); (S.K.); (C.L.); (J.B.)
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine II, Leipzig University Medical Center, Liebigstr. 20, 04103 Leipzig, Germany
| | - Joachim Beige
- Department of Infectious Diseases, Tropical Medicine, Nephrology and Rheumatology, St. Georg Hospital, Delitzscher Str. 141, 04129 Leipzig, Germany; (R.W.); (S.K.); (C.L.); (J.B.)
- Department of Internal Medicine II, Martin-Luther-University Halle-Wittenberg, 06108 Halle/Saale, Germany
| | - Hendrik Jan Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.-T.L.); (M.L.); (M.M.); (D.T.); (B.M.)
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| |
Collapse
|
5
|
Concept and application of circulating proteasomes. Exp Mol Med 2021; 53:1539-1546. [PMID: 34707192 PMCID: PMC8568939 DOI: 10.1038/s12276-021-00692-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/26/2022] Open
Abstract
Proteostasis is primarily a function of protein synthesis and degradation. Although the components and processes involved in intracellular proteostasis have been studied extensively, it is apparent that extracellular proteostasis is equitably crucial for the viability of organisms. The 26S proteasome, a unique ATP-dependent proteolytic complex in eukaryotic cells, contributes to the majority of intracellular proteolysis. Accumulating evidence suggests the presence of intact 20S proteasomes in the circulatory system (c-proteasomes), and similar to other plasma proteins, the levels of these c-proteasomes may vary, potentially reflecting specific pathophysiological conditions. Under normal conditions, the concentration of c-proteasomes has been reported to be in the range of ~0.2-2 μg/mL, which is ~2-4-fold lower than that of functional plasma proteins but markedly higher than that of signaling proteins. The characterization of c-proteasomes, such as their origin, structure, role, and clearance, has been delayed mainly due to technical limitations. In this review, we summarize the current perspectives pertaining to c-proteasomes, focusing on the methodology, including our experimental understanding. We believe that once the pathological relevance of c-proteasomes is revealed, these unique components may be utilized in the diagnosis and prognosis of diverse human diseases.
Collapse
|
6
|
Application of SPRi Biosensors for Determination of 20S Proteasome and UCH-L1 Levels in the Serum and Urine of Transitional Bladder Cancer Patients. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The ubiquitin–proteasome system (UPS) participates in the degradation of proteins which play an important role in regulating the cell cycle, apoptosis, and angiogenesis, as well as in the immune system. These processes are important in carcinogenesis. Transitional cell carcinoma (TCC) is one of the predominant types of bladder cancer. The relationship between the ubiquitin–proteasome system and cancer progression has become a topic of increasing interest among researchers. In this work, we propose an application of surface plasmon resonance imaging (SPRi)-based biosensors for the detection of 20S proteasome and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) in the blood serum and urine of patients with TCC. The aim of the study was to determine 20S proteasome and UCH-L1 concentrations and to correlate the results with clinicopathological parameters. The group of subjects consisted of 82 patients with confirmed TCC, in addition to a control group of 27 healthy volunteers. It was found that 20S proteasome and UCH-L1 concentrations were significantly elevated in both the serum and urine of TCC patients, compared with the healthy subjects. There was a correlation between 20S proteasome concentrations in serum and urine, as well as between serum proteasome and UCH-L1 concentration. The SPRi biosensor sensitive to 20S proteasome using PSI inhibitor as the receptor, and the SPRi biosensor sensitive to the UCH-L1 protein using the protein-specific antibody as the receptor is suitable for the determination of 20S proteasome and UCH-L1 in body fluids and can serve as useful tools in the investigation of cancer biomarkers.
Collapse
|
7
|
Dwivedi V, Yaniv K, Sharon M. Beyond cells: The extracellular circulating 20S proteasomes. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166041. [PMID: 33338594 DOI: 10.1016/j.bbadis.2020.166041] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 01/08/2023]
Abstract
Accumulating evidence arising from numerous clinical studies indicate that assembled and functional 20S proteasome complexes circulate freely in plasma. Elevated levels of this core proteolytic complex have been found in the plasma of patients suffering from blood, skin and solid cancers, autoimmune disorders, trauma and sepsis. Moreover, in various diseases, there is a positive correlation between circulating 20S proteasome (c20S) levels and treatment efficacy and survival rates, suggesting the involvement of this under-studied c20S complex in pathophysiology. However, many aspects of this system remain enigmatic, as we still do not know the origin, biological role or mechanisms of extracellular transport and regulation of c20S proteasomes. In this review, we provide an overview of the current understanding of the c20S proteasome system and discuss the remaining gaps in knowledge.
Collapse
Affiliation(s)
- Vandita Dwivedi
- Departments of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Karina Yaniv
- Departments of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Sharon
- Departments of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
8
|
Intensive Care Unit-Acquired Weakness: Not just Another Muscle Atrophying Condition. Int J Mol Sci 2020; 21:ijms21217840. [PMID: 33105809 PMCID: PMC7660068 DOI: 10.3390/ijms21217840] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Intensive care unit-acquired weakness (ICUAW) occurs in critically ill patients stemming from the critical illness itself, and results in sustained disability long after the ICU stay. Weakness can be attributed to muscle wasting, impaired contractility, neuropathy, and major pathways associated with muscle protein degradation such as the ubiquitin proteasome system and dysregulated autophagy. Furthermore, it is characterized by the preferential loss of myosin, a distinct feature of the condition. While many risk factors for ICUAW have been identified, effective interventions to offset these changes remain elusive. In addition, our understanding of the mechanisms underlying the long-term, sustained weakness observed in a subset of patients after discharge is minimal. Herein, we discuss the various proposed pathways involved in the pathophysiology of ICUAW, with a focus on the mechanisms underpinning skeletal muscle wasting and impaired contractility, and the animal models used to study them. Furthermore, we will explore the contributions of inflammation, steroid use, and paralysis to the development of ICUAW and how it pertains to those with the corona virus disease of 2019 (COVID-19). We then elaborate on interventions tested as a means to offset these decrements in muscle function that occur as a result of critical illness, and we propose new strategies to explore the molecular mechanisms of ICUAW, including serum-related biomarkers and 3D human skeletal muscle culture models.
Collapse
|
9
|
Aniort J, Freist M, Piraud A, Philipponnet C, Hadj Abdelkader M, Garrouste C, Gentes E, Pereira B, Heng AE. Circulating 20S proteasome for assessing protein energy wasting syndrome in hemodialysis patients. PLoS One 2020; 15:e0236948. [PMID: 32735636 PMCID: PMC7394422 DOI: 10.1371/journal.pone.0236948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/16/2020] [Indexed: 12/02/2022] Open
Abstract
Protein energy wasting (PEW) including muscle atrophy is a common complication in chronic hemodialysis patients. The ubiquitin proteasome system (UPS) is the main proteolytic system causing muscle atrophy in chronic kidney disease and proteasome 20S is the catalytic component of the UPS. Circulating proteasome 20S (c20S proteasome) is present in the blood and its level is related to disease severity and prognosis in several disorders. We hypothesized that c20S proteasome could be related with muscle mass, other PEW criteria and their evolution in hemodialysis patients. Stable hemodialysis patients treated at our center for more than 3 months were followed over 2 years. C20S proteasome assay was performed at baseline. Biological and clinical data were collected, muscle mass was assessed by multi-frequency bio-impedancemetry, and nutritional scores were calculated at baseline, 1 year and 2 years. Hospitalizations and mortality data were collected over the 2 years. Forty-nine patients were included. At baseline, the c20S proteasome level was 0.40[0.26–0.55] μg/ml. Low muscle mass as defined by a lean tissue index (LTI) < 10th in accordance with the International Society of Renal Nutrition and Metabolism guidelines was observed in 36% and PEW in 62%. Increased c20S proteasome levels were related with LTI at baseline (R = 0.43, p = 0.004) and with its 2 year-variation (R = -0.56, p = 0.003). Two-year survival rate was not different between higher and lower c20S proteasome values (78.9 vs 78.4%, p = 0.98 log-rank test). C20S proteasome is not a good marker for assessing nutritional status in hemodialysis patients and predicting patient outcomes.
Collapse
Affiliation(s)
- Julien Aniort
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, Clermont-Ferrand, France
- INRA, UMR 1019, Human Nutrition Unit (UNH), St Genès Champanelle, France
- * E-mail:
| | - Marine Freist
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, Clermont-Ferrand, France
- Nephrology and Dialysis Department, Emile Roux Hospital, Le Puy en Velay, France
| | - Aurélien Piraud
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, Clermont-Ferrand, France
| | - Carole Philipponnet
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, Clermont-Ferrand, France
| | - Mohamed Hadj Abdelkader
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, Clermont-Ferrand, France
| | - Cyril Garrouste
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, Clermont-Ferrand, France
| | - Elodie Gentes
- Clinical Nutrition Department, Gabriel Montpied University Hospital, Clermont-Ferrand, France
| | - Bruno Pereira
- University Hospital of Clermont-Ferrand, Biostatistics unit (DRCI), Clermont-Ferrand, France
| | - Anne-Elisabeth Heng
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, Clermont-Ferrand, France
- INRA, UMR 1019, Human Nutrition Unit (UNH), St Genès Champanelle, France
| |
Collapse
|
10
|
Berryman K, Buhimschi CS, Zhao G, Axe M, Locke M, Buhimschi IA. Proteasome Levels and Activity in Pregnancies Complicated by Severe Preeclampsia and Hemolysis, Elevated Liver Enzymes, and Thrombocytopenia (HELLP) Syndrome. Hypertension 2019; 73:1308-1318. [PMID: 31067191 DOI: 10.1161/hypertensionaha.118.12437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Excessive accumulation of misfolded proteins was recently demonstrated in preeclampsia. We examined levels and activity of circulatory proteasome and immunoproteasome (inflammatory subtype) in preeclampsia and hemolysis, elevated liver enzymes, and thrombocytopenia (HELLP) syndrome. We analyzed samples from women with hypertensive pregnancy disorders (n=115), including preeclampsia with severe features (sPE) and HELLP syndrome, and normotensive controls (n=45). Plasma proteasome and immunoproteasome immunoreactivity were determined by quantifying the α-subunit of the 20S core and β5i (proteasome subunit beta 8 [PSMB8]), respectively. Plasma proteasome activity was analyzed with fluorogenic substrates. MG132, lactacystin, and ONX0914 were used to inhibit the circulating proteasome and immunoproteasome, respectively. Plasma cytokine profiles were evaluated by multiplex immunoassay. Placental expression of β5 (constitutive proteasome) and β5i (immunoproteasome) was interrogated by immunohistochemistry. Women with sPE had increased plasma 20S levels ( P<0.001) and elevated lytic activities (chymotrypsin-like 7-fold, caspase-like 4.2-fold, trypsin-like 2.2-fold; P <0.001 for all) compared with pregnant controls. Women with features of HELLP displayed the highest plasma proteasome levels and activity, which correlated with decreased IFN-γ (interferon-γ), and increased IL (interleukin)-8 and IL-10. In sPE and HELLP, chymotrypsin-like activity was suppressed by proteasome inhibitors including ONX0914. Compared with gestational age-matched controls, sPE placentas harbored increased β5 and β5i immunostaining in trophoblasts. β5i signal was elevated in HELLP with predominant staining in villous core, extravillous trophoblasts in placental islands, and extracellular vesicles in intervillous spaces. Pregnancy represents a state of increased proteostatic stress. sPE and HELLP were characterized by significant upregulation in circulating levels and lytic activity of the proteasome that was partially explained by placental immunoproteasome upregulation.
