1
|
Alamin M, Humaira Sultana M, Babarinde IA, Azad AKM, Moni MA, Xu H. Single-cell RNA-seq data analysis reveals functionally relevant biomarkers of early brain development and their regulatory footprints in human embryonic stem cells (hESCs). Brief Bioinform 2024; 25:bbae230. [PMID: 38739758 PMCID: PMC11089419 DOI: 10.1093/bib/bbae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/07/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024] Open
Abstract
The complicated process of neuronal development is initiated early in life, with the genetic mechanisms governing this process yet to be fully elucidated. Single-cell RNA sequencing (scRNA-seq) is a potent instrument for pinpointing biomarkers that exhibit differential expression across various cell types and developmental stages. By employing scRNA-seq on human embryonic stem cells, we aim to identify differentially expressed genes (DEGs) crucial for early-stage neuronal development. Our focus extends beyond simply identifying DEGs. We strive to investigate the functional roles of these genes through enrichment analysis and construct gene regulatory networks to understand their interactions. Ultimately, this comprehensive approach aspires to illuminate the molecular mechanisms and transcriptional dynamics governing early human brain development. By uncovering potential links between these DEGs and intelligence, mental disorders, and neurodevelopmental disorders, we hope to shed light on human neurological health and disease. In this study, we have used scRNA-seq to identify DEGs involved in early-stage neuronal development in hESCs. The scRNA-seq data, collected on days 26 (D26) and 54 (D54), of the in vitro differentiation of hESCs to neurons were analyzed. Our analysis identified 539 DEGs between D26 and D54. Functional enrichment of those DEG biomarkers indicated that the up-regulated DEGs participated in neurogenesis, while the down-regulated DEGs were linked to synapse regulation. The Reactome pathway analysis revealed that down-regulated DEGs were involved in the interactions between proteins located in synapse pathways. We also discovered interactions between DEGs and miRNA, transcriptional factors (TFs) and DEGs, and between TF and miRNA. Our study identified 20 significant transcription factors, shedding light on early brain development genetics. The identified DEGs and gene regulatory networks are valuable resources for future research into human brain development and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Md Alamin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | | | - Isaac Adeyemi Babarinde
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - A K M Azad
- Department of Mathematics and Statistics, College of Science, Imam Muhammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
| | - Mohammad Ali Moni
- Artificial Intelligence and Cyber Futures Institute, Charles Sturt University, Bathurst, NSW 2795, Australia
| | - Haiming Xu
- Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Hamada H, Yamamura M, Ohi H, Kobayashi Y, Niwa K, Oyama T, Mano Y, Asai M, Tanuma SI, Uchiumi F. Characterization of the human zinc finger nfx‑1‑type containing 1 encoding ZNFX1 gene and its response to 12‑O‑tetradecanoyl‑13‑acetate in HL‑60 cells. Int J Oncol 2019; 55:896-904. [PMID: 31432148 DOI: 10.3892/ijo.2019.4860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/19/2019] [Indexed: 11/06/2022] Open
Abstract
Human promyelocytic HL‑60 cells can be differentiated into macrophage‑like cells by treatment with 12‑O‑tetra decanoylphorbol‑13‑acetate (TPA). Certain 5' upstream regions of the zinc finger protein (ZNF)‑encoding genes contain duplicated GGAA motifs, which are frequently found in the TPA‑responding gene promoter regions. To examine transcriptional responses to TPA, 5'flanking regions of human zinc finger CCCH‑type containing, antiviral, ZNF252, ZNF343, ZNF555, ZNF782 and zinc finger nfx‑1‑type containing 1 (ZNFX1) genes were isolated by polymerase chain reaction (PCR) and ligated into a multiple‑cloning site of the pGL4.10[luc2] vector. Transient transfection and a luciferase assay revealed that the ZNFX1 promoter most prominently responded to the TPA treatment. Deletion and point mutation experiments indicated that the duplicated GGAA motif in the 100‑bp region positively responded to TPA. In addition, reverse transcription‑quantitative PCR and western blotting showed that the mRNA and protein of ZNFX1 accumulate during the differentiation of HL‑60 cells. These results indicated that expression of the TPA‑inducible ZNFX1 gene, which belongs to the group of interferon‑responsive genes, is regulated by the cis‑action of the duplicated GGAA motif.
Collapse
Affiliation(s)
- Hiroshi Hamada
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda‑shi, Chiba‑ken 278‑8510, Japan
| | - Mayu Yamamura
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda‑shi, Chiba‑ken 278‑8510, Japan
| | - Hiroto Ohi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda‑shi, Chiba‑ken 278‑8510, Japan
| | - Yota Kobayashi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda‑shi, Chiba‑ken 278‑8510, Japan
| | - Kuniyoshi Niwa
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda‑shi, Chiba‑ken 278‑8510, Japan
| | - Takahiro Oyama
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda‑shi, Chiba‑ken 278‑8510, Japan
| | - Yasunari Mano
- Department of Clinical Drug Informatics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda‑shi, Chiba‑ken 278‑8510, Japan
| | - Masashi Asai
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda‑shi, Chiba‑ken 278‑8510, Japan
| | - Sei-Ichi Tanuma
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda‑shi, Chiba‑ken 278‑8510, Japan
| | - Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda‑shi, Chiba‑ken 278‑8510, Japan
| |
Collapse
|
3
|
Pravata VM, Muha V, Gundogdu M, Ferenbach AT, Kakade PS, Vandadi V, Wilmes AC, Borodkin VS, Joss S, Stavridis MP, van Aalten DMF. Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability. Proc Natl Acad Sci U S A 2019; 116:14961-14970. [PMID: 31296563 PMCID: PMC6660750 DOI: 10.1073/pnas.1900065116] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
O-GlcNAc transferase (OGT) is an X-linked gene product that is essential for normal development of the vertebrate embryo. It catalyses the O-GlcNAc posttranslational modification of nucleocytoplasmic proteins and proteolytic maturation of the transcriptional coregulator Host cell factor 1 (HCF1). Recent studies have suggested that conservative missense mutations distal to the OGT catalytic domain lead to X-linked intellectual disability in boys, but it is not clear if this is through changes in the O-GlcNAc proteome, loss of protein-protein interactions, or misprocessing of HCF1. Here, we report an OGT catalytic domain missense mutation in monozygotic female twins (c. X:70779215 T > A, p. N567K) with intellectual disability that allows dissection of these effects. The patients show limited IQ with developmental delay and skewed X-inactivation. Molecular analyses revealed decreased OGT stability and disruption of the substrate binding site, resulting in loss of catalytic activity. Editing this mutation into the Drosophila genome results in global changes in the O-GlcNAc proteome, while in mouse embryonic stem cells it leads to loss of O-GlcNAcase and delayed differentiation down the neuronal lineage. These data imply that catalytic deficiency of OGT could contribute to X-linked intellectual disability.
