1
|
Reyes Ruiz A, Bhale AS, Venkataraman K, Dimitrov JD, Lacroix-Desmazes S. Binding Promiscuity of Therapeutic Factor VIII. Thromb Haemost 2024. [PMID: 38950594 DOI: 10.1055/a-2358-0853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The binding promiscuity of proteins defines their ability to indiscriminately bind multiple unrelated molecules. Binding promiscuity is implicated, at least in part, in the off-target reactivity, nonspecific biodistribution, immunogenicity, and/or short half-life of potentially efficacious protein drugs, thus affecting their clinical use. In this review, we discuss the current evidence for the binding promiscuity of factor VIII (FVIII), a protein used for the treatment of hemophilia A, which displays poor pharmacokinetics, and elevated immunogenicity. We summarize the different canonical and noncanonical interactions that FVIII may establish in the circulation and that could be responsible for its therapeutic liabilities. We also provide information suggesting that the FVIII light chain, and especially its C1 and C2 domains, could play an important role in the binding promiscuity. We believe that the knowledge accumulated over years of FVIII usage could be exploited for the development of strategies to predict protein binding promiscuity and therefore anticipate drug efficacy and toxicity. This would open a mutational space to reduce the binding promiscuity of emerging protein drugs while conserving their therapeutic potency.
Collapse
Affiliation(s)
- Alejandra Reyes Ruiz
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Aishwarya S Bhale
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Sébastien Lacroix-Desmazes
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Oleshko O, Vollack-Hesse N, Tiede A, Hegermann J, Curth U, Werwitzke S. von Willebrand factor modulates immune complexes and the recall response against factor VIII in a murine hemophilia A model. Blood Adv 2023; 7:6771-6781. [PMID: 37756521 PMCID: PMC10660012 DOI: 10.1182/bloodadvances.2023010388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Achieving tolerance toward factor VIII (FVIII) remains an important goal of hemophilia treatment. Up to 40% of patients with severe hemophilia A (HA) develop neutralizing antibodies against FVIII, and the only proven treatment to achieve tolerance is infusion of FVIII over prolonged periods in the context of immune tolerance induction. Here, we addressed the role of von Willebrand factor (VWF) as a modulator of anti-FVIII antibody effector functions and the FVIII-specific recall response in an HA mouse model. Analytical ultracentrifugation was used to demonstrate formation of FVIII-containing immune complexes (FVIII-ICs). VWF did not fully prevent FVIII-IC formation but was rather incorporated into larger macromolecular complexes. VWF prevented binding of FVIII-ICs to complement C1q, most efficiently when it was preincubated with FVIII before the addition of antibodies. It also prevented binding to immobilized Fc-γ receptor and to bone marrow-derived dendritic cells. An in vitro model of the anti-FVIII recall response demonstrated that addition of VWF to FVIII abolished the proliferation of FVIII-specific antibody-secreting cells. After adoptive transfer of sensitized splenocytes into immunocompetent HA mice, the FVIII recall response was diminished by VWF. In summary, these data indicate that VWF modulates the formation and effector functions of FVIII-ICs and attenuates the secondary immune response to FVIII in HA mice.
Collapse
Affiliation(s)
- Olga Oleshko
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Nadine Vollack-Hesse
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Andreas Tiede
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Research Core Unit Electron Microscopy, Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Ute Curth
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Sonja Werwitzke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Nguyen NH, Jarvi NL, Balu-Iyer SV. Immunogenicity of Therapeutic Biological Modalities - Lessons from Hemophilia A Therapies. J Pharm Sci 2023; 112:2347-2370. [PMID: 37220828 DOI: 10.1016/j.xphs.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/25/2023]
Abstract
The introduction and development of biologics such as therapeutic proteins, gene-, and cell-based therapy have revolutionized the scope of treatment for many diseases. However, a significant portion of the patients develop unwanted immune reactions against these novel biological modalities, referred to as immunogenicity, and no longer benefit from the treatments. In the current review, using Hemophilia A (HA) therapy as an example, we will discuss the immunogenicity issue of multiple biological modalities. Currently, the number of therapeutic modalities that are approved or recently explored to treat HA, a hereditary bleeding disorder, is increasing rapidly. These include, but are not limited to, recombinant factor VIII proteins, PEGylated FVIII, FVIII Fc fusion protein, bispecific monoclonal antibodies, gene replacement therapy, gene editing therapy, and cell-based therapy. They offer the patients a broader range of more advanced and effective treatment options, yet immunogenicity remains the most critical complication in the management of this disorder. Recent advances in strategies to manage and mitigate immunogenicity will also be reviewed.
Collapse
Affiliation(s)
- Nhan H Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA; Currently at Truvai Biosciences, Buffalo, NY, USA
| | - Nicole L Jarvi
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
4
|
Luo L, Zheng Q, Chen Z, Huang M, Fu L, Hu J, Shi Q, Chen Y. Hemophilia a patients with inhibitors: Mechanistic insights and novel therapeutic implications. Front Immunol 2022; 13:1019275. [PMID: 36569839 PMCID: PMC9774473 DOI: 10.3389/fimmu.2022.1019275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
The development of coagulation factor VIII (FVIII) inhibitory antibodies is a serious complication in hemophilia A (HA) patients after FVIII replacement therapy. Inhibitors render regular prophylaxis ineffective and increase the risk of morbidity and mortality. Immune tolerance induction (ITI) regimens have become the only clinically proven therapy for eradicating these inhibitors. However, this is a lengthy and costly strategy. For HA patients with high titer inhibitors, bypassing or new hemostatic agents must be used in clinical prophylaxis due to the ineffective ITI regimens. Since multiple genetic and environmental factors are involved in the pathogenesis of inhibitor generation, understanding the mechanisms by which inhibitors develop could help identify critical targets that can be exploited to prevent or eradicate inhibitors. In this review, we provide a comprehensive overview of the recent advances related to mechanistic insights into anti-FVIII antibody development and discuss novel therapeutic approaches for HA patients with inhibitors.
Collapse
Affiliation(s)
- Liping Luo
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Qiaoyun Zheng
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zhenyu Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Medical Technology and Engineering College of Fujian Medical University, Fuzhou, Fujian, China
| | - Meijuan Huang
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianda Hu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Qizhen Shi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Blood Research Institute, Versiti, Milwaukee, WI, United States
- Children’s Research Institute, Children’s Wisconsin, Milwaukee, WI, United States
- Midwest Athletes Against Childhood Cancer (MACC) Fund Research Center, Milwaukee, WI, United States
| | - Yingyu Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Vander Kooi A, Wang S, Fan MN, Chen A, Zhang J, Chen CY, Cai X, Konkle BA, Xiao W, Li L, Miao CH. Influence of N-glycosylation in the A and C domains on the immunogenicity of factor VIII. Blood Adv 2022; 6:4271-4282. [PMID: 35511725 PMCID: PMC9327553 DOI: 10.1182/bloodadvances.2021005758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Abstract
The most significant complication in hemophilia A treatment is the formation of inhibitors against factor VIII (FVIII) protein. Glycans and glycan-binding proteins are central to a properly functioning immune system. This study focuses on whether glycosylation of FVIII plays an important role in induction and regulation of anti-FVIII immune responses. We investigated the potential roles of 4 N-glycosylation sites, including N41 and N239 in the A1 domain, N1810 in the A3 domain, and N2118 in the C1 domain of FVIII, in moderating its immunogenicity. Glycomics analysis of plasma-derived FVIII revealed that sites N41, N239, and N1810 contain mostly sialylated complex glycoforms, while high mannose glycans dominate at site N2118. A missense variant that substitutes asparagine (N) to glutamine (Q) was introduced to eliminate glycosylation on each of these sites. Following gene transfer of plasmids encoding B domain deleted FVIII (BDD-FVIII) and each of these 4 FVIII variants, it was found that specific activity of FVIII in plasma remained similar among all treatment groups. Slightly increased or comparable immune responses in N41Q, N239Q, and N1810Q FVIII variant plasmid-treated mice and significantly decreased immune responses in N2118Q FVIII plasmid-treated mice were observed when compared with BDD-FVIII plasmid-treated mice. The reduction of inhibitor response by N2118Q FVIII variant was also demonstrated in AAV-mediated gene transfer experiments. Furthermore, a specific glycopeptide epitope surrounding the N2118 glycosylation site was identified and characterized to activate T cells in an FVIII-specific proliferation assay. These results indicate that N-glycosylation of FVIII can have significant impact on its immunogenicity.
Collapse
Affiliation(s)
- Amber Vander Kooi
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | - Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, GA
| | - Meng-Ni Fan
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | - Alex Chen
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | - Junping Zhang
- School of Medicines, Indiana University, Bloomington, IN; and
| | - Chun-Yu Chen
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | - Xiaohe Cai
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | | | - Weidong Xiao
- School of Medicines, Indiana University, Bloomington, IN; and
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA
| | - Carol H. Miao
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
6
|
Hodeib H, El Amrousy D, Youssef A, Elaskary E, Fouda MH. BAFF rs9514828 gene polymorphism and the risk of the development of inhibitors in children with severe haemophilia A. Haemophilia 2022; 28:472-479. [PMID: 35316553 DOI: 10.1111/hae.14555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Haemophilia A (HA) is an x-linked recessive disease due to deficiency of coagulation factor VIII (FVIII). The development of neutralizing antibodies (inhibitors) against infused FVIII is a major concern. B cell activating factor (BAFF) has been implicated in several autoimmune diseases. AIM We aimed to evaluate the possible association of BAFF rs9514828 gene polymorphism and the risk of the development of FVIII inhibitor in children with severe HA. METHODS This cohort study was carried out on 100 newly diagnosed boys with severe HA who were never treated before with FVIII concentrate. Assessment of serum levels of BAFF and BAFF rs9514828 genotyping at first diagnosis was performed and the patients were followed up for the completion of a total of 50 exposure days or the development of inhibitors whichever occurred first. The patients were divided as positive or negative according to the presence or absence of inhibitors. RESULTS The risk allele for BAFF rs9514828 (T) was significantly more frequent in the inhibitor positive patients than the inhibitor negative patients (P = .003). In addition, CT+TT genotypes were associated with increased risk of FVIII inhibitor development. Receiver operating characteristics (ROC) analysis showed that BAFF levels could predict the development of FVIII inhibitors at a cut-off value of ≥ .92 with a sensitivity of 85.9% and a specificity of 80.2%. CONCLUSION BAFF rs9514828 gene polymorphism could be independent risk factor and elevated BAFF levels might be useful prognostic marker for the development of FVIII inhibitor in newly diagnosed children with severe HA.
