1
|
Preuss JF, Chafes CJC, Buzatti A. Report of Giardia duodenalis in a non-captive chital Axis axis (Erxleben 1777) in Santa Catarina, South of Brazil. BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2024; 46:e003224. [PMID: 39301572 PMCID: PMC11412331 DOI: 10.29374/2527-2179.bjvm003224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/30/2024] [Indexed: 09/22/2024] Open
Abstract
Giardiasis is an infection of the small intestine by protozoa of the genus Giardia, which has a wide range of susceptible hosts, including domestic and wild animals and humans. Giardia is a zoonotic agent and represents one of the main human parasites, with high prevalence and great importance in public health. This report aims to describe the parasitism of a non-captive Chital deer (Axis axis) by Giardia duodenalis. The animal, after being rescued by soldiers from the 2nd Platoon of the 2nd Company of the 2nd Battalion of the Environmental Military Police of the State of Santa Catarina, was sent to the Wildlife Studies Center (NEVS) of the University of Western Santa Catarina (UNOESC). During clinical care, an exposed fracture in the left pelvic limb and signs of acute respiratory failure were found. Fecal samples were collected for later parasitological diagnosis. Two techniques were applied: centrifugal flotation with zinc sulfate, to diagnose parasites of the gastrointestinal system, and Baermann, to search for parasitism in the respiratory tract. The investigation revealed the presence of Giardia duodenalis. The animal died on the same day of its arrival due to a cardiorespiratory arrest. The presence of this parasite in an invasive exotic deer species highlights its epidemiological importance, as it can act as a source of infection and spread the disease to humans and other animals.
Collapse
Affiliation(s)
- Jackson Fábio Preuss
- Biologist, DSc., Núcleo de Estudos em Vida Selvagem (NEVS), Universidade do Oeste de Santa Catarina (UNOESC). São Miguel do Oeste, SC. Brazil
| | - Clóvis Junior Chimin Chafes
- Veterinarian, MSc, Resident. Programa de Residência Multiprofissional - Clínica Médica, Cirúrgica e Anestesiologia de Animais de Companhia, Universidade Federal de Jataí (UFJ). Jataí, GO. Brazil
| | - Andréia Buzatti
- Veterinarian, DSc., Curso de Medicina Veterinária, UNOESC. São Miguel do Oeste, SC. Brazil
| |
Collapse
|
2
|
Patt JM, Makagon A, Norton B, Marvit M, Rutschman P, Neligeorge M, Salesin J. An optical system to detect, surveil, and kill flying insect vectors of human and crop pathogens. Sci Rep 2024; 14:8174. [PMID: 38589427 PMCID: PMC11002038 DOI: 10.1038/s41598-024-57804-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Sustainable and effective means to control flying insect vectors are critically needed, especially with widespread insecticide resistance and global climate change. Understanding and controlling vectors requires accurate information about their movement and activity, which is often lacking. The Photonic Fence (PF) is an optical system that uses machine vision, infrared light, and lasers to identify, track, and interdict vectors in flight. The PF examines an insect's outline, flight speed, and other flight parameters and if these match those of a targeted vector species, then a low-power, retina-safe laser kills it. We report on proof-of-concept tests of a large, field-sized PF (30 mL × 3 mH) conducted with Aedes aegypti, a mosquito that transmits dangerous arboviruses, and Diaphorina citri, a psyllid which transmits the fatal huanglongbing disease of citrus. In tests with the laser engaged, < 1% and 3% of A. aegypti and D. citri, respectfully, were recovered versus a 38% and 19% recovery when the lacer was silenced. The PF tracked, but did not intercept the orchid bee, Euglossa dilemma. The system effectively intercepted flying vectors, but not bees, at a distance of 30 m, heralding the use of photonic energy, rather than chemicals, to control flying vectors.
Collapse
Affiliation(s)
- Joseph M Patt
- United States Department of Agriculture, Agricultural Research Service, Fort Pierce, FL, 34945, USA.
| | - Arty Makagon
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Bryan Norton
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Maclen Marvit
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Phillip Rutschman
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Matt Neligeorge
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Jeremy Salesin
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| |
Collapse
|
3
|
McEachran MC, Mladonicky J, Picasso-Risso C, Drake DAR, Phelps NBD. Release of live baitfish by recreational anglers drives fish pathogen introduction risk. Prev Vet Med 2023; 217:105960. [PMID: 37478526 DOI: 10.1016/j.prevetmed.2023.105960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/23/2023]
Abstract
Emerging diseases of wildlife are an existential threat to biodiversity, and human-mediated movements of live animals are a primary vector of their spread. Wildlife disease risk analyses offer an appealing alternative to precautionary approaches because they allow for explicit quantification of uncertainties and consideration of tradeoffs. Such considerations become particularly important in high-frequency invasion pathways with hundreds of thousands of individual vectors, where even low pathogen prevalence can lead to substantial risk. The purpose of this study was to examine the landscape-level dynamics of human behavior-mediated pathogen introduction risk in the context of a high-frequency invasion pathway. One such pathway is the use and release of live fish used as bait by recreational anglers. We used a stochastic risk assessment model parameterized by angler survey data from Minnesota, USA, to simulate one year of fishing in Minnesota and estimate the total number of risky trips for each of three pathogens: viral hemorrhagic septicemia virus, the microsporidian parasite Ovipleistophora ovariae, and the Asian fish tapeworm Schizocotyle acheilognathi. We assessed the number of introductions under four scenarios: current/baseline conditions, outbreak conditions (increased pathogen prevalence), source-focused control measures (decreased pathogen prevalence), and angler-focused control measures (decreased rates of release). We found that hundreds of thousands of introduction events can occur per year, even for regulated pathogens at low pathogen prevalence. Reducing the rate of illegal baitfish release had significant impact on risky trips in scenarios where a high number of anglers were involved, but was less impactful in circumstances with limited outbreaks and fewer affected anglers. In contrast, reducing pathogen prevalence in the source populations of baitfish had relatively little impact. In order to make meaningful changes in pathogen introduction risk, managers should focus efforts on containing local outbreaks and reducing illegal baitfish release to reduce pathogen introduction risk. Our study also demonstrates the risk associated with high-frequency invasion pathways and the importance of incorporating human behaviors into wildlife disease models and risk assessments.
Collapse
Affiliation(s)
- Margaret C McEachran
- Minnesota Aquatic Invasive Species Research Center, 135E Skok Hall, 2003 Upper Buford Circle, St. Paul, MN 55108, United States; Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, 135E Skok Hall, 2003 Upper Buford Circle, St. Paul, MN 55108, United States
| | - Janice Mladonicky
- Department of Veterinary Population Medicine, University of Minnesota, 225 Veterinary Medical Center, 1365 Gortner Ave, Falcon Heights, MN 55108, United States
| | - Catalina Picasso-Risso
- Department of Veterinary Population Medicine, University of Minnesota, 225 Veterinary Medical Center, 1365 Gortner Ave, Falcon Heights, MN 55108, United States
| | - D Andrew R Drake
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Nicholas B D Phelps
- Minnesota Aquatic Invasive Species Research Center, 135E Skok Hall, 2003 Upper Buford Circle, St. Paul, MN 55108, United States; Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, 135E Skok Hall, 2003 Upper Buford Circle, St. Paul, MN 55108, United States.
| |
Collapse
|
4
|
Inceboz T. Introductory Chapter: Changes in Eco-System Change Echinococci - “One Health Concept” against Echinococci. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.109303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
5
|
Santa MA, Umhang G, Klein C, Grant DM, Ruckstuhl KE, Musiani M, Gilleard JS, Massolo A. It's a small world for parasites: evidence supporting the North American invasion of European Echinococcus multilocularis. Proc Biol Sci 2023; 290:20230128. [PMID: 36883278 PMCID: PMC9993045 DOI: 10.1098/rspb.2023.0128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Echinococcus multilocularis (Em), the causative agent of human alveolar echinococcosis (AE), is present in the Holarctic region, and several genetic variants deem to have differential infectivity and pathogenicity. An unprecedented outbreak of human AE cases in Western Canada infected with a European-like strain circulating in wild hosts warranted assessment of whether this strain was derived from a recent invasion or was endemic but undetected. Using nuclear and mitochondrial markers, we investigated the genetic diversity of Em in wild coyotes and red foxes from Western Canada, compared the genetic variants identified to global isolates and assessed their spatial distribution to infer possible invasion dynamics. Genetic variants from Western Canada were closely related to the original European clade, with lesser genetic diversity than that expected for a long-established strain and spatial genetic discontinuities within the study area, supporting the hypothesis of a relatively recent invasion with various founder events.
Collapse
Affiliation(s)
- Maria A. Santa
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Gerald Umhang
- Nancy Laboratory for Rabies and Wildlife, National Reference Laboratory for Echinococcus spp., Wildlife Surveillance and Eco-epidemiology Unit, ANSES, Technopôle Agricole et Vétérinaire, Malzéville, France
| | - Claudia Klein
- Department of Clinical and Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Federal Research Institute for Animal Health, Neustadt, Germany
| | - Danielle M. Grant
- Department of Clinical and Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- NORCE Climate, NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway
| | - Kathreen E. Ruckstuhl
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Marco Musiani
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Italy
| | - John S. Gilleard
- Department of Comparative Biology & Experimental Medicine, Host-Parasite Interactions (HPI) program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alessandro Massolo
- Ethology Unit, Department of Biology, University of Pisa, Pisa, Italy
- UMR CNRS 6249 Chrono-environnement, Université Bourgogne Franche-Comté, Besançon, France
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Denóbile C, Chiba de Castro WA, da Silva Matos DM. Public Health Implications of Invasive Plants: A Scientometric Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:661. [PMID: 36771745 PMCID: PMC9921203 DOI: 10.3390/plants12030661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Movements of organisms through distinct places can change the dynamics of ecological interactions and make the habitat conducive to the spread of diseases. Faced with a cyclical scenario of invasions and threats in a One Health context, we conducted a scientometric study to understand how disturbances in environments with invaded vegetation affect the incidence of parasites and disease prevalence rates. The search was carried out in Web of Science and Scopus databases, with keywords delimited by Boolean operators and based on the PRISMA protocol. Thirty-sixarticles were full-read to clarify the interaction between diseases and invaded areas. The analysis covered publications from 2005 to 2022, with a considerable increase in the last ten years and a significant participation of the USA on the world stage. Trends were found in scientific activities, and we explored how invasive species can indirectly damage health, as higher concentrations of pathogens, vectors, and hosts were related to structurally altered communities. This paper reveals invaded plants threats that enhance disease transmission risks. It is likely that, with frequent growth in the number of introduced species worldwide due to environmental disturbances and human interventions, the negative implications will be intensified in the coming years.