Collapse
Affiliation(s)
- Kathryn Berryman
- From the Department of Obstetrics and Gynecology (K.B., C.S.B.), The Ohio State University College of Medicine, Columbus
| | - Catalin S Buhimschi
- From the Department of Obstetrics and Gynecology (K.B., C.S.B.), The Ohio State University College of Medicine, Columbus.,Department of Pediatrics (C.S.B., I.A.B.), The Ohio State University College of Medicine, Columbus
| | - Guomao Zhao
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH (G.Z., M.A., M.L., I.A.B.)
| | - Michelle Axe
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH (G.Z., M.A., M.L., I.A.B.)
| | - Megan Locke
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH (G.Z., M.A., M.L., I.A.B.)
| | - Irina A Buhimschi
- Department of Pediatrics (C.S.B., I.A.B.), The Ohio State University College of Medicine, Columbus.,Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH (G.Z., M.A., M.L., I.A.B.)
| |
Collapse
|
11
|
Chaves CF, Mazzotti DR, Cendoroglo MS, Ramos LR, Tufik S, Silva VCD, D'Almeida V. Genes related to maintenance of autophagy and successful aging. ARQUIVOS DE NEURO-PSIQUIATRIA 2019; 76:831-839. [PMID: 30698207 DOI: 10.1590/0004-282x20180142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/25/2018] [Indexed: 01/11/2023]
Abstract
Considering aging as a phenomenon in which there is a decline in essential processes for cell survival, we investigated the autophagic and proteasome pathways in three different groups: young, older and oldest old male adults. The expression profile of autophagic pathway-related genes was carried out in peripheral blood, and the proteasome quantification was performed in plasma. No significant changes were found in plasma proteasome concentrations or in correlations between proteasome concentrations and ages. However, some autophagy- and/or apoptosis-related genes were differentially expressed. In addition, the network and enrichment analysis showed an interaction between four of the five differentially expressed genes and an association of these genes with the transcriptional process. Considering that the oldest old individuals maintained both the expression of genes linked to the autophagic machinery, and the proteasome levels, when compared with the older group, we concluded that these factors could be considered crucial for successful aging.
Collapse
Affiliation(s)
| | - Diego Robles Mazzotti
- Universidade Federal de São Paulo, Departamento de Psicobiologia, São Paulo SP, Brasil
| | | | - Luiz Roberto Ramos
- Universidade Federal de São Paulo, Departamento de Medicina Preventiva, São Paulo SP, Brasil
| | - Sergio Tufik
- Universidade Federal de São Paulo, Departamento de Psicobiologia, São Paulo SP, Brasil
| | | | - Vânia D'Almeida
- Universidade Federal de São Paulo, Departamento de Psicobiologia, São Paulo SP, Brasil
| |
Collapse
|
12
|
Buneeva OA, Medvedev AE. [Ubiquitin-independent protein degradation in proteasomes]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:134-148. [PMID: 29723144 DOI: 10.18097/pbmc20186402134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteasomes are large supramolecular protein complexes present in all prokaryotic and eukaryotic cells, where they perform targeted degradation of intracellular proteins. Until recently, it was generally accepted that prior proteolytic degradation in proteasomes the proteins had to be targeted by ubiquitination: the ATP-dependent addition of (typically four sequential) residues of the low-molecular ubiquitin protein, involving the ubiquitin-activating enzyme, ubiquitin-conjugating enzyme and ubiquitin ligase. The cytoplasm and nucleoplasm proteins labeled in this way are then digested in 26S proteasomes. However, in recent years it has become increasingly clear that using this route the cell eliminates only a part of unwanted proteins. Many proteins can be cleaved by the 20S proteasome in an ATP-independent manner and without previous ubiquitination. Ubiquitin-independent protein degradation in proteasomes is a relatively new area of studies of the role of the ubiquitin-proteasome system. However, recent data obtained in this direction already correct existing concepts about proteasomal degradation of proteins and its regulation. Ubiquitin-independent proteasome degradation needs the main structural precondition in proteins: the presence of unstructured regions in the amino acid sequences that provide interaction with the proteasome. Taking into consideration that in humans almost half of all genes encode proteins that contain a certain proportion of intrinsically disordered regions, it appears that the list of proteins undergoing ubiquitin-independent degradation will demonstrate further increase. Since 26S of proteasomes account for only 30% of the total proteasome content in mammalian cells, most of the proteasomes exist in the form of 20S complexes. The latter suggests that ubiquitin-independent proteolysis performed by the 20S proteasome is a natural process of removing damaged proteins from the cell and maintaining a constant level of intrinsically disordered proteins. In this case, the functional overload of proteasomes in aging and/or other types of pathological processes, if it is not accompanied by triggering more radical mechanisms for the elimination of damaged proteins, organelles and whole cells, has the most serious consequences for the whole organism.
Collapse
Affiliation(s)
- O A Buneeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A E Medvedev
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
13
|
Proteasome Activity and C-Reactive Protein Concentration in the Course of Inflammatory Reaction in Relation to the Type of Abdominal Operation and the Surgical Technique Used. Mediators Inflamm 2018; 2018:2469098. [PMID: 30405319 PMCID: PMC6204193 DOI: 10.1155/2018/2469098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 11/30/2022] Open
Abstract
Surgical tissue damage and the accompanying inflammatory response lead to proteasome activation, initiation of damaged protein degradation, and induction of acute-phase inflammatory response. The aim of this study was to investigate the rate of change in proteasome chymotrypsin-like (ChT-L) activity and C-reactive protein concentration depending on the degree of tissue damage and their correlation with prealbumin concentrations in children before and after abdominal surgery. This experimental study included children who underwent abdominal surgery between 2015 and 2017. Plasma prealbumin concentrations and C-reactive protein levels (CRP) were determined by standard biochemical laboratory procedures. Proteasome activity was assessed using a Suc-Leu-Leu-Val-Tyr-AMC peptide substrate. Elevation of plasma proteasome activity was noted in children after laparoscopic and open abdominal surgeries. However, 20S proteasome activity in children undergoing conventional open surgery was significantly higher (P < 0.05) than in patients subjected to laparoscopy. At the same time, an increase in the CRP level was observed. However, there was no correlation between C-reactive protein concentrations and the type of abdominal surgery while there was a correlation observed in the case of proteasomes. Proteasome activity correlates with the degree of surgical tissue damage and prealbumin concentrations. More invasive surgery leads to a stronger activation of the proteasome involved in removing proteins that were damaged due to the surgical procedure. Proteasomes are more specific markers because there is a correlation between proteasome activity and the type of abdominal surgery in contrast to C-reactive protein concentrations which are not different in response to surgery performed in regard to ovarian cysts or cholelithiasis.
Collapse
|
14
|
Moussa EM, Huang H, Thézénas ML, Fischer R, Ramaprasad A, Sisay-Joof F, Jallow M, Pain A, Kwiatkowski D, Kessler BM, Casals-Pascual C. Proteomic profiling of the plasma of Gambian children with cerebral malaria. Malar J 2018; 17:337. [PMID: 30249265 PMCID: PMC6154937 DOI: 10.1186/s12936-018-2487-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cerebral malaria (CM) is a severe neurological complication of Plasmodium falciparum infection. A number of pathological findings have been correlated with pediatric CM including sequestration, platelet accumulation, petechial haemorrhage and retinopathy. However, the molecular mechanisms leading to death in CM are not yet fully understood. METHODS A shotgun plasma proteomic study was conducted using samples form 52 Gambian children with CM admitted to hospital. Based on clinical outcome, children were assigned to two groups: reversible and fatal CM. Label-free liquid chromatography-tandem mass spectrometry was used to identify and compare plasma proteins that were differentially regulated in children who recovered from CM and those who died. Candidate biomarkers were validated using enzyme immunoassays. RESULTS The plasma proteomic signature of children with CM identified 266 proteins differentially regulated in children with fatal CM. Proteins from the coagulation cascade were consistently decreased in fatal CM, whereas the plasma proteomic signature associated with fatal CM underscored the importance of endothelial activation, tissue damage, inflammation, haemolysis and glucose metabolism. The concentration of circulating proteasomes or PSMB9 in plasma was not significantly different in fatal CM when compared with survivors. Plasma PSMB9 concentration was higher in patients who presented with seizures and was significantly correlated with the number of seizures observed in patients with CM during admission. CONCLUSIONS The results indicate that increased tissue damage and hypercoagulability may play an important role in fatal CM. The diagnostic value of this molecular signature to identify children at high risk of dying to optimize patient referral practices should be validated prospectively.
Collapse
Affiliation(s)
- Ehab M Moussa
- Wellcome Trust Centre for Human Genetics, Oxford, UK
- King Abdulla University of Science and Technology, Thuwal, Saudi Arabia
| | - Honglei Huang
- Wellcome Trust Centre for Human Genetics, Oxford, UK
| | | | - Roman Fischer
- Wellcome Trust Centre for Human Genetics, Oxford, UK
| | - Abhinay Ramaprasad
- Wellcome Trust Centre for Human Genetics, Oxford, UK
- King Abdulla University of Science and Technology, Thuwal, Saudi Arabia
| | | | | | - Arnab Pain
- King Abdulla University of Science and Technology, Thuwal, Saudi Arabia
| | | | | | - Climent Casals-Pascual
- Wellcome Trust Centre for Human Genetics, Oxford, UK.