Collapse
Affiliation(s)
- Veronica M Pravata
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Villo Muha
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Mehmet Gundogdu
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Andrew T Ferenbach
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Poonam S Kakade
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Vasudha Vandadi
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Ariane C Wilmes
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Vladimir S Borodkin
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Shelagh Joss
- West of Scotland Genetic Service, Queen Elizabeth University Hospital, G51 4TF Glasgow, United Kingdom
| | - Marios P Stavridis
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Daan M F van Aalten
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom;
| |
Collapse
|
4
|
Qu S, Sun Y, Li Y, Xu Z, Fu W. YY1 directly suppresses MYCT1 leading to laryngeal tumorigenesis and progress. Cancer Med 2017; 6:1389-1398. [PMID: 28485541 PMCID: PMC5463081 DOI: 10.1002/cam4.1073] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/07/2017] [Accepted: 03/15/2017] [Indexed: 12/14/2022] Open
Abstract
YY1 is a key transcription factor and plays different roles in various cancers. However, role and mechanism of YY1 in laryngeal cancer are still unknown. YY1 and MYCT1 mRNA and protein levels were detected by Real-time RT-PCR and Western Blot methods, respectively. Binding of YY1 to MYCT1 promoter was predicted and confirmed by bioinformatics and chromatin immunoprecipitation assays, respectively. MYCT1 promoter activity was assessed by dual luciferase assay system. Laryngeal cancer cell proliferation, migration, and apoptosis were evaluated by cell viability, colony formation, cell scratch assay, transwell assay, and flow cytometry methods, respectively. YY1 and MYCT1 were upregulated and downregulated at transcriptional level in laryngeal cancer, respectively, which showed a negative correlation between YY1 and MYCT1 expression in laryngeal cancer. Significantly higher expression of YY1 and lower expression of MYCT1 were found in laryngeal cancer tissues of patients with lymphatic metastasis than those without metastasis.YY1 directly bound to MYCT1 promoter region and inhibited its promoter activity. YY1 silence had similar biological functions as MYCT1 overexpression in repressiveness of proliferation and migration, and promotion of apoptosis in laryngeal cancer cells. However, the effects of YY1 silence were recovered by MYCT1 knockdown. YY1 promotes proliferation and migration with suppression of apoptosis via directly inhibiting MYCT1 in laryngeal cancer cells, suggesting that YY1 is a useful target as a potential oncogene in laryngeal cancer development and progression.
Collapse
Affiliation(s)
- Si‐Yao Qu
- Department of Medical GeneticsChina Medical UniversityShenyang110122China
- National Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100005China
| | - Yuan‐Yuan Sun
- Department of Medical GeneticsChina Medical UniversityShenyang110122China
| | - Yun‐Hui Li
- Department of Laboratory MedicineNo. 202 Hospital of PLAShenyang110003China
| | - Zhen‐Ming Xu
- Department of OtolaryngologyNo. 463 Hospital of PLAShenyang110007China
| | - Wei‐Neng Fu
- Department of Medical GeneticsChina Medical UniversityShenyang110122China
| |
Collapse
|
5
|
Uchiumi F, Shoji K, Sasaki Y, Sasaki M, Sasaki Y, Oyama T, Sugisawa K, Tanuma SI. Characterization of the 5'-flanking region of the human TP53 gene and its response to the natural compound, Resveratrol. J Biochem 2016; 159:437-47. [PMID: 26684585 PMCID: PMC4885937 DOI: 10.1093/jb/mvv126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/02/2015] [Indexed: 01/19/2023] Open
Abstract
Tumour suppressor p53, which is encoded by theTP53gene, is widely known to play an important role in response to DNA damage and various stresses. It has recently been reported that p53 regulates glucose metabolism and that an increase in p53 protein level is induced after serum deprivation or treatments with a natural compound,trans-Resveratrol (Rsv). In this study, we constructed a Luciferase expression vector, pGL4-TP53-551, containing 551 bp of the 5'-upstream region of the humanTP53gene, which was then transfected into HeLa S3 cells. A Luciferase assay showed that Rsv treatment increased the promoter activity of theTP53gene in comparison to that ofPIF1 Detailed deletion and mutation analyses revealed that Nkx-2.5 and E2F-binding elements are required in addition to duplicated GGAA (TTCC), for the regulation ofTP53promoter activity. In this study, it is suggested that the transient induction ofTP53gene expression by Rsv treatment might be partly involved in its anti-aging effect through maintenance of chromosomal DNAs.
Collapse
Affiliation(s)
- Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences; Research Center for RNA Science, RIST;
| | - Koichiro Shoji
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences
| | - Yuki Sasaki
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences
| | - Moe Sasaki
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences
| | - Yamato Sasaki
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences
| | - Takahiro Oyama
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences
| | - Kyoko Sugisawa
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences
| | - Sei-ichi Tanuma
- Research Center for RNA Science, RIST; Biochemistry, Faculty of Pharmaceutical Sciences; and Drug Creation Frontier Research Center, RIST, Tokyo University of Science, Noda-shi, Chiba-ken 278-8510, Japan
| |
Collapse
|
6
|
Han T, Oh S, Kang K. ETS family protein GABP is a novel co-factor strongly associated with genomic YY1 binding sites in various cell lines. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0358-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Jeon BN, Kim MK, Yoon JH, Kim MY, An H, Noh HJ, Choi WI, Koh DI, Hur MW. Two ZNF509 (ZBTB49) isoforms induce cell-cycle arrest by activating transcription of p21/CDKN1A and RB upon exposure to genotoxic stress. Nucleic Acids Res 2014; 42:11447-61. [PMID: 25245946 PMCID: PMC4191422 DOI: 10.1093/nar/gku857] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
ZNF509 is unique among POK family proteins in that four isoforms are generated by alternative splicing. Short ZNF509 (ZNF509S1, -S2 and -S3) isoforms contain one or two out of the seven zinc-fingers contained in long ZNF509 (ZNF509L). Here, we investigated the functions of ZNF509 isoforms in response to DNA damage, showing isoforms to be induced by p53. Intriguingly, to inhibit proliferation of HCT116 and HEK293 cells, we found that ZNF509L activates p21/CDKN1A transcription, while ZNF509S1 induces RB. ZNF509L binds to the p21/CDKN1A promoter either alone or by interacting with MIZ-1 to recruit the co-activator p300 to activate p21/CDKN1A transcription. In contrast, ZNF509S1 binds to the distal RB promoter to interact and interfere with the MIZF repressor, resulting in derepression and transcription of RB. Immunohistochemical analysis revealed that ZNF509 is highly expressed in normal epithelial cells, but was completely repressed in tumor tissues of the colon, lung and skin, indicating a possible role as a tumor suppressor.
Collapse
Affiliation(s)
- Bu-Nam Jeon
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1, Yonsei-Ro, SeoDaeMun-Gu, Seoul 120-752, Korea
| | - Min-Kyeong Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1, Yonsei-Ro, SeoDaeMun-Gu, Seoul 120-752, Korea
| | - Jae-Hyeon Yoon
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1, Yonsei-Ro, SeoDaeMun-Gu, Seoul 120-752, Korea
| | - Min-Young Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1, Yonsei-Ro, SeoDaeMun-Gu, Seoul 120-752, Korea
| | - Haemin An
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1, Yonsei-Ro, SeoDaeMun-Gu, Seoul 120-752, Korea
| | - Hee-Jin Noh
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1, Yonsei-Ro, SeoDaeMun-Gu, Seoul 120-752, Korea
| | - Won-Il Choi
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1, Yonsei-Ro, SeoDaeMun-Gu, Seoul 120-752, Korea
| | - Dong-In Koh
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1, Yonsei-Ro, SeoDaeMun-Gu, Seoul 120-752, Korea
| | - Man-Wook Hur
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50-1, Yonsei-Ro, SeoDaeMun-Gu, Seoul 120-752, Korea
| |
Collapse
|
8
|
The dynamics of HCF-1 modulation of herpes simplex virus chromatin during initiation of infection. Viruses 2013; 5:1272-91. [PMID: 23698399 PMCID: PMC3712308 DOI: 10.3390/v5051272] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 12/30/2022] Open
Abstract
Successful infection of herpes simplex virus is dependent upon chromatin modulation by the cellular coactivator host cell factor-1 (HCF-1). This review focuses on the multiple chromatin modulation components associated with HCF-1 and the chromatin-related dynamics mediated by this coactivator that lead to the initiation of herpes simplex virus (HSV) immediate early gene expression.