Collapse
Affiliation(s)
- Camila Denóbile
- Graduate Program in Neotropical Biodiversity, Federal University of Latin American Integration, UNILA, Foz do Iguaçu 85870-901, Brazil
| | - Wagner Antonio Chiba de Castro
- Graduate Program in Neotropical Biodiversity, Federal University of Latin American Integration, UNILA, Foz do Iguaçu 85870-901, Brazil
- Latin American Institute of Life and Nature Sciences, Federal University of Latin American Integration, UNILA, Foz do Iguaçu 85870-901, Brazil
| | - Dalva Maria da Silva Matos
- Graduate Program in Neotropical Biodiversity, Federal University of Latin American Integration, UNILA, Foz do Iguaçu 85870-901, Brazil
- Department of Hydrobiology, Federal University of São Carlos, UFSCar, São Carlos 13565-905, Brazil
| |
Collapse
|
7
|
Rodriguero MS, Confalonieri VA, Mackay Smith A, Dornon MK, Zagoren E, Palmer A, Sequeira AS. Genetically Depauperate and Still Successful: Few Multilocus Genotypes of the Introduced Parthenogenetic Weevil Naupactus cervinus (Coleoptera: Curculionidae) Prevail in the Continental United States. INSECTS 2023; 14:113. [PMID: 36835682 PMCID: PMC9958569 DOI: 10.3390/insects14020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Naupactus cervinus is a parthenogenetic weevil native to South America that is currently distributed worldwide. This flightless species is polyphagous and capable of modifying gene expression regimes for responding to stressful situations. Naupactus cervinus was first reported in the continental United States in 1879 and has rapidly colonized most of the world since. Previous studies suggested that an invader genotype successfully established even in areas of unsuitable environmental conditions. In the present work, we analyze mitochondrial and nuclear sequences from 71 individuals collected in 13 localities across three states in the southern US, in order to describe the genetic diversity in this area of introduction that has not yet been previously studied. Our results suggest that 97% of the samples carry the most prevalent invader genotype already reported, while the rest shows a close mitochondrial derivative. This would support the hypothesis of a general purpose genotype, with parthenogenesis and its associated lack of recombination maintaining the linkage of genetic variants capable of coping with adverse conditions and enlarging its geographical range. However, demographic advantages related to parthenogenetic reproduction as the main driver of geographic expansion (such as the foundation of a population with a single virgin female) cannot be ruled out. Given the historical introduction records and the prevalence of the invader genotype, it is possible that the continental US may act as a secondary source of introductions to other areas. We propose that both the parthenogenesis and scarce genetic variation in places of introduction may, in fact, be an asset that allows N. cervinus to thrive across a range of environmental conditions.
Collapse
Affiliation(s)
- Marcela S. Rodriguero
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1428, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET–Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1428, Argentina
| | - Viviana A. Confalonieri
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1428, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET–Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1428, Argentina
| | - Ava Mackay Smith
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | - Mary Kate Dornon
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | - Eleanor Zagoren
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | - Alice Palmer
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | - Andrea S. Sequeira
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| |
Collapse
|
8
|
Tucker-Retter EK, Allender MC, Nowak RA, Suski CD. Invasive Species as Sentinels: Measuring Health Outcomes in Silver Carp (Hypophthalmichthys molitrix) during Removal. ICHTHYOLOGY & HERPETOLOGY 2023. [DOI: 10.1643/i2021072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Emily K. Tucker-Retter
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, Illinois 61801
| | - Matthew C. Allender
- Wildlife Epidemiology Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, Illinois 61802
| | - Romana A. Nowak
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, Illinois 61801
| | - Cory D. Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue, Urbana, Illinois 61801
| |
Collapse
|
9
|
Spillover and spillback risks of ectoparasites by an invasive squirrel Callosciurus erythraeus in Kanto region of Japan. Int J Parasitol Parasites Wildl 2022; 19:1-8. [PMID: 35991948 PMCID: PMC9385448 DOI: 10.1016/j.ijppaw.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022]
Abstract
Invasive organisms can alter host-parasite relationships in a given ecosystem by spreading exotic parasites and/or becoming a new reservoir for native ones. Since these problems affect management programs of the invasive host organisms, it is necessary to monitor them individually. The Pallas's squirrel Callosciurus erythraeus is an invasive arboreal mammal introduced into Japan that threatens to exacerbate ecological and public health problems by spreading native and exotic parasites. However, only limited surveys have been available especially for ectoparasites, using the traditional combing method in which the possibility of oversight is inherent. Here, we evaluated the ectoparasite occurrences in Kanto region of Japan, using the whole-shaving method as an alternative approach. As a result of examining 52 hosts from two invaded districts (Yokohama and Yokosuka), chigger mites (Leptotrombidium spp.) and fleas (Ceratophyllus anisus and Ceratophyllus indages indages) were newly recovered in addition to the previously reported tick (Haemaphysalis flava) and exotic lice (Enderleinellus kumadai and Neophaematoponis callosciuri). The parasite burdens were higher in Yokosuka and in male host individuals, affecting infracommunity richness and composition. Our findings on the variety of native and exotic ectoparasites, at higher abundances in some cases than previously known, may suggest that both the spillover and spillback risks need to be adjusted upwards. Ectoparasite infections were examined for Pallas's squirrels invaded in Kanto region of Japan. A variety of native and exotic ectoparasites with high abundance in some cases was found. Infracommunity composition changed depending on the invading environment and host features. Spillover and spillback risks may need to be adjusted upwards in this country.
Collapse
|
10
|
Stanicka A, Maciaszek R, Cichy A, Templin J, Świderek W, Żbikowska E, Labecka AM. Unwanted ‘hitchhikers’ of ornamental snails: A case report of digeneans transported via the international pet trade. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2065039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- A. Stanicka
- Faculty of Biological and Veterinary Sciences, Department of Invertebrate Zoology and Parasitology, Nicolaus Copernicus University in Torun, Torun, Poland
| | - R. Maciaszek
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - A. Cichy
- Faculty of Biological and Veterinary Sciences, Department of Invertebrate Zoology and Parasitology, Nicolaus Copernicus University in Torun, Torun, Poland
| | - J. Templin
- Faculty of Biological and Veterinary Sciences, Department of Invertebrate Zoology and Parasitology, Nicolaus Copernicus University in Torun, Torun, Poland
| | - W. Świderek
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - E. Żbikowska
- Faculty of Biological and Veterinary Sciences, Department of Invertebrate Zoology and Parasitology, Nicolaus Copernicus University in Torun, Torun, Poland
| | - A. M. Labecka
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
| |
Collapse
|
11
|
Techer MA, Roberts JMK, Cartwright RA, Mikheyev AS. The first steps toward a global pandemic: Reconstructing the demographic history of parasite host switches in its native range. Mol Ecol 2022; 31:1358-1374. [PMID: 34882860 PMCID: PMC11105409 DOI: 10.1111/mec.16322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
Abstract
Host switching allows parasites to expand their niches. However, successful switching may require suites of adaptations and also may decrease performance on the old host. As a result, reductions in gene flow accompany many host switches, driving speciation. Because host switches tend to be rapid, it is difficult to study them in real-time, and their demographic parameters remain poorly understood. As a result, fundamental factors that control subsequent parasite evolution, such as the size of the switching population or the extent of immigration from the original host, remain largely unknown. To shed light on the host switching process, we explored how host switches occur in independent host shifts by two ectoparasitic honey bee mites (Varroa destructor and V. jacobsoni). Both switched to the western honey bee (Apis mellifera) after being brought into contact with their ancestral host (Apis cerana), ~70 and ~12 years ago, respectively. Varroa destructor subsequently caused worldwide collapses of honey bee populations. Using whole-genome sequencing on 63 mites collected in their native ranges from both the ancestral and novel hosts, we were able to reconstruct the known temporal dynamics of the switch. We further found multiple previously undiscovered mitochondrial lineages on the novel host, along with the genetic equivalent of tens of individuals that were involved in the initial host switch. Despite being greatly reduced, some gene flow remains between mites adapted to different hosts. Our findings suggest that while reproductive isolation may facilitate the fixation of traits beneficial for exploiting the new host, ongoing genetic exchange may allow genetic amelioration of inbreeding effects.
Collapse
Affiliation(s)
- Maeva A Techer
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | - John M K Roberts
- Commonwealth Scientific & Industrial Research Organisation, Canberra, Australian Capital Territory, Australia
| | - Reed A Cartwright
- The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Alexander S Mikheyev
- Okinawa Institute of Science and Technology, Okinawa, Japan
- Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
12
|
Marine C, Emira C, Amélie C, Bruno B, Martine C, Georges C, Céline C, Jean-Michel F, Barbara G, Zachary G, Jérôme G, Benjamin H, Manon L, Fabrice M, Ivan M, Delphine N, Nicolas P, Jean-François M, André G, Elie GR. Towards unravelling the Rosette agent enigma: Spread and emergence of the co-invasive host-pathogen complex, Pseudorasbora parva-Sphaerothecum destruens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150427. [PMID: 34600207 DOI: 10.1016/j.scitotenv.2021.150427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The emergence of non-native fungal pathogens is a growing threat to global health, biodiversity, conservation biology, food security and the global economy. Moreover, a thorough understanding of the spread and emergence of pathogens among invasive and native host populations, as well as genetic analysis of the structure of co-invasive host populations, is crucial in terms of conservation biology and management strategies. Here we combined extensive catchment sampling, molecular detection tools and genomic signatures to i) assess the prevalence of the rosette agent Sphaerothecum destruens in invasive and native fish populations in contrasting french regions, and ii) characterize the genetic diversity and population structure of its co-invasive and asymptomatic carrier Pseudorasbora parva. Although S. destruens was not detected in all the fish collected its presence in contrasting freshwater ecosystems suggests that the disease may already be widespread in France. Furthermore, our results show that the detection of S. destruens DNA in its asymptomatic carrier P. parva is still limited. Finally, we found that P. parva populations show a homogeneous genetic and geographical structuring, which raises the possibility of the occurrence of successive introduction events in France from their native and invasive range.
