1
|
Kozani PS, Kozani PS, Malik MT. AS1411-functionalized delivery nanosystems for targeted cancer therapy. EXPLORATION OF MEDICINE 2021; 2:146-166. [PMID: 34723284 PMCID: PMC8555908 DOI: 10.37349/emed.2021.00039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleolin (NCL) is a multifunctional nucleolar phosphoprotein harboring critical roles in cells such as cell proliferation, survival, and growth. The dysregulation and overexpression of NCL are related to various pathologic and oncological indications. These characteristics of NCL make it an ideal target for the treatment of various cancers. AS1411 is a synthetic quadruplex-forming nuclease-resistant DNA oligonucleotide aptamer which shows a considerably high affinity for NCL, therefore, being capable of inducing growth inhibition in a variety of tumor cells. The high affinity and specificity of AS1411 towards NCL make it a suitable targeting tool, which can be used for the functionalization of therapeutic payloaddelivery nanosystems to selectively target tumor cells. This review explores the advances in NCL-targeting cancer therapy through AS1411-functionalized delivery nanosystems for the selective delivery of a broad spectrum of therapeutic agents.
Collapse
Affiliation(s)
- Pooria Safarzadeh Kozani
- Carlos Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115/111, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 41446/66949, Iran
- Student Research Committee, Medical Biotechnology Research Center, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht 41446/66949, Iran
| | - Mohammad Tariq Malik
- Departments of Microbiology and Immunology, Regenerative Medicine, and Stem Cell Biology, University of Louisville, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
2
|
Recent Progress and Opportunities for Nucleic Acid Aptamers. Life (Basel) 2021; 11:life11030193. [PMID: 33671039 PMCID: PMC7997341 DOI: 10.3390/life11030193] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Coined three decades ago, the term aptamer and directed evolution have now reached their maturity. The concept that nucleic acid could modulate the activity of target protein as ligand emerged from basic science studies of viruses. Aptamers are short nucleic acid sequences capable of specific, high-affinity molecular binding, which allow for therapeutic and diagnostic applications. Compared to traditional antibodies, aptamers have several advantages, including small size, flexible structure, good biocompatibility, and low immunogenicity. In vitro selection method is used to isolate aptamers that are specific for a desired target from a randomized oligonucleotide library. The first aptamer drug, Macugen, was approved by FDA in 2004, which was accompanied by many studies and clinical investigations on various targets and diseases. Despite much promise, most aptamers have failed to meet the requisite safety and efficacy standards in human clinical trials. Amid these setbacks, the emergence of novel technologies and recent advances in aptamer and systematic evolution of ligands by exponential enrichment (SELEX) design are fueling hope in this field. The unique properties of aptamer are gaining renewed interest in an era of COVID-19. The binding performance of an aptamer and reproducibility are still the key issues in tackling current hurdles in clinical translation. A thorough analysis of the aptamer binding under varying conditions and the conformational dynamics is warranted. Here, the challenges and opportunities of aptamers are reviewed with recent progress.
Collapse
|
3
|
Aptamers: A Review of Their Chemical Properties and Modifications for Therapeutic Application. Molecules 2019; 24:molecules24234229. [PMID: 31766318 PMCID: PMC6930564 DOI: 10.3390/molecules24234229] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 12/29/2022] Open
Abstract
Aptamers are short, single-stranded oligonucleotides that bind to specific target molecules. The shape-forming feature of single-stranded oligonucleotides provides high affinity and excellent specificity toward targets. Hence, aptamers can be used as analogs of antibodies. In December 2004, the US Food and Drug Administration approved the first aptamer-based therapeutic, pegaptanib (Macugen), targeting vascular endothelial growth factor, for the treatment of age-related macular degeneration. Since then, however, no aptamer medication for public health has appeared. During these relatively silent years, many trials and improvements of aptamer therapeutics have been performed, opening multiple novel directions for the therapeutic application of aptamers. This review summarizes the basic characteristics of aptamers and the chemical modifications available for aptamer therapeutics.
Collapse
|
4
|
Amano R, Furukawa T, Sakamoto T. ITC Measurement for High-Affinity Aptamers Binding to Their Target Proteins. Methods Mol Biol 2019; 1964:119-128. [PMID: 30929239 DOI: 10.1007/978-1-4939-9179-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aptamers are nucleic acid molecules that bind to a target molecule with high affinity and specificity, which are generated by a process known as systematic evolution of ligands by exponential enrichment (SELEX). Because of their high affinity and specificity, aptamers were developed as therapeutic agents. Although aptamers are investigated as promising therapeutic agents, the mechanism of their high affinity and specificity is not clear. Therefore, structural and biophysical studies are important to know that. To date, ITC is increasingly being used to study the thermodynamic basis of aptamer-target protein interactions. Understanding the mechanism of aptamer binding would contribute to their development for therapeutic applications. In this chapter, we describe the protocol to study the thermodynamics of aptamer-protein interactions.
