1
|
Miyashita H, Kurzrock R, Bevins NJ, Thangathurai K, Lee S, Pabla S, Nesline M, Glenn ST, Conroy JM, DePietro P, Rubin E, Sicklick JK, Kato S. T-cell priming transcriptomic markers: implications of immunome heterogeneity for precision immunotherapy. NPJ Genom Med 2023; 8:19. [PMID: 37553332 PMCID: PMC10409760 DOI: 10.1038/s41525-023-00359-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/14/2023] [Indexed: 08/10/2023] Open
Abstract
Immune checkpoint blockade is effective for only a subset of cancers. Targeting T-cell priming markers (TPMs) may enhance activity, but proper application of these agents in the clinic is challenging due to immune complexity and heterogeneity. We interrogated transcriptomics of 15 TPMs (CD137, CD27, CD28, CD80, CD86, CD40, CD40LG, GITR, ICOS, ICOSLG, OX40, OX40LG, GZMB, IFNG, and TBX21) in a pan-cancer cohort (N = 514 patients, 30 types of cancer). TPM expression was analyzed for correlation with histological type, microsatellite instability high (MSI-H), tumor mutational burden (TMB), and programmed death-ligand 1 (PD-L1) expression. Among 514 patients, the most common histological types were colorectal (27%), pancreatic (11%), and breast cancer (10%). No statistically significant association between histological type and TPM expression was seen. In contrast, expression of GZMB (granzyme B, a serine protease stored in activated T and NK cells that induces cancer cell apoptosis) and IFNG (activates cytotoxic T cells) were significantly higher in tumors with MSI-H, TMB ≥ 10 mutations/mb and PD-L1 ≥ 1%. PD-L1 ≥ 1% was also associated with significantly higher CD137, GITR, and ICOS expression. Patients' tumors were classified into "Hot", "Mixed", or "Cold" clusters based on TPM expression using hierarchical clustering. The cold cluster showed a significantly lower proportion of tumors with PD-L1 ≥ 1%. Overall, 502 patients (98%) had individually distinct patterns of TPM expression. Diverse expression patterns of TPMs independent of histological type but correlating with other immunotherapy biomarkers (PD-L1 ≥ 1%, MSI-H and TMB ≥ 10 mutations/mb) were observed. Individualized selection of patients based on TPM immunomic profiles may potentially help with immunotherapy optimization.
Collapse
Affiliation(s)
- Hirotaka Miyashita
- Department of Hematology and Oncology, Dartmouth Cancer Center, Lebanon, NH, USA.
| | - Razelle Kurzrock
- Worldwide Innovative Network (WIN) for Personalized Cancer Therapy, Paris, France
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nicholas J Bevins
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Kartheeswaran Thangathurai
- The Shraga Segal Department for Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Department of Physical Science, University of Vavuniya, Vavuniya, Sri Lanka
| | - Suzanna Lee
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC, San Diego Moores Cancer Center, La Jolla, CA, USA
| | | | | | - Sean T Glenn
- Roswell Park Comprehensive Cancer Center, Center for Personalized Medicine, Buffalo, NY, USA
| | | | | | - Eitan Rubin
- The Shraga Segal Department for Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jason K Sicklick
- Division of Surgical Oncology, Department of Surgery, and Center for Personalized Cancer Therapy, University of California, San Diego, La Jolla, CA, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC, San Diego Moores Cancer Center, La Jolla, CA, USA.