- Hospital Clinic i Provincial de Barcelona, CDB and ISGlobal, Barcelona, Spain.
| |
Collapse
|
15
|
Buneeva OA, Medvedev AE. Ubiquitin-Independent Degradation of Proteins in Proteasomes. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2018. [DOI: 10.1134/s1990750818030022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Gerke I, Kaup FJ, Neumann S. Evaluation of serum insulin-like growth factor-1 and 26S proteasome concentrations in healthy dogs and dogs with chronic diseases depending on body condition score. Res Vet Sci 2018; 118:484-490. [PMID: 29751280 DOI: 10.1016/j.rvsc.2018.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/26/2018] [Accepted: 04/24/2018] [Indexed: 01/24/2023]
Abstract
In patients suffering from chronic diseases, the objective assessment of metabolic states could be of interest for disease prognosis and therapeutic options. Therefore, the aim of this study was to assess insulin-like growth factor-1 (IGF-1) and 26S proteasome (26SP) in healthy dogs and dogs suffering from chronic diseases depending on their body condition score (BCS) and to examine their potential for objective assessment of anabolic and catabolic states. Serum concentrations of IGF-1, an anabolic hormone, and 26SP, a multiprotein complex which is part of the ubiquitin-proteasome pathway, by which the majority of endogenous proteins including the muscle proteins are degraded, were measured in 21 healthy dogs and 20 dogs with chronic diseases by canine ELISA. The concentrations of IGF-1, 26SP and their ratio (IGF-1/26SP) were set in relationship to the BCS of the dogs. When examining healthy and chronically diseased dogs separately, a positive correlation between IGF-1 and the BCS was observed in the healthy group and a negative correlation between 26SP and the BCS was noted in dogs with chronic diseases. Further, dogs suffering from chronic diseases showed higher 26SP concentrations and lower values for IGF-1/26SP than the healthy dogs. Overall, we detected a negative correlation between 26SP and the BCS and a positive correlation between IGF-1/26SP and the BCS. The results of our study indicate usability of IGF-1 for description of anabolic states, while 26SP could be useful for detection and description of catabolic states. Finally, the ratio IGF-1/26SP seems to be promising for assessment of metabolic states.
Collapse
Affiliation(s)
- Ingrid Gerke
- Institute of Veterinary Medicine, Georg August University of Goettingen, Burckhardtweg 2, Goettingen 37077, Germany.
| | - Franz-Josef Kaup
- Pathology Unit, German Primate Center, Leibniz-Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany.
| | - Stephan Neumann
- Institute of Veterinary Medicine, Georg August University of Goettingen, Burckhardtweg 2, Goettingen 37077, Germany.
| |
Collapse
|
17
|
Kulichkova VA, Artamonova TO, Lyublinskaya OG, Khodorkovskii MA, Tomilin AN, Tsimokha AS. Proteomic analysis of affinity-purified extracellular proteasomes reveals exclusively 20S complexes. Oncotarget 2017; 8:102134-102149. [PMID: 29254231 PMCID: PMC5731941 DOI: 10.18632/oncotarget.22230] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/29/2017] [Indexed: 12/31/2022] Open
Abstract
Proteasome-mediated proteolysis is important for many basic cellular processes. In addition to their functions in the cell, proteasomes have been found in physiological fluids of both healthy and diseased humans including cancer patients. Higher levels of these proteasomes are associated with higher cancer burden and stage. The etiology and functions of these proteasomes, referred to as circulating, plasmatic, or extracellular proteasomes (ex-PSs), are unclear. Here we show that human cancer cell lines, as well as human endometrium-derived mesenchymal stem cells (hMESCs), release proteasome complexes into culture medium (CM). To define ex-PS composition, we have affinity purified them from CM conditioned by human leukemia cell line K562. Using matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS), we have identified core 20S proteasome subunits and a set of 15 proteasome-interacting proteins (PIPs), all previously described as exosome cargo proteins. Three of them, PPIase A, aldolase A, and transferrin, have never been reported as PIPs. The study provides compelling arguments that ex-PSs do not contain 19S or PA200 regulatory particles and are represented exclusively by the 20S complex.
Collapse
Affiliation(s)
| | - Tatiana O. Artamonova
- Institute of Nanobiotechnologies, Peter the Great St-Petersburg Polytechnic University, St-Petersburg 195251, Russia
| | - Olga G. Lyublinskaya
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg 194064, Russia
| | - Mikhail A. Khodorkovskii
- Institute of Nanobiotechnologies, Peter the Great St-Petersburg Polytechnic University, St-Petersburg 195251, Russia
| | - Alexey N. Tomilin
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg 194064, Russia
- Institute of Translational Biomedicine, St-Petersburg State University, St-Petersburg 199034, Russia
| | - Anna S. Tsimokha
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg 194064, Russia
| |
Collapse
|
18
|
Matuszczak E, Sankiewicz A, Debek W, Gorodkiewicz E, Milewski R, Hermanowicz A. Immunoproteasome in the blood plasma of children with acute appendicitis, and its correlation with proteasome and UCHL1 measured by SPR imaging biosensors. Clin Exp Immunol 2017; 191:125-132. [PMID: 28940383 DOI: 10.1111/cei.13056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to determinate the immunoproteasome concentration in the blood plasma of children with appendicitis, and its correlation with circulating proteasome and ubiquitin carboxyl-terminal hydrolase L1 (UCHL1). Twenty-seven children with acute appendicitis, managed at the Paediatric Surgery Department, were included randomly into the study (age 2 years 9 months up to 14 years, mean age 9·5 ± 1 years). There were 10 girls and 17 boys; 18 healthy, age-matched subjects, admitted for planned surgeries served as controls. Mean concentrations of immunoproteasome, 20S proteasome and UCHL1 in the blood plasma of children with appendicitis before surgery 24 h and 72 h after the appendectomy were higher than in the control group. The immunoproteasome, 20S proteasome and UCHL1 concentrations in the blood plasma of patients with acute appendicitis were highest before surgery. The immunoproteasome, 20S proteasome and UCHL1 concentration measured 24 and 72 h after the operation decreased slowly over time and still did not reach the normal range (P < 0·05). There was no statistical difference between immunoproteasome, 20S proteasome and UCHL1 concentrations in children operated on laparoscopically and children after classic appendectomy. The immunoproteasome concentration may reflect the metabolic response to acute state inflammation, and the process of gradual ebbing of the inflammation may thus be helpful in the assessment of the efficacy of treatment. The method of operation - classic open appendectomy or laparoscopic appendectomy - does not influence the general trend in immunoproteasome concentration in children with appendicitis.
Collapse
Affiliation(s)
- E Matuszczak
- Paediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| | - A Sankiewicz
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - W Debek
- Paediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| | - E Gorodkiewicz
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - R Milewski
- Statistics Department, Medical University of Bialystok, Bialystok, Poland
| | - A Hermanowicz
- Paediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
19
|
Extracellular proteasome-osteopontin circuit regulates cell migration with implications in multiple sclerosis. Sci Rep 2017; 7:43718. [PMID: 28276434 PMCID: PMC5343429 DOI: 10.1038/srep43718] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/27/2017] [Indexed: 12/15/2022] Open
Abstract
Osteopontin is a pleiotropic cytokine that is involved in several diseases including multiple sclerosis. Secreted osteopontin is cleaved by few known proteases, modulating its pro-inflammatory activities. Here we show by in vitro experiments that secreted osteopontin can be processed by extracellular proteasomes, thereby producing fragments with novel chemotactic activity. Furthermore, osteopontin reduces the release of proteasomes in the extracellular space. The latter phenomenon seems to occur in vivo in multiple sclerosis, where it reflects the remission/relapse alternation. The extracellular proteasome-mediated inflammatory pathway may represent a general mechanism to control inflammation in inflammatory diseases.
Collapse
|
20
|
Abstract
Proteases play an important role in health and disease of the lung. In the normal lungs, proteases maintain their homeostatic functions that regulate processes like its regeneration and repair. Dysregulation of proteases–antiproteases balance is crucial in the manifestation of different types of lung diseases. Chronic inflammatory lung pathologies are associated with a marked increase in protease activities. Thus, in addition to protease activities, inhibition of anti-proteolytic control mechanisms are also important for effective microbial infection and inflammation in the lung. Herein, we briefly summarize the role of different proteases and to some extent antiproteases in regulating a variety of lung diseases.
Collapse
|
21
|
An extracellular proteasome releases endostatin from human collagen XVIII. Angiogenesis 2016; 20:125-137. [DOI: 10.1007/s10456-016-9533-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/17/2016] [Indexed: 12/12/2022]
|
22
|
Manasanch EE, de Larrea CF, Zingone A, Steinberg SM, Kwok M, Tageja N, Bhutani M, Kazandjian D, Roschewski M, Wu P, Carter G, Zuchlinski D, Mulquin M, Lamping L, Costello R, Burton D, Gil LA, Figg WD, Maric I, Calvo KR, Yuan C, Stetler-Stevenson M, Korde N, Landgren O. Enzymatic activities of circulating plasma proteasomes in newly diagnosed multiple myeloma patients treated with carfilzomib, lenalidomide and dexamethasone. Leuk Lymphoma 2016; 58:639-645. [PMID: 27687480 DOI: 10.1080/10428194.2016.1214953] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The proteasome inhibitor carfilzomib is highly effective in the treatment of multiple myeloma. It irreversibly binds the chymotrypsin-like active site in the β5 subunit of the 20S proteasome. Despite impressive response rates when carfilzomib is used in combination with immunomodulatory agents in newly diagnosed multiple myeloma patients; no biomarker exists to accurately predict response and clinical outcomes. We prospectively assessed the activity in peripheral blood of the chymotrypsin-like (CHYM), caspase-like (CASP) and trypsin-like (TRYP) proteolytic sites in 45 newly diagnosed multiple myeloma patients treated with eight cycles of carfilzomib, lenalidomide and dexamethasone (CRd) (NCT01402284). Samples were collected per protocol and proteasome activity measured through a fluorogenic assay. Median CHYM levels after one dose of carfilzomib decreased by >70%. CHYM and CASP activity decreased throughout treatment reaching a minimum after eight cycles of treatment. Higher levels of proteasome activity associated with higher disease burden (r > 0.30; p < 0.05) and higher disease stage (0.10 < p <0.20). No association was found with the probability of achieving a complete response, minimal residual disease negativity or time to best response. Further studies evaluating proteasome activity in malignant plasma cells may help elucidate how proteasome activity can be used as a biomarker in multiple myeloma.