Collapse
Affiliation(s)
- Hossam Hodeib
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Doaa El Amrousy
- Pediatric Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira Youssef
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman Elaskary
- Pediatric Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed H Fouda
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
7
|
Ito J, Baldwin WH, Cox C, Healey JF, Parker ET, Legan ER, Li R, Gill S, Batsuli G. Removal of single-site N-linked glycans on factor VIII alters binding of domain-specific monoclonal antibodies. J Thromb Haemost 2022; 20:574-588. [PMID: 34863021 PMCID: PMC8885965 DOI: 10.1111/jth.15616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND A portion of individuals with hemophilia A develop neutralizing antibodies called inhibitors to glycoprotein factor VIII (FVIII). There are multiple risk factors that contribute to the risk of inhibitor formation. However, knowledge of the role of FVIII asparagine (N)-linked glycosylation in FVIII immunity is limited. OBJECTIVE To evaluate the effect of site-specific N-linked glycan removal on FVIII biochemical properties, endocytosis by murine bone marrow-derived dendritic cells (BMDCs), and antibody responses. METHODS Four recombinant B domain-deleted (BDD) FVIII variants with single-site amino acid substitutions to remove N-linked glycans were produced for experimental assays. RESULTS BDD FVIII-N41G, FVIII-N239A, FVIII-N1810A, and FVIII-N2118A with confirmed removal of N-linked glycans and similar glycosylation profiles to BDD FVIII were produced. There were no differences in thrombin activation or von Willebrand factor binding of FVIII variants compared with BDD FVIII; however, reduced FVIII expression, activity, and specific activity was observed with all variants. BDD FVIII-N41G and FVIII-N1810A had reduced uptake by BMDCs, but there were no differences in antibody development in immunized hemophilia A mice compared with BDD FVIII. Half of a repertoire of 12 domain-specific FVIII MAbs had significantly reduced binding to ≥1 FVIII variant with a 50% decrease in A1 domain MAb 2-116 binding to FVIII-N239A. CONCLUSIONS Modifications of FVIII N-linked glycans reduced FVIII endocytosis by BMDCs and binding of domain-specific FVIII MAbs, but did not alter de novo antibody production in hemophilia A mice, suggesting that N-glycans do not significantly contribute to inhibitor formation.
Collapse
Affiliation(s)
- Jasmine Ito
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Wallace Hunter Baldwin
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Courtney Cox
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - John F Healey
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Ernest T Parker
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Emily R Legan
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Surinder Gill
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Glaivy Batsuli
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Pshenichnikova OS, Surin VL. Genetic Risk Factors for Inhibitor Development in Hemophilia A. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421080111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Trevisan B, Morsi A, Aleman J, Rodriguez M, Shields J, Meares D, Farland AM, Doering CB, Spencer HT, Atala A, Skardal A, Porada CD, Almeida-Porada G. Effects of Shear Stress on Production of FVIII and vWF in a Cell-Based Therapeutic for Hemophilia A. Front Bioeng Biotechnol 2021; 9:639070. [PMID: 33732691 PMCID: PMC7957060 DOI: 10.3389/fbioe.2021.639070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/25/2021] [Indexed: 01/05/2023] Open
Abstract
Microfluidic technology enables recapitulation of organ-level physiology to answer pertinent questions regarding biological systems that otherwise would remain unanswered. We have previously reported on the development of a novel product consisting of human placental cells (PLC) engineered to overexpress a therapeutic factor VIII (FVIII) transgene, mcoET3 (PLC-mcoET3), to treat Hemophilia A (HA). Here, microfluidic devices were manufactured to model the physiological shear stress in liver sinusoids, where infused PLC-mcoET3 are thought to lodge after administration, to help us predict the therapeutic outcome of this novel biological strategy. In addition to the therapeutic transgene, PLC-mcoET3 also constitutively produce endogenous FVIII and von Willebrand factor (vWF), which plays a critical role in FVIII function, immunogenicity, stability, and clearance. While vWF is known to respond to flow by changing conformation, whether and how shear stress affects the production and secretion of vWF and FVIII has not been explored. We demonstrated that exposure of PLC-mcoET3 to physiological levels of shear stress present within the liver sinusoids significantly reduced mRNA levels and secreted FVIII and vWF when compared to static conditions. In contrast, mRNA for the vector-encoded mcoET3 was unaltered by flow. To determine the mechanism responsible for the observed decrease in FVIII and vWF mRNA, PCR arrays were performed to evaluate expression of genes involved in shear mechanosensing pathways. We found that flow conditions led to a significant increase in KLF2, which induces miRNAs that negatively regulate expression of FVIII and vWF, providing a mechanistic explanation for the reduced expression of these proteins in PLC under conditions of flow. In conclusion, microfluidic technology allowed us to unmask novel pathways by which endogenous FVIII and vWF are affected by shear stress, while demonstrating that expression of the therapeutic mcoET3 gene will be maintained in the gene-modified PLCs upon transplantation, irrespective of whether they engraft within sites that expose them to conditions of shear stress.
Collapse
Affiliation(s)
- Brady Trevisan
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Alshaimaa Morsi
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Julio Aleman
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Martin Rodriguez
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jordan Shields
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Diane Meares
- Department of Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Andrew M Farland
- Department of Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher B Doering
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - H Trent Spencer
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Anthony Atala
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Aleks Skardal
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher D Porada
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Graça Almeida-Porada
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
10
|
Peyvandi F, Miri S, Garagiola I. Immune Responses to Plasma-Derived Versus Recombinant FVIII Products. Front Immunol 2021; 11:591878. [PMID: 33552050 PMCID: PMC7862552 DOI: 10.3389/fimmu.2020.591878] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/04/2020] [Indexed: 11/27/2022] Open
Abstract
The most severe side effect of hemophilia treatment is the inhibitor development occurring in 30% of patients, during the earliest stages of treatment with factor (F)VIII concentrates. These catastrophic immune responses rapidly inactivate the infused FVIII, rendering the treatment ineffective. This complication is associated with a substantial morbidity and mortality. The risk factors involved in the onset of the inhibitors are both genetic and environmental. The source of FVIII products, i.e. plasma-derived or recombinant FVIII products, is considered one of the most relevant factors for inhibitor development. Numerous studies in the literature report conflicting data on the different immunogenicity of the products. The SIPPET randomized trial showed an increased in the inhibitor rate in patients using recombinant FVIII products than those receiving plasma-derived products in the first exposure days. The SIPPET randomized trial showed an increase in the inhibitor rate in patients using recombinant FVIII products compared to those treated with plasma-derived products in the first days of exposure. The potential increase in the immunogenicity of recombinant products can be attributed to several factors such as: the different post-translational modification in different cell lines, the presence of protein aggregates, and the role played by the chaperon protein of FVIII, the von Willebrand factor, which modulates the uptake of FVIII by antigen presenting cells (APCs). Furthermore, the presence of non-neutralizing antibodies against FVIII has shown to be in increased inhibitor development as demonstrated in a sub-analysis of the SIPPET study. In addition, the presence of the specific subclasses of the immunoglobulins may also be an important biomarker to indicate whether the inhibitor will evolve into a persistent neutralizing antibody or a transient one that would disappear without any specific treatment. Recently, the availability of novel non-replacement therapies as well as emicizumab, administered by weekly subcutaneous infusion, have significantly changed the quality of life of patients with inhibitors showing a considerable reduction of the annual bleeding rate and in most patients the absence of bleeding. Although, these novel drugs improve patients' quality of life, they do not abolish the need to infuse FVIII during acute bleeding or surgery. Therefore, the issue of immunogenicity against FVIII still remains an important side effect of hemophilia treatment.
Collapse
Affiliation(s)
- Flora Peyvandi
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Syna Miri
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Isabella Garagiola
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
11
|
Karim AF, Soltis AR, Sukumar G, Königs C, Ewing NP, Dalgard CL, Wilkerson MD, Pratt KP. Hemophilia A Inhibitor Subjects Show Unique PBMC Gene Expression Profiles That Include Up-Regulated Innate Immune Modulators. Front Immunol 2020; 11:1219. [PMID: 32595650 PMCID: PMC7303277 DOI: 10.3389/fimmu.2020.01219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
Formation of pathological anti-FVIII antibodies, or "inhibitors," is the most serious complication of therapeutic FVIII infusions, affecting up to 1/3 of severe Hemophilia A (HA) patients. Inhibitor formation is a classical T-cell dependent adaptive immune response. As such, it requires help from the innate immune system. However, the roles of innate immune cells and mechanisms of inhibitor development vs. immune tolerance, achieved with or without Immune Tolerance Induction (ITI) therapy, are not well-understood. To address these questions, temporal transcriptomics profiling of FVIII-stimulated peripheral blood mononuclear cells (PBMCs) was carried out for HA subjects with and without a current or historic inhibitor using RNA-Seq. PBMCs were isolated from 40 subjects in the following groups: HA with an inhibitor that resolved either following ITI or spontaneously; HA with a current inhibitor; HA with no inhibitor history and non-HA controls. PBMCs were stimulated with 5 nM FVIII and RNA was isolated 4, 16, 24, and 48 h following stimulation. Time-series differential expression analysis was performed and distinct transcriptional signatures were identified for each group, providing clues as to cellular mechanisms leading to or accompanying their disparate anti-FVIII antibody responses. Subjects with a current inhibitor showed differential expression of 56 genes and a clustering analysis identified three major temporal profiles. Interestingly, gene ontology enrichments featured innate immune modulators, including NLRP3, TLR8, IL32, CLEC10A, and COLEC12. NLRP3 and TLR8 are associated with enhanced secretion of the pro-inflammatory cytokines IL-1β and TNFα, while IL32, which has several isoforms, has been associated with both inflammatory and regulatory immune processes. RNA-Seq results were validated by RT-qPCR, ELISAs, multiplex cytokine analysis, and flow cytometry. The inflammatory status of HA patients suffering from an ongoing inhibitor includes up-regulated innate immune modulators, which may act as ongoing danger signals that influence the responses to, and eventual outcomes of, ITI therapy.