Collapse
Affiliation(s)
- Combe Marine
- ISEM UMR226, Université de Montpellier, CNRS, IRD, EPHE, 34090 Montpellier, France.
| | - Cherif Emira
- ISEM UMR226, Université de Montpellier, CNRS, IRD, EPHE, 34090 Montpellier, France.
| | - Charrier Amélie
- Laboratoires des Pyrénées et des Landes, 1 rue Marcel David, BP 219, 40004 Mont-de-Marsan, France
| | - Barbey Bruno
- Fédération de l'Indre pour la Pêche et la Protection du Milieu Aquatique, FDAAPMA 36, 19 rue des Etats-Unis 36000, Châteauroux, France
| | - Chague Martine
- Laboratoires des Pyrénées et des Landes, 1 rue Marcel David, BP 219, 40004 Mont-de-Marsan, France
| | - Carrel Georges
- INRAE, Centre PACA, UMR RECOVER, F-13182 Aix-en-Provence, France
| | - Chasserieau Céline
- Fédération de Haute-Savoie pour la Pêche et la Protection du Milieu Aquatique, 2092 route des Diacquenods, Saint Martin Bellevue, 74370 Fillière, France
| | - Foissy Jean-Michel
- DIR OFB Paca Corse Domaine du Petit Arbois Pavillon Laënnec - Hall B, Avenue Louis Philibert,13547 Aix-en-Provence, France
| | - Gerard Barbara
- Fédération de Loire-Atlantique pour la Pêche et la Protection du Milieu Aquatique, France
| | - Gozlan Zachary
- Lycée Joffre, 31 rue André Chénier, 34130 Mauguio, France
| | - Guillouët Jérôme
- Fédération Nationale de la Pêche en France et de la Protection du Milieu Aquatique 108-110 rue Saint-Maur, 75011 Paris, France
| | - Hérodet Benjamin
- Fédération de l'Ain pour la Pêche et la Protection du Milieu Aquatique, 638 rue du Revermont, ZAC de la Cambuse, 01440 Viriat, France
| | - Laine Manon
- Fédération de la Pêche et de Protection du Milieu Aquatique de la Gironde, 10 ZA du Lapin, 33750 Beychac-et-Caillau, France
| | - Masseboeuf Fabrice
- Fédération des Pyrénées-Atlantiques pour la Pêche et la Protection du Milieu Aquatique, 12 boulevard Hauterive, 64000 Pau, France
| | - Mirkovic Ivan
- Fédération de Seine-Maritime pour la Pêche et la Protection du Milieu Aquatique, 11 cours Clemenceau, 76100 Rouen, France
| | - Nicolas Delphine
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Le Sambuc, 13200 Arles, France
| | - Poulet Nicolas
- Office Français de la Biodiversité, Allée du Pr Camille Soula, 31400 Toulouse, France
| | - Martin Jean-François
- CBGP, Montpellier SupAgro, INRA, CIRAD, IRD, Univ Montpellier, Montpellier, France
| | - Gilles André
- UMR 1467 RECOVER, Aix Marseille Univ, INRAE, Centre St Charles, 3 place Victor Hugo, 13331, Marseille, France
| | - Gozlan Rodolphe Elie
- ISEM UMR226, Université de Montpellier, CNRS, IRD, EPHE, 34090 Montpellier, France.
| |
Collapse
|
13
|
Lombardo A, Brocherel G, Donnini C, Fichi G, Mariacher A, Diaconu EL, Carfora V, Battisti A, Cappai N, Mattioli L, De Liberato C. First report of the zoonotic nematode Baylisascaris procyonis in non-native raccoons (Procyon lotor) from Italy. Parasit Vectors 2022; 15:24. [PMID: 35022078 PMCID: PMC8756652 DOI: 10.1186/s13071-021-05116-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/04/2021] [Indexed: 01/04/2023] Open
Abstract
Baylisascaris procyonis is a nematode parasite of the raccoon (Procyon lotor), and it can be responsible for a severe form of larva migrans in humans. This parasite has been reported from many countries all over the world, after translocation of its natural host outside its native geographic range, North America. In the period between January and August 2021, 21 raccoons were cage-trapped and euthanized in Tuscany (Central Italy), in the context of a plan aimed at eradicating a reproductive population of this non-native species. All the animals were submitted for necroscopic examination. Adult ascariids were found in the small intestine of seven raccoons (prevalence 33.3%). Parasites have been identified as B. procyonis based on both morphometric and molecular approaches. The aim of the present article is to report the first finding of this zoonotic parasite from Italy, highlighting the sanitary risks linked to the introduction of alien vertebrate species in new areas.
Collapse
Affiliation(s)
- Andrea Lombardo
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana "M. Aleandri", Arezzo, Italy
| | - Giuseppina Brocherel
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana "M. Aleandri", Arezzo, Italy
| | - Carla Donnini
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana "M. Aleandri", Arezzo, Italy
| | - Gianluca Fichi
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana "M. Aleandri", Grosseto, Italy
| | - Alessia Mariacher
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana "M. Aleandri", Grosseto, Italy.
| | - Elena Lavinia Diaconu
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana "M. Aleandri", Rome, Italy
| | - Virginia Carfora
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana "M. Aleandri", Rome, Italy
| | - Antonio Battisti
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana "M. Aleandri", Rome, Italy
| | - Nadia Cappai
- Parco Nazionale Foreste Casentinesi, Monte Falterona e Campigna, Arezzo, Italy
| | | | - Claudio De Liberato
- Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana "M. Aleandri", Rome, Italy
| |
Collapse
|
14
|
Urbina J, Bredeweg EM, Blaustein AR, Garcia TS. Direct and Latent Effects of Pathogen Exposure Across Native and Invasive Amphibian Life Stages. Front Vet Sci 2021; 8:732993. [PMID: 34778428 PMCID: PMC8585985 DOI: 10.3389/fvets.2021.732993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Emerging infectious diseases are one of the multiple factors contributing to the current "biodiversity crisis". As part of the worldwide biodiversity crisis, amphibian populations are declining globally. Chytridiomycosis, an emerging infectious disease, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is a major cause of amphibian population declines. This fungus primarily affects keratinized structures in larval, juvenile, and adult amphibians as well as heart function. However, we know little about how Bd can impact embryos as well as potential latent effects of Bd exposure over ontogeny. Using two different Bd strains and multiple exposure times, we examined the effects of Bd exposure in Pacific chorus frog (Pseudacris regilla), Western toad (Anaxyrus boreas) and American bullfrog (Lithobates catesbeianus) life stages. Using a factorial experimental design, embryos of these three species were exposed to Bd at early and late embryonic stages, with some individuals re-exposed after hatching. Embryonic Bd exposure resulted in differential survival as a function of host species, Bd strain and timing of exposure. P. regilla experienced embryonic mortality when exposed during later developmental stages to one Bd strain. There were no differences across the treatments in embryonic mortality of A. boreas and embryonic mortality of L. catesbeianus occurred in all Bd exposure treatments. We detected latent effects in A. boreas and L. catesbeianus larvae, as mortality increased when individuals had been exposed to any of the Bd strains during the embryonic stage. We also detected direct effects on larval mortality in all three anuran species as a function of Bd strain, and when individuals were double exposed (late in the embryonic stage and again as larvae). Our results suggest that exposure to Bd can directly affect embryo survival and has direct and latent effects on larvae survival of both native and invasive species. However, these impacts were highly context dependent, with timing of exposure and Bd strain influencing the severity of the effects.
Collapse
Affiliation(s)
- Jenny Urbina
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR, United States
| | - Evan M Bredeweg
- Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Corvallis, OR, United States
| | - Andrew R Blaustein
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Tiffany S Garcia
- Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
15
|
Tarkan AS, Tricarico E, Vilizzi L, Bİlge G, Ekmekçİ FG, Filiz H, Giannetto D, İlhan A, Kİllİ N, Kirankaya ŞG, Koutsikos N, Kozic S, Kurtul I, Lazzaro L, Marchini A, Occhipinti-Ambrogi A, Perdikaris C, Piria M, Pompei L, Sari H, Smeti E, Stasolla G, Top N, Tsiamis K, Vardakas L, Yapici S, Yoğurtçuoğlu B, Copp GH. Risk of invasiveness of non-native aquatic species in the eastern Mediterranean region under current and projected climate conditions. THE EUROPEAN ZOOLOGICAL JOURNAL 2021. [DOI: 10.1080/24750263.2021.1980624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- A. S. Tarkan
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Turkey
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - E. Tricarico
- Department of Biology, University of Florence, Florence, Italy
| | - L. Vilizzi
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - G. Bİlge
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - F. G. Ekmekçİ
- Hydrobiology Section, Department of Biology, Faculty of Science, Hacettepe University, Çankaya-Ankara, Turkey
| | - H. Filiz
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - D. Giannetto
- Department of Biology, Faculty of Science, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - A. İlhan
- Faculty of Fisheries, Ege University, Bornova, İzmir, Turkey
| | - N. Kİllİ
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Ş. G. Kirankaya
- Department of Biology, Faculty of Arts and Science, Düzce University, Düzce, Turkey
| | - N. Koutsikos
- Institute of Marine Biological Resources & Inland Waters, Hellenic Centre for Marine Research, Anavissos, Attica, Greece
| | - S. Kozic
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - I. Kurtul
- Faculty of Fisheries, Ege University, Bornova, İzmir, Turkey
| | - L. Lazzaro
- Department of Biology, University of Florence, Florence, Italy
| | - A. Marchini
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | | | - C. Perdikaris
- Department of Fisheries, Regional Unit of Thesprotia, Epirus, Igoumenitsa, Greece
| | - M. Piria
- Department of Fisheries, Apiculture, Wildlife Management and Special Zoology, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - L. Pompei
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - H. Sari
- Faculty of Fisheries, Ege University, Bornova, İzmir, Turkey
| | - E. Smeti
- Institute of Marine Biological Resources & Inland Waters, Hellenic Centre for Marine Research, Anavissos, Attica, Greece
| | | | - N. Top
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - K. Tsiamis
- Institute of Marine Biological Resources & Inland Waters, Hellenic Centre for Marine Research, Anavissos, Attica, Greece
| | - L. Vardakas
- Institute of Marine Biological Resources & Inland Waters, Hellenic Centre for Marine Research, Anavissos, Attica, Greece
| | - S. Yapici
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - B. Yoğurtçuoğlu
- Hydrobiology Section, Department of Biology, Faculty of Science, Hacettepe University, Çankaya-Ankara, Turkey
| | - G. H. Copp
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, Suffolk, UK
- Centre for Ecology, Environment and Sustainability, Bournemouth University, Poole, Dorset, UK
- Life Sciences Graduate Programme, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
16
|
Abstract
The round goby (Neogobius melanostomus) is a successful invader of the Great Lakes-St Lawrence River basin that harbours a number of local parasites. The most common are metacercariae of the genus Diplostomum. Species of Diplostomum are morphologically difficult to distinguish but can be separated using molecular techniques. While a few species have been sequenced from invasive round gobies in this study system, their relative abundance has not been documented. The purpose of this study was to determine the species composition of Diplostomum spp. and their relative abundance in round gobies in the St Lawrence River by sequencing the barcode region of cytochrome c oxidase I. In 2007-2011, Diplostomum huronense (=Diplostomum sp. 1) was the most common, followed in order by Diplostomum indistinctum (=Diplostomum sp. 4) and Diplostomum indistinctum sensu Galazzo, Dayanandan, Marcogliese & McLaughlin (2002). In 2012, the most common species infecting the round goby in the St Lawrence River was D. huronense, followed by D. indistinctum and Diplostomum gavium (=Diplostomum sp. 3). The invasion of the round goby in the St Lawrence River was followed by a decline of Diplostomum spp. in native fishes to low levels, leading to the previously published hypothesis that the presence of the round goby has led to a dilution effect. Herein, it is suggested that despite the low infection levels in the round goby, infections still may lead to spillback, helping to maintain Diplostomum spp. in native fishes, albeit at low levels.