Collapse
Affiliation(s)
- Ryo Amano
- Faculty of Advanced Engineering, Department of Life Science, Chiba Institute of Technology, Narashino-shi, Chiba, Japan
| | - Tomohisa Furukawa
- Faculty of Advanced Engineering, Department of Life Science, Chiba Institute of Technology, Narashino-shi, Chiba, Japan
| | - Taiichi Sakamoto
- Faculty of Advanced Engineering, Department of Life Science, Chiba Institute of Technology, Narashino-shi, Chiba, Japan.
| |
Collapse
|
5
|
Function of the RNA Coliphage Qβ Proteins in Medical In Vitro Evolution. Methods Protoc 2018; 1:mps1020018. [PMID: 31164561 PMCID: PMC6526423 DOI: 10.3390/mps1020018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022] Open
Abstract
Qβ is a positive (+) single-stranded RNA bacteriophage covered by a 25 nm icosahedral shell. Qβ belongs to the family of Leviviridae and is found throughout the world (bacterial isolates and sewage). The genome of Qβ is about 4.2 kb, coding for four proteins. This genome is surrounded by 180 copies of coat proteins (capsomers) each comprised of 132 residues of amino acids. The other proteins, the subunit II (β) of a replicase, the maturation protein (A2) and the read-through or minor coat protein (A1), play a key role in phage infection. With the replicase protein, which lacks proofreading activity, as well as its short replication time, and high population size, Qβ phage has attractive features for in vitro evolution. The A1 protein gene shares the same initiation codon with the coat protein gene and is produced during translation when the coat protein’s UGA stop codon triplet (about 400 nucleotides from the initiation) is suppressed by a low level of ribosome misincorporation of tryptophan. Thus, A1 is termed the read-through protein. This RNA phage platform technology not only serves to display foreign peptides but is also exceptionally suited to address questions about in vitro evolution. The C-terminus of A1 protein confers to this RNA phage platform an exceptional feature of not only a linker for foreign peptide to be displayed also a model for evolution. This platform was used to present a peptide library of the G-H loop of the capsid region P1 of the foot-and-mouth disease virus (FMDV) called VP1 protein. The library was exposed on the exterior surface of Qβ phages, evolved and selected with the monoclonal antibodies (mAbs) SD6 of the FMDV. These hybrid phages could principally be good candidates for FMDV vaccine development. Separately, the membrane proximal external region (MPER) of human immunodeficiency virus type 1 (HIV-1) epitopes was fused with the A1 proteins and exposed on the Qβ phage exterior surface. The engineered phages with MPER epitopes were recognized by anti-MPER specific antibodies. This system could be used to overcome the challenge of effective presentation of MPER to the immune system. A key portion of this linear epitope could be randomized and evolved with the Qβ system. Overall, antigens and epitopes of RNA viruses relevant to public health can be randomized, evolved and selected in pools using the proposed Qβ model to overcome their plasticity and the challenge of vaccine development. Major epitopes of a particular virus can be engineered or displayed on the Qβ phage surface and used for vaccine efficacy evaluation, thus avoiding the use of live viruses.
Collapse
|
6
|
Imashimizu M, Takahashi M, Amano R, Nakamura Y. Single-round isolation of diverse RNA aptamers from a random sequence pool. Biol Methods Protoc 2018; 3:bpy004. [PMID: 32161798 PMCID: PMC6994090 DOI: 10.1093/biomethods/bpy004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/02/2018] [Accepted: 04/10/2018] [Indexed: 01/09/2023] Open
Abstract
Aptamers are oligonucleotide ligands with specific binding affinity to target molecules. Generally, RNA aptamers are selected from an RNA pool with random sequences, using the technique termed SELEX, in which the target-binding RNA molecules are repeatedly isolated and exponentially amplified. Despite several advantages, SELEX often produces uncertain results during the iterative amplifications of the rare target-binding RNA molecules. Here, we develop a non-repeated, primer-less and target immobilization-free isolation method for generating RNA aptamers, which is robust to experimental noise. Uniquely, this method focuses on finding and removal of non-aptamer sequences from the RNA pool by RNase digestion leaving target-bound aptamer molecules, and thus is independent of aptamer types. The undigested RNA sequences remaining are so few in number that they must be mixed with a large excess of a known sequence for further manipulations and this sequence is then removed by restriction digestion followed by high-throughput sequencing analysis to identify aptamers. Using this method, we generated multiple RNA aptamers targeting α-thrombin and TGFβ1 proteins, independently. This method potentially generates thousands of sequences as aptamer candidates, which may enable us to predict a common average sequence or structural property of these aptamers that is different from input RNA.