Collapse
Affiliation(s)
- Ahmad Faisal Karim
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Anthony R Soltis
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States.,Collaborative Health Initiative Research Program, Henry Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Gauthaman Sukumar
- Collaborative Health Initiative Research Program, Henry Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | | - Nadia P Ewing
- City of Hope National Medical Center, Duarte, CA, United States
| | - Clifton L Dalgard
- Collaborative Health Initiative Research Program, Henry Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Matthew D Wilkerson
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States.,Collaborative Health Initiative Research Program, Henry Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kathleen P Pratt
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
12
|
Peptides identified on monocyte-derived dendritic cells: a marker for clinical immunogenicity to FVIII products. Blood Adv 2020; 3:1429-1440. [PMID: 31053570 DOI: 10.1182/bloodadvances.2018030452] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
The immunogenicity of protein therapeutics is an important safety and efficacy concern during drug development and regulation. Strategies to identify individuals and subpopulations at risk for an undesirable immune response represent an important unmet need. The major histocompatibility complex (MHC)-associated peptide proteomics (MAPPs) assay directly identifies the presence of peptides derived from a specific protein therapeutic on a donor's MHC class II (MHC-II) proteins. We applied this technique to address several questions related to the use of factor VIII (FVIII) replacement therapy in the treatment of hemophilia A (HA). Although >12 FVIII therapeutics are marketed, most fall into 3 categories: (i) human plasma-derived FVIII (pdFVIII), (ii) full-length (FL)-recombinant FVIII (rFVIII; FL-rFVIII), and (iii) B-domain-deleted rFVIII. Here, we investigated whether there are differences between the FVIII peptides found on the MHC-II proteins of the same individual when incubated with these 3 classes. Based on several observational studies and a prospective, randomized, clinical trial showing that the originally approved rFVIII products may be more immunogenic than the pdFVIII products containing von Willebrand factor (VWF) in molar excess, it has been hypothesized that the pdFVIII molecules yield/present fewer peptides (ie, potential T-cell epitopes). We have experimentally tested this hypothesis and found that dendritic cells from HA patients and healthy donors present fewer FVIII peptides when administered pdFVIII vs FL-rFVIII, despite both containing the same molar VWF excess. Our results support the hypothesis that synthesis of pdFVIII under physiological conditions could result in reduced heterogeneity and/or subtle differences in structure/conformation which, in turn, may result in reduced FVIII proteolytic processing relative to FL-rFVIII.
Collapse
|
13
|
Delignat S, Rayes J, Dasgupta S, Gangadharan B, Denis CV, Christophe OD, Bayry J, Kaveri SV, Lacroix-Desmazes S. Removal of Mannose-Ending Glycan at Asn 2118 Abrogates FVIII Presentation by Human Monocyte-Derived Dendritic Cells. Front Immunol 2020; 11:393. [PMID: 32273875 PMCID: PMC7117063 DOI: 10.3389/fimmu.2020.00393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/19/2020] [Indexed: 12/21/2022] Open
Abstract
The development of an immune response against therapeutic factor VIII is the major complication in hemophilia A patients. Oligomannose carbohydrates at N239 and/or N2118 on factor VIII allow its binding to the macrophage mannose receptor expressed on human dendritic cells, thereby leading to factor VIII endocytosis and presentation to CD4+ T lymphocytes. Here, we investigated whether altering the interaction of factor VIII with mannose-sensitive receptors on antigen-presenting cells may be a strategy to reduce factor VIII immunogenicity. Gene transfer experiments in factor VIII-deficient mice indicated that N239Q and/or N2118Q factor VIII mutants have similar specific activities as compared to non-mutated factor VIII; N239Q/N2118Q mutant corrected blood loss upon tail clip. Production of the corresponding recombinant FVIII mutants or light chains indicated that removal of the N-linked glycosylation site at N2118 is sufficient to abrogate in vitro the activation of FVIII-specific CD4+ T cells by human monocyte-derived dendritic cells. However, removal of mannose-ending glycans at N2118 did not alter factor VIII endocytosis and presentation to CD4+ T cells by mouse antigen-presenting cells. In agreement with this, the N2118Q mutation did not reduce factor VIII immunogenicity in factor VIII-deficient mice. Our results highlight differences in the endocytic pathways between human and mouse dendritic cell subsets, and dissimilarities in tissue distribution and function of endocytic receptors such as CD206 in both species. Further investigations in preclinical models of hemophilia A closer to humans are needed to decipher the exact role of mannose-ending glycans in factor VIII immunogenicity.
Collapse
Affiliation(s)
- Sandrine Delignat
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Julie Rayes
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Suryasarathi Dasgupta
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Bagirath Gangadharan
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Cécile V Denis
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | | | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Srinivas V Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Sébastien Lacroix-Desmazes
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
14
|
van Velzen AS, Eckhardt CL, Peters M, Oldenburg J, Cnossen M, Liesner R, Morfini M, Castaman G, McRae S, van der Bom JG, Fijnvandraat K. Product type and the risk of inhibitor development in nonsevere haemophilia A patients: a case-control study. Br J Haematol 2020; 189:1182-1191. [PMID: 32201943 PMCID: PMC7318706 DOI: 10.1111/bjh.16490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/24/2019] [Indexed: 11/27/2022]
Abstract
Inhibitor development is a major complication of treatment with factor VIII concentrates in nonsevere haemophilia A. It has been suggested that plasma-derived factor VIII (FVIII) concentrates elicit fewer inhibitors than recombinant FVIII concentrates, but studies in severe haemophilia A patients have shown conflicting results. We designed a case-control study to investigate the clinical and genetic risk factors for inhibitor development in nonsevere haemophilia A patients. We investigated whether the type of FVIII concentrate was associated with inhibitor development in nonsevere haemophilia A patients. This nested case-control study includes 75 inhibitor patients and 223 controls, from a source population of the INSIGHT study, including all nonsevere haemophilia A patients (FVIII:C 2-40%) that were treated with FVIII concentrates in 33 European and one Australian centre. Cases and controls were matched for date of birth and cumulative number of exposure days (CED) to FVIII concentrate. A conditional logistic regression model was used to calculate unadjusted and adjusted odds ratios. No increased risk for inhibitor development was found for any type of FVIII concentrate; either when comparing recombinant FVIII concentrates to plasma-derived FVIII concentrates (adjusted odds ratio 0·96, 95% confidence interval (CI) 0·36-2·52) or for specific types of FVIII concentrates.
Collapse
Affiliation(s)
- Alice S van Velzen
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands
| | - Corien L Eckhardt
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands
| | - Marjolein Peters
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Marjon Cnossen
- Department of Pediatric Oncology and Hematology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ri Liesner
- Department of Haematology & Oncology and Children's Haemophilia Comprehensive Care Centre, Great Ormond Street Children's Hospital & Institute of Child Health, London, UK
| | - Massimo Morfini
- Italian Association of Haemophilia Centres (AICE), Florence, Italy
| | - Giancarlo Castaman
- Department of Oncology, Center for Bleeding Disorders, Careggi University Hospital, Firenze, Italy
| | - Simon McRae
- Department of Haematology, Royal Adelaide Hospital, Adelaide, Australia
| | - Johanna G van der Bom
- Sanquin Research and Department of Clinical Epidemiology, Center for Clinical Transfusion Research, Leiden University Medical Center, Leiden, the Netherlands
| | - Karin Fijnvandraat
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands
| | | |
Collapse
|
15
|
Cormier M, Batty P, Tarrant J, Lillicrap D. Advances in knowledge of inhibitor formation in severe haemophilia A. Br J Haematol 2020; 189:39-53. [DOI: 10.1111/bjh.16377] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Matthew Cormier
- Department of Pathology and Molecular Medicine Richardson Laboratory Queen’s University Kingston ON Canada
| | - Paul Batty
- Department of Pathology and Molecular Medicine Richardson Laboratory Queen’s University Kingston ON Canada
| | - Julie Tarrant
- Department of Pathology and Molecular Medicine Richardson Laboratory Queen’s University Kingston ON Canada
| | - David Lillicrap
- Department of Pathology and Molecular Medicine Richardson Laboratory Queen’s University Kingston ON Canada
| |
Collapse
|
16
|
Ni W, Bao J, Mo B, Liu L, Li T, Pan G, Chen J, Zhou Z. Hemocytin facilitates host immune responses against Nosema bombycis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103495. [PMID: 31618618 DOI: 10.1016/j.dci.2019.103495] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Invertebrates lack an adaptive immune response and thus are reliant on their innate immune response for eliminating invading pathogens. The innate immune responses of silkworms against the pathogen Nosema bombycis include: hemocyte aggregation, melanization, antimicrobial peptides, etc. In our current study, we discovered that a silkworm hemostasis-related protein, hemocytin, is up-regulated after Nosema bombycis infection. This novel finding lead to our hypothesis that hemocytin participates in immune responses against N. bombycis. We investigated this hypothesis by analyzing the adhesive effects of hemocytin to invading N. bombycis, and the hemocytin-mediated hemocyte aggregation and hemolymph melanization. We showed that hemocytin can adhere to the surface of N. bombycis, which facilitates the agglutination of N. bombycis and hemocytes as well as the subsequent melanization. Moreover, when we utilize RNAi technology to decrease in vivo hemocytin expression, we found that the proliferation of N. bombycis within the host significantly increased. These results support our hypothesis that hemocytin exerts pro-inflammatory effects by facilitating pathogen agglutination, along with hemocyte aggregation and melanization, to combat N. bombycis. Our study is the first to determine a function of hemocytin in innate immunity against N. bombycis. Moreover, our findings are of great importance to provide potential targets for developing novel strategy against microsporidia infection.