Collapse
|
17
|
Santa MA, Musiani M, Ruckstuhl KE, Massolo A. A review on invasions by parasites with complex life cycles: the European strain of Echinococcus multilocularis in North America as a model. Parasitology 2021; 148:1532-1544. [PMID: 35060461 PMCID: PMC8564803 DOI: 10.1017/s0031182021001426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/28/2022]
Abstract
In a fast-changing and globalized world, parasites are moved across continents at an increasing pace. Co-invasion of parasites and their hosts is leading to the emergence of infectious diseases at a global scale, underlining the need for integration of biological invasions and disease ecology research. In this review, the ecological and evolutionary factors influencing the invasion process of parasites with complex life cycles were analysed, using the invasion of the European strain of Echinococcus multilocularis in North America as a model. The aim was to propose an ecological framework for investigating the invasion of parasites that are trophically transmitted through predator–prey interactions, showing how despite the complexity of the cycles and the interactions among multiple hosts, such parasites can overcome multiple barriers and become invasive. Identifying the key ecological processes affecting the success of parasite invasions is an important step for risk assessment and development of management strategies, particularly for parasites with the potential to infect people (i.e. zoonotic).
Collapse
Affiliation(s)
- Maria A. Santa
- Department of Biology, University of Calgary, AlbertaT2N 1N4, Canada
| | - Marco Musiani
- Department of Biology, University of Calgary, AlbertaT2N 1N4, Canada
| | | | - Alessandro Massolo
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, AlbertaT2N 4Z6, Canada
- Ethology Unit, Department of Biology, University of Pisa, Pisa, 56126, Italy
- UMR CNRS 6249 Chrono-Environnement, Université Bourgogne Franche-Comté, Besançon, 25030, France
| |
Collapse
|
18
|
McManus A, Holland CV, Henttonen H, Stuart P. The Invasive Bank Vole ( Myodes glareolus): A Model System for Studying Parasites and Ecoimmunology during a Biological Invasion. Animals (Basel) 2021; 11:2529. [PMID: 34573495 PMCID: PMC8464959 DOI: 10.3390/ani11092529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
The primary driver of the observed increase in emerging infectious diseases (EIDs) has been identified as human interaction with wildlife and this increase has emphasized knowledge gaps in wildlife pathogens dynamics. Wild rodent models have proven excellent for studying changes in parasite communities and have been a particular focus of eco-immunological research. Helminth species have been shown to be one of the factors regulating rodent abundance and indirectly affect disease burden through trade-offs between immune pathways. The Myodes glareolus invasion in Ireland is a unique model system to explore the invasion dynamics of helminth species. Studies of the invasive population of M. glareolus in Ireland have revealed a verifiable introduction point and its steady spread. Helminths studies of this invasion have identified enemy release, spillover, spillback and dilution taking place. Longitudinal studies have the potential to demonstrate the interplay between helminth parasite dynamics and both immune adaptation and coinfecting microparasites as M. glareolus become established across Ireland. Using the M. glareolus invasion as a model system and other similar wildlife systems, we can begin to fill the large gap in our knowledge surrounding the area of wildlife pathogen dynamics.
Collapse
Affiliation(s)
- Andrew McManus
- Department of Biological and Pharmaceutical Sciences, Munster Technological University, Clash, V92 CX88 Tralee, Ireland;
| | - Celia V. Holland
- Department of Zoology, Trinity College Dublin, the University of Dublin, College Green, D02 PN40 Dublin, Ireland;
| | - Heikki Henttonen
- Wildlife Ecology, Natural Resources Institute Finland (Luke), FI 00790 Helsinki, Finland;
| | - Peter Stuart
- Department of Biological and Pharmaceutical Sciences, Munster Technological University, Clash, V92 CX88 Tralee, Ireland;
| |
Collapse
|
19
|
Tsuchida K, Urabe M, Nishikawa K. The First Survey for Helminths Parasitic in Hybrid and Introduced Giant Salamanders, Genus Andrias (Amphibia: Caudata: Cryptobranchidae) in Kyoto, Japan. CURRENT HERPETOLOGY 2021. [DOI: 10.5358/hsj.40.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Karin Tsuchida
- Graduate School of Environmental Science, University of Shiga Prefecture, Hikone, Shiga 522–8533, JAPAN
| | - Misako Urabe
- School of Environmental Science, University of Shiga Prefecture, Hikone, Shiga 522–8533, JAPAN
| | - Kanto Nishikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto 606–8501, JAPAN
| |
Collapse
|
20
|
Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2021. [PMID: 33622992 PMCID: PMC7371965 DOI: 10.1007/s12041-020-01225-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease-mediated extinctions and wildlife epidemics. We then focus on elucidating how host–parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
|
21
|
Dharmarajan G, Gupta P, Vishnudas CK, Robin VV. Anthropogenic disturbance favours generalist over specialist parasites in bird communities: Implications for risk of disease emergence. Ecol Lett 2021; 24:1859-1868. [PMID: 34120404 DOI: 10.1111/ele.13818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/10/2021] [Accepted: 05/03/2021] [Indexed: 11/27/2022]
Abstract
Niche theory predicts specialists which will be more sensitive to environmental perturbation compared to generalists, a hypothesis receiving broad support in free-living species. Based on their niche breadth, parasites can also be classified as specialists and generalists, with specialists infecting only a few and generalists a diverse array of host species. Here, using avian haemosporidian parasites infecting wild bird populations inhabiting the Western Ghats, India as a model system, we elucidate how climate, habitat and human disturbance affects parasite prevalence both directly and indirectly via their effects on host diversity. Our data demonstrate that anthropogenic disturbance acts to reduce the prevalence of specialist parasite lineages, while increasing that of generalist lineages. Thus, as in free-living species, disturbance favours parasite communities dominated by generalist versus specialist species. Because generalist parasites are more likely to cause emerging infectious diseases, such biotic homogenisation of parasite communities could increase disease emergence risk in the Anthropocene.
Collapse
Affiliation(s)
- Guha Dharmarajan
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.,Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Pooja Gupta
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.,Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - C K Vishnudas
- Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, India
| | - V V Robin
- Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, India
| |
Collapse
|
22
|
VilÀ M, Dunn AM, Essl F, GÓmez-DÍaz E, Hulme PE, Jeschke JM, NÚÑez MA, Ostfeld RS, Pauchard A, Ricciardi A, Gallardo B. Viewing Emerging Human Infectious Epidemics through the Lens of Invasion Biology. Bioscience 2021. [DOI: 10.1093/biosci/biab047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Invasion biology examines species originated elsewhere and moved with the help of humans, and those species’ impacts on biodiversity, ecosystem services, and human well-being. In a globalized world, the emergence and spread of many human infectious pathogens are quintessential biological invasion events. Some macroscopic invasive species themselves contribute to the emergence and transmission of human infectious agents. We review conceptual parallels and differences between human epidemics and biological invasions by animals and plants. Fundamental concepts in invasion biology regarding the interplay of propagule pressure, species traits, biotic interactions, eco-evolutionary experience, and ecosystem disturbances can help to explain transitions between stages of epidemic spread. As a result, many forecasting and management tools used to address epidemics could be applied to biological invasions and vice versa. Therefore, we advocate for increasing cross-fertilization between the two disciplines to improve prediction, prevention, treatment, and mitigation of invasive species and infectious disease outbreaks, including pandemics.
Collapse
Affiliation(s)
- Montserrat VilÀ
- Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
| | | | - Franz Essl
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Elena GÓmez-DÍaz
- Institute of Parasitology and Biomedicine Lopez-Neyra, Granada, Spain
| | - Philip E Hulme
- Bio-Protection Research Centre, Lincoln University, Canterbury, New Zealand
| | - Jonathan M Jeschke
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, with the Institute of Biology, Freie Universität Berlin, and with the Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - MartÍn A NÚÑez
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States
| | - Richard S Ostfeld
- Cary Institute of Ecosystem Studies, Millbrook, New York, United States
| | - AnÍbal Pauchard
- Laboratorio de Invasiones Biológicas, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile, and with the Institute of Ecology and Biodiversity, Santiago, Chile
| | | | - Belinda Gallardo
- Pyrenean Institute of Ecology, Zaragoza, Spain, and with the BioRISC (Biosecurity Research Initiative at St Catharine's), at St Catharine's College, Cambridge, United Kingdom
| |
Collapse
|
23
|
Feronato SG, Araujo S, Boeger WA. 'Accidents waiting to happen'-Insights from a simple model on the emergence of infectious agents in new hosts. Transbound Emerg Dis 2021; 69:1727-1738. [PMID: 33963679 DOI: 10.1111/tbed.14146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
This study evaluates through modelling the possible individual and combined effect of three populational parameters of pathogens (reproduction rate; rate of novelty emergence; and propagule size) on the colonization of new host species-putatively the most fundamental process leading to the emergence of new infectious diseases. The results are analysed under the theoretical framework of the Stockholm Paradigm using IBM simulations to better understand the evolutionary dynamics of the pathogen population and the possible role of Ecological Fitting. The simulations suggest that all three parameters positively influence the success of colonization of new hosts by a novel parasite population, but contrary to the prevailing belief, the rate of novelty emergence (e.g. mutations) is the least important factor. Maximization of all parameters results in a synergetic facilitation of the colonization and emulates the expected scenario for pathogenic microorganisms. The simulations also provide theoretical support for the retention of the capacity of fast-evolving lineages to retro-colonize their previous host species/lineage by ecological fitting. Capacity is, thus, much larger than we can anticipate. Hence, the results support the empirical observations that opportunity of encounter (i.e. the breakdown in mechanisms for ecological isolation) is a fundamental determinant to the emergence of new associations-especially Emergent Infectious Diseases-and the dynamics of host exploration, as observed in SARS-CoV-2. Insights on the dynamics of Emergent Infectious Diseases derived from the simulations and from the Stockholm Paradigm are discussed.