Collapse
Affiliation(s)
- Masahiko Imashimizu
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Masaki Takahashi
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Ryo Amano
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Yoshikazu Nakamura
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan.,RIBOMIC Inc., Minato-ku, Tokyo, 108-0071, Japan
| |
Collapse
|
7
|
The intrinsic flexibility of the aptamer targeting the ribosomal protein S8 is a key factor for the molecular recognition. Biochim Biophys Acta Gen Subj 2018; 1862:1006-1016. [PMID: 29413905 DOI: 10.1016/j.bbagen.2018.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND Aptamers are RNA/DNA biomolecules representing an emerging class of protein interactors and regulators. Despite the growing interest in these molecules, current understanding of chemical-physical basis of their target recognition is limited. Recently, the characterization of the aptamer targeting the protein-S8 has suggested that flexibility plays important functional roles. We investigated the structural versatility of the S8-aptamer by molecular dynamics simulations. METHODS Five different simulations have been conducted by varying starting structures and temperatures. RESULTS The simulation of S8-aptamer complex provides a dynamic view of the contacts occurring at the complex interface. The simulation of the aptamer in ligand-free state indicates that its central region is intrinsically endowed with a remarkable flexibility. Nevertheless, none of the trajectory structures adopts the structure observed in the S8-aptamer complex. The aptamer ligand-bound is very rigid in the simulation carried out at 300 K. A structural transition of this state, providing insights into the aptamer-protein recognition process, is observed in a simulation carried out at 400 K. These data indicate that a key event in the binding is linked to the widening of the central region of the aptamer. Particularly relevant is switch of the A26 base from its ligand-free state to a location that allows the G13-C28 base-pairing. CONCLUSIONS Intrinsic flexibility of the aptamer is essential for partner recognition. Present data indicate that S8 recognizes the aptamer through an induced-fit rather than a population-shift mechanism. GENERAL SIGNIFICANCE The present study provides deeper understanding of the structural basis of the structural versatility of aptamers.
Collapse
|
8
|
Takada K, Amano R, Nomura Y, Tanaka Y, Sugiyama S, Nagata T, Katahira M, Nakamura Y, Kozu T, Sakamoto T. Characterisation of an aptamer against the Runt domain of AML1 (RUNX1) by NMR and mutational analyses. FEBS Open Bio 2018; 8:264-270. [PMID: 29435416 PMCID: PMC5794459 DOI: 10.1002/2211-5463.12368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/20/2017] [Accepted: 12/02/2017] [Indexed: 01/15/2023] Open
Abstract
Since the invention of systematic evolution of ligands by exponential enrichment, many short oligonucleotides (or aptamers) have been reported that can bind to a wide range of target molecules with high affinity and specificity. Previously, we reported an RNA aptamer that shows high affinity to the Runt domain (RD) of the AML1 protein, a transcription factor with roles in haematopoiesis and immune function. From kinetic and thermodynamic studies, it was suggested that the aptamer recognises a large surface area of the RD, using numerous weak interactions. In this study, we identified the secondary structure by nuclear magnetic resonance spectroscopy and performed a mutational study to reveal the residue critical for binding to the RD. It was suggested that the large contact area was formed by a DNA‐mimicking motif and a multibranched loop, which confers the high affinity and specificity of binding.