Collapse
Affiliation(s)
- Elisabet E Manasanch
- a Multiple Myeloma Section , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA.,b Department of Lymphoma/Myeloma, Division of Cancer Medicine , University of Texas, M.D. Anderson Cancer Center , Houston , TX , USA
| | - Carlos Fernández de Larrea
- a Multiple Myeloma Section , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA.,c Amyloidosis and Myeloma Unit, Department of Hematology , Hospital Clínic, Barcelona. Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona , Barcelona , Catalonia , Spain
| | - Adriana Zingone
- a Multiple Myeloma Section , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Seth M Steinberg
- d Biostastistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Mary Kwok
- a Multiple Myeloma Section , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Nishant Tageja
- a Multiple Myeloma Section , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Manisha Bhutani
- a Multiple Myeloma Section , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Dickran Kazandjian
- a Multiple Myeloma Section , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Mark Roschewski
- a Multiple Myeloma Section , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Peter Wu
- a Multiple Myeloma Section , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - George Carter
- a Multiple Myeloma Section , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Diamond Zuchlinski
- a Multiple Myeloma Section , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Marcia Mulquin
- a Multiple Myeloma Section , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Liz Lamping
- a Multiple Myeloma Section , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Rene Costello
- a Multiple Myeloma Section , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Deborah Burton
- a Multiple Myeloma Section , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Lindsay A Gil
- a Multiple Myeloma Section , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - William D Figg
- a Multiple Myeloma Section , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Irina Maric
- e Laboratory of Hematology, Department of Laboratory Medicine , NIH Clinical Center , Bethesda , MD , USA
| | - Katherine R Calvo
- e Laboratory of Hematology, Department of Laboratory Medicine , NIH Clinical Center , Bethesda , MD , USA
| | - Constance Yuan
- f Flow Cytometry Unit, Laboratory of Pathology, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Maryalice Stetler-Stevenson
- f Flow Cytometry Unit, Laboratory of Pathology, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Neha Korde
- a Multiple Myeloma Section , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA.,g Myeloma Service, Department of Medicine , Memorial Sloan-Kettering Cancer Center , New York , NY , USA
| | - Ola Landgren
- a Multiple Myeloma Section , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA.,g Myeloma Service, Department of Medicine , Memorial Sloan-Kettering Cancer Center , New York , NY , USA
| |
Collapse
|
23
|
Barreiro E, Puig-Vilanova E, Marin-Corral J, Chacón-Cabrera A, Salazar-Degracia A, Mateu X, Puente-Maestu L, García-Arumí E, Andreu AL, Molina L. Therapeutic Approaches in Mitochondrial Dysfunction, Proteolysis, and Structural Alterations of Diaphragm and Gastrocnemius in Rats With Chronic Heart Failure. J Cell Physiol 2015; 231:1495-513. [DOI: 10.1002/jcp.25241] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 11/03/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Esther Barreiro
- Department of Pulmonology-Muscle and Respiratory System Research Unit (URMAR), IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS); Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB); Barcelona Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III (ISCIII); Barcelona Spain
| | - Ester Puig-Vilanova
- Department of Pulmonology-Muscle and Respiratory System Research Unit (URMAR), IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS); Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB); Barcelona Spain
| | - Judith Marin-Corral
- Department of Pulmonology-Muscle and Respiratory System Research Unit (URMAR), IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS); Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB); Barcelona Spain
| | - Alba Chacón-Cabrera
- Department of Pulmonology-Muscle and Respiratory System Research Unit (URMAR), IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS); Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB); Barcelona Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III (ISCIII); Barcelona Spain
| | - Anna Salazar-Degracia
- Department of Pulmonology-Muscle and Respiratory System Research Unit (URMAR), IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS); Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB); Barcelona Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III (ISCIII); Barcelona Spain
| | - Xavier Mateu
- Servicio de Neumología, Hospital General Gregorio Marañón; Universidad Complutense de Madrid; Madrid Spain
| | - Luis Puente-Maestu
- Servicio de Neumología, Hospital General Gregorio Marañón; Universidad Complutense de Madrid; Madrid Spain
| | - Elena García-Arumí
- Unitat de Patologia Neuromuscular i Mitocondrial, Hospital Universitari Vall d'Hebron Institut de Recerca (VHIR); Universitat Autònoma de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); ISCIII; Barcelona Spain
| | - Antoni L. Andreu
- Unitat de Patologia Neuromuscular i Mitocondrial, Hospital Universitari Vall d'Hebron Institut de Recerca (VHIR); Universitat Autònoma de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); ISCIII; Barcelona Spain
| | - Luis Molina
- Department of Cardiology, Hospital del Mar, Heart Diseases Biomedical Research Group, IMIM, and Department of Medicine; Universitat Autònoma de Barcelona; Barcelona Spain
| |
Collapse
|
24
|
Circulating 20S proteasome is independently associated with abdominal muscle mass in hemodialysis patients. PLoS One 2015; 10:e0121352. [PMID: 25803510 PMCID: PMC4372611 DOI: 10.1371/journal.pone.0121352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/30/2015] [Indexed: 11/29/2022] Open
Abstract
Protein-energy wasting is highly prevalent in hemodialysis patients, and it contributes to patient morbidity and mortality. The ubiquitin-proteasome system is the major pathway for intracellular protein degradation and it is involved in the regulation of basic cellular processes. However, the role of this system in the determination of nutritional status is largely unknown. To examine a relationship between protein-energy wasting and the ubiquitin-proteasome system, a cross-sectional study of 76 hemodialysis patients was performed. Plasma concentrations of 20S proteasome were studied to evaluate its association with muscle and fat mass, which were investigated by abdominal muscle and fat areas measured using computed tomography and by creatinine production estimated using the creatinine kinetic model. Plasma 20S proteasome concentrations significantly and negatively correlated with abdominal muscle areas and creatinine production (rho = -0.263, P < 0.05 and rho = -0.241, P < 0.05, respectively), but not abdominal subcutaneous and visceral fat areas. Multiple regression analyses showed that 20S proteasome was a significant independent predictor of abdominal muscle area (P < 0.05). In conclusion, plasma 20S proteasome concentrations were independently associated with abdominal muscle mass in hemodialysis patients. Our findings indicate a relationship between circulating 20S proteasomes and muscle metabolism in these patients.
Collapse
|
25
|
Chacon-Cabrera A, Fermoselle C, Urtreger AJ, Mateu-Jimenez M, Diament MJ, de Kier Joffé EDB, Sandri M, Barreiro E. Pharmacological strategies in lung cancer-induced cachexia: effects on muscle proteolysis, autophagy, structure, and weakness. J Cell Physiol 2014; 229:1660-72. [PMID: 24615622 DOI: 10.1002/jcp.24611] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/06/2014] [Indexed: 12/13/2022]
Abstract
Cachexia is a relevant comorbid condition of chronic diseases including cancer. Inflammation, oxidative stress, autophagy, ubiquitin-proteasome system, nuclear factor (NF)-κB, and mitogen-activated protein kinases (MAPK) are involved in the pathophysiology of cancer cachexia. Currently available treatment is limited and data demonstrating effectiveness in in vivo models are lacking. Our objectives were to explore in respiratory and limb muscles of lung cancer (LC) cachectic mice whether proteasome, NF-κB, and MAPK inhibitors improve muscle mass and function loss through several molecular mechanisms. Body and muscle weights, limb muscle force, protein degradation and the ubiquitin-proteasome system, signaling pathways, oxidative stress and inflammation, autophagy, contractile and functional proteins, myostatin and myogenin, and muscle structure were evaluated in the diaphragm and gastrocnemius of LC (LP07 adenocarcinoma) bearing cachectic mice (BALB/c), with and without concomitant treatment with NF-κB (sulfasalazine), MAPK (U0126), and proteasome (bortezomib) inhibitors. Compared to control animals, in both respiratory and limb muscles of LC cachectic mice: muscle proteolysis, ubiquitinated proteins, autophagy, myostatin, protein oxidation, FoxO-1, NF-κB and MAPK signaling pathways, and muscle abnormalities were increased, while myosin, creatine kinase, myogenin, and slow- and fast-twitch muscle fiber size were decreased. Pharmacological inhibition of NF-κB and MAPK, but not the proteasome system, induced in cancer cachectic animals, a substantial restoration of muscle mass and force through a decrease in muscle protein oxidation and catabolism, myostatin, and autophagy, together with a greater content of myogenin, and contractile and functional proteins. Attenuation of MAPK and NF-κB signaling pathway effects on muscles is beneficial in cancer-induced cachexia.
Collapse
Affiliation(s)
- Alba Chacon-Cabrera
- Pulmonology-Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ben-Nissan G, Sharon M. Regulating the 20S proteasome ubiquitin-independent degradation pathway. Biomolecules 2014; 4:862-84. [PMID: 25250704 PMCID: PMC4192676 DOI: 10.3390/biom4030862] [Citation(s) in RCA: 252] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/27/2014] [Accepted: 09/05/2014] [Indexed: 02/07/2023] Open
Abstract
For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by the core 20S proteasome itself. Degradation by the 20S proteasome does not require ubiquitin tagging or the presence of the 19S regulatory particle; rather, it relies on the inherent structural disorder of the protein being degraded. Thus, proteins that contain unstructured regions due to oxidation, mutation, or aging, as well as naturally, intrinsically unfolded proteins, are susceptible to 20S degradation. Unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome, relatively little is known about the means by which 20S-mediated proteolysis is controlled. Here, we describe our current understanding of the regulatory mechanisms that coordinate 20S proteasome-mediated degradation, and highlight the gaps in knowledge that remain to be bridged.