Collapse
|
9
|
Harafuji N, Schneiderat P, Walter MC, Chen YW. miR-411 is up-regulated in FSHD myoblasts and suppresses myogenic factors. Orphanet J Rare Dis 2013; 8:55. [PMID: 23561550 PMCID: PMC3637251 DOI: 10.1186/1750-1172-8-55] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/22/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant muscle disorder, which is linked to the contraction of the D4Z4 array at chromosome 4q35. Recent studies suggest that this shortening of the D4Z4 array leads to aberrant expression of double homeobox protein 4 (DUX4) and causes FSHD. In addition, misregulation of microRNAs (miRNAs) has been reported in muscular dystrophies including FSHD. In this study, we identified a miRNA that is differentially expressed in FSHD myoblasts and investigated its function. METHODS To identify misregulated miRNAs and their potential targets in FSHD myoblasts, we performed expression profiling of both miRNA and mRNA using TaqMan Human MicroRNA Arrays and Affymetrix Human Genome U133A plus 2.0 microarrays, respectively. In addition, we over-expressed miR-411 in C₂C₁₂ cells to determine the effect of miR-411 on myogenic markers. RESULTS Using miRNA and mRNA expression profiling, we identified 8 miRNAs and 1,502 transcripts that were differentially expressed in FSHD myoblasts during cell proliferation. One of the 8 differentially expressed miRNAs, miR-411, was validated by quantitative RT-PCR in both primary (2.1 fold, p<0.01) and immortalized (2.7 fold, p<0.01) myoblasts. In situ hybridization showed cytoplasmic localization of miR-411 in FSHD myoblasts. By analyzing both miRNA and mRNA data using Partek Genomics Suite, we identified 4 mRNAs potentially regulated by miR-411 including YY1 associated factor 2 (YAF2). The down-regulation of YAF2 in immortalized myoblasts was validated by immunoblotting (-3.7 fold, p<0.01). C₂C₁₂ cells were transfected with miR-411 to determine whether miR-411 affects YAF2 expression in myoblasts. The results showed that over-expression of miR-411 reduced YAF2 mRNA expression. In addition, expression of myogenic markers including Myod, myogenin, and myosin heavy chain 1 (Myh1) were suppressed by miR-411. CONCLUSIONS The study demonstrated that miR-411 was differentially expressed in FSHD myoblasts and may play a role in regulating myogenesis.
Collapse
Affiliation(s)
- Naoe Harafuji
- Center for Genetic Medicine Research, Children’s Research Institute, Washington, DC, USA
| | - Peter Schneiderat
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Maggie C Walter
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children’s Research Institute, Washington, DC, USA
- Department of Integrative Systems Biology and Department of Pediatrics, George Washington University, Washington, DC, USA
- Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| |
Collapse
|
10
|
Kassardjian A, Rizkallah R, Riman S, Renfro SH, Alexander KE, Hurt MM. The transcription factor YY1 is a novel substrate for Aurora B kinase at G2/M transition of the cell cycle. PLoS One 2012; 7:e50645. [PMID: 23226345 PMCID: PMC3511337 DOI: 10.1371/journal.pone.0050645] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/22/2012] [Indexed: 01/01/2023] Open
Abstract
Yin Yang 1 (YY1) is a ubiquitously expressed and highly conserved multifunctional transcription factor that is involved in a variety of cellular processes. Many YY1-regulated genes have crucial roles in cell proliferation, differentiation, apoptosis, and cell cycle regulation. Numerous mechanisms have been shown to regulate the function of YY1, such as DNA binding affinity, subcellular localization, and posttranslational modification including phosphorylation. Polo-like kinase 1(Plk1) and Casein kinase 2α (CK2 α) were the first two kinases identified to phosphorylate YY1. In this study, we identify a third kinase. We report that YY1 is a novel substrate of the Aurora B kinase both in vitro and in vivo. Serine 184 phosphorylation of YY1 by Aurora B is cell cycle regulated and peaks at G2/M and is rapidly dephosphorylated, likely by protein phosphatase 1 (PP1) as the cells enter G1. Aurora A and Aurora C can also phosphorylate YY1 in vitro, but at serine/threonine residues other than serine 184. We present evidence that phosphorylation of YY1 in the central glycine/alanine (G/A)-rich region is important for DNA binding activity, with a potential phosphorylation/acetylation interplay regulating YY1 function. Given their importance in mitosis and overexpression in human cancers, Aurora kinases have been identified as promising therapeutic targets. Increasing our understanding of Aurora substrates will add to the understanding of their signaling pathways.
Collapse
Affiliation(s)
- Ari Kassardjian
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Raed Rizkallah
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Sarah Riman
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, United States of America
| | - Samuel H. Renfro
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Karen E. Alexander
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Myra M. Hurt
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
11
|
Effector mechanisms of sunitinib-induced G1 cell cycle arrest, differentiation, and apoptosis in human acute myeloid leukaemia HL60 and KG-1 cells. Ann Hematol 2012. [PMID: 23180436 DOI: 10.1007/s00277-012-1627-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous disease with dismal outcome. Sunitinib is an orally active inhibitor of multiple tyrosine kinase receptors approved for renal cell carcinoma and gastrointestinal stromal tumour that has also been studied for AML in several clinical trials. However, the precise mechanism of sunitinib action against AML remains unclear and requires further investigation. For this purpose, this study was conducted using human AML cell lines (HL60 and KG-1) and AML patients' mononucleated cells. Sunitinib induced G1 phase arrest associated with decreased cyclin D1, cyclin D3, and cyclin-dependent kinase (Cdk)2 and increased p27(Kip1), pRb1, and p130/Rb2 expression and phosphorylated activation of protein kinase C alpha and beta (PKCα/β). Selective PKCα/β inhibitor treatment abolished sunitinib-elicited AML differentiation, suggesting that PKCα/β may underlie sunitinib-induced monocytic differentiation. Furthermore, sunitinib increased pro-apoptotic molecule expression (Bax, Bak, PUMA, Fas, FasL, DR4, and DR5) and decreased anti-apoptotic molecule expression (Bcl-2 and Mcl-1), resulting in caspase-2, caspase-3, caspase-8, and caspase-9 activation and both death receptor and mitochondria-dependent apoptosis. Taken together, these findings provide evidence that sunitinib targets AML cells through both differentiation and apoptosis pathways. More clinical studies are urgently needed to demonstrate its optimal clinical applications in AML.