Collapse
Affiliation(s)
- Kenta Takada
- Department of Life and Environmental Sciences Faculty of Engineering Chiba Institute of Technology Narashino Japan
| | - Ryo Amano
- Department of Life and Environmental Sciences Faculty of Engineering Chiba Institute of Technology Narashino Japan
| | - Yusuke Nomura
- Division of Medical Devices National Institute of Health Sciences Tokyo Japan
| | - Yoichiro Tanaka
- Facility for RI Research and Education Instrumental Analysis Center Yokohama National University Japan
| | | | | | | | - Yoshikazu Nakamura
- RIBOMIC Inc.Tokyo Japan.,Department of Basic Medical Sciences Institute of Medical Science University of Tokyo Japan
| | - Tomoko Kozu
- Research Institute for Clinical Oncology Saitama Cancer CenterIna Japan
| | - Taiichi Sakamoto
- Department of Life and Environmental Sciences Faculty of Engineering Chiba Institute of Technology Narashino Japan
| |
Collapse
|
9
|
Nomura Y, Yamazaki K, Amano R, Takada K, Nagata T, Kobayashi N, Tanaka Y, Fukunaga J, Katahira M, Kozu T, Nakamura Y, Haishima Y, Torigoe H, Sakamoto T. Conjugation of two RNA aptamers improves binding affinity to AML1 Runt domain. J Biochem 2017; 162:431-436. [PMID: 28992043 DOI: 10.1093/jb/mvx049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
To develop a high-affinity aptamer against AML1 Runt domain, two aptamers were conjugated based on their structural information. The newly designed aptamer Apt14 was generated by the conjugation of two RNA aptamers (Apt1 and Apt4) obtained by SELEX against AML1 Runt domain, resulting in improvement in its binding performance. The residues of AML1 Runt domain in contact with Apt14 were predicted in silico and confirmed by mutation and NMR analyses. It was suggested that the conjugated internal loop renders additional contacts and is responsible for the enhancement in the binding affinity. Conjugation of two aptamers that bind to different sites of the target protein is a facile and robust strategy to develop an aptamer with higher performance.
Collapse
Affiliation(s)
- Yusuke Nomura
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku 162-8601, Tokyo, Japan.,Division of Medical Devices, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Kaori Yamazaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku 162-8601, Tokyo, Japan
| | - Ryo Amano
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Kenta Takada
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Naohiro Kobayashi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoichiro Tanaka
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Saitama 362-0806, Japan
| | - Junichi Fukunaga
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Saitama 362-0806, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Tomoko Kozu
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Saitama 362-0806, Japan
| | - Yoshikazu Nakamura
- RIBOMIC Inc, 3-16-13 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan.,Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yuji Haishima
- Division of Medical Devices, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Hidetaka Torigoe
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku 162-8601, Tokyo, Japan
| | - Taiichi Sakamoto
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| |
Collapse
|
10
|
Inomata E, Tashiro E, Miyakawa S, Nakamura Y, Akita K. Alkaline-tolerant RNA aptamers useful to purify acid-sensitive antibodies in neutral conditions. Biochimie 2017; 145:113-124. [PMID: 29104137 DOI: 10.1016/j.biochi.2017.10.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
Recently, several oligonucleotides have been launched for clinical use and a number of therapeutic oligonucleotides are under clinical trials. Aptamer is one of the oligonucleotide therapeutics and has received a lot of attention as a new technology and an efficacious pharmaceutical compound comparable to antibody. Aptamer could be used for various purposes, not only therapeutics but also diagnostics, and applicable to affinity chromatography as a carrier molecule to purify proteins of interest. Here we demonstrate the usage and advantages of RNA aptamer to Fc region of human IgG (i.e., IgG aptamer) for purification of human antibodies. IgG aptamer requires divalent cations for binding to IgG and bound IgG dissociates easily upon treatment with chelating reagent, such as EDTA, under neutral conditions. This elution step is very mild and advantageous for maintaining active conformations of therapeutic antibodies compared to the widely used affinity purification with Protein A/G, which requires acidic elution that often damages the active conformation of antibodies. In fact, of several monoclonal antibodies tested, three antibodies were prone to aggregate on acidic elution from the Protein A/G resin, while remained fully active upon neutral elution from the IgG aptamer resin. The IgG aptamer was fully manipulated to alkaline resistant by ribose 2'-modifications, and thereby reusable numerous times with 1 N NaOH washing. The capacity of the aptamer resin to bind IgG was equivalent to that of the Protein A/G resin. Therefore, the IgG aptamer will provide us with a unique tool to uncover and purify human monoclonal antibodies, which hold therapeutic potential but lose the activity upon acidic elution from Protein A/G-based affinity resin.
Collapse
Affiliation(s)
| | | | | | - Yoshikazu Nakamura
- RIBOMIC Inc., Minato-ku, Tokyo 108-0071, Japan; The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | |
Collapse
|
11
|
Sakamoto T, Ennifar E, Nakamura Y. Thermodynamic study of aptamers binding to their target proteins. Biochimie 2017; 145:91-97. [PMID: 29054802 DOI: 10.1016/j.biochi.2017.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/12/2017] [Indexed: 01/30/2023]
Abstract
Aptamers are nucleic acids that bind to a target molecule with high affinity and specificity, which are selected from systematic evolution of ligands by exponential enrichment (SELEX). Aptamers feature high affinity and specificity to their target molecule and a large structural diversity; biophysical tools, together with structural studies, are essential to reveal the mechanism of aptamers recognition. Furthermore, understanding the mechanism of action would also contribute to their development for therapeutic applications. Isothermal titration calorimetry (ITC) is a fast and robust method to study the physical basis of molecular interactions. In a single experiment, it provides all thermodynamic parameters of a molecular interaction, including dissociation constant, Kd; Gibbs free energy change, ΔG; enthalpy change, ΔH; entropy change, ΔS; and stoichiometry, N. The development of modern microcalorimeters significantly contributed to the expansion of the ITC use in biological systems. Therefore, ITC has been applied to the development of small therapeutic agents that bind to target proteins and is increasingly being used to study aptamer-target protein interactions. This review focuses on thermodynamic approaches for understanding the molecular principles of aptamer-target interactions.