Collapse
Affiliation(s)
- Gili Ben-Nissan
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Michal Sharon
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
27
|
Anjum F, Lazar J, Soh J, Albitar M, Gowda S, Hussain MM, Wadgaonkar R. Dysregulation of ubiquitin-proteasome pathway and apolipoprotein A metabolism in sickle cell disease-related pulmonary arterial hypertension. Pulm Circ 2014; 3:851-5. [PMID: 25006400 DOI: 10.1086/674763] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 06/28/2013] [Indexed: 01/05/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a major complication of sickle cell disease (SCD). Low levels of apolipoprotein A1 (Apo-A1) have been implicated in the development of PAH in SCD. We speculate that lower levels of Apo-A1 are related to dysregulation of the ubiquitin-proteasome pathway (UPP). Of 36 recruited patients with SCD, 14 were found to have PAH on the basis of right heart catheterization. Levels of Apo-A1 and Apo-B, polyubiquitin, total protease, and specific and normalized activity of chymotrypsin-like, trypsin-like, and caspase-like proteases in plasma were measured. Levels of Apo-A1 were found to be lower and polyubiquitin levels were found to be significantly higher in the PAH group ([Formula: see text]) in SCD. Apo-A levels were inversely correlated with polyubiquitin levels ([Formula: see text], [Formula: see text]). These results indicate that lower levels of Apo-A1 in SCD patients with PAH are likely related to enhance degradation by UPP, potentially contributing to pulmonary vascular pathology. These findings may provide significant insight in identifying suitable therapeutic targets in these patients.
Collapse
Affiliation(s)
- Fatima Anjum
- State University of New York Downstate Medical Center, Brooklyn, New York, USA
| | - Jason Lazar
- State University of New York Downstate Medical Center, Brooklyn, New York, USA
| | - James Soh
- State University of New York Downstate Medical Center, Brooklyn, New York, USA
| | - Maher Albitar
- Quest Diagnostics, Nichols Institute, San Juan Capistrano, California, USA
| | - Satish Gowda
- State University of New York Downstate Medical Center, Brooklyn, New York, USA
| | - M Mahmood Hussain
- State University of New York Downstate Medical Center, Brooklyn, New York, USA ; Veterans Affairs Medical Center, Brooklyn, New York, USA
| | - Raj Wadgaonkar
- State University of New York Downstate Medical Center, Brooklyn, New York, USA ; Veterans Affairs Medical Center, Brooklyn, New York, USA
| |
Collapse
|
28
|
Manasanch EE, Korde N, Zingone A, Tageja N, Fernandez de Larrea C, Bhutani M, Wu P, Roschewski M, Landgren O. The proteasome: mechanisms of biology and markers of activity and response to treatment in multiple myeloma. Leuk Lymphoma 2014; 55:1707-14. [PMID: 24261677 DOI: 10.3109/10428194.2013.828351] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Since the early 1990s, the synthesis and subsequent clinical application of small molecule inhibitors of the ubiquitin proteasome pathway (UPP) has revolutionized the treatment and prognosis of multiple myeloma. In this review, we summarize important aspects of the biology of the UPP with a focus on its structure and key upstream/downstream regulatory components. We then review current knowledge of plasma cell sensitivity to proteasome inhibition and highlight new proteasome inhibitors that have recently entered clinical development. Lastly, we address the putative role of circulating proteasomes as a novel biomarker in multiple myeloma and provide guidance for future clinical trials using proteasome inhibitors.
Collapse
Affiliation(s)
- Elisabet E Manasanch
- Multiple Myeloma Section, Metabolism Branch, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Current understanding on the role of standard and immunoproteasomes in inflammatory/immunological pathways of multiple sclerosis. Autoimmune Dis 2014; 2014:739705. [PMID: 24523959 PMCID: PMC3910067 DOI: 10.1155/2014/739705] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/12/2013] [Indexed: 12/30/2022] Open
Abstract
The ubiquitin-proteasome system is the major intracellular molecular machinery for protein degradation and maintenance of protein homeostasis in most human cells. As ubiquitin-proteasome system plays a critical role in the regulation of the immune system, it might also influence the development and progression of multiple sclerosis (MS). Both ex vivo analyses and animal models suggest that activity and composition of ubiquitin-proteasome system are altered in MS. Proteasome isoforms endowed of immunosubunits may affect the functionality of different cell types such as CD8+ and CD4+ T cells and B cells as well as neurons during MS development. Furthermore, the study of proteasome-related biomarkers, such as proteasome antibodies and circulating proteasomes, may represent a field of interest in MS. Proteasome inhibitors are already used as treatment for cancer and the recent development of inhibitors selective for immunoproteasome subunits may soon represent novel therapeutic approaches to the different forms of MS. In this review we describe the current knowledge on the potential role of proteasomes in MS and discuss the pro et contra of possible therapies for MS targeting proteasome isoforms.
Collapse
|
30
|
Bochmann I, Ebstein F, Lehmann A, Wohlschlaeger J, Sixt SU, Kloetzel PM, Dahlmann B. T lymphocytes export proteasomes by way of microparticles: a possible mechanism for generation of extracellular proteasomes. J Cell Mol Med 2013; 18:59-68. [PMID: 24304442 PMCID: PMC3916118 DOI: 10.1111/jcmm.12160] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/10/2013] [Indexed: 01/31/2023] Open
Abstract
The 20S proteasome is almost exclusively localized within cells. High levels of extracellular proteasomes are also found circulating in the blood plasma of patients suffering from a variety of inflammatory, autoimmune and neoplastic diseases. However, the origin of these proteasomes remained enigmatic. Since the proteome of microparticles, small membrane enclosed vesicles released from cells, was shown to contain proteasomal subunits, we studied whether intact proteasomes are actively released into the extracellular space. Using human primary T lymphocytes stimulated with CaCl2 and the calcium ionophore A23187 to induce membrane blebbing we demonstrate that microparticles contain proteolytically active 20S proteasomes as well as the proteasome activator PA28 and subunits of the 19S proteasome regulator. Furthermore, our experiments reveal that incubation of in vitro generated T lymphocyte-microparticles with sphingomyelinase results in the hydrolysis of the microparticle membranes and subsequent release of proteasomes from the vesicles. Thus, we here show for the first time that functional proteasomes can be exported from activated immune cells by way of microparticles, the dissolution of which may finally lead to the generation of extracellular proteasomes.
Collapse
Affiliation(s)
- Isabel Bochmann
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Proteasome inhibition decreases inflammation in human endothelial cells exposed to lipopolysaccharide. J Cardiovasc Pharmacol 2013; 60:381-9. [PMID: 22820895 DOI: 10.1097/fjc.0b013e3182657eec] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND The proteasome degrades ubiquitinated proteins and is the major pathway for intracellular protein degradation. The role of the proteasome in endothelial dysfunction observed in septic shock remains unknown. We stimulated primary cultures of human umbilical vein endothelial cells with lipopolysaccharide (LPS) and investigated effects on the proteasome. We hypothesized that proteasome inhibition would decrease endothelial cell activation, oxidative stress, and alter the proteome. METHODS Endothelial cells were exposed to LPS (100 ng/mL) for 6 hours with or without lactacystin (5 mM), a proteasome inhibitor. Proteasome content and ubiquitinated proteins were measured by enzyme-linked immunosorbent assay and immunoblot, respectively. Markers of cellular activation, vascular cell adhesion molecule-1 and intercellular adhesion molecule-1, were measured by immunoblot and immunoassay. Superoxide anion production was determined by dihydroethidium assay, and nitrotyrosine (a marker of peroxynitrite) was visualized by immunofluoresence. The endothelial cell proteome was analyzed by 2D gel electrophoresis. RESULTS LPS stimulation of endothelial cells significantly increased proteasome content, whereas the total levels of ubquitinated proteins decreased. This suggests that LPS activates the proteasome system in endothelial cells. LPS increased total content and cell surface expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1, whereas proteasome inhibition ameliorated these increases. LPS increased both superoxide anion production and nitrotyrosine staining. Proteasome inhibition decreased both markers of cellular oxidative stress. Proteomic analysis identified two novel proteins upregulated by LPS and normalized with proteasome inhibition as follows: guanine nucleotide binding protein-1 and heterogeneous ribonucleoprotein K transcript variant. CONCLUSIONS These results suggest that inhibition of the proteasome diminishes a number of markers of cellular stress induced by LPS. The proteasome may be a promising therapeutic target in clinical situations of severe pro-inflammatory stress.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW ICU-acquired weakness (ICUAW) is now recognized as a major complication of critical illness. There is no doubt that ICUAW is prevalent - some might argue ubiquitous - after critical illness, but its true role, the interaction with preexisting nerve and muscle lesions as well as its contribution to long-term functional disability, remains to be elucidated. RECENT FINDINGS In this article, we review the current state-of-the-art of the basic pathophysiology of nerve and muscle weakness after critical illness and explore the current literature on ICUAW with a special emphasis on the most important mechanisms of weakness. SUMMARY Variable contributions of structural and functional changes likely contribute to both early and late myopathy and neuropathy, although the specifics of the temporality of both processes, and the influence patient comorbidities, age, and nature of the ICU insult have on them, remain to be determined.
Collapse
|
33
|
Batt J, dos Santos CC, Cameron JI, Herridge MS. Intensive care unit-acquired weakness: clinical phenotypes and molecular mechanisms. Am J Respir Crit Care Med 2012. [PMID: 23204256 DOI: 10.1164/rccm.201205-0954so] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intensive care unit-acquired weakness (ICUAW) begins within hours of mechanical ventilation and may not be completely reversible over time. It represents a major functional morbidity of critical illness and is an important patient-centered outcome with clear implications for quality of life and resumption of prior work and lifestyle. There is heterogeneity in functional outcome related to ICUAW across various patient populations after an episode of critical illness. This state-of-the art review argues that this observed heterogeneity may represent a clinical spectrum of disability in which there are recognizable clinical phenotypes for outcome according to age, burden of comorbid illness, and ICU length of stay. It further argues that these functional outcomes are modified by mood, cognition, and caregiver physical and mental health. This proposed construct of clinical phenotypes will be used as a framework for a review of the current literature on the molecular biology of muscle and nerve injury. This translational approach for the development of models pairing clinical phenotypes for different functional outcomes after critical illness with molecular mechanism of injury may offer unique insights into the diagnosis and treatment of muscle and nerve lesions.