Collapse
|
12
|
Huang L, Jolly LA, Willis-Owen S, Gardner A, Kumar R, Douglas E, Shoubridge C, Wieczorek D, Tzschach A, Cohen M, Hackett A, Field M, Froyen G, Hu H, Haas SA, Ropers HH, Kalscheuer VM, Corbett MA, Gecz J. A noncoding, regulatory mutation implicates HCFC1 in nonsyndromic intellectual disability. Am J Hum Genet 2012; 91:694-702. [PMID: 23000143 DOI: 10.1016/j.ajhg.2012.08.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/26/2012] [Accepted: 08/13/2012] [Indexed: 11/28/2022] Open
Abstract
The discovery of mutations causing human disease has so far been biased toward protein-coding regions. Having excluded all annotated coding regions, we performed targeted massively parallel resequencing of the nonrepetitive genomic linkage interval at Xq28 of family MRX3. We identified in the binding site of transcription factor YY1 a regulatory mutation that leads to overexpression of the chromatin-associated transcriptional regulator HCFC1. When tested on embryonic murine neural stem cells and embryonic hippocampal neurons, HCFC1 overexpression led to a significant increase of the production of astrocytes and a considerable reduction in neurite growth. Two other nonsynonymous, potentially deleterious changes have been identified by X-exome sequencing in individuals with intellectual disability, implicating HCFC1 in normal brain function.
Collapse
Affiliation(s)
- Lingli Huang
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, SA 5006, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pillai S, Szekeres K, Lawrence NJ, Chellappan SP, Blanck G. Regulation of interlocking gene regulatory network subcircuits by a small molecule inhibitor of retinoblastoma protein (RB) phosphorylation: cancer cell expression of HLA-DR. Gene 2012; 512:403-7. [PMID: 23041127 DOI: 10.1016/j.gene.2012.09.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 08/28/2012] [Accepted: 09/23/2012] [Indexed: 11/17/2022]
Abstract
The induction of the major histocompatibility (MHC), antigen-presenting class II molecules by interferon-gamma, in solid tumor cells, requires the retinoblastoma tumor suppressor protein (Rb). In the absence of Rb, a repressosome blocks the access of positive-acting, promoter binding proteins to the MHC class II promoter. However, a complete molecular linkage between Rb expression and the disassembly of the MHC class II repressosome has been lacking. By treating A549 lung carcinoma cells with a novel small molecule that prevents phosphorylation-mediated, Rb inactivation, we demonstrate that Rb represses the synthesis of an MHC class II repressosome component, YY1. The reduction in YY1 synthesis correlates with the advent of MHC class II inducibility; with loss of YY1 binding to the promoter of the HLA-DRA gene, the canonical human MHC class II gene; and with increased Rb binding to the YY1 promoter. These results support the concept that the Rb gene regulatory network (GRN) subcircuit that regulates cell proliferation is linked to a GRN subcircuit regulating a tumor cell immune function.
Collapse
Affiliation(s)
- Smitha Pillai
- Drug Discovery Program, Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
Host cell factor-1(HCF-1) was first discovered as a cellular cofactor in the VP16-induced complex, a multi-protein DNA complex that forms on immediate early gene promoters of herpes simplex virus (HSV) to activate viral gene transcription. Subsequent research has revealed HCF-1 to be an abundant chromatin-associated protein that regulates various stages of the cell cycle. Recent reports show that HCF-1 interacts with diverse E2F proteins to induce cell-cycle-specific transcription. HCF-1 can act as a scaffold to a variety of histone-modifying proteins and these HCF-1-E2F-containing multi-protein complexes can bring about context-dependent activation or repression of transcription. In this review we examine the diversity of HCF-E2F interactions and the variety of multi-protein complexes it occurs in, to influence the local chromatin landscape at the E2F-promoters.
Collapse
Affiliation(s)
- Zaffer Zargar
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad , India
| | | |
Collapse
|
15
|
Abstract
The Caenorhabditis elegans pRb ortholog, LIN-35, functions in a wide range of cellular and developmental processes. This includes a role of LIN-35 in nutrient utilization by the intestine, which it carries out redundantly with SLR-2, a zinc-finger protein. This and other redundant functions of LIN-35 were identified in genetic screens for mutations that display synthetic phenotypes in conjunction with loss of lin-35. To explore the intestinal role of LIN-35, we conducted a genome-wide RNA-interference-feeding screen for suppressors of lin-35; slr-2 early larval arrest. Of the 26 suppressors identified, 17 fall into three functional classes: (1) ribosome biogenesis genes, (2) mitochondrial prohibitins, and (3) chromatin regulators. Further characterization indicates that different categories of suppressors act through distinct molecular mechanisms. We also tested lin-35; slr-2 suppressors, as well as suppressors of the synthetic multivulval phenotype, to determine the spectrum of lin-35-synthetic phenotypes that could be suppressed following inhibition of these genes. We identified 19 genes, most of which are evolutionarily conserved, that can suppress multiple unrelated lin-35-synthetic phenotypes. Our study reveals a network of genes broadly antagonistic to LIN-35 as well as genes specific to the role of LIN-35 in intestinal and vulval development. Suppressors of multiple lin-35 phenotypes may be candidate targets for anticancer therapies. Moreover, screening for suppressors of phenotypically distinct synthetic interactions, which share a common altered gene, may prove to be a novel and effective approach for identifying genes whose activities are most directly relevant to the core functions of the shared gene.
Collapse
|
16
|
Abstract
Yin Yang 1 (YY1) is a transcription factor with diverse and complex biological functions. YY1 either activates or represses gene transcription, depending on the stimuli received by the cells and its association with other cellular factors. Since its discovery, a biological role for YY1 in tumor development and progression has been suggested because of its regulatory activities toward multiple cancer-related proteins and signaling pathways and its overexpression in most cancers. In this review, we primarily focus on YY1 studies in cancer research, including the regulation of YY1 as a transcription factor, its activities independent of its DNA binding ability, the functions of its associated proteins, and mechanisms regulating YY1 expression and activities. We also discuss the correlation of YY1 expression with clinical outcomes of cancer patients and its target potential in cancer therapy. Although there is not a complete consensus about the role of YY1 in cancers based on its activities of regulating oncogene and tumor suppressor expression, most of the currently available evidence supports a proliferative or oncogenic role of YY1 in tumorigenesis.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
17
|
Phosphorylation of the transcription factor YY1 by CK2α prevents cleavage by caspase 7 during apoptosis. Mol Cell Biol 2011; 32:797-807. [PMID: 22184066 DOI: 10.1128/mcb.06466-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this report, we describe the phosphorylation of Yin Yang 1 (YY1) in vitro and in vivo by CK2α (casein kinase II), a multifunctional serine/threonine protein kinase. YY1 is a ubiquitously expressed multifunctional zinc finger transcription factor implicated in regulation of many cellular and viral genes. The products of these genes are associated with cell growth, the cell cycle, development, and differentiation. Numerous studies have linked YY1 to tumorigenesis and apoptosis. YY1 is a target for cleavage by caspases in vitro and in vivo as well, but very little is known about the mechanisms that regulate its cleavage during apoptosis. Here, we identify serine 118 in the transactivation domain of YY1 as the site of CK2α phosphorylation, proximal to a caspase 7 cleavage site. CK2α inhibitors, as well as knockdown of CK2α by small interfering RNA, reduce S118 phosphorylation in vivo and enhance YY1 cleavage under apoptotic conditions, whereas increased CK2α activity by overexpression in vivo elevates S118 phosphorylation. A serine-to-alanine substitution at serine 118 also increases the cleavage of YY1 during apoptosis compared to wild-type YY1. Taken together, we have discovered a regulatory link between YY1 phosphorylation at serine 118 and regulation of its cleavage during programmed cell death.