Collapse
Affiliation(s)
- Sofia G Feronato
- Biological Interactions, Universidade Federal do Paraná, Curitiba, Brazil
| | - Sabrina Araujo
- Biological Interactions, Universidade Federal do Paraná, Curitiba, Brazil.,Dept de Física, Universidade Federal do Paraná, Curitiba, Brazil
| | - Walter A Boeger
- Biological Interactions, Universidade Federal do Paraná, Curitiba, Brazil.,Dept de Zoologia, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
24
|
Patterns of infection in a native and an invasive crayfish across the UK. J Invertebr Pathol 2021; 184:107595. [PMID: 33878331 DOI: 10.1016/j.jip.2021.107595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022]
Abstract
Invasive crayfish and the introduction of non-native diseases pose a significant risk for the conservation of endangered, white-clawed crayfish (Austropotamobius pallipes). Continued pollution of waterways is also of concern for native species and may be linked with crayfish disease dynamics. We explore whether crayfish species or environmental quality are predictors of infection presence and prevalence in native A. pallipes and invasive signal crayfish (Pacifastacus leniusculus). We use a seven-year dataset of histology records, and a field survey comparing the presence and prevalence of infectious agents in three isolated A. pallipes populations; three isolated P. leniusculus populations, and three populations where the two species had overlapped in the past. We note a lower diversity of parasites (Simpson's Index) in P. leniusculus ('Pacifastacus leniusculus Bacilliform Virus' - PlBV) (n = 1 parasite) relative to native A. pallipes (n = 4 parasites), which host Thelohania contejeani, 'Austropotamobius pallipes bacilliform virus' (ApBV), Psorospermium haeckeli and Branchiobdella astaci, at the sites studied. The infectious group present in both species was an intranuclear bacilliform virus of the hepatopancreas. The prevalence of A. astaci in A. pallipes populations was higher in more polluted water bodies, which may reflect an effect of water quality, or may be due to increased chance of transmission from nearby P. leniusculus, a species commonly found in poor quality habitats.
Collapse
|
25
|
Sandoval-Rodríguez A, Marcone D, Alegría-Morán R, Larraechea M, Yévenes K, Fredes F, Briceño C. Cryptosporidium spp. and Giardia spp. in Free-Ranging Introduced Monk Parakeets from Santiago, Chile. Animals (Basel) 2021; 11:ani11030801. [PMID: 33809350 PMCID: PMC7999449 DOI: 10.3390/ani11030801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Monk Parakeets are medium-sized parrots that were internationally traded as pets and that as a byproduct have become invasive species in 19 countries. This is the case of Chile, where Monk Parakeets have thrived in the city of Santiago. Cryptosporidium spp. and Giardia spp. are parasites that can affect the digestive system of a wide variety of animals, including humans and birds. This study sought to determine the occurrence of these parasites within Monk Parakeets from the city of Santiago. To do this, 207 fecal samples from Monk Parakeet nestlings that were captured during the summer seasons of 2017 and 2018 were analyzed. Environmental data related to the trees in which the nestlings were captured was studied in order to the determine the existence of areas more prone to have infected parakeets and whether certain environmental variables influence the presence or absence of these parasites in Monk Parakeets. In total, 33 samples were positive to the presence of one or both parasites. Of the 33, 10 nestlings (30%) were infected with Cryptosporidium spp. and 25 (76%) with Giardia spp. Two nestlings were infected with both parasites (6%). Environmental analyses revealed that pruned trees might constitute a protective factor against infection with these parasites. These findings emphasize Monk Parakeet’s potential role as a disease disseminator, especially in urban environments. Abstract Monk Parakeets (Myiopsitta monachus) are medium-sized parrots that due to international pet trade currently exist as invasive species in 19 countries globally. Such is the case of Chile, where Monk Parakeets have thrived in the city of Santiago. Cryptosporidium spp. and Giardia spp. are worldwide distributed gastrointestinal parasites whose potential hosts include birds and humans. The present study sought to determine the presence of these pathogens in Monk Parakeets from Santiago. During the austral summers of 2017 and 2018, 207 Monk Parakeet nestlings were captured, and fecal samples were studied via microscopical analyses. Environmental data related to the trees in which the nestlings were captured were analyzed to establish the existence of infection clusters. Associations between spatial clusters, environmental variables, and the presence or absence of these pathogens were explored. In total, 33 samples were positive to the presence of one or both protozoa. Of the 33, Cryptosporidium spp. oocysts were detected in 10 nestlings (30%) while Giardia spp. cysts were detected in 25 (76%). Two nestlings presented poly-parasitism (6%). Statistical analyses established pruned trees as a potential protective factor against infection with these parasites. The present study corresponds to the second report of Cryptosporidium spp. in Monk Parakeets in Chile and the first worldwide report of Giardia spp. in these birds, emphasizing Monk Parakeet’s potential role as a reservoir and pathogen disseminator, especially in urban environments.
Collapse
Affiliation(s)
- Alejandra Sandoval-Rodríguez
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago CP 8820808, Chile;
- Animal Preventive Medicine Department, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago CP 8820808, Chile; (D.M.); or (R.A.-M.); (M.L.); (K.Y.); (F.F.)
| | - Daniela Marcone
- Animal Preventive Medicine Department, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago CP 8820808, Chile; (D.M.); or (R.A.-M.); (M.L.); (K.Y.); (F.F.)
| | - Raúl Alegría-Morán
- Animal Preventive Medicine Department, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago CP 8820808, Chile; (D.M.); or (R.A.-M.); (M.L.); (K.Y.); (F.F.)
- Faculty of Agricultural and Environmental Sciences, Pedro de Valdivia University, Santiago CP 8370007, Chile
| | - Matilde Larraechea
- Animal Preventive Medicine Department, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago CP 8820808, Chile; (D.M.); or (R.A.-M.); (M.L.); (K.Y.); (F.F.)
| | - Karina Yévenes
- Animal Preventive Medicine Department, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago CP 8820808, Chile; (D.M.); or (R.A.-M.); (M.L.); (K.Y.); (F.F.)
| | - Fernando Fredes
- Animal Preventive Medicine Department, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago CP 8820808, Chile; (D.M.); or (R.A.-M.); (M.L.); (K.Y.); (F.F.)
| | - Cristóbal Briceño
- Animal Preventive Medicine Department, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago CP 8820808, Chile; (D.M.); or (R.A.-M.); (M.L.); (K.Y.); (F.F.)
- Correspondence: ; Tel.: +56-2-29785665
| |
Collapse
|
26
|
Huber C, Watts A, Grills A, Yong JHE, Morrison S, Bowden S, Tuite A, Nelson B, Cetron M, Khan K. Modelling airport catchment areas to anticipate the spread of infectious diseases across land and air travel. Spat Spatiotemporal Epidemiol 2021; 36:100380. [PMID: 33509428 PMCID: PMC10413988 DOI: 10.1016/j.sste.2020.100380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/06/2020] [Accepted: 10/23/2020] [Indexed: 11/23/2022]
Abstract
Air travel is an increasingly important conduit for the worldwide spread of infectious diseases. However, methods to identify which airports an individual may use to initiate travel, or where an individual may travel to upon arrival at an airport is not well studied. This knowledge gap can be addressed by estimating airport catchment areas: the geographic extent from which the airport derives most of its patronage. While airport catchment areas can provide a simple decision-support tool to help delineate the spatial extent of infectious disease spread at a local scale, observed data for airport catchment areas are rarely made publicly available. Therefore, we evaluated a probabilistic choice behavior model, the Huff model, as a potential methodology to estimate airport catchment areas in the United States in data-limited scenarios. We explored the impact of varying input parameters to the Huff model on estimated airport catchment areas: distance decay exponent, distance cut-off, and measures of airport attractiveness. We compared Huff model catchment area patterns for Miami International Airport (MIA) and Harrisburg International Airport (MDT). We specifically compared our model output to observed data sampled for MDT to align model parameters with an established, observed catchment area. Airport catchment areas derived using the Huff model were highly sensitive to changes in model parameters. We observed that a distance decay exponent of 2 and a distance cut-off of 500 km represented the most realistic spatial extent and heterogeneity of the MIA catchment area. When these parameters were applied to MDT, the Huff model produced similar spatial patterns to the observed MDT catchment area. Finally, our evaluation of airport attractiveness showed that travel volume to the specific international destinations of interest for infectious disease importation risks (i.e., Brazil) had little impact on the predicted choice of airport when compared to all international travel. Our work is a proof of concept for use of the Huff model to estimate airport catchment areas as a generalizable decision-support tool in data-limited scenarios. While our work represents an initial examination of the Huff model as a method to approximate airport catchment areas, an essential next step is to conduct a quantitative calibration and validation of the model based on multiple airports, possibly leveraging local human mobility data such as call detail records or online social network data collected from mobile devices. Ultimately, we demonstrate how the Huff model could be potentially helpful to improve the precision of early warning systems that anticipate infectious disease spread, or to incorporate when local public health decision makers need to identify where to mobilize screening infrastructure or containment strategies at a local level.
Collapse
Affiliation(s)
- Carmen Huber
- BlueDot, 207 Queens Quay West #801b, Toronto, Ontario, Canada.
| | - Alexander Watts
- BlueDot, 207 Queens Quay West #801b, Toronto, Ontario, Canada
| | - Ardath Grills
- Division of Global Migration and Quarantine, National Center for Emerging and Zoonotic Infectious Diseases, 1600 Clifton Road, Atlanta, GA, United States of America (USA)
| | | | - Stephanie Morrison
- Division of Global Migration and Quarantine, National Center for Emerging and Zoonotic Infectious Diseases, 1600 Clifton Road, Atlanta, GA, United States of America (USA); Eagle Medical Services, LLC, 1826 Loop 1604 W, Suite 336-D, San Antonio, TX, United States of America (USA)
| | - Sarah Bowden
- Division of Global Migration and Quarantine, National Center for Emerging and Zoonotic Infectious Diseases, 1600 Clifton Road, Atlanta, GA, United States of America (USA); Eagle Medical Services, LLC, 1826 Loop 1604 W, Suite 336-D, San Antonio, TX, United States of America (USA)
| | - Ashleigh Tuite
- BlueDot, 207 Queens Quay West #801b, Toronto, Ontario, Canada
| | - Bradley Nelson
- Division of Global Migration and Quarantine, National Center for Emerging and Zoonotic Infectious Diseases, 1600 Clifton Road, Atlanta, GA, United States of America (USA)
| | - Martin Cetron
- Division of Global Migration and Quarantine, National Center for Emerging and Zoonotic Infectious Diseases, 1600 Clifton Road, Atlanta, GA, United States of America (USA)
| | - Kamran Khan
- BlueDot, 207 Queens Quay West #801b, Toronto, Ontario, Canada; Department of Medicine, Division of Infectious Diseases, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, 38 Shuter St, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Hidden invasion and niche contraction revealed by herbaria specimens in the fungal complex causing oak powdery mildew in Europe. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02409-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractDeciphering the dynamics involved in past microbial invasions has proven difficult due to the inconspicuous nature of microbes and their still poorly known diversity and biogeography. Here we focus on powdery mildew, a common disease of oaks which emerged in Europe at the beginning of the twentieth century and for which three closely related Erysiphe species are mainly involved. The study of herbaria samples combined with an experimental approach of interactions between Erysiphe species led us to revisit the history of this multiple invasion. Contrary to what was previously thought, herbaria sample analyses very strongly suggested that the currently dominant species, E. alphitoides, was not the species which caused the first outbreaks and was described as a new species at that time. Instead, E. quercicola was shown to be present since the early dates of disease reports and to be widespread all over Europe in the beginning of the twentieth century. E. alphitoides spread and became progressively dominant during the second half of the twentieth century while E. quercicola was constrained to the southern part of its initial range, corresponding to its current distribution. A competition experiment provided a potential explanation of this over-invasion by demonstrating that E. alphitoides had a slight advantage over E. quercicola by its ability to infect leaves during a longer period during shoot development. Our study is exemplary of invasions with complexes of functionally similar species, emphasizing that subtle differences in the biology of the species, rather than strong competitive effects may explain patterns of over-invasion and niche contraction.