Collapse
Affiliation(s)
- Taiichi Sakamoto
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016, Japan.
| | - Eric Ennifar
- Structure and Dynamics of Biomolecular Machines, Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, 15 Rue René Descartes, F-67000 Strasbourg, France
| | - Yoshikazu Nakamura
- RIBOMIC Inc., 3-16-13 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan; The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
12
|
Nakamura Y. Aptamers as therapeutic middle molecules. Biochimie 2017; 145:22-33. [PMID: 29050945 DOI: 10.1016/j.biochi.2017.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/12/2017] [Indexed: 02/04/2023]
Abstract
Therapeutic molecules can be classified as low-, middle- and high-molecular weight drugs depending on their molecular masses. Antibodies represent high-molecular weight drugs and their clinical applications have been developing rapidly. Aptamers, on the other hand, are middle-molecular weight molecules that are short, single-stranded nucleic acid sequences that are selected in vitro from large oligonucleotide libraries based on their high affinity to a target molecule. Hence, aptamers can be thought of as a nucleic acid analog to antibodies. However, several viewpoints hold that the potential of aptamers arises from interesting characteristics that are distinct from, or in some cases, superior to those of antibodies. Recently, therapeutic middle molecules gain considerable attention as protein-protein interaction (PPI) inhibitors. This review summarizes the recent achievements in aptamer development in our laboratory in terms of PPI and non-PPI inhibitors.
Collapse
Affiliation(s)
- Yoshikazu Nakamura
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; RIBOMIC Inc., Minato-ku, Tokyo 108-0071, Japan.
| |
Collapse
|
13
|
Hirao I, Kimoto M, Lee KH. DNA aptamer generation by ExSELEX using genetic alphabet expansion with a mini-hairpin DNA stabilization method. Biochimie 2017; 145:15-21. [PMID: 28916151 DOI: 10.1016/j.biochi.2017.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022]
Abstract
A novel aptamer generation method to greatly augment the affinity and stability of DNA aptamers was developed by genetic alphabet expansion combined with mini-hairpin DNA technology. The genetic alphabet expansion increases the physicochemical and structural diversities of DNA aptamers by introducing extra components, unnatural bases, as a fifth base, allowing for the enhancement of DNA aptamer affinities. Furthermore, the mini-hairpin DNA technology stabilizes DNA aptamers against nuclease digestion and thermal denaturation, by introducing an extraordinarily stable mini-hairpin DNA containing a GCGAAGC sequence. This novel method provides stabilized high-affinity DNA aptamers for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Ichiro Hirao
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #09-01, Singapore, 138669, Singapore.
| | - Michiko Kimoto
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #09-01, Singapore, 138669, Singapore
| | - Kyung Hyun Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #09-01, Singapore, 138669, Singapore
| |
Collapse
|
14
|
Kikuchi N, Kolpashchikov DM. Split Spinach Aptamer for Highly Selective Recognition of DNA and RNA at Ambient Temperatures. Chembiochem 2016; 17:1589-92. [PMID: 27305425 DOI: 10.1002/cbic.201600323] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 12/25/2022]
Abstract
Split spinach aptamer (SSA) probes for fluorescent analysis of nucleic acids were designed and tested. In SSA design, two RNA or RNA/DNA strands hybridized to a specific nucleic acid analyte and formed a binding site for low-fluorescent 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI) dye, which resulted in up to a 270-fold increase in fluorescence. The major advantage of the SSA over state-of-the art fluorescent probes is high selectivity: it produces only background fluorescence in the presence of a single-base-mismatched analyte, even at room temperature. SSA is therefore a promising tool for label-free analysis of nucleic acids at ambient temperatures.