Collapse
Affiliation(s)
- Jane Batt
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
34
|
Vadász I, Weiss CH, Sznajder JI. Ubiquitination and proteolysis in acute lung injury. Chest 2012; 141:763-771. [PMID: 22396561 DOI: 10.1378/chest.11-1660] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination is a posttranslational modification that regulates a variety of cellular functions depending on timing, subcellular localization, and type of tagging, as well as modulators of ubiquitin binding leading to proteasomal or lysosomal degradation or nonproteolytic modifications. Ubiquitination plays an important role in the pathogenesis of acute lung injury (ALI) and other lung diseases with pathologies secondary to inflammation, mechanical ventilation, and decreased physical mobility. Particularly, ubiquitination has been shown to affect alveolar epithelial barrier function and alveolar edema clearance by targeting the Na,K-ATPase and epithelial Na(+) channels upon lung injury. Notably, the proteasomal system also exhibits distinct functions in the extracellular space, which may contribute to the pathogenesis of ALI and other pulmonary diseases. Better understanding of these mechanisms may ultimately lead to novel therapeutic modalities by targeting elements of the ubiquitination pathway.
Collapse
Affiliation(s)
- István Vadász
- Department of Internal Medicine, University of Giessen Lung Center, Justus Liebig University, Giessen, Germany.
| | - Curtis H Weiss
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
35
|
Davids M, van Hell AJ, Visser M, Nijveldt RJ, van Leeuwen PAM, Teerlink T. Role of the human erythrocyte in generation and storage of asymmetric dimethylarginine. Am J Physiol Heart Circ Physiol 2012; 302:H1762-70. [PMID: 22367507 DOI: 10.1152/ajpheart.01205.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Proteolytic activity in whole blood may lead to release of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA). We investigated the role of the human erythrocyte in storage and generation of ADMA in healthy controls (n = 36) and critically ill patients (n = 38). Both free and total (sum of free and protein-incorporated) ADMA were measured. Upon incubation of intact erythrocytes with extracellular ADMA (0 to 40 μmol/l), equilibrium between intra- and extracellular ADMA was reached within 3 h. Compared with controls, patients had significantly higher basal concentrations of ADMA in plasma (0.88 ± 0.75 vs. 0.41 ± 0.07 μmol/l) and erythrocytes (1.28 ± 0.55 vs. 0.57 ± 0.14 μmol/l). Intracellular and plasma ADMA were significantly correlated in the patient group only (r = 0.834). Upon lysis, followed by incubation at 37°C for 2 h, free ADMA increased sevenfold (to 8.60 ± 3.61 μmol/l in patients and 3.90 ± 0.78 μmol/l in controls). In lysates of controls, free ADMA increased further to 9.85 ± 1.35 μmol/l after 18 h. Total ADMA was 15.43 ± 2.44 μmol/l and did not change during incubation. The increase of free ADMA during incubation corresponded to substantial release of ADMA from the erythrocytic protein-incorporated pool (21.9 ± 4.6% at 2 h and 60.8 ± 7.6% at 18 h). ADMA was released from proteins other than hemoglobin, which only occurred after complete lysis and was blocked by combined inhibition of proteasomal and protease activity. Neither intact nor lysed erythrocytes mediated degradation of free ADMA. We conclude that intact erythrocytes play an important role in storage of ADMA, whereas upon erythrocyte lysis large amounts of free ADMA are generated by proteolysis of methylated proteins, which may affect plasma levels in hemolysis-associated diseases.
Collapse
Affiliation(s)
- Mariska Davids
- Metabolic Laboratory, Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
de Martino M, Hoetzenecker K, Ankersmit HJ, Roth GA, Haitel A, Waldert M, Klatte T. Serum 20S proteasome is elevated in patients with renal cell carcinoma and associated with poor prognosis. Br J Cancer 2012; 106:904-8. [PMID: 22294183 PMCID: PMC3305962 DOI: 10.1038/bjc.2012.20] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: To date, no reliable serum marker for clear cell renal cell carcinoma (CCRCC) is available. The aim of this study was to evaluate the putative significance of circulating 20S proteasome levels. Methods: Preoperative 20S proteasome serum levels were determined in 113 CCRCC patients and 15 healthy controls by a sandwich enzyme-linked immunosorbent assay. Associations with CCRCC, pathological variables, disease-specific survival (DSS), and response to sunitinib were evaluated. Results: Median 20S proteasome levels were higher in CCRCC patients than in healthy controls (4.66 vs 1.52 μg ml−1, P<0.0001). The area under the receiver operating characteristics curve curve was 87.1%. The 20S proteasome levels were associated with symptoms (P=0.0008), distant metastases (P=0.0011), grade (P=0.0247), and necrosis (P=0.0462). The 20S proteasome levels were identified as a prognostic factor for DSS in both univariable (hazards ratio 1.21, P<0.001) and multivariable (hazards ratio 1.17, P=0.0015) survival analysis. In patients responding to sunitinib, 20S proteasome levels were lower than in patients with stable disease and progressive disease. Conclusion: This study demonstrates for the first time that increased 20S proteasome levels are associated with CCRCC, advanced disease, and poor prognosis. Routine use of this marker may allow better diagnosis, risk stratification, risk-adjusted follow-up, and identification of patients with a greater likelihood of response to targeted therapy.
Collapse
Affiliation(s)
- M de Martino
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | | | | | | | | | | | | |
Collapse
|
37
|
Distinct proteasome subpopulations in the alveolar space of patients with the acute respiratory distress syndrome. Mediators Inflamm 2012; 2012:204250. [PMID: 22363101 PMCID: PMC3272875 DOI: 10.1155/2012/204250] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/12/2011] [Indexed: 12/03/2022] Open
Abstract
There is increasing evidence that proteasomes have a biological role in the extracellular alveolar space, but inflammation could change their composition. We tested whether immunoproteasome protein-containing subpopulations are present in the alveolar space of patients with lung inflammation evoking the acute respiratory distress syndrome (ARDS). Bronchoalveolar lavage (BAL) supernatants and cell pellet lysate from ARDS patients (n = 28) and healthy subjects (n = 10) were analyzed for the presence of immunoproteasome proteins (LMP2 and LMP7) and proteasome subtypes by western blot, chromatographic purification, and 2D-dimensional gelelectrophoresis. In all ARDS patients but not in healthy subjects LMP7 and LMP2 were observed in BAL supernatants. Proteasomes purified from pooled ARDS BAL supernatant showed an altered enzyme activity ratio. Chromatography revealed a distinct pattern with 7 proteasome subtype peaks in BAL supernatant of ARDS patients that differed from healthy subjects. Total proteasome concentration in BAL supernatant was increased in ARDS (971 ng/mL ± 1116 versus 59 ± 25; P < 0.001), and all fluorogenic substrates were hydrolyzed, albeit to a lesser extent, with inhibition by epoxomicin (P = 0.0001). Thus, we identified for the first time immunoproteasome proteins and a distinct proteasomal subtype pattern in the alveolar space of ARDS patients, presumably in response to inflammation.
Collapse
|
38
|
Circulating extracellular proteasome in the cerebrospinal fluid: a study on concentration and proteolytic activity. J Mol Neurosci 2011; 46:509-15. [PMID: 21881828 DOI: 10.1007/s12031-011-9631-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 08/14/2011] [Indexed: 02/07/2023]
Abstract
Alterations of the intracellular ubiquitin-proteasome pathway are found in neurodegenerative and inflammatory disorders of the central nervous system, as well as in its malignancies. Inhibitory substrates of the proteasomes represent promising approaches to control autoimmune inflammations and induction of apoptosis in cancer cells. Extracellular circulating proteasomes are positively correlated to outcome prognosis in hematogenic neoplasias and the outcome in critically ill patients. Previously, we reported raised levels of proteolytic active 20S proteasomes in the extracellular alveolar space in patients with acute respiratory distress syndrome (ARDS). For the cerebrospinal fluid, we assumed that extracellular circulating proteasomes with enzymatic activity can be found, too. Cerebrospinal fluid (CSF) samples of twenty-six patients (14 females, 12 males), who underwent diagnostic spinal myelography, were analyzed for leukocyte cell count, total protein content, lactate and interleukine-6 (Il-6) concentrations. CSF samples were analyzed for concentration and enzymatic activity of extracellular 20S proteasomes (fluorescenic substrate cleavage; femtokatal). Blood samples were analyzed with respect to concentration of extracellular circulating proteasomes. Choroidal plexus was harvested at autopsies and examined with immunoelectron microscopy (EM) for identification of possible transportation mechanisms. Statistical analysis was performed using SPSS (18.0.3). In all patients, extracellular proteasome was found in the CSF. The mean concentration was 24.6 ng/ml. Enzymatic activity of the 20S subunits of proteasomes was positively identified by the fluorescenic subtrate cleavage at a mean of 8.5 fkat/ml. Concentrations of extracellular proteasomes in the CSF, total protein content and Il-6 were uncorrelated. Immunoelectron microscopy revealed merging vesicles of proteasomes with the outer cell membrane suggestive of an exozytic transport mechanism. For the first time, extracellular circulating 20S proteasome in the CSF of healthy individuals is identified and its enzymatic activity detected. A possible exozytic vesicle-bond transportation mechanism is suggested by immunoelectron microscopy. The present study raises more questions on the function of extracellular proteasome in the CSF and encourages further studies on the role of extracellular protesomes in pathological conditions of the central nervous system (tumor lesions and inflammatory processes).
Collapse
|
39
|
Yousef AA, Suliman GA, Mabrouk MM. The value of correlation of serum 20S proteasome concentration and percentage of lymphocytic apoptosis in critically ill patients: a prospective observational study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R215. [PMID: 21108816 PMCID: PMC3220007 DOI: 10.1186/cc9340] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 03/30/2010] [Accepted: 11/25/2010] [Indexed: 11/16/2022]
Abstract
Introduction Sepsis in critically ill patients is almost associated with bad prognosis and its early detection may improve the prognosis. However, it is difficult to monitor the immunological state of these patients depending on the traditional markers of infection or inflammatory mediators. Accelerated lymphocyte death may reflect good idea about the prognosis especially when combined with 20S proteasome determinations, a recently discovered marker for muscle degradation in patients with sepsis. The hypothesis of the present study is to evaluate the role of serum 20S proteasome at early diagnosis of sepsis and its correlation with lymphocyte apoptosis to predict prognosis and consequently the early interference in critically ill patients suffering from a broad range of diseases in the intensive care unit. Methods Sixty-seven critically ill adult intensive care patients were divided into two groups, 32 septic critically ill patients (sepsis group) and 35 non-septic critically ill patients (non-sepsis group), in addition to 33 apparently healthy subjects from the out patient clinic (control group). Patients were tested for serum values of 20S proteasome using ELISA and for percentage of lymphocyte death using annexin V and 7-aminoactinomycin D dye by flow cytometry. Results Measured median value of serum 20S proteasome was significantly higher in septic patients compared with both the non-septic and control groups. A significant increase in the percentage of apoptotic lymphocytes was detected in septic patients when compared with the non-sepsis and control groups. The correlation of both 20S proteasome and percentage of apoptotic lymphocytes was found to be significantly positive in both septic and non-septic patients. Conclusions The correlation of median values of 20S proteasome and the percentage of apoptotic lymphocyte median values could be a good indicator of patient prognosis and survival in critically ill patients.