Collapse
|
18
|
Huang W, Smaldino PJ, Zhang Q, Miller LD, Cao P, Stadelman K, Wan M, Giri B, Lei M, Nagamine Y, Vaughn JP, Akman SA, Sui G. Yin Yang 1 contains G-quadruplex structures in its promoter and 5'-UTR and its expression is modulated by G4 resolvase 1. Nucleic Acids Res 2011; 40:1033-49. [PMID: 21993297 PMCID: PMC3273823 DOI: 10.1093/nar/gkr849] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Yin Yang 1 (YY1) is a multifunctional protein with regulatory potential in tumorigenesis. Ample studies demonstrated the activities of YY1 in regulating gene expression and mediating differential protein modifications. However, the mechanisms underlying YY1 gene expression are relatively understudied. G-quadruplexes (G4s) are four-stranded structures or motifs formed by guanine-rich DNA or RNA domains. The presence of G4 structures in a gene promoter or the 5′-UTR of its mRNA can markedly affect its expression. In this report, we provide strong evidence showing the presence of G4 structures in the promoter and the 5′-UTR of YY1. In reporter assays, mutations in these G4 structure forming sequences increased the expression of Gaussia luciferase (Gluc) downstream of either YY1 promoter or 5′-UTR. We also discovered that G4 Resolvase 1 (G4R1) enhanced the Gluc expression mediated by the YY1 promoter, but not the YY1 5′-UTR. Consistently, G4R1 binds the G4 motif of the YY1 promoter in vitro and ectopically expressed G4R1 increased endogenous YY1 levels. In addition, the analysis of a gene array data consisting of the breast cancer samples of 258 patients also indicates a significant, positive correlation between G4R1 and YY1 expression.
Collapse
Affiliation(s)
- Weiwei Huang
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rizkallah R, Alexander KE, Kassardjian A, Lüscher B, Hurt MM. The transcription factor YY1 is a substrate for Polo-like kinase 1 at the G2/M transition of the cell cycle. PLoS One 2011; 6:e15928. [PMID: 21253604 PMCID: PMC3017090 DOI: 10.1371/journal.pone.0015928] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/01/2010] [Indexed: 12/13/2022] Open
Abstract
Yin-Yang 1 (YY1) is an essential multifunctional zinc-finger protein. It has been shown over the past two decades to be a critical regulator of a vast array of biological processes, including development, cell proliferation and differentiation, DNA repair, and apoptosis. YY1 exerts its functions primarily as a transcription factor that can activate or repress gene expression, dependent on its spatial and temporal context. YY1 regulates a large number of genes involved in cell cycle transitions, many of which are oncogenes and tumor-suppressor genes. YY1 itself has been classified as an oncogene and was found to be upregulated in many cancer types. Unfortunately, our knowledge of what regulates YY1 is very minimal. Although YY1 has been shown to be a phosphoprotein, no kinase has ever been identified for the phosphorylation of YY1. Polo-like kinase 1 (Plk1) has emerged in the past few years as a major cell cycle regulator, particularly for cell division. Plk1 has been shown to play important roles in the G/M transition into mitosis and for the proper execution of cytokinesis, processes that YY1 has been shown to regulate also. Here, we present evidence that Plk1 directly phosphorylates YY1 in vitro and in vivo at threonine 39 in the activation domain. We show that this phosphorylation is cell cycle regulated and peaks at G2/M. This is the first report identifying a kinase for which YY1 is a substrate.
Collapse
Affiliation(s)
- Raed Rizkallah
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Karen E. Alexander
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Ari Kassardjian
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Bernhard Lüscher
- Institut für Biochemie und Molekularbiologie, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Myra M. Hurt
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
20
|
Mu W, Munroe RJ, Barker AK, Schimenti JC. PDCD2 is essential for inner cell mass development and embryonic stem cell maintenance. Dev Biol 2010; 347:279-88. [PMID: 20813103 DOI: 10.1016/j.ydbio.2010.08.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 08/06/2010] [Accepted: 08/24/2010] [Indexed: 01/15/2023]
Abstract
PDCD2 is a conserved eukaryotic protein implicated in cell cycle regulation by virtue of its interactions with HCFC1 and the NCOR1/SIN3A corepressor complex. Pdcd2 transcripts are enriched in ES cells and other somatic stem cells, and its ortholog is essential for hematopoietic stem cell maintenance in Drosophila. To characterize the physiological role(s) of mammalian PDCD2, we created a disruption allele in mice. Pdcd2(-/-) embryos underwent implantation but did not undergo further development. Inner cell masses (ICMs) from Pdcd2(-/-) blastocysts failed to outgrow in vitro. Furthermore, embryonic stem cells (ESCs) require PDCD2 as demonstrated by the inability to generate Pdcd2(-/-) ESCs in the absence of an ectopic transgene. Upon differentiation of ESCs by retinoic acid treatment or LIF deprivation, PDCD2 levels declined. In conjunction with prior studies, these results indicate that in vivo, PDCD2 is critical for blastomere and ESC maintenance by contributing to the regulation of genes in a manner essential to the undifferentiated state of these cells.
Collapse
Affiliation(s)
- Weipeng Mu
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
21
|
The ubiquitin carboxyl hydrolase BAP1 forms a ternary complex with YY1 and HCF-1 and is a critical regulator of gene expression. Mol Cell Biol 2010; 30:5071-85. [PMID: 20805357 DOI: 10.1128/mcb.00396-10] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The candidate tumor suppressor BAP1 is a deubiquitinating enzyme (DUB) involved in the regulation of cell proliferation, although the molecular mechanisms governing its function remain poorly defined. BAP1 was recently shown to interact with and deubiquitinate the transcriptional regulator host cell factor 1 (HCF-1). Here we show that BAP1 assembles multiprotein complexes containing numerous transcription factors and cofactors, including HCF-1 and the transcription factor Yin Yang 1 (YY1). Through its coiled-coil motif, BAP1 directly interacts with the zinc fingers of YY1. Moreover, HCF-1 interacts with the middle region of YY1 encompassing the glycine-lysine-rich domain and is essential for the formation of a ternary complex with YY1 and BAP1 in vivo. BAP1 activates transcription in an enzymatic-activity-dependent manner and regulates the expression of a variety of genes involved in numerous cellular processes. We further show that BAP1 and HCF-1 are recruited by YY1 to the promoter of the cox7c gene, which encodes a mitochondrial protein used here as a model of BAP1-activated gene expression. Our findings (i) establish a direct link between BAP1 and the transcriptional control of genes regulating cell growth and proliferation and (ii) shed light on a novel mechanism of transcription regulation involving ubiquitin signaling.