Collapse
Affiliation(s)
- Wenjia Ni
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Biying Mo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Lulu Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Jie Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Chongqing Normal University, Chongqing, China.
| |
Collapse
|
17
|
Lacroix-Desmazes S, Voorberg J, Lillicrap D, Scott DW, Pratt KP. Tolerating Factor VIII: Recent Progress. Front Immunol 2020; 10:2991. [PMID: 31998296 PMCID: PMC6965068 DOI: 10.3389/fimmu.2019.02991] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/05/2019] [Indexed: 02/02/2023] Open
Abstract
Development of neutralizing antibodies against biotherapeutic agents administered to prevent or treat various clinical conditions is a longstanding and growing problem faced by patients, medical providers and pharmaceutical companies. The hemophilia A community has deep experience with attempting to manage such deleterious immune responses, as the lifesaving protein drug factor VIII (FVIII) has been in use for decades. Hemophilia A is a bleeding disorder caused by genetic mutations that result in absent or dysfunctional FVIII. Prophylactic treatment consists of regular intravenous FVIII infusions. Unfortunately, 1/4 to 1/3 of patients develop neutralizing anti-FVIII antibodies, referred to clinically as “inhibitors,” which result in a serious bleeding diathesis. Until recently, the only therapeutic option for these patients was “Immune Tolerance Induction,” consisting of intensive FVIII administration, which is extraordinarily expensive and fails in ~30% of cases. There has been tremendous recent progress in developing novel potential clinical alternatives for the treatment of hemophilia A, ranging from encouraging results of gene therapy trials, to use of other hemostatic agents (either promoting coagulation or slowing down anti-coagulant or fibrinolytic pathways) to “bypass” the need for FVIII or supplement FVIII replacement therapy. Although these approaches are promising, there is widespread agreement that preventing or reversing inhibitors remains a high priority. Risk profiles of novel therapies are still unknown or incomplete, and FVIII will likely continue to be considered the optimal hemostatic agent to support surgery and manage trauma, or to combine with other therapies. We describe here recent exciting studies, most still pre-clinical, that address FVIII immunogenicity and suggest novel interventions to prevent or reverse inhibitor development. Studies of FVIII uptake, processing and presentation on antigen-presenting cells, epitope mapping, and the roles of complement, heme, von Willebrand factor, glycans, and the microbiome in FVIII immunogenicity are elucidating mechanisms of primary and secondary immune responses and suggesting additional novel targets. Promising tolerogenic therapies include development of FVIII-Fc fusion proteins, nanoparticle-based therapies, oral tolerance, and engineering of regulatory or cytotoxic T cells to render them FVIII-specific. Importantly, these studies are highly applicable to other scenarios where establishing immune tolerance to a defined antigen is a clinical priority.
Collapse
Affiliation(s)
| | - Jan Voorberg
- Sanquin Research and Landsteiner Laboratory, Department of Molecular and Cellular Hemostasis, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - David W Scott
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kathleen P Pratt
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
18
|
Tieu P, Chan A, Matino D. Molecular Mechanisms of Inhibitor Development in Hemophilia. Mediterr J Hematol Infect Dis 2020; 12:e2020001. [PMID: 31934311 PMCID: PMC6951349 DOI: 10.4084/mjhid.2020.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/10/2019] [Indexed: 11/25/2022] Open
Abstract
The development of neutralizing antibodies in hemophilia is a serious complication of factor replacement therapy. These antibodies, also known as "inhibitors", significantly increase morbidity within the hemophilia population and lower the quality of life for these patients. People with severe hemophilia A have an overall 25-40% lifetime risk of inhibitor development, compared to that of 5-15% lifetime risk in those with moderate/mild hemophilia A. The risk is lower in hemophilia B population (about 1-5%) and occurrence of inhibitors is almost only seen in patients with severe hemophilia B. The understanding of the pathophysiological mechanism leading to the development of inhibitors in patients with hemophilia has improved considerably over the last 2 decades. Identification of early biomarkers which predict inhibitor development in previously untreated patients with hemophilia will assist in risk identification and possible early intervention strategies. In this review, we aim to summarize the molecular mechanisms of inhibitor development in hemophilia and to identify potential areas in need of further investigation.
Collapse
Affiliation(s)
- Paul Tieu
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Anthony Chan
- Department of Pediatrics, McMaster Children’s Hospital, McMaster University, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Davide Matino
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Medicine, McMaster Children’s Hospital, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
19
|
Diego VP, Luu BW, Hofmann M, Dinh LV, Almeida M, Powell JS, Rajalingam R, Peralta JM, Kumar S, Curran JE, Sauna ZE, Kellerman R, Park Y, Key NS, Escobar MA, Huynh H, Verhagen AM, Williams-Blangero S, Lehmann PV, Maraskovsky E, Blangero J, Howard TE. Quantitative HLA-class-II/factor VIII (FVIII) peptidomic variation in dendritic cells correlates with the immunogenic potential of therapeutic FVIII proteins in hemophilia A. J Thromb Haemost 2020; 18:201-216. [PMID: 31556206 DOI: 10.1111/jth.14647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Plasma-derived (pd) or recombinant (r) therapeutic factor VIII proteins (FVIIIs) are infused to arrest/prevent bleeding in patients with hemophilia A (PWHA). However, FVIIIs are neutralized if anti-FVIII-antibodies (inhibitors) develop. Accumulating evidence suggests that pdFVIIIs with von Willebrand factor (VWF) are less immunogenic than rFVIIIs and that distinct rFVIIIs are differentially immunogenic. Since inhibitor development is T-helper-cell-dependent, human leukocyte antigen (HLA)-class-II (HLAcII) molecules constitute an important early determinant. OBJECTIVES Use dendritic cell (DC)-protein processing/presentation assays with mass-spectrometric and peptide-proteomic analyses to quantify the DP-bound, DQ-bound, and DR-bound FVIII-derived peptides in individual HLAcII repertoires and compare the immunogenic potential of six distinct FVIIIs based on their measured peptide counts. PATIENTS/METHODS Monocyte-derived DCs from normal donors and/or PWHA were cultured with either: Mix-rFVIII, a VWF-free equimolar mixture of a full-length (FL)-rFVIII [Advate® (Takeda)] and four distinct B-domain-deleted (BDD)-rFVIIIs [Xyntha® (Pfizer), NovoEight® (Novo-Nordisk), Nuwiq® (Octapharma), and Afstyla® (CSL Behring GmBH)]; a pdFVIII + pdVWF [Beriate® (CSL Behring GmBH)]; Advate ± pdVWF; Afstyla ± pdVWF; and Xyntha + pdVWF. RESULTS We showed that (i) Beriate had a significantly lower immunogenic potential than Advate ± pdVWF, Afstyla - pdVWF, and Mix-rFVIII; (ii) distinct FVIIIs differed significantly in their immunogenic potential in that, in addition to (i), Afstyla + pdVWF had a significantly lower immunogenic potential than Beriate, while the immunogenic potential of Beriate was not significantly different from that of Xyntha + pdVWF; and (iii) rFVIIIs with pdVWF had significantly lower immunogenic potentials than the same rFVIIIs without pdVWF. CONCLUSIONS Our results provide HLAcII peptidomic level explanations for several important clinical observations/issues including the differential immunogenicity of distinct FVIIIs and the role of HLAcII genetics in inhibitor development.
Collapse
Affiliation(s)
- Vincent P Diego
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Bernadette W Luu
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
- Haplogenics Corporation, Brownsville, Texas
| | | | | | - Marcio Almeida
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
| | | | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, School of Medicine, University of California at San Francisco, California
| | - Juan M Peralta
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Satish Kumar
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Zuben E Sauna
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapeutics, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Roberta Kellerman
- Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, North Carolina
| | - Yara Park
- Department of Laboratory Medicine and Pathology, University of North Carolina at Chapel Hill, North Carolina
| | - Nigel S Key
- Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, North Carolina
- Department of Laboratory Medicine and Pathology, University of North Carolina at Chapel Hill, North Carolina
| | - Miguel A Escobar
- Division of Hematology, Department of Medicine, McGovern School of Medicine, University of Texas Health Sciences Center at Houston, Texas
| | - Huy Huynh
- CSL Limited Research, Bio21 Institute, Melbourne, Australia
| | | | - Sarah Williams-Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Paul V Lehmann
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Cellular Technology Ltd, Shaker Heights, Ohio
| | | | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Tom E Howard
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
- Haplogenics Corporation, Brownsville, Texas
- Department of Pathology and Lab Medicine, VA Valley Coastal Bend Healthcare Center, Harlingen, Texas
| |
Collapse
|
20
|
Thornburg CD, Ducore J. A novel approach to immune tolerance induction in haemophilia A with factor VIII inhibitor. Haemophilia 2018; 25:e48-e50. [PMID: 30468284 DOI: 10.1111/hae.13646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Courtney D Thornburg
- UC San Diego, La Jolla, California.,Rady Children's Hospital San Diego, San Diego, California
| | | |
Collapse
|
21
|
Brackmann HH, White G, Berntorp E, Andersen T, Escuriola-Ettingshausen C. Immune tolerance induction: What have we learned over time? Haemophilia 2018. [DOI: 10.1111/hae.13445] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- H.-H. Brackmann
- Institute of Experimental Haematology and Blood Transfusion; University of Bonn; Bonn Germany
| | - G.C. White
- Blood Center of Wisconsin & Medical College of Wisconsin; Milwaukee WI USA
| | - E. Berntorp
- Clinical Coagulation Research Unit; Skåne University Hospital; Lund University; Malmö Sweden
| | - T. Andersen
- Danish Haemophilia Society; Copenhagen Denmark
| | | |
Collapse
|
22
|
Lai JD, Cartier D, Hartholt RB, Swystun LL, van Velzen AS, den Haan JMM, Hough C, Voorberg J, Lillicrap D. Early cellular interactions and immune transcriptome profiles in human factor VIII-exposed hemophilia A mice. J Thromb Haemost 2018; 16:533-545. [PMID: 29285874 DOI: 10.1111/jth.13936] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Indexed: 12/16/2022]
Abstract
Essentials Initial immune cell interactions leading to factor (F) VIII immunity are not well characterized. We assessed cellular interactions and expression profiles in hemophilia A mice. MARCO+, followed by SIGLEC1+ and SIGNR1+ macrophages co-localize most with human FVIII. The splenic transcriptome highlights potential therapeutic targets to prevent inhibitors. SUMMARY Background Developing factor VIII (FVIII) inhibitory antibodies is the most serious complication in hemophilia A treatment, representing a significant health and economic burden. A better understanding of the early events in an immune response leading to this outcome may provide insight into inhibitor development. Objective To identify early mediators of FVIII immunity and to detail immune expression profiles in the spleen and liver. Methods C57Bl/6 F8 E16 knockout mice were infused with 5-20 μg (2000-8000 IU kg-1 ) of recombinant FVIII. Spleens were frozen at various time-points post-infusion and stained for FVIII and cellular markers. Splenic and liver RNA expression analysis was performed 3 h post-infusion of 0.6 μg (240 IU kg-1 ) FVIII by nCounter technology using a 561-gene immunology panel. Results FVIII localization in the spleen did not change over 2.5 h. We observed significantly higher co-localization of FVIII with MARCO+ cells compared with SIGLEC1+ and SIGNR1+ in the splenic marginal zone. FVIII exhibited little co-localization with CD11c+ dendritic cells and the macrophage mannose receptor, CD206. Following FVIII infusion, the splenic mRNA profiling identified genes such as Tnfaip6 and Il23r, which are implicated in chemotaxis and a proinflammatory Th17 response, respectively. In contrast, an upregulation of Gfi1 in the liver suggests an anti-inflammatory environment. Conclusions FVIII co-localizes predominantly with marginal zone macrophages (MARCO+ ) in the murine spleen following intravenous infusion. Targeting pathways that are implicated in the early FVIII innate immune response in the spleen may lead to therapeutic interventions to prevent inhibitor formation.