Collapse
Affiliation(s)
- Nanami Kikuchi
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA.
| |
Collapse
|
15
|
Patel KA, Sethi R, Dhara AR, Roy I. Challenges with osmolytes as inhibitors of protein aggregation: Can nucleic acid aptamers provide an answer? Int J Biol Macromol 2016; 100:75-88. [PMID: 27156694 DOI: 10.1016/j.ijbiomac.2016.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 02/07/2023]
Abstract
Protein aggregation follows some common motifs. Whether in the formation of inclusion bodies in heterologous overexpression systems or inclusions in protein conformational diseases, or aggregation during storage or transport of protein formulations, aggregates form cross beta-sheet structures and stain with amyloidophilic dyes like Thioflavin T and Congo Red, irrespective of the concerned protein. Traditionally, osmolytes are used to stabilize proteins against stress conditions. They are employed right from protein expression, through production and purification, to formulation and administration. As osmolytes interact with the solvent, the differential effect of the stress condition on the solvent mostly determines the effect of the osmolyte on protein stability. Nucleic acid aptamers, on the other hand, are highly specific for their targets. When selected against monomeric, natively folded proteins, they bind to them with very high affinity. This binding inhibits the unfolding of the protein and/or monomer-monomer interaction which are the initial common steps of protein aggregation. Thus, by changing the approach to a protein-centric model, aptamers are able to function as universal stabilizers of proteins. The review discusses cases where osmolytes were unable to provide stabilization to proteins against different stress conditions, a gap which the aptamers seem to be able to fill.
Collapse
Affiliation(s)
- Kinjal A Patel
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Ratnika Sethi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Anita R Dhara
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India.
| |
Collapse
|
16
|
Structural basis for specific inhibition of Autotaxin by a DNA aptamer. Nat Struct Mol Biol 2016; 23:395-401. [PMID: 27043297 DOI: 10.1038/nsmb.3200] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/10/2016] [Indexed: 12/14/2022]
Abstract
ATX is a plasma lysophospholipase D that hydrolyzes lysophosphatidylcholine (LPC) and produces lysophosphatidic acid. To date, no ATX-inhibition-mediated treatment strategies for human diseases have been established. Here, we report anti-ATX DNA aptamers that inhibit ATX with high specificity and efficacy. We solved the crystal structure of ATX in complex with the anti-ATX aptamer RB011, at 2.0-Å resolution. RB011 binds in the vicinity of the active site through base-specific interactions, thus preventing the access of the choline moiety of LPC substrates. Using the structural information, we developed the modified anti-ATX DNA aptamer RB014, which exhibited in vivo efficacy in a bleomycin-induced pulmonary fibrosis mouse model. Our findings reveal the structural basis for the specific inhibition of ATX by the anti-ATX aptamer and highlight the therapeutic potential of anti-ATX aptamers for the treatment of human diseases, such as pulmonary fibrosis.
Collapse
|
17
|
Vorobyeva M, Timoshenko V, Vorobjev P, Venyaminova A. Aptamers Against Immunologic Targets: Diagnostic and Therapeutic Prospects. Nucleic Acid Ther 2015; 26:52-65. [PMID: 26643948 DOI: 10.1089/nat.2015.0568] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The concept of in vitro selection of nucleic acid aptamers emerged 25 years ago, and since then tremendous progress has been achieved in the development of different aptamers and their applications for various bioanalytical and therapeutic purposes. Among other protein targets of aptamers, immune system proteins are of particular interest both as diagnostic markers and therapeutic targets. The present review summarizes up-to-date articles concerning the selection and design of DNA and RNA aptamers against immunologic targets such as antibodies, cytokines, and T-cell and B-cell receptors. We also discuss the prospects of employing aptamers as recognizing modules of diagnostic aptasensors, potential therapeutic candidates for the treatment of autoimmune diseases and cancer, and specific tools for functional studies of immune system proteins.
Collapse
Affiliation(s)
- Mariya Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine , Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| | - Valentina Timoshenko
- Institute of Chemical Biology and Fundamental Medicine , Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| | - Pavel Vorobjev
- Institute of Chemical Biology and Fundamental Medicine , Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| | - Alya Venyaminova
- Institute of Chemical Biology and Fundamental Medicine , Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
18
|
Ashrafuzzaman M. Aptamers as both drugs and drug-carriers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:697923. [PMID: 25295268 PMCID: PMC4177733 DOI: 10.1155/2014/697923] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 08/04/2014] [Accepted: 08/22/2014] [Indexed: 11/17/2022]
Abstract
Aptamers are short nucleic acid oligos. They may serve as both drugs and drug-carriers. Their use as diagnostic tools is also evident. They can be generated using various experimental, theoretical, and computational techniques. The systematic evolution of ligands by exponential enrichment which uses iterative screening of nucleic acid libraries is a popular experimental technique. Theory inspired methodology entropy-based seed-and-grow strategy that designs aptamer templates to bind specifically to targets is another one. Aptamers are predicted to be highly useful in producing general drugs and theranostic drugs occasionally for certain diseases like cancer, Alzheimer's disease, and so on. They bind to various targets like lipids, nucleic acids, proteins, small organic compounds, and even entire organisms. Aptamers may also serve as drug-carriers or nanoparticles helping drugs to get released in specific target regions. Due to better target specific physical binding properties aptamers cause less off-target toxicity effects. Therefore, search for aptamer based drugs, drug-carriers, and even diagnostic tools is expanding fast. The biophysical properties in relation to the target specific binding phenomena of aptamers, energetics behind the aptamer transport of drugs, and the consequent biological implications will be discussed. This review will open up avenues leading to novel drug discovery and drug delivery.