Collapse
|
22
|
Abstract
In cancer cells, the retinoblastoma tumor suppressor RB is directly inactivated by mutation in the RB gene or functionally inhibited by abnormal activation of cyclin-dependent kinase activity. While variations in RB levels may also provide an important means of controlling RB function in both normal and cancer cells, little is known about the mechanisms regulating RB transcription. Here we show that members of the RB and E2F families bind directly to the RB promoter. To investigate how the RB/E2F pathway may regulate Rb transcription, we generated reporter mice carrying an eGFP transgene inserted into a bacterial artificial chromosome containing most of the Rb gene. Expression of eGFP largely parallels that of Rb in transgenic embryos and adult mice. Using these reporter mice and mutant alleles for Rb, p107, and p130, we found that RB family members modulate Rb transcription in specific cell populations in vivo and in culture. Interestingly, while Rb is a target of the RB/E2F pathway in mouse and human cells, Rb expression does not strictly correlate with the cell cycle status of these cells. These experiments identify novel regulatory feedback mechanisms within the RB pathway in mammalian cells.
Collapse
|
23
|
Transcriptional coactivator HCF-1 couples the histone chaperone Asf1b to HSV-1 DNA replication components. Proc Natl Acad Sci U S A 2010; 107:2461-6. [PMID: 20133788 DOI: 10.1073/pnas.0911128107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cellular transcriptional coactivator HCF-1 interacts with numerous transcription factors as well as other coactivators and is a component of multiple chromatin modulation complexes. The protein is essential for the expression of the immediate early genes of both herpes simplex virus (HSV) and varicella zoster virus and functions, in part, by coupling chromatin modification components including the Set1 or MLL1 histone methyltransferases and the histone demethylase LSD1 to promote the installation of positive chromatin marks and the activation of viral immediately early gene transcription. Although studies have investigated the role of HCF-1 in both cellular and viral transcription, little is known about other processes that the protein may be involved in. Here we demonstrate that HCF-1 localizes to sites of HSV replication late in infection. HCF-1 interacts directly and simultaneously with both HSV DNA replication proteins and the cellular histone chaperone Asf1b, a protein that regulates the progression of cellular DNA replication forks via chromatin reorganization. Asf1b localizes with HCF-1 in viral replication foci and depletion of Asf1b results in significantly reduced viral DNA accumulation. The results support a model in which the transcriptional coactivator HCF-1 is a component of the HSV DNA replication assembly and promotes viral DNA replication by coupling Asf1b to DNA replication components. This coupling provides a novel function for HCF-1 and insights into the mechanisms of modulating chromatin during DNA replication.
Collapse
|
24
|
Rizkallah R, Hurt MM. Regulation of the transcription factor YY1 in mitosis through phosphorylation of its DNA-binding domain. Mol Biol Cell 2009; 20:4766-76. [PMID: 19793915 DOI: 10.1091/mbc.e09-04-0264] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Yin-Yang 1 (YY1) is a ubiquitously expressed zinc finger transcription factor. It regulates a vast array of genes playing critical roles in development, differentiation, and cell cycle. Very little is known about the mechanisms that regulate the functions of YY1. It has long been proposed that YY1 is a phosphoprotein; however, a direct link between phosphorylation and the function of YY1 has never been proven. Investigation of the localization of YY1 during mitosis shows that it is distributed to the cytoplasm during prophase and remains excluded from DNA until early telophase. Immunostaining studies show that YY1 is distributed equally between daughter cells and rapidly associates with decondensing chromosomes in telophase, suggesting a role for YY1 in early marking of active and repressed genes. The exclusion of YY1 from DNA in prometaphase HeLa cells correlated with an increase in the phosphorylation of YY1 and loss of DNA-binding activity that can be reversed by dephosphorylation. We have mapped three phosphorylation sites on YY1 during mitosis and show that phosphorylation of two of these sites can abolish the DNA-binding activity of YY1. These results demonstrate a novel mechanism for the inactivation of YY1 through phosphorylation of its DNA-binding domain.
Collapse
Affiliation(s)
- Raed Rizkallah
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300, USA
| | | |
Collapse
|
25
|
|
26
|
Kristie TM, Liang Y, Vogel JL. Control of alpha-herpesvirus IE gene expression by HCF-1 coupled chromatin modification activities. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:257-65. [PMID: 19682612 DOI: 10.1016/j.bbagrm.2009.08.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 07/15/2009] [Accepted: 08/01/2009] [Indexed: 01/17/2023]
Abstract
The immediate early genes of the alpha-herpesviruses HSV and VZV are transcriptionally regulated by viral and cellular factors in a complex combinatorial manner. Despite this complexity and the apparent redundancy of activators, the expression of the viral IE genes is critically dependent upon the cellular transcriptional coactivator HCF-1. Although the role of HCF-1 had remained elusive, recent studies have demonstrated that the protein is a component of multiple chromatin modification complexes including the Set1/MLL1 histone H3K4 methyltransferases. Studies using model viral promoter-reporter systems as well as analyses of components recruited to the viral genome during the initiation of infection have elucidated the significance of HCF-1 chromatin modification complexes in contributing to the final state of modified histones assembled on the viral IE promoters. Strikingly, the absence of HCF-1 results in the accumulation of nucleosomes bearing repressive marks on the viral IE promoters and silencing of viral gene expression.
Collapse
Affiliation(s)
- Thomas M Kristie
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4-129, 4 Center Drive, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
27
|
Jeon BN, Yoo JY, Choi WI, Lee CE, Yoon HG, Hur MW. Proto-oncogene FBI-1 (Pokemon/ZBTB7A) represses transcription of the tumor suppressor Rb gene via binding competition with Sp1 and recruitment of co-repressors. J Biol Chem 2008; 283:33199-210. [PMID: 18801742 DOI: 10.1074/jbc.m802935200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
FBI-1 (also called Pokemon/ZBTB7A) is a BTB/POZ-domain Krüppel-like zinc-finger transcription factor. Recently, FBI-1 was characterized as a proto-oncogenic protein, which represses tumor suppressor ARF gene transcription. The expression of FBI-1 is increased in many cancer tissues. We found that FBI-1 potently represses transcription of the Rb gene, a tumor suppressor gene important in cell cycle arrest. FBI-1 binds to four GC-rich promoter elements (FREs) located at bp -308 to -188 of the Rb promoter region. The Rb promoter also contains two Sp1 binding sites: GC-box 1 (bp -65 to -56) and GC-box 2 (bp -18 to -9), the latter of which is also bound by FBI-1. We found that FRE3 (bp -244 to -236) is also a Sp1 binding element. FBI-1 represses transcription of the Rb gene not only by binding to the FREs, but also by competing with Sp1 at the GC-box 2 and the FRE3. By binding to the FREs and/or the GC-box, FBI-1 represses transcription of the Rb gene through its POZ-domain, which recruits a co-repressor-histone deacetylase complex and deacetylates histones H3 and H4 at the Rb gene promoter. FBI-1 inhibits C2C12 myoblast cell differentiation by repressing Rb gene expression.