| |
Collapse
|
2
|
Al-Omari M, Al-Omari T, Batainah N, Al-Qauod K, Olejnicka B, Janciauskiene S. Beneficial effects of alpha-1 antitrypsin therapy in a mouse model of colitis-associated colon cancer. BMC Cancer 2023; 23:722. [PMID: 37532996 PMCID: PMC10394932 DOI: 10.1186/s12885-023-11195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND It is widely accepted that chronic inflammatory bowel diseases significantly higher a risk for colorectal cancer development. Among different types of treatments for patients with colon cancer, novel protein-based therapeutic strategies are considered. AIM To explore the effect of human plasma alpha-1 antitrypsin (AAT) protein in the chemically induced mouse model of colorectal cancer. METHODS BALB/c mice with azoxymethane/dextran sodium sulfate (AOM/DSS)-induced colitis-associated colorectal cancer (CAC), we intraperitoneally treated with commercial preparation of human plasma AAT (4 mg per mouse). Effects of this therapy were evaluated histologically, and by immunohistochemical and gene expression assays. RESULTS When compared with non-treated controls, AOM/DSS mice receiving AAT therapy exhibited significantly longer colons, and less anal bleeding. Concurrently, AAT-treated mice had significantly fewer polyps, and lower numbers of large colon tumors. Immunohistochemical examinations of colon tissues showed significantly lower neutrophil counts, more granzyme B-positive but fewer MMP9 (gelatinase B)-positive cancer cells and lower numbers of apoptotic cells in mice receiving AAT therapy. The expression levels of IL4 were significantly higher while TNFA was slightly reduced in tumor tissues of AOM/DSS mice treated with AAT than in AOM/DSS mice. CONCLUSION Human AAT is an acute phase protein with a broad-protease inhibitory and immunomodulatory activities used as a therapeutic for emphysema patients with inherited AAT deficiency. Our results are consistent with previous findings and support an idea that AAT alone and/or in combination with available anti-cancer therapies may represent a new personalized approach for patients with colitis-induced colon cancer.
Collapse
Affiliation(s)
- Mariam Al-Omari
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, P.O Box 566, Irbid, 21163, Jordan.
| | - Tareq Al-Omari
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Nesreen Batainah
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, P.O Box 566, Irbid, 21163, Jordan
| | - Khaled Al-Qauod
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Beata Olejnicka
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
- Department of Internal Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| |
Collapse
|
3
|
Fan B, Zheng C, Wang N, Chang Z, Liu Y, Wang C, Xiang J, Tao Y, Wang G, Zhang Q. CircSTK3 drives the metastasis of colorectal cancer by regulating epithelial-mesenchymal transition. iScience 2023; 26:106170. [PMID: 36922993 PMCID: PMC10009203 DOI: 10.1016/j.isci.2023.106170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/24/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Circular RNAs (circRNAs) play crucial roles in malignancies. We aimed to delineate the functions and clinical importance of dysregulated circRNAs in colorectal cancer (CRC). We determined the circRNA expression profile from five CRC and paired adjacent normal tissues using circRNA microarray. We found that a novel circRNA, hsa_circ_0004592 (named circSTK3), was significantly upregulated in CRC tissues and correlated with decreased survival. Loss- and gain-of-function assays revealed that circSTK3 promoted the migration and invasion but not proliferation of cells. Whole genome expression microarray identified potential downstream targets and the regulatory networks of circSTK3; Gene Ontology analysis confirmed circSTK3 involvement in the CRC metastasis phenotype. Abnormal circSTK3 expression affected a subset of genes associated with CRC metastasis and triggered epithelial-mesenchymal transition programming, maintaining a tumor-promoting signature. Moreover, circSTK3 was transcriptionally regulated by CTCF. These findings reveal the functional and prognostic roles of circSTK3 and expose circRNAs as key players in metastasis.