Collapse
Affiliation(s)
- Ayman A Yousef
- Department of Anesthesia, Tanta University Hospitals, El-Geish Street, Tanta 31527, Egypt.
| | | | | |
Collapse
|
40
|
Heubner M, Wimberger P, Dahlmann B, Kasimir-Bauer S, Kimmig R, Peters J, Wohlschlaeger J, Sixt SU. The prognostic impact of circulating proteasome concentrations in patients with epithelial ovarian cancer. Gynecol Oncol 2010; 120:233-8. [PMID: 21075439 DOI: 10.1016/j.ygyno.2010.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/11/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Intracellularly, the ubiquitin-proteasome system participates in crucial functions such as cell cycling, differentiation, proliferation, gene transcription, and apoptosis. However, in malignancies including ovarian cancer increased extracellular concentrations of circulating 20S proteasomes (c-proteasomes) have been detected in blood. We tested the hypothesis that the c-proteasome plasma concentration is a biomarker associated with the clinical course of ovarian cancer patients. METHODS 20S-proteasome venous plasma concentration was measured by ELISA in patients presenting with ovarian cancer before (n=120) and after (n=68) primary treatment, and in healthy volunteers (n=55). The median follow-up time was 19 months. To assess the relation of proteasome expression with c-proteasome concentration, tumor specimens from 27 patients were immunohistochemically stained for 20S proteasome using an antibody directed against the core subunits of the catalytic domain of the 20S proteasome. RESULTS Median c-proteasome concentration was higher (p<0.0001) in untreated ovarian cancer patients (457.5 ng/ml, range: 200-12540 ng/ml) than in healthy controls 290 ng/ml, range: 140-425 ng/ml). Following completion of primary treatment, the median c-proteasome concentration increased (p=0.003) relative to baseline (595 ng/ml, range: 200-20000 ng/ml) and concentrations positively correlated (p=0.031) with residual disease left at primary surgery. Patients with post-treatment c-proteasome concentrations exceeding the cohort's median showed a diminished survival (p=0.045). We found no correlation between c-proteasome concentration and strength of proteasomal staining in tumor specimens. CONCLUSIONS Circulating proteasome concentrations correlate with residual tumor mass and might be a prognostic variable in ovarian cancer following primary therapy.
Collapse
Affiliation(s)
- Martin Heubner
- Clinic of Obstetrics and Gynaecology, Medical Faculty, University of Duisburg-Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Henry L, Lavabre-Bertrand T, Douche T, Uttenweiler-Joseph S, Fabbro-Peray P, Monsarrat B, Martinez J, Meunier L, Stoebner PE. Diagnostic value and prognostic significance of plasmatic proteasome level in patients with melanoma. Exp Dermatol 2010; 19:1054-9. [PMID: 20707810 DOI: 10.1111/j.1600-0625.2010.01151.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmatic proteasome (p-proteasome) also called circulating proteasome has recently been described as a tumor marker. We investigated the diagnostic and prognostic accuracies of p-proteasome levels in a melanoma population classified according to the American Joint Committee on Cancer staging system. Using an ELISA test, we measured p-proteasome levels in 90 patients and 40 controls between March 2003 and March 2008. The subunit composition of p-proteasomes was determined in metastatic melanoma by proteomic analysis. The mean p-proteasome levels were correlated with stages (P < 0.0001; r(S) = 0.664). They were significantly higher in patients with stage IV and stage III with lymph node metastasis (9187 ± 1294 and 5091 ± 454 ng/ml, respectively) compared to controls (2535 ± 187 ng/ml; P < 0.001), to stage I/II (2864 ± 166 ng/ml; P < 0.001) and to stage III after curative lymphadenectomy (2859 ± 271 ng/ml; P < 0.001). The diagnostic accuracy of p-proteasome was evaluated by receiver operating characteristic analysis. With a cut-off of 4300 ng/ml, diagnostic specificity and sensitivity of p-proteasome for regional or visceral metastases were respectively 96.3% and 72.2%. In univariate analysis, high p-proteasome levels (>4300 ng/ml) were significantly correlated with an increased risk of progression [hazard ratio (HR) = 7.34; 95% CI 3.54-15.21, P < 0.0001] and a risk of death (HR = 5.92; 95% CI 2.84-12.33, P < 0.0001). In multivariate analysis, high p-proteasome levels were correlated with a poorer clinical outcome in the subgroup analysis limited to patients with disease stages I, II and III. Proteomic analysis confirmed the presence of all proteasome and immunoproteasome subunits. Taken together, these results indicate that p-proteasomes are a new marker for metastatic dissemination in patients with melanoma.
Collapse
Affiliation(s)
- Laurent Henry
- Laboratoire d'Histologie-Embryologie-Cytogénétique, Université Montpellier 1, Faculté de Médecine Montpellier-Nîmes, CHU de Nîmes, Nîmes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The objective of the study is to test whether circulating proteasomes are increased in burn patients and to assess whether possible alterations are associated with severity of injury, organ failure, and/or clinically relevant outcomes. In this study, plasma was obtained from burn patients on days 0 (admission, n = 50), 1 (n = 36), 3 (n = 35), 5 (n = 28), 7 (n=34), and 30 (n = 10) (controls: 40 volunteers). The 20S/26S proteasome levels were measured by enzyme-linked immunosorbent assay. Proteasome peptidase activity was assessed using a chymotryptic-like peptide substrate in combination with epoxomicin (specific proteasome inhibitor). Percentage of TBSA burned, presence of inhalation injury, development of sepsis/multiple organ failure, and sequential organ failure assessment scores were documented. On admission, plasma proteasome activity was higher in patients than in controls (P = .011). 26S proteasomes were not detectable. The 20S proteasome concentrations (median [25th/75th percentile]) peaked on day 0 (673 [399/1566] ng/mL; control: 195 [149/249] ng/mL, P < .001), gradually declined within 7 days, and fully returned to baseline at day 30 (116.5 [78/196] ng/mL). Elevated 20S proteasomes were associated with the presence of inhalation injury and correlated linearly with %TBSA in patients without inhalation injury. Initial 20S proteasome concentrations discriminated the presence of inhalation injury in patients with (sensitivity 0.88 and specificity 0.71) and without (sensitivity 0.83 and specificity 0.97) cutaneous burns but did not discriminate sepsis/multiple organ failure development or survival. Circulating 20S proteasome is a biomarker of tissue damage. The 20S proteasome plasma concentrations in patients with burns and/or inhalation injury are unlikely to predict outcomes but may be useful for the diagnosis of inhalation injury.
Collapse
|
43
|
Abstract
The purpose of this study was to determine whether 26S proteasome is detectable in human bronchoalveolar lavage fluid (BALF) and whether burn and inhalation injury is accompanied by changes in BALF proteasome content or activity. BALF was obtained on hospital admission from 28 patients with burn and inhalation injury (controls: 10 healthy volunteers). Proteasome concentrations were quantified by enzyme-linked immunosorbent assay, and their native molecular mass was assessed by gel filtration. Proteasome peptidase activity was measured using a chymotryptic-like peptide substrate in combination with epoxomicin (specific proteasome inhibitor). BALF protein was increased in patients (P<.001) and correlated positively with the degree of inhalation injury. The 20S/26S proteasomes were detectable in all BALF by enzyme-linked immunosorbent assay. Gel filtration confirmed the presence of intact 20S and 26S proteasome that was stable without soluble ATP/Mg. In all BALF chymotryptic-like activity was detectable and could be inhibited with epoxomicin by 60 to 70% (P<.01). Absolute amounts of 20S/26S proteasomes and proteasome activity were increased in patients (P<.001 for all). The relative BALF composition after injury was characterized by increased concentrations of 20S proteasome/mg protein (P=.0034 vs volunteers), decreased concentrations of 26S proteasome/mg protein (P=.041 vs volunteers), and reduced specific proteasome activity (P=.044 vs volunteers). The 26S proteasome per milligram and specific proteasome activity were even further reduced in patients who developed ventilator-associated pneumonia (P=.045 and P=.03 vs patients without ventilator-associated pneumonia). This study supports the novel concept that extracellular proteasomes could play a pathophysiological role in the injured lung and suggests that insufficient proteasome function may increase susceptibility for pulmonary complications.
Collapse
|
44
|
Supinski GS, Vanags J, Callahan LA. Effect of proteasome inhibitors on endotoxin-induced diaphragm dysfunction. Am J Physiol Lung Cell Mol Physiol 2009; 296:L994-L1001. [PMID: 19376888 DOI: 10.1152/ajplung.90404.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Infections produce severe respiratory muscle dysfunction. It is known that the proteasome proteolytic system is activated in skeletal muscle in sepsis, and it has been postulated that this degradative pathway is responsible for inducing skeletal muscle weakness and wasting. The objective of this study was to determine if administration of proteasomal inhibitors (MG132, epoxomicin, bortezomib) can prevent sepsis-induced diaphragm weakness. Rats were given either 1) saline (0.5 ml ip), 2) endotoxin (12 mg/kg ip), 3) endotoxin plus MG132 (2.5 mg/kg), 4) endotoxin plus epoxomicin (1 micromol/kg), or 5) endotoxin plus bortezomib (0.05 mg/kg). Animals were killed either 48 or 96 h after injections, and assessments were made of diaphragm proteolysis, force-frequency relationships, mass, protein content, and caspase activation. Endotoxin increased proteolysis (P <0.001). MG132, epoxomicin, and bortezomib each prevented the endotoxin-induced increase in proteolysis (P <0.01). Endotoxin induced severe reductions in diaphragm force generation by 48 h (P <0.01); none of the proteasomal inhibitors prevented loss of force. Endotoxin induced significant reductions in diaphragm mass and protein content by 96 h (P <0.01); neither MG132 nor epoxomicin prevented loss of mass or protein, but bortezomib attenuated the reduction in protein content (P <0.05). Endotoxin increased diaphragm caspase-3 activity (P <0.01); caspase-3 activity remained high when either MG132, epoxomicin, or bortezomib were given. These data suggest proteasomal inhibitors are not an adequate treatment to prevent endotoxin-induced diaphragmatic dysfunction.