Collapse
Affiliation(s)
- J D Lai
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - D Cartier
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - R B Hartholt
- Department of Plasma Proteins, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands
| | - L L Swystun
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - A S van Velzen
- Pediatrics, Hematology, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - J M M den Haan
- Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | - C Hough
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - J Voorberg
- Department of Plasma Proteins, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands
| | - D Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
23
|
Miller L, Weissmüller S, Ringler E, Crauwels P, van Zandbergen G, Seitz R, Waibler Z. Danger signal-dependent activation of human dendritic cells by plasma-derived factor VIII products. Thromb Haemost 2017; 114:268-76. [DOI: 10.1160/th14-09-0789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/16/2015] [Indexed: 12/31/2022]
Abstract
SummaryTreatment of haemophilia A by infusions of the clotting factor VIII (FVIII) results in the development of inhibitors/anti-drug antibodies in up to 25 % of patients. Mechanisms leading to immunogenicity of FVIII products are not yet fully understood. Amongst other factors, danger signals as elicited upon infection or surgery have been proposed to play a role. In the present study, we focused on effects of danger signals on maturation and activation of dendritic cells (DC) in the context of FVIII application. Human monocyte-derived DC were treated with FVIII alone, with a danger signal alone or a combination of both. By testing more than 60 different healthy donors, we show that FVIII and the bacterial danger signal lipopolysaccharide synergise in increasing DC activation, as characterised by increased expression of co-stimulatory molecules and secretion of pro-inflammatory cytokines. The degree and frequency of this synergistic activation correlate with CD86 expression levels on immature DC prior to stimulation. In our assay system, plasma-derived but not recombinant FVIII products activate human DC in a danger signal-dependent manner. Further tested danger signals, such as R848 also induced DC activation in combination with FVIII, albeit not in every tested donor. In our hands, human DC but not human B cells or macrophages could be activated by FVIII in a danger signal-dependent manner. Our results suggest that immunogenicity of FVIII is a result of multiple factors including the presence of danger, predisposition of the patient, and the choice of a FVIII product for treatment.
Collapse
|
24
|
Abstract
INTRODUCTION Hemophilia A is the most frequent inherited bleeding disorder and most challenging coagulation disorder. To combat this, a number of new improved rFVIII/IX concentrates have recently been approved. Some of them are derived from protein fusion biotechnology or pegylation to extend their half-life (HL). However, prophylaxis has become a standard of care to prevent arthropathy in hemophiliacs though the need of frequent venipunctures is a major obstacle to primary prophylaxis. The new Extended Half-Life (EHL) rFIX concentrates allow increased intervals, while the improved HL of new rFVIII was moderate. rFVIII Simoctocog alfa is produced in Human Embryonic Kidney (HEK) cells and the post-translational modifications performed by HEK cells are very similar to those occurring in the native FVIII. Areas covered: Herein, the author provides a review of simoctocog alfa with its contents including information on simoctocog alfa's manufacturing, clinical trials, safety and tolerability. They also give their expert opinion and future perspectives on this therapy. Expert opinion: An important advantage of simoctocog alfa is the possibility to omit at least 30% of venipunctures with prophylaxis. Consequently, the standard three times weekly bolus administrations may be reduced to twice weekly, meaning approximately 50 fewer venipunctures per year. This may be particularly helpful to children.
Collapse
Affiliation(s)
- Massimo Morfini
- a Italian Association of Haemophilia Centres - AICE , Firenze , Italy
| |
Collapse
|
25
|
Abstract
Lonoctocog alfa (rVIII-SingleChain; Afstyla®) is a novel single-chain recombinant factor VIII (FVIII) molecule, with a truncated B-domain and the heavy and light chains covalently linked to form a stable and homogenous drug that binds with high affinity to von Willebrand factor (VWF). Intravenous lonoctocog alfa is approved for the prophylaxis and treatment of bleeding in patients with haemophilia A in several countries worldwide. In two pivotal, multicentre trials, lonoctocog alfa was effective in the treatment of bleeding episodes and as prophylaxis, including for perioperative management in adults, adolescents and children. In terms of haemostatic efficacy in controlling bleeding episodes, overall treatment and investigator-assessed success rates were high across all age groups, with the majority of these bleeds controlled with a single injection of lonoctocog alfa. Low median spontaneous, overall and traumatic annualized bleeding rates were evident with prophylactic lonoctocog alfa regimens in both trials. Lonoctocog alfa was generally well-tolerated, with very low rates of injection-site reactions. No previously treated patient experienced an anaphylactic reaction or developed an inhibitor. In conclusion, lonoctocog alfa is an effective and generally well-tolerated alternative to conventional FVIII products for the treatment and prophylaxis of bleeding, including in the surgical setting, in adults, adolescents and children with haemophilia A.
Collapse
|
26
|
Lieuw K. Many factor VIII products available in the treatment of hemophilia A: an embarrassment of riches? J Blood Med 2017; 8:67-73. [PMID: 28670147 PMCID: PMC5479262 DOI: 10.2147/jbm.s103796] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hemophilia A (HA) is a common bleeding disorder caused by the deficiency of factor VIII (FVIII) with an incidence of ~1 in 5000 male births. Replacement of FVIII is necessary to prevent and treat bleeding episodes. However, with multiple new drugs in addition to old standards, choosing among the different FVIII treatment options is harder than ever. There are FVIII products that are plasma derived or recombinant, FVIII products designed to extend the half-life of FVIII, and the first single-chain FVIII product, recombinant factor VIII single chain (rFVIII-SC). As development of inhibitors to FVIII continues to be a major problem in the care of HA patients, recent studies showing lower rates of inhibitor development with plasma-derived FVIIII products versus recombinant FVIII products have made choosing among the many options now available even more complex. Although still unproven, extended half-life (EHL) products may provide the hope of decreased immunogenicity but need further testing in previously untreated patients (PUPs). This review highlights some of the differences between FVIII products currently available and hopefully assists the clinician to decide which FVIII product to choose for their patients.
Collapse
Affiliation(s)
- Kenneth Lieuw
- Department of Pediatrics, Walter Reed National Military Medical Center.,Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
27
|
Biological considerations of plasma-derived and recombinant factor VIII immunogenicity. Blood 2017; 129:3147-3154. [DOI: 10.1182/blood-2016-11-750885] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
Abstract
In hemophilia A, the most severe complication of factor VIII (FVIII) replacement therapy involves the formation of FVIII neutralizing antibodies, also known as inhibitors, in 25% to 30% of patients. This adverse event is associated with a significant increase in morbidity and economic burden, thus highlighting the need to identify methods to limit FVIII immunogenicity. Inhibitor development is regulated by a complex balance of genetic factors, such as FVIII genotype, and environmental variables, such as coexistent inflammation. One of the hypothesized risk factors of inhibitor development is the source of the FVIII concentrate, which could be either recombinant or plasma derived. Differential immunogenicity of these concentrates has been documented in several recent epidemiologic studies, thus generating significant debate within the hemophilia treatment community. To date, these discussions have been unable to reach a consensus regarding how these outcomes might be integrated into enhancing clinical care. Moreover, the biological mechanistic explanations for the observed differences are poorly understood. In this article, we complement the existing epidemiologic investigations with an overview of the range of possible biochemical and immunologic mechanisms that may contribute to the different immune outcomes observed with plasma-derived and recombinant FVIII products.