Collapse
Affiliation(s)
- Boyang Fan
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Chaojing Zheng
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ning Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zewen Chang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yunxiao Liu
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Chunlin Wang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jun Xiang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yangbao Tao
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Guiyu Wang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qian Zhang
- Department of Colorectal Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310000, China
| |
Collapse
|
4
|
A Novel Defined Pyroptosis-Related Gene Signature for Predicting the Prognosis of Endometrial Cancer. DISEASE MARKERS 2022; 2022:7570494. [PMID: 36601599 PMCID: PMC9806687 DOI: 10.1155/2022/7570494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/15/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Endometrial carcinoma (EC) is the second major female genital malignancy. Genetic signatures may be an improved choice to predict the prognosis of EC patients. The relationship between pyroptosis and tumours has attracted much attention in recent years. Here, we constructed a new pyroptosis-related gene (PRG) signature for predicting the prognosis of EC. In this study, gene data and clinical information of EC patients were obtained from The Cancer Genome Atlas (TCGA). Following the identification of PRGs correlated with EC prognosis, we further investigate the bioinformatics functions of these PRGs by univariate Cox regression analysis and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Then, we used the least absolute contraction and selection operator (LASSO) regression and multiple Cox regression analysis to construct a new PRG signature that contains seven PRGs (NFKB1, EEF2K, CTSV, MDM2, GZMB, PANX1, and PTEN) and performed the Kaplan-Meier (K-M) analysis, receiver operating characteristic curve (ROC) analysis, and principal component analysis (PCA) to evaluate the prognostic value of our novel PRG signature. Finally, we assessed the correlations between pyroptosis and immune cells/checkpoints through the CIBERSORT tool and single-sample gene set enrichment analysis (ssGSEA). The result suggested that our signature was powerful in predicting EC prognosis and may play a part in assessing response to immunotherapy in EC patients. In conclusion, our study established a novel PRG signature for EC, which can be used as an effective prognostic marker in clinical practice in the future.
Collapse
|
5
|
Noti L, Galván JA, Dawson H, Lugli A, Kirsch R, Assarzadegan N, Messenger D, Krebs P, Berger MD, Zlobec I. A combined spatial score of granzyme B and CD68 surpasses CD8 as an independent prognostic factor in TNM stage II colorectal cancer. BMC Cancer 2022; 22:987. [PMID: 36114487 PMCID: PMC9482175 DOI: 10.1186/s12885-022-10048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/31/2022] [Indexed: 12/24/2022] Open
Abstract
Background Previous assessments of peritumoral inflammatory infiltrate in colorectal cancer (CRC) have focused on the role of CD8+ T lymphocytes. We sought to compare the prognostic value of CD8 with downstream indicators of active immune cell function, specifically granzyme B (GZMB) and CD68 in the tumour microenvironment. Methods Immunohistochemical (IHC) staining was performed for CD8, GZMB, CD68 and CD163 on next-generation tissue microarrays (ngTMAs) in a primary cohort (n = 107) and a TNM stage II validation cohort (n = 151). Using digital image analysis, frequency of distinct immune cell types was calculated for tumour proximity (TP) zones with varying radii (10 μm-100 μm) around tumour cells. Results Associations notably of advanced TNM stage were observed for low density of CD8 (p = 0.002), GZMB (p < 0.001), CD68 (p = 0.034) and CD163 (p = 0.011) in the primary cohort. In the validation cohort only low GZMB (p = 0.036) was associated with pT4 stage. Survival analysis showed strongest prognostic effects in the TP25μm zone at the tumour centre for CD8, GZMB and CD68 (all p < 0.001) in the primary cohort and for CD8 (p = 0.072), GZMB (p = 0.035) and CD68 (p = 0.004) in the validation cohort with inferior prognostic effects observed at the tumour invasive margin. In a multivariate survival analysis, joint analysis of GZMB and CD68 was similarly prognostic to CD8 in the primary cohort (p = 0.007 vs. p = 0.002) and superior to CD8 in the validation cohort (p = 0.005 vs. p = 0.142). Conclusion Combined high expression of GZMB and CD68 within 25 μm to tumour cells is an independent prognostic factor in CRC and of superior prognostic value to the well-established CD8 in TNM stage II cancers. Thus, assessment of antitumoral effect should consider the quality of immune activation in peritumoral inflammatory cells and their actual proximity to tumour cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10048-x.