Collapse
Affiliation(s)
- G S Supinski
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky, Lexington, KY 40536-0284, USA.
| | | | | |
Collapse
|
45
|
Sixt SU, Adamzik M, Spyrka D, Saul B, Hakenbeck J, Wohlschlaeger J, Costabel U, Kloss A, Giesebrecht J, Dahlmann B, Peters J. Alveolar extracellular 20S proteasome in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2009; 179:1098-106. [PMID: 19286628 DOI: 10.1164/rccm.200802-199oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Repair mechanisms resulting in alveolar protein degradation in acute respiratory distress syndrome (ARDS) are largely unknown. OBJECTIVES To test whether the 20S proteasome is present and functional in the alveolar space in patients with ARDS. METHODS Proteasome antigenic concentration in bronchoalveolar lavage (BAL) supernatants was measured by ELISA in patients with ARDS (n = 64), acute lung injury (ALI) (n = 8), sarcoidosis (n = 13), and in healthy subjects (n = 8). Cleavage of specific fluorogenic substrates (+/-epoxomicin), I(125) albumin degradation rate, and gel filtration were used to quantify and characterize proteasomal activity. The presence of proteasomes was confirmed independently by electron microscopic techniques. MEASUREMENTS AND MAIN RESULTS Proteasome concentrations in patients with ARDS were markedly increased (1,069 +/- 1,194 ng/ml) in comparison to healthy subjects (60.8 +/- 49.8; P < 0.001), ALI (154 +/- 43; P = 0.006), and sarcoidosis (97.6 +/- 42.2; P = 0.037). All fluorogenic substrates were hydrolyzed (Suc-LLVY-AMC, 3.6 +/- 8.8 pkat/mg; BZ-VGR-AMC, 1.8 +/- 3.1; Suc-LLE-AMC, 1 +/- 1.7) by BAL supernatants of patients with ARDS, with inhibition by epoxomicin (P = 0.0001), and the majority of proteolytic activity was detected in BAL supernatant. Maximum hydrolyzing activity occurred at 660 kD and 20S proteasome was seen microscopically after purification and being released by pneumocytes type II. Proteasomal activity and albumin degradation rate in patients with ARDS were approximately 17-fold lower than in healthy subjects. Proteasomal activity in normal BAL was inhibited by BAL aliquots from patients with ARDS but not by denatured BAL, and returned to normal by purification. CONCLUSIONS For the first time, we identified extracellular, biologically active 20S proteasome in the alveolar space of patients with ARDS in concentrations much higher than in normal subjects or in those with ALI.
Collapse
Affiliation(s)
- Stephan Urs Sixt
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Hufelandstrasse 55, Essen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Basic and applied research at the department of cardio-thoracic surgery: work in progress. Wien Klin Wochenschr 2008. [DOI: 10.1007/s00508-008-1044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Circulating 20S proteasome levels in patients with mixed connective tissue disease and systemic lupus erythematosus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1489-93. [PMID: 18667633 DOI: 10.1128/cvi.00187-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The associations of circulating 20S proteasomes (c20S) with clinical and serologic disease indices in patients with systemic lupus erythematosus (SLE) and mixed connective tissue disease (MCTD) are unknown. We present the initial report that c20S levels are elevated in MCTD and correlate with clinically relevant changes in disease activity in SLE and MCTD.
Collapse
|
48
|
Sixt SU, Dahlmann B. Extracellular, circulating proteasomes and ubiquitin - incidence and relevance. Biochim Biophys Acta Mol Basis Dis 2008; 1782:817-23. [PMID: 18602990 DOI: 10.1016/j.bbadis.2008.06.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 10/21/2022]
Abstract
The ubiquitin-proteasome system is the major pathway for intracellular protein degradation and is also deeply involved in the regulation of most basic cellular processes. Its proteolytic core, the 20S proteasome, has found to be attached also to the cell plasma membrane and certain observations are interpreted as to suggest that they may be released into the extracellular medium, e.g. in the alveolar lining fluid, epididymal fluid and possibly during the acrosome reaction. Proteasomes have also been detected in normal human blood plasma and designated circulating proteasomes; these have a comparatively low specific activity, a distinct pattern of subtypes and their exact origin is still enigmatic. In patients suffering from autoimmune diseases, malignant myeloproliferative syndromes, multiple myeloma, acute and chronic lymphatic leukaemia, solid tumour, sepsis or trauma, respectively, the concentration of circulating proteasomes has been found to be elevated, to correlate with the disease state and has even prognostic significance. Similarly, ubiquitin has been discovered as a normal component of human blood and seminal plasma and in ovarian follicular fluid. Increased concentrations were measured in diverse pathological situations, not only in blood plasma but also in cerebrospinal fluid, where it may have neuroprotective effects. As defective spermatozoa are covered with ubiquitin in the epididymal fluid, extracellular ubiquitination is proposed to be a mechanism for quality control in spermatogenesis. Growing evidence exists also for a participation of extracellular proteasomes and ubiquitin in the fertilization process.
Collapse
Affiliation(s)
- Stephan U Sixt
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen, Universitätsklinikum Essen, Essen, Germany
| | | |
Collapse
|
49
|
Majetschak M, Sorell LT. Immunological methods to quantify and characterize proteasome complexes: development and application. J Immunol Methods 2008; 334:91-103. [PMID: 18343400 DOI: 10.1016/j.jim.2008.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 02/06/2008] [Accepted: 02/08/2008] [Indexed: 10/22/2022]
Abstract
The ubiquitin-proteasome pathway plays major roles in all aspects of biology and contributes to various disease processes. Due to the lack of assays that permit proteasome quantification in crude cell extracts, its concentrations in health and disease states as well as the relationship between free 20S core particles (20S) and 26S proteasomes (26S) that consist of 20S singly or doubly capped with 19S regulator complexes (19S) are still largely unknown. Thus, we established a 20S ELISA for the detection of total 20S, and developed a specific 26S ELISA. The latter utilizes the ATP/Mg2+ requirement for 26S stability and shows no cross-reactivity with 20S. Both ELISAs demonstrate intra- and inter-assay variations between 4.9% and 9.4% and recoveries of 105%-109%. Initial application showed that maintenance of the physiological ATP concentration is essential for accurate 26S assessment. Measurements in erythrocyte and peripheral blood mononuclear cell (PBMNC) extracts revealed that the concentrations of 20S were 15-fold and of 26S 130-fold higher in PBMNCs, and suggested that the 26S is the physiological relevant form in PBMNCs (molar ratio 20S/26S 1.1+/-0.4), whereas free 20S is predominant in erythrocytes (molar ratio 20S/26S: 11.5+/-4.0). During storage of packed red blood cell units spontaneous 26S assembly was detectable while specific 26S enzyme activities decreased, indicating that these assays are useful to assess the dynamic interplay between the 20S and 19S. During 26S assay development we further observed that solid phase affinity immobilization (SPAI) of 26S enables quantification of its dissociation into 20S and 19S. Utilizing the SPAI-26S method in combination with the non-hydrolyzable analogue ATP[beta,gamma-NH] and Mg2+ depletion, we provided evidence that ATP binding without hydrolysis via a high affinity binding site (Kd 4-6 microM) as well as ATP binding with hydrolysis via a low affinity binding site that is virtually not saturable under physiological conditions is required to fully stabilize the 26S. Application of these immunological techniques is expected to facilitate proteasome analyses, and may help to better understand its roles in health and disease processes.
Collapse
Affiliation(s)
- Matthias Majetschak
- DeWitt Daughtry Family Department of Surgery, Division of Trauma and Surgical Critical Care-Trauma Research, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | |
Collapse
|
50
|
Szerafin T, Hoetzenecker K, Hacker S, Horvath A, Pollreisz A, Arpád P, Mangold A, Wliszczak T, Dworschak M, Seitelberger R, Wolner E, Ankersmit HJ. Heat shock proteins 27, 60, 70, 90alpha, and 20S proteasome in on-pump versus off-pump coronary artery bypass graft patients. Ann Thorac Surg 2008; 85:80-7. [PMID: 18154785 DOI: 10.1016/j.athoracsur.2007.06.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 06/13/2007] [Accepted: 06/15/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND The secretion of heat shock protein (HSP) 27, HSP60, HSP70, HSP90alpha, 20S proteasome, and their correlations to proinflammatory cytokine interleukin-6 is unknown in patients undergoing on-pump versus off-pump coronary artery bypass graft (CABG) operation. METHODS Forty patients were included in this explorative study (on- versus off-pump CABG, each n = 20). Serum samples were obtained before and 30 minutes, 60 minutes, and 24 hours after CABG operation. Enzyme-linked immunosorbent assay technique was utilized to determine soluble HSP27, 60, 70, and 90alpha, 20S proteasome, and levels of interleukin-6. RESULTS Serum levels of HSP are increased in patients undergoing on-pump CABG operation as compared with off-pump CABG technique. These differences were highly significant for HSP27, 70, and 90alpha at 60 minutes after initiation of cardiopulmonary bypass (all, p < 0.001). Concentrations of soluble 20S proteasome were increased 24 hours after operation in on- and off-pump CABG patients (p < 0.001) and correlated significantly with the serum content of HSP 27, 70, and 90alpha at 60 minutes after initiation of cardiopulmonary bypass (p < 0.001). No correlation was found when comparing interleukin-6 levels with intravascular leakage of HSP and 20S proteasome after CABG operation. CONCLUSIONS We conclude from our data that the innate immune system is activated owing to spillage of known immune modulatory and apoptosis-associated proteins after CABG operation.
Collapse
Affiliation(s)
- Tamas Szerafin
- Department of Cardiac Surgery, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|