Collapse
|
28
|
Lai JD, Lillicrap D. Factor VIII inhibitors: Advances in basic and translational science. Int J Lab Hematol 2017; 39 Suppl 1:6-13. [DOI: 10.1111/ijlh.12659] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/18/2017] [Indexed: 11/27/2022]
Affiliation(s)
- J. D. Lai
- Department of Pathology & Molecular Medicine; Queen's University; Kingston ON Canada
| | - D. Lillicrap
- Department of Pathology & Molecular Medicine; Queen's University; Kingston ON Canada
| |
Collapse
|
29
|
Stasyshyn O, Djambas Khayat C, Iosava G, Ong J, Abdul Karim F, Fischer K, Veldman A, Blackman N, St Ledger K, Pabinger I. Safety, efficacy and pharmacokinetics of rVIII-SingleChain in children with severe hemophilia A: results of a multicenter clinical trial. J Thromb Haemost 2017; 15:636-644. [PMID: 28166608 DOI: 10.1111/jth.13647] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Indexed: 08/31/2023]
Abstract
Essentials rVIII-SingleChain is a novel recombinant factor VIII with covalently bonded heavy and light chains. Efficacy, safety and pharmacokinetics were studied in pediatric patients with severe hemophilia A. Across all prophylaxis regimens, the median annualized spontaneous bleeding rate was 0.00. rVIII-SingleChain showed excellent hemostatic efficacy and a favorable safety profile. SUMMARY Background rVIII-SingleChain is a novel B-domain truncated recombinant factor VIII (rFVIII) comprised of covalently bonded FVIII heavy and light chains, demonstrating a high binding affinity to von Willebrand factor. Objectives This phase III study investigated the safety, efficacy and pharmacokinetics of rVIII-SingleChain in previously treated pediatric patients < 12 years of age with severe hemophilia A. Patients/Methods Patients could be assigned to prophylaxis or on-demand therapy by the investigator. For patients assigned to prophylaxis, the treatment regimen and dose were based on the bleeding phenotype. For patients receiving on-demand therapy, dosing was guided by World Federation of Hemophilia recommendations. The primary endpoint was treatment success, defined as a rating of 'excellent' or 'good' on the investigator's clinical assessment of hemostatic efficacy for all treated bleeding events. Results The study enrolled 84 patients (0 to < 6 years, n = 35; ≥ 6 to < 12 years, n = 49); 81 were assigned to prophylaxis and three to an on-demand regimen. Patients accumulated a total of 5239 exposure days (EDs), with 65 participants reaching > 50 EDs. In the 347 bleeds treated and evaluated by the investigator, hemostatic efficacy was rated as excellent or good in 96.3%. The median annualized spontaneous bleeding rate was 0.00 (Q1, Q3: 0.00, 2.20), and the median annualized bleeding rate was 3.69 (Q1, Q3: 0.00, 7.20) across all prophylaxis regimens. No participant developed an inhibitor. Conclusions rVIII-SingleChain is a novel rFVIII molecule showing excellent hemostatic efficacy and a favorable safety profile in a clinical study in children < 12 years of age with severe hemophilia A.
Collapse
Affiliation(s)
- O Stasyshyn
- Institute of Blood Pathology and Transfusion Medicine, National Academy of Medical Sciences of Ukraine, Lviv, Ukraine
| | - C Djambas Khayat
- Lebanon Department of Pediatrics, Hotel Dieu de France Hospital, Beirut, Lebanon
| | - G Iosava
- JSC Scientific-Research Institute of Hematology and Transfusiology, Tbilisi, Georgia
| | - J Ong
- Brokenshire Integrated Health Ministries, Inc., Davao, Philippines
| | - F Abdul Karim
- Hemophilia Clinic, National Blood Centre, Kuala Lumpur, Malaysia
| | - K Fischer
- Van Creveldkliniek, University Medical Center Utrecht, Utrecht, the Netherlands
| | - A Veldman
- Clinical R&D, CSL Behring, Marburg, Germany
| | - N Blackman
- Clinical R&D, CSL Behring, King of Prussia, PA, USA
| | - K St Ledger
- Clinical R&D, CSL Behring, King of Prussia, PA, USA
| | - I Pabinger
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University Vienna, Vienna, Austria
| |
Collapse
|
30
|
Gangadharan B, Ing M, Delignat S, Peyron I, Teyssandier M, Kaveri SV, Lacroix-Desmazes S. The C1 and C2 domains of blood coagulation factor VIII mediate its endocytosis by dendritic cells. Haematologica 2016; 102:271-281. [PMID: 27758819 DOI: 10.3324/haematol.2016.148502] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/03/2016] [Indexed: 02/01/2023] Open
Abstract
The development of inhibitory antibodies to therapeutic factor VIII is the major complication of replacement therapy in patients with hemophilia A. The first step in the initiation of the anti-factor VIII immune response is factor VIII interaction with receptor(s) on antigen-presenting cells, followed by endocytosis and presentation to naïve CD4+ T cells. Recent studies indicate a role for the C1 domain in factor VIII uptake. We investigated whether charged residues in the C2 domain participate in immunogenic factor VIII uptake. Co-incubation of factor VIII with BO2C11, a monoclonal C2-specific immunoglobulin G, reduced factor VIII endocytosis by dendritic cells and presentation to CD4+ T cells, and diminished factor VIII immunogenicity in factor VIII-deficient mice. The mutation of basic residues within the BO2C11 epitope of C2 replicated reduced in vitro immunogenic uptake, but failed to prevent factor VIII immunogenicity in mice. BO2C11 prevents factor VIII binding to von Willebrand factor, thus potentially biasing factor VIII immunogenicity by perturbing its half-life. Interestingly, a factor VIIIY1680C mutant, that does not bind von Willebrand factor, demonstrated unaltered endocytosis by dendritic cells as well as immunogenicity in factor VIII-deficient mice. Co-incubation of factor VIIIY1680C with BO2C11, however, resulted in decreased factor VIII immunogenicity in vivo In addition, a previously described triple C1 mutant showed decreased uptake in vitro, and reduced immunogenicity in vivo, but only in the absence of endogenous von Willebrand factor. Taken together, the results indicate that residues in the C1 and/or C2 domains of factor VIII are implicated in immunogenic factor VIII uptake, at least in vitro Conversely, in vivo, the binding to endogenous von Willebrand factor masks the reducing effect of mutations in the C domains on factor VIII immunogenicity.
Collapse
Affiliation(s)
- Bagirath Gangadharan
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,INSERM, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Mathieu Ing
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,INSERM, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Sandrine Delignat
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,INSERM, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Ivan Peyron
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,INSERM, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Maud Teyssandier
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,INSERM, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Srinivas V Kaveri
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,INSERM, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Sébastien Lacroix-Desmazes
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France .,INSERM, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| |
Collapse
|
31
|
Life in the shadow of a dominant partner: the FVIII-VWF association and its clinical implications for hemophilia A. Blood 2016; 128:2007-2016. [PMID: 27587878 DOI: 10.1182/blood-2016-04-713289] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/18/2016] [Indexed: 11/20/2022] Open
Abstract
A normal hemostatic response to vascular injury requires both factor VIII (FVIII) and von Willebrand factor (VWF). In plasma, VWF and FVIII normally circulate as a noncovalent complex, and each has a critical function in the maintenance of hemostasis. Furthermore, the interaction between VWF and FVIII plays a crucial role in FVIII function, immunogenicity, and clearance, with VWF essentially serving as a chaperone for FVIII. Several novel recombinant FVIII (rFVIII) therapies for hemophilia A have been in clinical development, which aim to increase the half-life of FVIII (∼12 hours) and reduce dosing frequency by utilizing bioengineering techniques including PEGylation, Fc fusion, and single-chain design. However, these approaches have achieved only moderate increases in half-life of 1.5- to 2-fold compared with marketed FVIII products. Clearance of PEGylated rFVIII, rFVIIIFc, and rVIII-SingleChain is still regulated to a large extent by interaction with VWF. Therefore, the half-life of VWF (∼15 hours) appears to be the limiting factor that has confounded attempts to extend the half-life of rFVIII. A greater understanding of the interaction between FVIII and VWF is required to drive novel bioengineering strategies for products that either prolong the survival of VWF or limit VWF-mediated clearance of FVIII.
Collapse
|
32
|
Walsh CE, Jiménez-Yuste V, Auerswald G, Grancha S. The burden of inhibitors in haemophilia patients. Thromb Haemost 2016; 116 Suppl 1:S10-7. [PMID: 27528280 DOI: 10.1160/th16-01-0049] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/07/2016] [Indexed: 01/19/2023]
Abstract
The burden of disease in haemophilia patients has wide ranging implications for the family and to society. There is evidence that having a current inhibitor increases the risk of morbidity and mortality. Morbidity is increased by the inability to treat adequately and its consequent disabilities, which then equates to a poor quality of life compared with non-inhibitor patients. The societal cost of care, or `burden of inhibitors', increases with the ongoing presence of an inhibitor. Therefore, it is clear that successful eradication of inhibitors by immune tolerance induction (ITI) is the single most important milestone one can achieve in an inhibitor patient. The type of factor VIII (FVIII) product used in ITI regimens varies worldwide. Despite ongoing debate, there is in vitro and retrospective clinical evidence to support the use of plasma-derived VWF-containing FVIII concentrates in ITI regimens in order to achieve early and high inhibitor eradication success rates.
Collapse
Affiliation(s)
| | - Víctor Jiménez-Yuste
- Victor Jiménez-Yuste, Hospital Universitario La Paz - Hematology, Paseo de la Castellana 261 Apostol Santiago 61 1 J, Madrid 28017, Spain, Tel.: +34 619452698, Fax: +34 917277226, E-mail:
| | | | | |
Collapse
|
33
|
Goudemand J, Peyvandi F, Lacroix-Desmazes S. Key insights to understand the immunogenicity of FVIII products. Thromb Haemost 2016; 116 Suppl 1:S2-9. [PMID: 27528279 DOI: 10.1160/th16-01-0048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/04/2016] [Indexed: 11/05/2022]
Abstract
The treatment of haemophilia has made significant progress in recent decades, and patients are now being treated safely with great clotting products. However, inhibitor development remains the largest problem, particularly in children. Consequently, the haemostasis that was obtained with traditional clotting factors is not being achieved. Moreover, inhibitor complications translate into adult life and there are an increasing number of situations where adult patients with an inhibitor require major surgery but the clinician is faced with the knowledge that required haemostasis levels are difficult to achieve. Therefore, it is of upmost importance to consider factors relating to inhibitor development, and to determine how inhibitors can be prevented and/or eliminated. Of the various factors at play with regard to inhibitor development, it is important to consider the immunogenicity of factor VIII (FVIII) products, and this topic is the focus of the current paper.