Collapse
Affiliation(s)
- Bu-Nam Jeon
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Sciences, Yonsei University School of Medicine, 134, ShinChon-Dong, Seoul 120-752, Korea
| | | | | | | | | | | |
Collapse
|
28
|
Vale-Cruz DS, Ma Q, Syme J, LuValle PA. Activating transcription factor-2 affects skeletal growth by modulating pRb gene expression. Mech Dev 2008; 125:843-56. [DOI: 10.1016/j.mod.2008.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 06/17/2008] [Accepted: 06/22/2008] [Indexed: 11/29/2022]
|
29
|
Association of the cellular coactivator HCF-1 with the Golgi apparatus in sensory neurons. J Virol 2008; 82:9555-63. [PMID: 18667495 DOI: 10.1128/jvi.01174-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
HCF-1 is a cellular transcriptional coactivator that is critical for mediating the regulated expression of the immediate-early genes of the alphaherpesviruses herpes simplex virus type 1 and varicella-zoster virus. HCF-1 functions, at least in part, by modulating the modification of nucleosomes at these viral promoters to reverse cell-mediated repressive marks and promote activating marks. Strikingly, HCF-1 is specifically sequestered in the cytoplasm of sensory neurons where these viruses establish latency and is rapidly relocalized to the nucleus upon stimuli that result in viral reactivation. However, the analysis of HCF-1 in latently infected neurons and the protein's specific subcellular location have not been determined. Therefore, in this study, the localization of HCF-1 in unstimulated and induced latently infected sensory neurons was investigated and was found to be similar to that observed in uninfected mice, with a time course of induced nuclear accumulation that correlated with viral reactivation. Using a primary neuronal cell culture system, HCF-1 was localized to the Golgi apparatus in unstimulated neurons, a unique location for a transcriptional coactivator. Upon disruption of the Golgi body, HCF-1 was rapidly relocalized to the nucleus in contrast to other Golgi apparatus-associated proteins. The location of HCF-1 is distinct from that of CREB3, an endoplasmic reticulum-resident HCF-1 interaction partner that has been proposed to sequester HCF-1. The results support the model that HCF-1 is an important component of the viral latency-reactivation cycle and that it is regulated by association with a component that is distinct from the identified HCF-1 interaction factors.
Collapse
|
30
|
The chemokine CXCL12 promotes survival of postmitotic neurons by regulating Rb protein. Cell Death Differ 2008; 15:1663-72. [PMID: 18583990 DOI: 10.1038/cdd.2008.95] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Postmitotic neurons need to keep their cell cycle under control to survive and maintain a differentiated state. This study aims to test the hypothesis that the chemokine CXCL12 regulates neuronal survival and differentiation by promoting Rb function, as suggested by previous studies showing that CXCL12 protects neurons from apoptosis induced by Rb loss. To this end, the effect of CXCL12 on Rb expression and transcriptional activity and the role of Rb in CXCL12-induced neuronal survival were studied. CXCL12 increases Rb protein and RNA levels in rat cortical neurons. The chemokine also stimulates an exogenous Rb promoter expressed in these neurons and counteracts the inhibition of the Rb promoter induced by E2F1 overexpression. Furthermore CXCL12 stimulates Rb activity as a transcription repressor. The effects of CXCL12 are mediated by its specific receptor CXCR4, and do not require the presence of glia. Finally, shRNA studies show that Rb expression is crucial to the neuroprotective activity of CXCL12 as indicated by NMDA-neurotoxicity assays. These findings suggest that proper CXCR4 stimulation in the mature CNS can prevent impairment of the Rb-E2F pathway and support neuronal survival. This is important to maintain CNS integrity in physiological conditions and prevent neuronal injury and loss typical of many neurodegenerative and neuroinflammatory conditions.
Collapse
|
31
|
Rylski M, Amborska R, Zybura K, Konopacki FA, Wilczynski GM, Kaczmarek L. Yin Yang 1 Expression in the Adult Rodent Brain. Neurochem Res 2008; 33:2556-64. [DOI: 10.1007/s11064-008-9757-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 05/19/2008] [Indexed: 11/24/2022]
|
32
|
Narayanan A, Ruyechan WT, Kristie TM. The coactivator host cell factor-1 mediates Set1 and MLL1 H3K4 trimethylation at herpesvirus immediate early promoters for initiation of infection. Proc Natl Acad Sci U S A 2007; 104:10835-40. [PMID: 17578910 PMCID: PMC1894567 DOI: 10.1073/pnas.0704351104] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Originally identified as an essential component of the herpes simplex virus immediate early (IE) gene enhancer complex, the transcriptional coactivator host cell factor-1 (HCF-1) has been implicated in a broad range of cellular regulatory circuits. The protein mediates activation through multiple interactions with transcriptional activators, coactivators, and chromatin remodeling complexes. However, the mechanisms involved in HCF-1-dependent transcriptional stimulation were undefined. By using a minimal HCF-1-dependent promoter and a model activator, the varicella zoster IE62 protein, it was determined that HCF-1 was not required for the assembly of the RNAPII basal complex, which depended solely on IE62 in conjunction with the cellular factor Sp1. In contrast, HCF-1 was required for recruitment of the histone methyltransferases Set1 and MLL1 (mixed-lineage leukemia 1), leading to histone H3K4 trimethylation and transcriptional activation. Similarly, in a varicella zoster virus lytic infection, HCF-1, Set1, and MLL1 were recruited to the viral genomic IE promoter, suggesting an essential role for HCF-1 in chromatin modification and remodeling during initiation of lytic infection. The results indicate that one biological rationale for the incorporation of the viral IE activators in the viral particle is to recruit HCF-1/histone methyltransferase complexes and promote assembly of the viral IE gene promoters into transcriptionally active chromatin. These studies also contribute to the model whereby the induced nuclear transport of HCF-1 in sensory neurons may be critical to the reactivation of latent herpesviruses by promoting the activation of chromatin modifications.
Collapse
Affiliation(s)
- Aarthi Narayanan
- *Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4-131, 4 Center Drive, Bethesda, MD 20892; and
| | - William T. Ruyechan
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, 251 Biomedical Research Building, Buffalo, NY 14214
| | - Thomas M. Kristie
- *Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4-131, 4 Center Drive, Bethesda, MD 20892; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Wang Z, Pandey A, Hart GW. Dynamic interplay between O-linked N-acetylglucosaminylation and glycogen synthase kinase-3-dependent phosphorylation. Mol Cell Proteomics 2007; 6:1365-79. [PMID: 17507370 DOI: 10.1074/mcp.m600453-mcp200] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
O-GlcNAcylation on serine and threonine side chains of nuclear and cytoplasmic proteins is dynamically regulated in response to various environmental and biological stimuli. O-GlcNAcylation is remarkably similar to O-phosphorylation and appears to have a dynamic interplay with O-phosphate in cellular regulation. A systematic glycoproteomics analysis of the affects of inhibiting specific kinases on O-GlcNAcylation should help reveal both the global and specific dynamic relationships between these two abundant post-translational modifications. Here we report the O-GlcNAc perturbations in response to inhibition of glycogen synthase kinase-3 (GSK-3), a pivotal kinase involved in many signaling pathways. By combining immunoaffinity chromatography and SILAC (stable isotope labeling with amino acids in cell culture)-based quantitative mass spectrometry, we identified 45 potentially O-GlcNAcylated proteins. Quantitative measurements indicated that at least 10 proteins had an apparent increase of O-GlcNAcylation upon GSK-3 inhibition by lithium, whereas surprisingly 19 other proteins showed decreases. O-GlcNAcylation changes on a subset of the proteins were confirmed by follow-up experiments. By combining a new O-GlcNAc peptide enrichment method and beta-elimination followed by Michael addition with DTT, we also mapped the O-GlcNAc site (Ser-55) of vimentin, which showed an apparent increase of O-GlcNAcylation upon GSK-3 inhibition. Based on the MS data, we further investigated potential roles of O-GlcNAc on host cell factor-1, a transcription co-activator, and showed that dynamic regulation of O-GlcNAcylation on host cell factor-1 influenced its subcellular distribution. Taken together, these data indicated the complex interplay between phosphorylation and O-GlcNAcylation that occurs within signaling networks.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | |
Collapse
|
34
|
Wang CC, Chen JJW, Yang PC. Multifunctional transcription factor YY1: a therapeutic target in human cancer? Expert Opin Ther Targets 2006; 10:253-66. [PMID: 16548774 DOI: 10.1517/14728222.10.2.253] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The multifunctional transcription factor Yin Yang 1 (YY1) is a complex protein that has been shown to play pivotal roles in development, differentiation, cellular proliferation and apoptosis. It can act as a transcriptional repressor, an activator, or an initiator element binding protein that directs and initiates transcription of numerous cellular and viral genes. Because the expression and function of YY1 are known to be intimately associated with cell-cycle progression, the physiological significance of YY1 activity has recently been applied to models of cancer biology. Several lines of evidence imply that YY1 expression and/or activation is associated with tumourigenesis, in addition to its regulatory roles in normal biological processes. However, controversial results also raised and indicated that further studies are still needed to piece all of the seemingly contradictory data into a complete picture. On the basis of YY1 regulations and functions, novel drugs and specific treatment strategies may be developed with new therapeutic applications for tumour patients in the future.