Collapse
|
28
|
Paap T, Wingfield MJ, Burgess TI, Hulbert JM, Santini A. Harmonising the fields of invasion science and forest pathology. NEOBIOTA 2020. [DOI: 10.3897/neobiota.62.52991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive alien species are widely recognised as significant drivers of global environmental change, with far reaching ecological and socio-economic impacts. The trend of continuous increases in first records, with no apparent sign of saturation, is consistent across all taxonomic groups. However, taxonomic biases exist in the extent to which invasion processes have been studied. Invasive forest pathogens have caused, and they continue to result in dramatic damage to natural forests and woody ecosystems, yet their impacts are substantially underrepresented in the invasion science literature. Conversely, most studies of forest pathogens have been undertaken in the absence of a connection to the frameworks developed and used to study biological invasions. We believe this is, in part, a consequence of the mechanistic approach of the discipline of forest pathology; one that has been inherited from the broader discipline of plant pathology. Rather than investigating the origins of, and the processes driving the arrival of invasive microorganisms, the focus of pathologists is generally to investigate specific interactions between hosts and pathogens, with an emphasis on controlling the resulting disease problems. In contrast, central to the field of invasion science, which finds its roots in ecology, is the development and testing of general concepts and frameworks. The lack of knowledge of microbial biodiversity and ecology, speciation and geographic origin present challenges in understanding invasive forest pathogens under existing frameworks, and there is a need to address this shortfall. Advances in molecular technologies such as gene and genome sequencing and metagenomics studies have increased the “visibility” of microorganisms. We consider whether these technologies are being adequately applied to address the gaps between forest pathology and invasion science. We also interrogate the extent to which the two fields stand to gain by becoming more closely linked.
Collapse
|
29
|
Association between temporal patterns in helminth assemblages and successful range expansion of exotic Mus musculus domesticus in Senegal. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Lucardi RD, Bellis ES, Cunard CE, Gravesande JK, Hughes SC, Whitehurst LE, Worthy SJ, Burgess KS, Marsico TD. Seeds attached to refrigerated shipping containers represent a substantial risk of nonnative plant species introduction and establishment. Sci Rep 2020; 10:15017. [PMID: 32929143 PMCID: PMC7490705 DOI: 10.1038/s41598-020-71954-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/24/2020] [Indexed: 11/29/2022] Open
Abstract
The initial processes for successful biological invasions are transport, introduction, and establishment. These can be directly influenced or completely avoided through activities that reduce the number and frequency of entering nonnative propagules. Economic and environmental benefits through preventative monitoring programs at early stages of invasion far outweigh the long-term costs associated with mitigating ecological and economic impacts once nonnative species establish and spread. In this study, we identified 30 taxa of hitchhiking plant propagules on the air-intake grilles of refrigerated shipping containers arriving into a United States seaport from a port on the Pacific coast of South America. The four monocotyledonous taxa with the highest number of seeds collected were analyzed; we estimated propagule pressure, germination, and survivorship of these taxa, and we used the estimates to determine likelihood of establishment. At the levels of propagule pressure estimated here, non-zero germination and survival rates resulted in high establishment probabilities even when escape rates from shipping containers were modelled to be exceedingly low. Our results suggest high invasion risk for nonnative taxa including Saccharum spontaneum L., a listed Federal Noxious Weed. Currently, not all shipping containers arriving at USA ports are thoroughly inspected due to limited personnel and funding for biological invasion prevention. Our results indicate that there is a significant risk from only a few propagules escaping into the environment from this source, and we propose possible solutions for reducing this risk.
Collapse
Affiliation(s)
- Rima D Lucardi
- United States Department of Agriculture, Forest Service, Southern Research Station, Athens, GA, USA.
| | - Emily S Bellis
- Arkansas Bioscience Institute and Department of Computer Science, Arkansas State University, Jonesboro, AR, USA
| | - Chelsea E Cunard
- United States Department of Agriculture, Forest Service, Southern Research Station, Athens, GA, USA.,Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | - Jarron K Gravesande
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA.,Department of Plant Pathology, University of Georgia, Athens, GA, USA
| | - Steven C Hughes
- Department of Plant Biology, The Herbarium at the University of Georgia, Athens, GA, USA
| | - Lauren E Whitehurst
- Department of Biology, Columbus State University, Columbus, USA.,Department of Biology, University of Florida, Gainesville, FL, USA
| | - Samantha J Worthy
- Department of Biology, Columbus State University, Columbus, USA.,Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Kevin S Burgess
- Department of Biology, Columbus State University, Columbus, USA
| | - Travis D Marsico
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA.
| |
Collapse
|
31
|
Nuñez MA, Pauchard A, Ricciardi A. Invasion Science and the Global Spread of SARS-CoV-2. Trends Ecol Evol 2020; 35:642-645. [PMID: 32487347 PMCID: PMC7236691 DOI: 10.1016/j.tree.2020.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 01/31/2023]
Abstract
Emerging infectious diseases, such as coronavirus disease 2019 (COVID-19), are driven by ecological and socioeconomic factors, and their rapid spread and devastating impacts mirror those of invasive species. Collaborations between biomedical researchers and ecologists, heretofore rare, are vital to limiting future outbreaks. Enhancing the crossdisciplinary framework offered by invasion science could achieve this goal.
Collapse
Affiliation(s)
- Martin A Nuñez
- Grupo de Ecología de Invasiones, INIBIOMA, CONICET, Universidad Nacional del Comahue, Pioneros 2350, San Carlos de Bariloche 8400, Argentina.
| | - Anibal Pauchard
- Laboratorio de Invasiones Biológicas, Facultad de Ciencias Forestales, Universidad de Concepción, Victoria 631, Concepción, Chile; Institute of Ecology and Biodiversity (IEB), Santiago, Chile
| | - Anthony Ricciardi
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, QC H3A 0C4, Canada; Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
32
|
Trypanosomatids Detected in the Invasive Avian Parasite Philornis downsi (Diptera: Muscidae) in the Galapagos Islands. INSECTS 2020; 11:insects11070422. [PMID: 32659927 PMCID: PMC7411904 DOI: 10.3390/insects11070422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022]
Abstract
Alien insect species may present a multifaceted threat to ecosystems into which they are introduced. In addition to the direct damage they may cause, they may also bring novel diseases and parasites and/or have the capacity to vector microorganisms that are already established in the ecosystem and are causing harm. Damage caused by ectoparasitic larvae of the invasive fly, Philornisdownsi (Dodge and Aitken) to nestlings of endemic birds in the Galapagos Islands is well documented, but nothing is known about whether this fly is itself associated with parasites or pathogens. In this study, diagnostic molecular methods indicated the presence of insect trypanosomatids in P. downsi; to our knowledge, this is the first record of insect trypanosomatids associated with Philornis species. Phylogenetic estimates and evolutionary distances indicate these species are most closely related to the Crithidia and Blastocrithidia genera, which are not currently reported in the Galapagos Islands. The prevalence of trypanosomatids indicates either P. downsi arrived with its own parasites or that it is a highly suitable host for trypanosomatids already found in the Galapagos Islands, or both. We recommend further studies to determine the origin of the trypanosomatid infections to better evaluate threats to endemic fauna of the Galapagos Islands.
Collapse
|
33
|
Ang A, Jabbar S, Khoo M. Dusky Langurs Trachypithecus obscurus (Reid, 1837) (Primates: Cercopithecidae) in Singapore: potential origin and conflicts with native primate species. JOURNAL OF THREATENED TAXA 2020. [DOI: 10.11609/jott.5818.12.9.15967-15974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The introduction of exotic species can have detrimental effects on local populations via factors such as resource competition and new threats from disease. Singapore has three native species of non-human primates: Sunda Slow Loris Nycticebus coucang, Long-tailed Macaque Macaca fascicularis, and Raffles’ Banded Langur Presbytis femoralis. Over the past few months, several non-native Dusky Langurs Trachypithecus obscurus were observed in Singapore. We document our observations, compile reports from social media, and attempt to assess the potential impacts on local primates. Whenever Dusky Langurs were encountered, we recorded the date, time, GPS coordinates, group demographics, and behaviour, including interactions with native primates. We also monitored sighting reports of Dusky Langurs posted on local major Facebook groups from 30 December 2019 to 31 January 2020, and privately messaged the person(s) for more information. On 31 August 2019, three Dusky Langurs were seen near a residential area in the northern part of Singapore, and two to three individuals were reported on 14 subsequent occasions. During one encounter on 18 January 2020, an adult male Long-tailed Macaque chased a group of Dusky Langurs from a feeding tree. The next day the same group of Dusky Langurs chased a group of 11 Banded Langurs from another feeding tree. The Dusky Langurs appeared to be healthy and wild, indicating that they may have swum across the Johor Strait and/or traveled on the Johor-Singapore Causeway from Malaysia. Further monitoring of these Dusky Langurs will be required to assess their impact on local primates.