Collapse
|
6
|
Pączek S, Łukaszewicz-Zając M, Mroczko B. Granzymes-Their Role in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23095277. [PMID: 35563668 PMCID: PMC9104098 DOI: 10.3390/ijms23095277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the most common malignancies worldwide. CRC is considered a heterogeneous disease due to various clinical symptoms, biological behaviours, and a variety of mutations. A number of studies demonstrate that as many as 50% of CRC patients have distant metastases at the time of diagnosis. However, despite the fact that social and medical awareness of CRC has increased in recent years and screening programmes have expanded, there is still an urgent need to find new diagnostic tools for early detection of CRC. The effectiveness of the currently used classical tumour markers in CRC diagnostics is very limited. Therefore, new proteins that play an important role in the formation and progression of CRC are being sought. A number of recent studies show the potential significance of granzymes (GZMs) in carcinogenesis. These proteins are released by cytotoxic lymphocytes, which protect the body against viral infection as well specific signalling pathways that ultimately lead to cell death. Some studies suggest a link between GZMs, particularly the expression of Granzyme A, and inflammation. This paper summarises the role of GZMs in CRC pathogenesis through their involvement in the inflammatory process. Therefore, it seems that GZMs could become the focus of research into new CRC biomarkers.
Collapse
Affiliation(s)
- Sara Pączek
- Department of Biochemical Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland; (M.Ł.-Z.); (B.M.)
- Correspondence: ; Tel.: +48-85-831-8587
| | - Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland; (M.Ł.-Z.); (B.M.)
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland; (M.Ł.-Z.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
7
|
Zhang H, Ma Y, Zhang Q, Liu R, Luo H, Wang X. A pancancer analysis of the carcinogenic role of receptor-interacting serine/threonine protein kinase-2 (RIPK2) in human tumours. BMC Med Genomics 2022; 15:97. [PMID: 35473583 PMCID: PMC9040268 DOI: 10.1186/s12920-022-01239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/13/2022] [Indexed: 11/15/2022] Open
Abstract
Background To explore the expression and carcinogenic mechanism of RIPK2 in human tumours, and to provide the theoretical basis for the further study of RIPK2. Methods We used the TCGA, CPTAC, HPA databases to analyse the expression, mutation, and prognosis of RIPK2 in human tumours. Through the Cbioportal, Ualcan, TIMER2.0, and STRING websites, We understand the genetic variation, immune infiltration and enrichment analysis of RIPK2 related genes. Results RIPK2 was highly expressed in most tumours (such as BRCA, COAD and LUSC, etc.), and the high expression of RIPK2 was correlated with tumour stage and prognosis. In addition, Amplification was the main type of RIPK2 in tumour mutation state, and the amplification rate was about 8.5%. In addition, RIPK2 was positively associated with tumour-infiltrating immune cells (such as CD8+ T, Tregs, and cancer-associated fibroblasts). According to the KEGG analysis, RIPK2 may play a role in tumour mainly through NOD-like signaling pathway and NF-kappaB signaling pathway. GO enrichment analysis showed that the RIPK2 is mainly related to I-kappaB kinase/NF-kappaB signaling, Ribonucleoprotein granule and Ubiquitin-like protein ligase binding. Conclusion RIPK2 plays an important role in the occurrence, development and prognosis of malignant tumours. Our pancancer study provided a relatively comprehensive description of the carcinogenic effects of RIPK2 in different tumours, and provided useful information for further study of RIPK2. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01239-3.