Collapse
Affiliation(s)
- Chi-Chung Wang
- National Taiwan University College of Medicine, NTU Center for Genomic Medicine, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
35
|
Abstract
MicroRNAs (miRNAs) are a group of recently discovered small RNAs produced by the cell using a unique process, involving RNA polymerase II, Microprocessor protein complex, and the RNAase III/Dicer endonuclease complex, and subsequently sequestered in an miRNA ribonucleoprotein complex. The biological functions of miRNAs depend on their ability to silence gene expression, primarily via degradation of the target mRNA and/or translational suppression, mediated by the RNA-induced silencing complex (RISC). First discovered in Caenorhabditis elegans (lin-4), miRNAs have now been identified in a wide array of organisms, including plants, zebrafish, Drosophila, and mammals. The expression of miRNAs in multicellular organisms exhibits spatiotemporal, and tissue- and cell-specificity, suggesting their involvement in tissue morphogenesis and cell differentiation. More than 200 miRNAs have been identified or predicted in mammalian cells. Recent studies have demonstrated the importance of miRNAs in embryonic stem cell differentiation, limb development, adipogenesis, myogenesis, angiogenesis and hematopoiesis, neurogenesis, and epithelial morphogenesis. Overexpression (gain-of-function) and inactivation (loss-of-function) are currently the primary approaches to studying miRNA functions. Another family of small RNAs related to miRNAs is the small interfering RNAs (siRNAs), generated by Dicer from long double-stranded RNAs (dsRNAs), and produced from an induced transgene, a viral intruder, or a rogue genetic element. siRNAs silence genes via either mRNA degradation, using the RISC, or DNA methylation. siRNAs are actively being applied in basic, functional genetic studies, particularly in the generation of gene knockdown animals, as well as in gene knockdown studies of cultured cells. These studies have provided invaluable information on the specific function(s) of individual genes. siRNA technology also presents exciting potential as a therapeutic approach in disease prevention and treatment, as suggested by a recent study targeting apolipoprotein B (ApoB) in primates. Further elucidation of how miRNAs and other small RNAs interact with known and yet-to-be identified gene regulatory pathways in the cell should provide us with a more in-depth understanding of the mechanisms regulating cellular function and differentiation, and facilitate the application of small RNA technology in disease control and treatment.
Collapse
Affiliation(s)
- Lin Song
- Cartilage Biology and Orthopaedics Branch of the National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | |
Collapse
|
36
|
Abstract
The retinoblastoma susceptibility gene was the first tumor suppressor gene identified in humans and the first tumor suppressor gene knocked out by targeted deletion in mice. RB serves as a transducer between the cell cycle machinery and promoter-specific transcription factors, its most documented activity being the repression of the E2F family of transcription factors, which regulate the expression of genes involved in cell proliferation and survival. Recent investigations of RB function suggest that it works as a fundamental regulator to coordinate pathways of cellular growth and differentiation. In this review, we unravel the novel role of an equally important aspect of RB in downregulating the differentiation inhibitor EID-1 during cellular differentiation by teasing apart the signal, which elicit differentiation and limit cell cycle progression, since the molecular mechanisms relating to RB activation of differentiation is much less understood. We review the various roles for RB in differentiation of neurons, muscle, adipose tissue, and the retina. In addition, we provide an update for the current models of the role of RB in cell cycle to entry and exit, extending the view toward chromatin remodeling and expose the dichotomies in the regulation of RB family members. We conclude with a discussion of a novel RB regulatory network, incorporating the dynamic contribution of EID family proteins.
Collapse
Affiliation(s)
- L Khidr
- Department of Biological Chemistry, University of California-Irvine Med Sci 1, Irvine, CA 92697, USA
| | | |
Collapse
|
37
|
Agromayor M, Wloga E, Naglieri B, Abrashkin J, Verma K, Yamasaki L. Visualizing dynamic E2F-mediated repression in vivo. Mol Cell Biol 2006; 26:4448-61. [PMID: 16738312 PMCID: PMC1489115 DOI: 10.1128/mcb.02101-05] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 11/30/2005] [Accepted: 03/12/2006] [Indexed: 11/20/2022] Open
Abstract
Although many E2F target genes have been identified recently, very little is known about how any single E2F site controls the expression of an E2F target gene in vivo. To test the requirement for a single E2F site in vivo and to learn how E2F-mediated repression is regulated during development and tumorigenesis, we have constructed a novel series of wild-type and mutant Rb promoter-LacZ transgenic reporter lines that allow us to visualize the activity of a crucial E2F target in vivo, the retinoblastoma tumor suppressor gene (Rb). Two mutant Rb promoter-LacZ constructs were used to evaluate the importance of a single E2F site or a nearby activator (Sp1/Ets) site that is found mutated in low-penetrance retinoblastomas. The activity of the wild-type Rb promoter is dynamic, varying spatially and temporally within the developing nervous system. While loss of the activator site silences the Rb promoter, loss of the E2F site stimulates its activity in the neocortex, retina, and trigeminal ganglion. Surprisingly, E2F-mediated repression of Rb does not act globally or in a static manner but, instead, is a highly dynamic process in vivo. Using neocortical extracts, we detected GA-binding protein alpha (GABPalpha, an Ets family member) bound to the activator site and both E2F1 and E2F4 bound to the repressor site of the Rb promoter in vitro. Additionally, we detected binding of both E2F1 and E2F4 to the Rb promoter in vivo using chromatin immunoprecipitation analysis on embryonic day 13.5 brain. Unexpectedly, we detect no evidence for Rb promoter autoregulation in neuroendocrine tumors from Rb+/-; RbP-LacZ mice that undergo loss of heterozygosity at the Rb locus, in contrast to the situation in human retinoblastomas where high RB mRNA levels are found. In summary, this study provides the first demonstration that loss of an E2F site is critical for target gene repression in vivo and underscores the complexity of the Rb and E2F family network in vivo.
Collapse
Affiliation(s)
- Monica Agromayor
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, 1102 Fairchild Building, Mail Code 2428, New York, NY 10027, USA
| | | | | | | | | | | |
Collapse
|