Collapse
|
34
|
Common LK, O'Connor JA, Dudaniec RY, Peters KJ, Kleindorfer S. Evidence for rapid downward fecundity selection in an ectoparasite (Philornis downsi) with earlier host mortality in Darwin's finches. J Evol Biol 2020; 33:524-533. [PMID: 31961983 PMCID: PMC7217188 DOI: 10.1111/jeb.13588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 01/05/2023]
Abstract
Fecundity selection is a critical component of fitness and a major driver of adaptive evolution. Trade‐offs between parasite mortality and host resources are likely to impose a selection pressure on parasite fecundity, but this is little studied in natural systems. The ‘fecundity advantage hypothesis’ predicts female‐biased sexual size dimorphism whereby larger females produce more offspring. Parasitic insects are useful for exploring the interplay between host resource availability and parasite fecundity, because female body size is a reliable proxy for fecundity in insects. Here we explore temporal changes in body size in the myiasis‐causing parasite Philornis downsi (Diptera: Muscidae) on the Galápagos Islands under conditions of earlier in‐nest host mortality. We aim to investigate the effects of decreasing host resources on parasite body size and fecundity. Across a 12‐year period, we observed a mean of c. 17% P. downsi mortality in host nests with 55 ± 6.2% host mortality and a trend of c. 66% higher host mortality throughout the study period. Using specimens from 116 Darwin's finch nests (Passeriformes: Thraupidae) and 114 traps, we found that over time, P. downsi pupae mass decreased by c. 32%, and male (c. 6%) and female adult size (c. 11%) decreased. Notably, females had c. 26% smaller abdomens in later years, and female abdomen size was correlated with number of eggs. Our findings imply natural selection for faster P. downsi pupation and consequently smaller body size and lower parasite fecundity in this newly evolving host–parasite system.
Collapse
Affiliation(s)
- Lauren K Common
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Jody A O'Connor
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia.,Department for Environment and Water, Government of South Australia, Adelaide, SA, Australia
| | - Rachael Y Dudaniec
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Katharina J Peters
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Sonia Kleindorfer
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia.,Konrad Lorenz Research Center for Behaviour and Cognition and Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Gupta P, Robin VV, Dharmarajan G. Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2020; 99:65. [PMID: 33622992 PMCID: PMC7371965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/23/2020] [Accepted: 05/25/2020] [Indexed: 08/23/2024]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease mediated extinctions and wildlife epidemics. We then focus on elucidating how host-parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
Affiliation(s)
- Pooja Gupta
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC 29801, USA.
| | | | | |
Collapse
|
36
|
Hammond TT, Blackwood PE, Shablin SA, Richards-Zawacki CL. Relationships between glucocorticoids and infection with Batrachochytrium dendrobatidis in three amphibian species. Gen Comp Endocrinol 2020; 285:113269. [PMID: 31493395 DOI: 10.1016/j.ygcen.2019.113269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022]
Abstract
It is often hypothesized that organisms exposed to environmental change may experience physiological stress, which could reduce individual quality and make them more susceptible to disease. Amphibians are amongst the most threatened taxa, particularly in the context of disease, but relatively few studies explore links between stress and disease in amphibian species. Here, we use the fungal pathogen Batrachochytrium dendrobatidis (Bd) and amphibians as an example to explore relationships between disease and glucocorticoids (GCs), metabolic hormones that comprise one important component of the stress response. While previous work is limited, it has largely identified positive relationships between GCs and Bd-infection. However, the causality remains unclear and few studies have integrated both baseline (GC release that is related to standard, physiological functioning) and stress-induced (GC release in response to an acute stressor) measures of GCs. Here, we examine salivary corticosterone before and after exposure to a stressor, in both field and captive settings. We present results for Bd-infected and uninfected individuals of three amphibian species with differential susceptibilities to this pathogen (Rana catesbeiana, R. clamitans, and R. sylvatica). We hypothesized that prior to stress, baseline GCs would be higher in Bd-infected animals, particularly in more Bd-susceptible species. We also expected that after exposure to a stressor, stress-induced GCs would be lower in Bd-infected animals. These species exhibited significant interspecific differences in baseline and stress induced corticosterone, though other variables like sex, body size, and day of year were usually not predictive of corticosterone. In contrast to most previous work, we found no relationships between Bd and corticosterone for two species (R. catesbeiana and R. clamitans), and in the least Bd-tolerant species (R. sylvatica) animals exhibited context-dependent differences in relationships between Bd infection and corticosterone: Bd-positive R. sylvatica had significantly lower baseline and stress-induced corticosterone, with this pattern being stronger in the field than in captivity. These results were surprising, as past work in other species has more often found elevated GCs in Bd-positive animals, a pattern that aligns with well-documented relationships between chronically high GCs, reduced individual quality, and immunosuppression. This work highlights the potential relevance of GCs to disease susceptibility in the context of amphibian declines, while underscoring the importance of characterizing these relationships in diverse contexts.
Collapse
Affiliation(s)
- Talisin T Hammond
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th Ave at Ruskin Ave, Pittsburgh, PA 15260, USA; San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Rd., Escondido, CA 92027, USA.
| | - Paradyse E Blackwood
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th Ave at Ruskin Ave, Pittsburgh, PA 15260, USA
| | - Samantha A Shablin
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th Ave at Ruskin Ave, Pittsburgh, PA 15260, USA
| | - Corinne L Richards-Zawacki
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th Ave at Ruskin Ave, Pittsburgh, PA 15260, USA
| |
Collapse
|
37
|
Mestre A, Poulin R, Hortal J. A niche perspective on the range expansion of symbionts. Biol Rev Camb Philos Soc 2019; 95:491-516. [DOI: 10.1111/brv.12574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Alexandre Mestre
- Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of Valencia Av. Dr. Moliner 50, 46100 Burjassot Spain
- Department of BiologyUniversity of Concordia Richard J. Renaud Science Complex, 7141 Sherbrooke W., H4B 1R6 Montreal Canada
| | - Robert Poulin
- Department of ZoologyUniversity of Otago 340 Great King Street, 9054 Dunedin New Zealand
| | - Joaquín Hortal
- Department of Biogeography and Global ChangeMuseo Nacional de Ciencias Naturales (MNCN‐CSIC) C/José Gutiérrez Abascal 2, 28006 Madrid Spain
- Departamento de EcologiaICB, Universidade Federal de Goiás (UFG), Rodovia Goiânia‐Nerópolis Km 5, Campus II, Setor Itatiaia, Goiânia GO 74001‐970 Brazil
- cE3c–Centre for EcologyEvolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2 Piso 5, 1749‐016 Lisboa Portugal
| |
Collapse
|
38
|
Mrugała A, Buřič M, Petrusek A, Kouba A. May atyid shrimps act as potential vectors of crayfish plague? NEOBIOTA 2019. [DOI: 10.3897/neobiota.51.37718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The causative agent of crayfish plague, Aphanomyces astaci Schikora, was long considered to be a specialist pathogen whose host range is limited to freshwater crayfish. Recent studies, however, provided evidence that this parasite does not only grow within the tissues of freshwater-inhabiting crabs but can also be successfully transmitted by them to European crayfish species. The potential to act as alternative A. astaci hosts was also indicated for freshwater shrimps. We experimentally tested resistance of two freshwater atyid shrimps: Atyopsis moluccensis (De Haan, 1849) and Atya gabonensis Giebel, 1875. They were infected with the A. astaci strain associated with the globally widespread North American red swamp crayfish, Procambarus clarkii (Girard, 1852), the typical host of the A. astaci genotype group D. As popular ornamental species, both shrimps may get in contact with infected P. clarkii not only in the wild but also in the aquarium trade. We assessed the potential of shrimps to transmit A. astaci to susceptible crayfish by cohabiting A. gabonensis previously exposed to A. astaci zoospores with the European noble crayfish, Astacus astacus (Linnaeus, 1758). In both experiments, the presence of A. astaci infection was analysed with species-specific quantitative PCR. We detected A. astaci in bodies and exuviae of both shrimp species exposed to A. astaci zoospores, however, the intensity of infection differed between the species and analysed samples; it was higher in A. moluccensis and the exuviae of both species. A. astaci was also detected in one A. astacus individual in the transmission experiment. This finding reveals that freshwater shrimps may be able to transmit A. astaci to crayfish hosts; this is particularly important as even a single successful infection contributes to the spread of the disease. Moreover, our results indicate that the tested shrimp species may be capable of resisting A. astaci infection and reducing its intensity through moulting. Although their potential to act as prominent A. astaci vectors requires further research, it should not be ignored as these freshwater animals may then facilitate A. astaci spread to susceptible crayfish species in aquarium and aquaculture facilities as well as in the wild.
Collapse
|
39
|
Margos G, Fingerle V, Reynolds S. Borrelia bavariensis: Vector Switch, Niche Invasion, and Geographical Spread of a Tick-Borne Bacterial Parasite. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00401] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
40
|
Herrera JP, Chakraborty D, Rushmore J, Altizer S, Nunn C. The changing ecology of primate parasites: Insights from wild-captive comparisons. Am J Primatol 2019; 81:e22991. [PMID: 31265141 DOI: 10.1002/ajp.22991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/10/2019] [Accepted: 04/21/2019] [Indexed: 12/23/2022]
Abstract
Host movements, including migrations or range expansions, are known to influence parasite communities. Transitions to captivity-a rarely studied yet widespread human-driven host movement-can also change parasite communities, in some cases leading to pathogen spillover among wildlife species, or between wildlife and human hosts. We compared parasite species richness between wild and captive populations of 22 primate species, including macro- (helminths and arthropods) and micro-parasites (viruses, protozoa, bacteria, and fungi). We predicted that captive primates would have only a subset of their native parasite community, and would possess fewer parasites with complex life cycles requiring intermediate hosts or vectors. We further predicted that captive primates would have parasites transmitted by close contact and environmentally-including those shared with humans and other animals, such as commensals and pests. We found that the composition of primate parasite communities shifted in captive populations, especially because of turnover (parasites detected in captivity but not reported in the wild), but with some evidence of nestedness (holdovers from the wild). Because of the high degree of turnover, we found no significant difference in overall parasite richness between captive and wild primates. Vector-borne parasites were less likely to be found in captivity, whereas parasites transmitted through either close or non-close contact, including through fecal-oral transmission, were more likely to be newly detected in captivity. These findings identify parasites that require monitoring in captivity and raise concerns about the introduction of novel parasites to potentially susceptible wildlife populations during reintroduction programs.