Collapse
Affiliation(s)
- Md. Ashrafuzzaman
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
19
|
Nucleic acid aptamers: research tools in disease diagnostics and therapeutics. BIOMED RESEARCH INTERNATIONAL 2014; 2014:540451. [PMID: 25050359 PMCID: PMC4090538 DOI: 10.1155/2014/540451] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/18/2014] [Indexed: 12/20/2022]
Abstract
Aptamers are short sequences of nucleic acid (DNA or RNA) or peptide molecules which adopt a conformation and bind cognate ligands with high affinity and specificity in a manner akin to antibody-antigen interactions. It has been globally acknowledged that aptamers promise a plethora of diagnostic and therapeutic applications. Although use of nucleic acid aptamers as targeted therapeutics or mediators of targeted drug delivery is a relatively new avenue of research, one aptamer-based drug “Macugen” is FDA approved and a series of aptamer-based drugs are in clinical pipelines. The present review discusses the aspects of design, unique properties, applications, and development of different aptamers to aid in cancer diagnosis, prevention, and/or treatment under defined conditions.
Collapse
|
20
|
Lee CH, Kim JH, Lee SW. Prospects for nucleic acid-based therapeutics against hepatitis C virus. World J Gastroenterol 2013; 19:8949-8962. [PMID: 24379620 PMCID: PMC3870548 DOI: 10.3748/wjg.v19.i47.8949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/10/2013] [Accepted: 11/30/2013] [Indexed: 02/06/2023] Open
Abstract
In this review, we discuss recent advances in nucleic acid-based therapeutic technologies that target hepatitis C virus (HCV) infection. Because the HCV genome is present exclusively in RNA form during replication, various nucleic acid-based therapeutic approaches targeting the HCV genome, such as ribozymes, aptamers, siRNAs, and antisense oligonucleotides, have been suggested as potential tools against HCV. Nucleic acids are potentially immunogenic and typically require a delivery tool to be utilized as therapeutics. These limitations have hampered the clinical development of nucleic acid-based therapeutics. However, despite these limitations, nucleic acid-based therapeutics has clinical value due to their great specificity, easy and large-scale synthesis with chemical methods, and pharmaceutical flexibility. Moreover, nucleic acid therapeutics are expected to broaden the range of targetable molecules essential for the HCV replication cycle, and therefore they may prove to be more effective than existing therapeutics, such as interferon-α and ribavirin combination therapy. This review focuses on the current status and future prospects of ribozymes, aptamers, siRNAs, and antisense oligonucleotides as therapeutic reagents against HCV.
Collapse
|
21
|
Lee JI, Jang JH, Yu MJ, Kim YW. Construction of a bifunctional enzyme fusion for the combined determination of biogenic amines in foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9118-24. [PMID: 24001036 DOI: 10.1021/jf403044m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Biogenic amines (BAs) are a group of low-molecular-mass organic bases derived from free amino acids. Due to the undesirable effects of BAs on human health, amine oxidase-based detection methods for BAs in foods have been developed. Here, we developed a bifunctional enzyme fusion (MAPO) using a Cu(2+)-containing monoamine oxidase (AMAO2) and a flavin adenine dinucleotide-containing putrescine oxidase (APUO) from Arthrobacter aurescens. It was necessary to activate MAPO with supplementary Cu(2+) ions, leading to a 6- to 12-fold improvement in catalytic efficiency (kcat/KM) for monoamines. The optimal temperatures of Cu(2+)-activated MAPO (cMAPO) for both tyramine and putrescine were 50 °C, and the optimal pH values for tyramine and putrescine were pH 7.0 and pH 8.0, respectively, consistent with those of AMAO2 and APUO, respectively. The cMAPO showed relative specific activities of 100, 99, 32, and 32 for 2-phenylethylamine, tyramine, histamine, and putrescine, respectively. The tyramine-equivalent BA contents of fermented soybean pastes by cMAPO were more than 90% of the total BA determined by HPLC. In conclusion, cMAPO is fully bifunctional toward biogenic monoamines and putrescine, allowing the combined determination of multiple BAs in foods. This colorimetric determination method could be useful for point-of-care testing to screen safety-guaranteed products prior to instrumental analyses.