Collapse
Affiliation(s)
| | | | - Sébastien Lacroix-Desmazes
- Sebastien Lacroix-Desmazes, INSERM U872 eq16 - Centre de Recherche des Cordeliers, 15 Rue de l'école de medicine, Paris 75006, France, Tel.: +33 0155438265, Fax: +33 0155426261, E-mail:
| |
Collapse
|
34
|
Klamroth R, Simpson M, von Depka-Prondzinski M, Gill JC, Morfini M, Powell JS, Santagostino E, Davis J, Huth-Kühne A, Leissinger C, Neumeister P, Bensen-Kennedy D, Feussner A, Limsakun T, Zhou M, Veldman A, St Ledger K, Blackman N, Pabinger I. Comparative pharmacokinetics of rVIII-SingleChain and octocog alfa (Advate(®) ) in patients with severe haemophilia A. Haemophilia 2016; 22:730-8. [PMID: 27434619 DOI: 10.1111/hae.12985] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND rVIII-SingleChain, a novel recombinant factor VIII (rFVIII), has been designed as a B-domain truncated construct with covalently bonded heavy and light chains, aiming to increase binding affinity to von Willebrand factor (VWF). Preclinical studies confirmed greater affinity for VWF, giving improved pharmacokinetic and pharmacodynamic properties compared with full-length rFVIII. AIM To investigate the pharmacokinetics of rVIII-SingleChain and compare them against those of full-length rFVIII. METHODS This study enrolled 27 patients with severe haemophilia A in the AFFINITY clinical trial programme. After a 4-day washout period, all patients received a single infusion of 50 IU kg(-1) octocog alfa (Advate(®) ); after a ≥4-day postinfusion washout period, they received a single infusion of 50 IU kg(-1) rVIII-SingleChain. Blood samples for pharmacokinetic assessments of each product were collected before infusion (predose) and at 0.5, 1, 4, 8, 10, 24, 32, 48 and 72 h postinfusion for both products. RESULTS rVIII-SingleChain had a longer mean half-life (t1/2 ) (14.5 vs. 13.3 h), lower mean clearance (CL) (2.64 vs. 3.68 mL h(-1) kg(-1) ), higher mean residence time (20.4 vs. 17.1 h) and larger mean AUCinf (2090 vs. 1550 IU?h dL(-1) ) than octocog alfa, respectively. The mean AUCinf after rVIII-SingleChain infusion was ~35% larger than after octocog alfa. A similar pattern was observed for AUC0-last . No serious adverse events or inhibitors were reported. CONCLUSIONS rVIII-SingleChain has a favourable pharmacokinetic profile compared with octocog alfa and was well tolerated. The prolonged t1/2 , larger AUC and reduced CL of rVIII-SingleChain may permit longer dosing intervals, thereby improving patient adherence to prophylactic treatment.
Collapse
Affiliation(s)
- R Klamroth
- Department for Internal Medicine, Vascular Medicine and Haemostaseology, Vivantes Klinikum, Berlin Friedrichshain, Germany
| | - M Simpson
- Rush University Medical Center, Chicago, IL, USA
| | | | - J C Gill
- Medical College of Wisconsin and Blood Center of Wisconsin, Milwaukee, WI, USA
| | - M Morfini
- Ospedaliero Universitaria Careggi, Firenze, Italy
| | - J S Powell
- Hemophilia Treatment Center, UC Davis, Sacramento, CA, USA
| | - E Santagostino
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, IRCCS Fondazione Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - J Davis
- University of Miami Hemophilia Treatment Center, Miami, FL, USA
| | - A Huth-Kühne
- Hämophiliezentrum und Gerinnungsambulanz SRH Kurpfalzkrankenhaus, Heidelberg, Germany
| | - C Leissinger
- Louisiana Center for Bleeding and Clotting Disorders, New Orleans, LA, USA
| | - P Neumeister
- Klinische Abteilung für Hämatologie, Medizinische Universität of Graz, Graz, Austria
| | | | - A Feussner
- Clinical R&D, CSL Behring, Marburg, Germany
| | - T Limsakun
- Clinical R&D, CSL Behring, King of Prussia, PA, USA
| | - M Zhou
- Clinical R&D, CSL Behring, King of Prussia, PA, USA
| | - A Veldman
- Clinical R&D, CSL Behring, Marburg, Germany
| | - K St Ledger
- Clinical R&D, CSL Behring, King of Prussia, PA, USA
| | - N Blackman
- Clinical R&D, CSL Behring, King of Prussia, PA, USA
| | - I Pabinger
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
35
|
Bravo MI, Ortiz AM, Costa M, Grancha S, Jorquera JI. Neutralizing capacity of inhibitors on FVIII is lower for natural FVIII/VWF complex than for isolated FVIII: in vitro comparative study in eleven different therapeutic FVIII concentrates. Haemophilia 2016; 22:e341-4. [PMID: 27354216 DOI: 10.1111/hae.12975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2016] [Indexed: 11/29/2022]
Affiliation(s)
- M I Bravo
- Research & Development, Bioscience Industrial Group, Grifols, Barcelona, Spain
| | - A M Ortiz
- Research & Development, Bioscience Industrial Group, Grifols, Barcelona, Spain
| | - M Costa
- Research & Development, Bioscience Industrial Group, Grifols, Barcelona, Spain
| | - S Grancha
- Research & Development, Bioscience Industrial Group, Grifols, Barcelona, Spain
| | - J I Jorquera
- Research & Development, Bioscience Industrial Group, Grifols, Barcelona, Spain
| |
Collapse
|
36
|
Efficacy and safety of rVIII-SingleChain: results of a phase 1/3 multicenter clinical trial in severe hemophilia A. Blood 2016; 128:630-7. [PMID: 27330001 DOI: 10.1182/blood-2016-01-687434] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/02/2016] [Indexed: 01/22/2023] Open
Abstract
Recombinant VIII (rVIII)-SingleChain is a novel B-domain-truncated recombinant factor VIII (rFVIII), comprised of covalently bonded factor VIII (FVIII) heavy and light chains. It was designed to have a higher binding affinity for von Willebrand factor (VWF). This phase 1/3 study investigated the efficacy and safety of rVIII-SingleChain in the treatment of bleeding episodes, routine prophylaxis, and surgical prophylaxis. Participants were ≥12 years of age, with severe hemophilia A (endogenous FVIII <1%). The participants were allocated by the investigator to receive rVIII-SingleChain in either an on-demand or prophylaxis regimen. Of the 175 patients meeting study eligibility criteria, 173 were treated with rVIII-SingleChain, prophylactically (N = 146) or on-demand (N = 27). The total cumulative exposure was 14 306 exposure days (EDs), with 120 participants reaching ≥50 EDs and 52 participants having ≥100 EDs. Hemostatic efficacy was rated by the investigator as excellent or good in 93.8% of the 835 bleeds treated and assessed. Across all prophylaxis regimens, the median annualized spontaneous bleeding rate was 0.00 (Q1, Q3: 0.0, 2.4) and the median overall annualized bleeding rate (ABR) was 1.14 (Q1, Q3: 0.0, 4.2). Surgical hemostasis was rated as excellent/good in 100% of major surgeries by the investigator. No participant developed FVIII inhibitors. In conclusion, rVIII-SingleChain is a novel rFVIII molecule showing excellent hemostatic efficacy in surgery and in the control of bleeding events, low ABR in patients on prophylaxis, and a favorable safety profile in this large clinical study. This trial was registered at www.clinicaltrials.gov as #NCT01486927.
Collapse
|
37
|
Lai JD, Georgescu MT, Hough C, Lillicrap D. To clear or to fear: An innate perspective on factor VIII immunity. Cell Immunol 2015; 301:82-9. [PMID: 26547364 PMCID: PMC7124272 DOI: 10.1016/j.cellimm.2015.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 12/12/2022]
Abstract
FVIII inhibitor development involves a combination of innate immune modulators. Clearance and immunity is influenced at 3 levels: the protein, cell, and location. Cells associated with FVIII half-life may influence the immune response against FVIII.
The enigma that is factor VIII immunogenicity remains ever pertinent in the treatment of hemophilia A. Development of neutralizing antibodies against the therapeutic protein in 25–30% of patients likely depends on the appropriate activation of the innate immune response shortly following antigen encounter. Our understanding of this important immunological synapse remains ill-defined. In this review, we examine the three distinct factors contributing to the fate of factor VIII almost immediately after infusion: the characteristics of the protein, the cell, and the microenvironment. We propose a continuum between clearance and antigen presentation that facilitates removal of FVIII from circulation leading to either tolerance or immunity.
Collapse
Affiliation(s)
- Jesse Derek Lai
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, Canada
| | | | - Christine Hough
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, Canada
| | - David Lillicrap
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, Canada.
| |
Collapse
|
38
|
Oldenburg J, Lacroix-Desmazes S, Lillicrap D. Alloantibodies to therapeutic factor VIII in hemophilia A: the role of von Willebrand factor in regulating factor VIII immunogenicity. Haematologica 2015; 100:149-56. [PMID: 25638804 DOI: 10.3324/haematol.2014.112821] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The rising incidence of neutralizing antibodies (inhibitors) against therapeutic factor VIII prompted the conduct of studies to answer the question as to whether this rise is related to the introduction of recombinant factor VIII products. The present article summarizes current opinions and results of non-clinical and clinical studies on the immunogenic potential of recombinant compared to plasma-derived factor VIII concentrates. Numerous studies provided circumstantial evidence that von Willebrand factor, the natural chaperone protein present in plasma-derived factor VIII products, plays an important role in protecting exogenous factor VIII from uptake by antigen presenting cells and from recognition by immune effectors. However, the definite contribution of von Willebrand factor in reducing the inhibitor risk and in the achievement of immune tolerance is still under debate.
Collapse
Affiliation(s)
- Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Germany
| | - Sébastien Lacroix-Desmazes
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
39
|
Abstract
The pathogenesis of inhibitory antibodies has been the focus of major scientific interest over the last decades, and several studies on underlying immune mechanisms and risk factors for formation of these antibodies have been performed with the aim of improving the ability to both predict and prevent their appearance. It seems clear that the decisive factors for the immune response to the deficient factor are multiple and involve components of both a constitutional and therapy-related nature. A scientific concern and obstacle for research in the area of hemophilia is the relatively small cohorts available for studies and the resulting risk of confounded and biased results. Careful interpretation of data is recommended to avoid treatment decisions based on a weak scientific platform. This review will summarize current concepts of the underlying immunological mechanisms and risk factors for development of inhibitory antibodies in patients with hemophilia A and discuss how these findings may be interpreted and influence our clinical management of patients.