Collapse
Affiliation(s)
- James P Herrera
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | - Debapriyo Chakraborty
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina.,EcoHealth Alliance, New York, New York
| | - Julie Rushmore
- Epicenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, California.,Odum School of Ecology, University of Georgia, Athens
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens
| | - Charles Nunn
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina.,Duke Global Health Institute, Duke University, Durham, North Carolina
| |
Collapse
|
41
|
Ogden NH, Wilson JRU, Richardson DM, Hui C, Davies SJ, Kumschick S, Le Roux JJ, Measey J, Saul WC, Pulliam JRC. Emerging infectious diseases and biological invasions: a call for a One Health collaboration in science and management. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181577. [PMID: 31032015 PMCID: PMC6458372 DOI: 10.1098/rsos.181577] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/18/2019] [Indexed: 05/11/2023]
Abstract
The study and management of emerging infectious diseases (EIDs) and of biological invasions both address the ecology of human-associated biological phenomena in a rapidly changing world. However, the two fields work mostly in parallel rather than in concert. This review explores how the general phenomenon of an organism rapidly increasing in range or abundance is caused, highlights the similarities and differences between research on EIDs and invasions, and discusses shared management insights and approaches. EIDs can arise by: (i) crossing geographical barriers due to human-mediated dispersal, (ii) crossing compatibility barriers due to evolution, and (iii) lifting of environmental barriers due to environmental change. All these processes can be implicated in biological invasions, but only the first defines them. Research on EIDs is embedded within the One Health concept-the notion that human, animal and ecosystem health are interrelated and that holistic approaches encompassing all three components are needed to respond to threats to human well-being. We argue that for sustainable development, biological invasions should be explicitly considered within One Health. Management goals for the fields are the same, and direct collaborations between invasion scientists, disease ecologists and epidemiologists on modelling, risk assessment, monitoring and management would be mutually beneficial.
Collapse
Affiliation(s)
- Nick H. Ogden
- National Microbiology Laboratory, Public Health Agency of Canada, Canada
- South African DST-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, South Africa
| | - John R. U. Wilson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Claremont, Cape Town, South Africa
| | - David M. Richardson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
| | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Matieland 7602, South Africa
- Mathematical and Physical Biosciences, African Institute for Mathematical Sciences (AIMS), Muizenberg 7945, South Africa
| | - Sarah J. Davies
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
| | - Sabrina Kumschick
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Claremont, Cape Town, South Africa
| | - Johannes J. Le Roux
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
- Department of Biological Sciences, Macquarie University, Sydney 2109, Australia
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
| | - Wolf-Christian Saul
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Matieland 7602, South Africa
| | - Juliet R. C. Pulliam
- South African DST-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, South Africa
| |
Collapse
|
42
|
Beukema W, Martel A, Nguyen TT, Goka K, Schmeller DS, Yuan Z, Laking AE, Nguyen TQ, Lin CF, Shelton J, Loyau A, Pasmans F. Environmental context and differences between native and invasive observed niches of Batrachochytrium salamandrivorans
affect invasion risk assessments in the Western Palaearctic. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12795] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Wouter Beukema
- Department of Pathology, Bacteriology and Avian Diseases; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - Tao Thien Nguyen
- Vietnam National Museum of Nature; Vietnam Academy of Science and Technology; Cau Giay Hanoi Vietnam
| | - Koichi Goka
- National Institute for Environmental Studies (NIES); Tsukuba Ibaraki Japan
| | - Dirk S. Schmeller
- Department of Conservation Biology; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
- EcoLab; CNRS; INPT; UPS; Université de Toulouse; Toulouse France
| | - Zhiyong Yuan
- College of Forestry; Southwest Forestry University; Kunming Yunnan China
| | - Alexandra E. Laking
- Department of Pathology, Bacteriology and Avian Diseases; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - Truong Quang Nguyen
- Institute of Ecology and Biological Resources; Vietnam Academy of Science and Technology; Cau Giay Hanoi Vietnam
| | - Chun-Fu Lin
- Zoology Division; Endemic Species Research Institute; Jiji Nantou Taiwan
| | - Jennifer Shelton
- Department of Infectious Disease Epidemiology; Imperial College London; London UK
| | - Adeline Loyau
- Department of Conservation Biology; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
- EcoLab; CNRS; INPT; UPS; Université de Toulouse; Toulouse France
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| |
Collapse
|
43
|
Meadows AJ, Mundt CC, Keeling MJ, Tildesley MJ. Disentangling the influence of livestock vs. farm density on livestock disease epidemics. Ecosphere 2018. [DOI: 10.1002/ecs2.2294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Amanda J. Meadows
- Department of Botany and Plant Pathology; Oregon State University; Cordley Hall, 2701 SW Campus Way Corvallis Oregon 97331 USA
| | - Christopher C. Mundt
- Department of Botany and Plant Pathology; Oregon State University; Cordley Hall, 2701 SW Campus Way Corvallis Oregon 97331 USA
| | - Matt J. Keeling
- Department of Biological Sciences; University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
| | - Michael J. Tildesley
- Department of Biological Sciences; University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
44
|
Phylogenetic and ecological factors affecting the sharing of helminths between native and introduced rodents in Central Chile. Parasitology 2018; 145:1570-1576. [DOI: 10.1017/s0031182018000446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractIn order to analyse the effect of hosts’ relationships and the helminthic load on the switching of parasites between native and introduced hosts, we sampled rodents belonging to two suborders from Central Chile. We compared the number of helminthic species shared between murids (introduced) and cricetid (native, same suborder) rodents to those shared between murids and hystricomorphs (native, different suborder), and we assessed the association between parasitic presence, abundance and geographical dispersion in source hosts to the presence and abundance in recipient hosts. Introduced rodent species shared more helminth species with cricetid rodents than with non-cricetids. Presence and abundance in recipient hosts was not associated with the prevalence and mean abundance in source hosts’ population. The mean abundance of parasites in source hosts throughout the territory and wider dispersion was positively associated with the likelihood of being shared with a recipient host. Closer relationships between native and introduced hosts and high parasitic abundance and dispersion could facilitate host switching of helminths between native and introduced rodents. This work provides the first documentation of the importance of parasitic abundance and dispersion on the switching of parasites between native and introduced hosts.
Collapse
|
45
|
Costa APL, Takemoto RM, Vitule JRS. Metazoan parasites of Micropterus salmoides (Lacépède 1802) (Perciformes, Centrarchidae): a review with evidences of spillover and spillback. Parasitol Res 2018; 117:1671-1681. [DOI: 10.1007/s00436-018-5876-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/11/2018] [Indexed: 11/28/2022]
|
46
|
Romeo C, Lecollinet S, Caballero J, Isla J, Luzzago C, Ferrari N, García-Bocanegra I. Are tree squirrels involved in the circulation of flaviviruses in Italy? Transbound Emerg Dis 2018; 65:1372-1376. [PMID: 29635877 DOI: 10.1111/tbed.12874] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Indexed: 11/30/2022]
Abstract
West Nile virus (WNV), Usutu virus (USUV) and tick-borne encephalitis virus (TBEV) are emerging zoonotic flaviviruses (family Flaviviridae), which have circulated in Europe in the past decade. A cross-sectional study was conducted to assess exposure to these antigenically related flaviviruses in eastern grey squirrels (Sciurus carolinensis) in Italy. Seventeen out of 158 (10.8%; CI95% : 5.9-15.6) squirrels' sera tested through bELISA had antibodies against flaviviruses. Specific neutralizing antibodies to WNV, USUV and TBEV were detected by virus neutralization tests. Our results indicate that tree squirrels are exposed to Culex and tick-borne zoonotic flaviviruses in Italy. Moreover, this study shows for the first time USUV and TBEV exposure in grey squirrels, broadening the host range reported for these viruses. Even though further studies are needed to define the real role of tree squirrels in the epidemiology of flaviviruses in Europe, this study highlights that serology could be an effective approach for future investigations aimed at broadening our knowledge about the species exposed to these zoonotic infections.
Collapse
Affiliation(s)
- C Romeo
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - S Lecollinet
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 Virologie, INRA, ANSES, ENVA, Maisons-Alfort, France
| | - J Caballero
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad de Córdoba-Agrifood Excellence International, Córdoba, Spain
| | - J Isla
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad de Córdoba-Agrifood Excellence International, Córdoba, Spain
| | - C Luzzago
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Coordinated Research Center "EpiSoMI", Università degli Studi di Milano, Milan, Italy
| | - N Ferrari
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Coordinated Research Center "EpiSoMI", Università degli Studi di Milano, Milan, Italy
| | - I García-Bocanegra
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad de Córdoba-Agrifood Excellence International, Córdoba, Spain
| |
Collapse
|
47
|
Pisanu B, Laroucau K, Aaziz R, Vorimore F, Le Gros A, Chapuis JL, Clergeau P. CHLAMYDIA AVIUM DETECTION FROM A RING-NECKED PARAKEET ( PSITTACULA KRAMERI ) IN FRANCE. J Exot Pet Med 2018. [DOI: 10.1053/j.jepm.2018.02.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
48
|
Fessl B, Heimpel GE, Causton CE. Invasion of an Avian Nest Parasite, Philornis downsi, to the Galapagos Islands: Colonization History, Adaptations to Novel Ecosystems, and Conservation Challenges. DISEASE ECOLOGY 2018. [DOI: 10.1007/978-3-319-65909-1_9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Lagrue C. Impacts of crustacean invasions on parasite dynamics in aquatic ecosystems: A plea for parasite-focused studies. Int J Parasitol Parasites Wildl 2017; 6:364-374. [PMID: 30951574 PMCID: PMC5715223 DOI: 10.1016/j.ijppaw.2017.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/31/2017] [Indexed: 11/23/2022]
Abstract
While there is considerable interest in, and good evidence for, the role that parasites play in biological invasions, the potential parallel effects of species introduction on parasite dynamics have clearly received less attention. Indeed, much effort has been focused on how parasites can facilitate or limit invasions, and positively or negatively impact native host species and recipient communities. Contrastingly, the potential consequences of biological invasions for the diversity and dynamics of both native and introduced parasites have been and are still mainly overlooked, although successful invasion by non-native host species may have large, contrasting and unpredictable effects on parasites. This review looks at the links between biological invasions and pathogens, and particularly at crustacean invasions in aquatic ecosystems and their potential effects on native and invasive parasites, and discusses what often remains unknown even from well-documented systems. Aquatic crustaceans are hosts to many parasites and are often invasive. Published studies show that crustacean invasion can have highly contrasting effects on parasite dynamics, even when invasive host and parasite species are phylogenetically close to their native counterparts. These effects seem to be dependent on multiple factors such as host suitability, parasite life-cycle or host-specific resistance to parasitic manipulation. Furthermore, introduced hosts can have drastically contrasting effects on parasite standing crop and transmission, two parameters that should be independently assessed before drawing any conclusion on the potential effects of novel hosts on parasites and the key processes influencing disease dynamics following biological invasions. I conclude by calling for greater recognition of biological invasions' effects on parasite dynamics, more parasite-focused studies and suggest some potential ways to assess these effects.
Collapse
|
50
|
Kirschman LJ, Crespi EJ, Warne RW. Critical disease windows shaped by stress exposure alter allocation trade‐offs between development and immunity. J Anim Ecol 2017; 87:235-246. [DOI: 10.1111/1365-2656.12778] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Affiliation(s)
| | - Erica J. Crespi
- School of Biological SciencesWashington State University Pullman WA USA
| | - Robin W. Warne
- Department of ZoologySouthern Illinois University Carbondale IL USA
| |
Collapse
|