Collapse
Affiliation(s)
- Hanqun Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, People's Republic of China.,Department of Oncology, Guizhou Provincial People's Hospital, Guizhou, 550002, People's Republic of China
| | - Yan Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Lanzhou Heavy Ion Hospital, Lanzhou, 730000, People's Republic of China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Lanzhou Heavy Ion Hospital, Lanzhou, 730000, People's Republic of China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Lanzhou Heavy Ion Hospital, Lanzhou, 730000, People's Republic of China
| | - Xiaohu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, People's Republic of China. .,Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China. .,Lanzhou Heavy Ion Hospital, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
8
|
Wang Z, Bao A, Liu S, Dai F, Gong Y, Cheng Y. A Pyroptosis-Related Gene Signature Predicts Prognosis and Immune Microenvironment for Breast Cancer Based on Computational Biology Techniques. Front Genet 2022; 13:801056. [PMID: 35464869 PMCID: PMC9021921 DOI: 10.3389/fgene.2022.801056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is a malignant tumor with high morbidity and mortality, which seriously threatens women's health worldwide. Pyroptosis is closely correlated with immune landscape and the tumorigenesis and development of various cancers. However, studies about pyroptosis and immune microenvironment in BC are limited. Therefore, our study aimed to investigate the potential prognostic value of pyroptosis-related genes (PRGs) and their relationship to immune microenvironment in BC. First, we identified 38 differentially expressed PRGs between BC and normal tissues. Further on, the least absolute shrinkage and selection operator (LASSO) Cox regression and computational biology techniques were applied to construct a four-gene signature based on PRGs and patients in The Cancer Genome Atlas (TCGA) cohort were classified into high- and low-risk groups. Patients in the high-risk group showed significantly lower survival possibilities compared with the low-risk group, which was also verified in an external cohort. Furthermore, the risk model was characterized as an independent factor for predicting the overall survival (OS) of BC patients. What is more important, functional enrichment analyses demonstrated the robust correlation between risk score and immune infiltration, thereby we summarized genetic mutation variation of PRGs, evaluated the relationship between PRGs, different risk group and immune infiltration, tumor mutation burden (TMB), microsatellite instability (MSI), and immune checkpoint blockers (ICB), which indicated that the low-risk group was enriched in higher TMB, more abundant immune cells, and subsequently had a brighter prognosis. Except for that, the lower expression of PRGs such as GZMB, IL18, IRF1, and GZMA represented better survival, which verified the association between pyroptosis and immune landscape. In conclusion, we performed a comprehensive bioinformatics analysis and established a four-PRG signature consisting of GZMB, IL18, IRF1, and GZMA, which could robustly predict the prognosis of BC patients.
Collapse
Affiliation(s)
- Zitao Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Anyu Bao
- Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiyi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiping Gong
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Zhang Y, Chen X, Fu Q, Wang F, Zhou X, Xiang J, He N, Hu Z, Jin X. Comprehensive analysis of pyroptosis regulators and tumor immune microenvironment in clear cell renal cell carcinoma. Cancer Cell Int 2021; 21:667. [PMID: 34906145 PMCID: PMC8670029 DOI: 10.1186/s12935-021-02384-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/30/2021] [Indexed: 01/05/2023] Open
Abstract
Background Increasing evidence has indicated that pyroptosis could regulate the tumor immune microenvironment (TIME) to affect the tumor development. As a highly immunogenic tumor, clear cell renal cell carcinoma (ccRCC) can benefit from immunotherapy, but related research on pyroptosis in the TIME of ccRCC is still deficient. Methods Available data derived from TCGA and GEO databases were analyzed to identify the different expression profiles of pyroptosis in ccRCC and normal tissues, and the correlation of pyroptosis regulators with TIME was evaluated in ccRCC. Results According to consensus clustering analysis, two differential expression levels of subtypes were identified to affect patient prognosis, and were related to histological tumor stage and grade. Immune cells were calculated by the CIBERSORT algorithm. Higher infiltrated levels of B cells naive, T cells CD4 memory resting, NK cells resting, monocytes, macrophages were observed in Cluster 1, while higher infiltrated levels of CD8+ T cells, T follicular helper cells, and Tregs were observed in Cluster 2. Gene set enrichment analysis indicated that Cluster 2 was enriched in multiple immune-related pathways, including the JAK-STAT signaling pathway. Moreover, overexpression of eight immune checkpoints was related to ccRCC development, especially in Cluster 2. As four potentially key pyroptosis regulators, AIM2, CASP5, NOD2, and GZMB were confirmed to be upregulated in ccRCC by RT-qPCR analysis and further verified by the HPA database. Further pan-cancer analysis suggested that these four pyroptosis regulators were differentially expressed and related to the TIME in multiple cancers. Conclusion The present study provided a comprehensive view of pyroptosis regulators in the TIME of ccRCC, which may provide potential value for immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02384-y.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Xianwu Chen
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Qinghe Fu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Feifan Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Xuejian Zhou
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Jiayong Xiang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Ning He
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Zhenghui Hu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, People's Republic of China.