Collapse
Affiliation(s)
- Jae-Ick Lee
- Department of Food and Biotechnology, Korea University , Sejong, 339-700, South Korea
| | | | | | | |
Collapse
|
22
|
Lakhin A, Tarantul V, Gening L. Aptamers: problems, solutions and prospects. Acta Naturae 2013; 5:34-43. [PMID: 24455181 PMCID: PMC3890987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aptamers are short single-stranded oligonucleotides that are capable of binding various molecules with high affinity and specificity. When the technology of aptamer selection was developed almost a quarter of a century ago, a suggestion was immediately put forward that it might be a revolutionary start into solving many problems associated with diagnostics and the therapy of diseases. However, multiple attempts to use aptamers in practice, although sometimes successful, have been generally much less efficient than had been expected initially. This review is mostly devoted not to the successful use of aptamers but to the problems impeding the widespread application of aptamers in diagnostics and therapy, as well as to approaches that could considerably expand the range of aptamer application.
Collapse
Affiliation(s)
- A.V. Lakhin
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., Moscow, Russia, 123182
| | - V.Z. Tarantul
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., Moscow, Russia, 123182
| | - L.V. Gening
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., Moscow, Russia, 123182
| |
Collapse
|
23
|
Shum KT, Zhou J, Rossi JJ. Nucleic Acid Aptamers as Potential Therapeutic and Diagnostic Agents for Lymphoma. ACTA ACUST UNITED AC 2013; 4:872-890. [PMID: 25057429 PMCID: PMC4104705 DOI: 10.4236/jct.2013.44099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lymphomas are cancers that arise from white blood cells and usually present as solid tumors. Treatment of lymphoma often involves chemotherapy, and can also include radiotherapy and/or bone marrow transplantation. There is an un-questioned need for more effective therapies and diagnostic tool for lymphoma. Aptamers are single stranded DNA or RNA oligonucleotides whose three-dimensional structures are dictated by their sequences. The immense diversity in function and structure of nucleic acids enable numerous aptamers to be generated through an iterative in vitro selection technique known as Systematic Evolution of Ligands by EXponential enrichment (SELEX). Aptamers have several biochemical properties that make them attractive tools for use as potential diagnostic and pharmacologic agents. Isolated aptamers may directly inhibit the function of target proteins, or they can also be formulated for use as delivery agents for other therapeutic or imaging cargoes. More complex aptamer identification methods, using whole cancer cells (Cell-SELEX), may identify novel targets and aptamers to affect them. This review focuses on recent advances in the use of nucleic acid aptamers as diagnostic and therapeutic agents and as targeted delivery carriers that are relevant to lymphoma. Some representative examples are also discussed.
Collapse
Affiliation(s)
- Ka-To Shum
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA ; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
24
|
Kishida S, Mu P, Miyakawa S, Fujiwara M, Abe T, Sakamoto K, Onishi A, Nakamura Y, Kadomatsu K. Midkine promotes neuroblastoma through Notch2 signaling. Cancer Res 2012; 73:1318-27. [PMID: 23243020 DOI: 10.1158/0008-5472.can-12-3070] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Midkine is a heparin-binding growth factor highly expressed in various cancers, including neuroblastoma, the most common extracranial pediatric solid tumor. Prognosis of patients with neuroblastoma in which MYCN is amplified remains particularly poor. In this study, we used a MYCN transgenic model for neuroblastoma in which midkine is highly expressed in precancerous lesions of sympathetic ganglia. Genetic ablation of midkine in this model delayed tumor formation and reduced tumor incidence. Furthermore, an RNA aptamer that specifically bound midkine suppressed the growth of neuroblastoma cells in vitro and in vivo in tumor xenografts. In precancerous lesions, midkine-deficient MYCN transgenic mice exhibited defects in activation of Notch2, a candidate midkine receptor, and expression of the Notch target gene HES1. Similarly, RNA aptamer-treated tumor xenografts also showed attenuation of Notch2-HES1 signaling. Our findings establish a critical role for the midkine-Notch2 signaling axis in neuroblastoma tumorigenesis, which implicates new strategies to treat neuroblastoma.
Collapse
Affiliation(s)
- Satoshi Kishida
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|