Collapse
|
40
|
Kessler C, Oldenburg J, Ettingshausen CE, Tiede A, Khair K, Négrier C, Klamroth R. Spotlight on the human factor: building a foundation for the future of haemophilia A management. Haemophilia 2014; 21 Suppl 1:1-12. [DOI: 10.1111/hae.12582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- C. Kessler
- Division of Hematology and Oncology; The Vincent Lombardi Comprehensive Cancer Center; Georgetown University Medical Center; Washington, DC USA
| | - J. Oldenburg
- The Institute of Experimental Haematology and Transfusion Medicine and the Haemophilia Centre at the University Clinic; Bonn Germany
| | | | - A. Tiede
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation; Hannover Medical School; Hannover Germany
| | - K. Khair
- Great Ormond Street Hospital for Children NHS Trust; London UK
| | - C. Négrier
- Hematology Division; Director Hemophilia Comprehensive Care Center; Hôpital Edouard Herriot Pavillon E; Université Lyon; Lyon France
| | - R. Klamroth
- The Haemophilia Treatment Centre; Vivantes Klinikum im Friedrichshain; Berlin Germany
| |
Collapse
|
41
|
|
42
|
Vogel CW, Finnegan PW, Fritzinger DC. Humanized cobra venom factor: Structure, activity, and therapeutic efficacy in preclinical disease models. Mol Immunol 2014; 61:191-203. [DOI: 10.1016/j.molimm.2014.06.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
|
43
|
Bravo MI, Da Rocha-Souto B, Grancha S, Jorquera JI. Native plasma-derived FVIII/VWF complex has lower sensitivity to FVIII inhibitors than the combination of isolated FVIII and VWF proteins. Impact on Bethesda assay titration of FVIII inhibitors. Haemophilia 2014; 20:905-11. [PMID: 25156825 PMCID: PMC4237173 DOI: 10.1111/hae.12494] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2014] [Indexed: 01/29/2023]
Abstract
Sensitivity to FVIII inhibitors of the native plasma-derived (pd) FVIII/VWF complex vs. the complexes formed after exogenous FVIII infusion in the haemophilic patient has not been thoroughly studied. The role of VWF in the interaction of FVIII with inhibitors was studied in vitro using different combinations of VWF and FVIII concentrates. Normal plasma, pdFVIII/VWF and isolated FVIII (recombinant FVIII, B-domain deleted and pdFVIII) were used. Titre (BU) was kinetically determined (up to 2 h) in serial dilutions of inhibitor IgG (purified from a pool of plasmas with inhibitors) mixed with VWF and then incubated with the different FVIII. Inhibitor was also added to previously mixed VWF+FVIII. Residual FVIII:C was determined. TGA assays were performed with FVIII-deficient plasma spiked with the FVIII-VWF mixtures with/without an ESH-8 antibody. Inhibitor titres for plasma and pdFVIII/VWF were comparable at all time points. Titres for all concentrates of isolated FVIII were significantly higher than those for plasma or pdFVIII/VWF (1.4–1.9 fold) even after preincubation with VWF. At t = 0 h, titres for plasma or pdFVIII/VWF were unquantifiable, but were detectable for isolated FVIII (0.6–1.6 BU). In contrast to pdFVIII/VWF, the decrease in thrombin generation parameters by isolated FVIII in the presence of ESH-8 was significant (P < 0.01) even when previously combined with VWF. In conclusion, VWF protection against FVIII inhibitor activity might be higher with native pdFVIII/VWF complex than with the corresponding compound formed from the isolated proteins. Bethesda assay titration using different FVIII concentrates would be advisable to guide the treatment of inhibitor patients.
Collapse
Affiliation(s)
- M I Bravo
- Research and Development Area, Instituto Grifols S.A., Parets del Vallès, Barcelona, Spain
| | | | | | | |
Collapse
|
44
|
Zollner S, Raquet E, Claar P, Müller-Cohrs J, Metzner HJ, Weimer T, Pragst I, Dickneite G, Schulte S. Non-clinical pharmacokinetics and pharmacodynamics of rVIII-SingleChain, a novel recombinant single-chain factor VIII. Thromb Res 2014; 134:125-31. [PMID: 24814969 DOI: 10.1016/j.thromres.2014.03.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/06/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION rVIII-SingleChain (CSL627), a novel recombinant coagulation factor VIII (FVIII), is under investigation in a phase I/III clinical programme (AFFINITY) for the treatment of haemophilia A. Non-clinical studies were conducted to investigate the pharmacokinetic/pharmacodynamic profile of rVIII-SingleChain in comparison with full-length recombinant FVIII. MATERIALS AND METHODS Binding affinity of rVIII-SingleChain for von Willebrand factor was investigated by surface plasmon resonance analysis. The pharmacokinetic profile of rVIII-SingleChain was compared with a marketed full-length recombinant FVIII concentrate (Advate(®)) in haemophilia A mice, von Willebrand factor knock-out mice, Crl:CD (SD) rats, rabbits and cynomolgus monkeys. Systemic FVIII activity or antigen levels were recorded. Procoagulant activity was measured in an FeCl3-induced arterial occlusion model and by recording thrombin generation activity (ex vivo) after administration of 200-250 IU/kg rVIII-SingleChain or full-length FVIII to haemophilia A mice. RESULTS rVIII-SingleChain displayed a high affinity for von Willebrand factor (KD=44 pM vs. 139 pM for full-length recombinant FVIII). In all animal species tested, rVIII-SingleChain had more favourable pharmacokinetic properties than full-length recombinant FVIII: clearance was decreased and area under the curve and terminal half-life were enhanced vs. full-length recombinant FVIII, while in vivo recovery and volume of distribution were equivalent. rVIII-SingleChain showed a prolonged thrombin generation potential and prolonged procoagulant activity vs. full-length recombinant FVIII in an FeCl3-induced arterial occlusion model. CONCLUSIONS rVIII-SingleChain had a higher affinity for von Willebrand factor than full-length recombinant FVIII and displayed favourable pharmacokinetic/pharmacodynamic properties in non-clinical models.
Collapse
Affiliation(s)
- Sabine Zollner
- Product Development, CSL Behring AG, CH-3000 Bern, Switzerland.
| | - Elmar Raquet
- Preclinical Research and Development, CSL Behring GmbH, 35041 Marburg, Germany
| | - Philipp Claar
- Preclinical Research and Development, CSL Behring GmbH, 35041 Marburg, Germany
| | - Jochen Müller-Cohrs
- Preclinical Research and Development, CSL Behring GmbH, 35041 Marburg, Germany
| | - Hubert J Metzner
- Preclinical Research and Development, CSL Behring GmbH, 35041 Marburg, Germany
| | - Thomas Weimer
- Preclinical Research and Development, CSL Behring GmbH, 35041 Marburg, Germany
| | - Ingo Pragst
- Preclinical Research and Development, CSL Behring GmbH, 35041 Marburg, Germany
| | - Gerhard Dickneite
- Preclinical Research and Development, CSL Behring GmbH, 35041 Marburg, Germany
| | - Stefan Schulte
- Preclinical Research and Development, CSL Behring GmbH, 35041 Marburg, Germany
| |
Collapse
|
45
|
On the versatility of von Willebrand factor. Mediterr J Hematol Infect Dis 2013; 5:e2013046. [PMID: 23936617 PMCID: PMC3736882 DOI: 10.4084/mjhid.2013.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/26/2013] [Indexed: 12/21/2022] Open
Abstract
Von Willebrand factor (VWF) is a large multimeric protein, the function of which has been demonstrated to be pivotal to the haemostatic system. Indeed, quantitative and/or qualitative abnormalities of VWF are associated with the bleeding disorder Von Willebrand disease (VWD). Moreover, increased plasma concentrations of VWF have been linked to an increased risk for thrombotic complications. In the previous decades, many studies have contributed to our understanding of how VWF is connected to the haemostatic system, particularly with regard to structure-function relationships. Interactive sites for important ligands of VWF (such as factor VIII, collagen, glycoprotein Ibα, integrin αIIbβ3 and protease ADAMTS13) have been identified, and mutagenesis studies have confirmed the physiological relevance of the interactions between VWF and these ligands. However, we have also become aware that VWF has a more versatile character than previously thought, given its potential role in various non-hemostatic processes, like intimal thickening, tumor cell apoptosis and inflammatory processes. In the presence review, a summary of our knowledge on VWF structure-function relationships is provided in the context of the “classical” haemostatic task of VWF and in perspective of pathological processes beyond haemostasis.
Collapse
|
46
|
Wroblewska A, Reipert BM, Pratt KP, Voorberg J. Dangerous liaisons: how the immune system deals with factor VIII. J Thromb Haemost 2013; 11:47-55. [PMID: 23140211 DOI: 10.1111/jth.12065] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Only a fraction of patients with hemophilia A develop a neutralizing antibody (inhibitor) response to therapeutic infusions of factor VIII. Our present understanding of the underlying causes of the immunogenicity of this protein is limited. In the past few years, insights into the uptake and processing of FVIII by antigen-presenting cells (APCs) have expanded significantly. Although the mechanism of endocytosis remains unclear, current data indicate that FVIII enters APCs via its C1 domain. Its subsequent processing within endolysosomes allows for presentation of a heterogeneous collection of FVIII-derived peptides on major histocompatibility complex (MHC) class II, and this peptide-MHC class II complex may then be recognized by cognate effector CD4(+) T cells, leading to anti-FVIII antibody production. Here we aim to summarize recent knowledge gained about FVIII processing and presentation by APCs, as well as the diversity of the FVIII-specific T-cell repertoire in mice and humans. Moreover, we discuss possible factors that can drive FVIII immunogenicity. We believe that increasing understanding of the immune recognition of FVIII and the cellular mechanisms of anti-FVIII antibody production will lead to novel therapeutic approaches to prevent inhibitor formation in patients with hemophilia A.
Collapse
Affiliation(s)
- A Wroblewska
- Department of Plasma Proteins, Sanquin-AMC Landsteiner Laboratory and van Creveld Laboratory, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Margaret V Ragni
- Department of Medicine, Division Hematology/Oncology, University of Pittsburgh, Pittsburgh PA, USA
| |
Collapse
|
48
|
|