| | - Xiaodong Jin
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, People's Republic of China.
| |
Collapse
|
10
|
Luo F, Cao J, Lu F, Zeng K, Ma W, Huang Y, Zhang L, Zhao H. Lymphocyte activating gene 3 protein expression in nasopharyngeal carcinoma is correlated with programmed cell death-1 and programmed cell death ligand-1, tumor-infiltrating lymphocytes. Cancer Cell Int 2021; 21:458. [PMID: 34454491 PMCID: PMC8403354 DOI: 10.1186/s12935-021-02162-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Immunotherapy has shown promising efficacy in patients with nasopharyngeal carcinoma (NPC). Lymphocyte activating 3 gene (LAG-3) represents a significant immune target, however, its relationship with NPC remains unclear. This study aimed to evaluate LAG-3 expression in NPC and its association with CD3+ tumor-infiltrating lymphocytes (TILs), Granzyme B (GZMB), programmed death ligand 1 (PD-L1), and programmed death 1 (PD-1) expression. METHODS A total of 182 patients with NPC from Sun Yat-sen University Cancer Center, China, were included in this retrospective study. LAG-3 expression in 15 NPC cell lines and LAG-3, CD3+ TILs, GZMB, PD-L1 and PD-1 in clinical samples were estimated using immunohistochemistry. The Chi-square test was used to estimate the association between LAG-3, other biomarkers, and clinical characteristics. Survival analysis was performed using the Kaplan-Meier method and the Cox regression model. RESULTS LAG-3 was negatively expressed in all of the 15 NPC cell lines, whereas, 147 patients with NPC (80.8%) exhibited high LAG-3 expression on TILs from tumor tissues. Male patients and those who were EBV-positive presented higher LAG-3 expression. Correlation analyses showed that LAG-3 expression was related to PD-1 expression on TILs, as well as, PD-L1 expression on tumor cells (TCs) and TILs. Both the univariate and multivariate Cox models indicated that pathological type III (P = 0.036), higher LAG-3 on TILs (P < 0.001), higher PD-L1 on TCs (P = 0.027), and higher PD-1 on TILs (P < 0.001) were associated with poorer disease-free survival (DFS). However, lower PD-L1 expression on TILs was related to superior DFS only in the univariate Cox analyses (P = 0.002). CONCLUSION Higher LAG-3 and PD-1 on TILs, and higher PD-L1 expression on TCs, and pathological type III were identified as independent risk factors for poorer DFS in NPC patients. Our data demonstrate that LAG-3 is a promising inhibitory receptor that may play an important role in anti-NPC therapy.
Collapse
Affiliation(s)
- Fan Luo
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiaxin Cao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Feiteng Lu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Kangmei Zeng
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Wenjuan Ma
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, China.
| | - Hongyun Zhao
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
11
|
Santiago L, Castro M, Sanz-Pamplona R, Garzón M, Ramirez-Labrada A, Tapia E, Moreno V, Layunta E, Gil-Gómez G, Garrido M, Peña R, Lanuza PM, Comas L, Jaime-Sanchez P, Uranga-Murillo I, Del Campo R, Pelegrín P, Camerer E, Martínez-Lostao L, Muñoz G, Uranga JA, Alcalde A, Galvez EM, Ferrandez A, Bird PI, Metkar S, Arias MA, Pardo J. Extracellular Granzyme A Promotes Colorectal Cancer Development by Enhancing Gut Inflammation. Cell Rep 2021; 32:107847. [PMID: 32640217 DOI: 10.1016/j.celrep.2020.107847] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/11/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
If not properly regulated, the inflammatory immune response can promote carcinogenesis, as evident in colorectal cancer (CRC). Aiming to gain mechanistic insight into the link between inflammation and CRC, we perform transcriptomics analysis of human CRC, identifying a strong correlation between expression of the serine protease granzyme A (GzmA) and inflammation. In a dextran sodium sulfate and azoxymethane (DSS/AOM) mouse model, deficiency and pharmacological inhibition of extracellular GzmA both attenuate gut inflammation and prevent CRC development, including the initial steps of cell transformation and epithelial-to-mesenchymal transition. Mechanistically, extracellular GzmA induces NF-κB-dependent IL-6 production in macrophages, which in turn promotes STAT3 activation in cultured CRC cells. Accordingly, colon tissues from DSS/AOM-treated, GzmA-deficient animals present reduced levels of pSTAT3. By identifying GzmA as a proinflammatory protease that promotes CRC development, these findings provide information on mechanisms that link immune cell infiltration to cancer progression and present GzmA as a therapeutic target for CRC.
Collapse
Affiliation(s)
- Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Marta Castro
- Department of Pharmacology and Physiology, Faculty of Health and Sports Sciences, University of Zaragoza, 22002 Huesca, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marcela Garzón
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Elena Tapia
- Animal Unit, University of Zaragoza, 50009 Zaragoza, Spain
| | - Víctor Moreno
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Elena Layunta
- Department of Pharmacology and Physiology, Faculty of Veterinary, University of Zaragoza, 50013 Zaragoza, Spain
| | - Gabriel Gil-Gómez
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona
| | - Marta Garrido
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona
| | - Raúl Peña
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona
| | - Pilar M Lanuza
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Laura Comas
- Instituto de Carboquímica ICB-CSIC, 50018 Zaragoza, Spain
| | - Paula Jaime-Sanchez
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Rosa Del Campo
- Department of Microbiology, University Hospital Ramón y Cajal & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Pablo Pelegrín
- Unidad de Inflamación Molecular y Cirugía Experimental, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Eric Camerer
- Université de Paris, Paris Cardiovascular Research Center, INSERM U970, 75015 Paris, France
| | - Luis Martínez-Lostao
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Department of Immunology, University Clinic Hospital Lozano Blesa, 50009, Zaragoza, Spain and Department of Pathology, University Clinic Hospital Lozano Blesa, University of Zaragoza, IIS Aragón, CIBEREHD, 50009 Zaragoza, Spain; Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain; Department Biochemistry and Molecular and Cell Biology and Department Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
| | - Guillermo Muñoz
- Department of Immunology, University Clinic Hospital Lozano Blesa, 50009, Zaragoza, Spain and Department of Pathology, University Clinic Hospital Lozano Blesa, University of Zaragoza, IIS Aragón, CIBEREHD, 50009 Zaragoza, Spain
| | - José A Uranga
- Department of Basis Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain
| | - Anabel Alcalde
- Department of Pharmacology and Physiology, Faculty of Veterinary, University of Zaragoza, 50013 Zaragoza, Spain
| | - Eva M Galvez
- Instituto de Carboquímica ICB-CSIC, 50018 Zaragoza, Spain
| | - Angel Ferrandez
- Service of Digestive Diseases, University Clinic Hospital Lozano Blesa, University of Zaragoza, IIS Aragón, CIBEREHD, Zaragoza, Spain
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University 3800 Melbourne, Australia
| | | | - Maykel A Arias
- Instituto de Carboquímica ICB-CSIC, 50018 Zaragoza, Spain.
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Aragon I+D Foundation (ARAID), Zaragoza, Spain; Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain; Department Biochemistry and Molecular and Cell Biology and Department Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; CIBER-BBN, Madrid, Spain.
| |
Collapse
|
12
|
Kashyap D, Garg VK, Goel N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:73-120. [PMID: 33931145 DOI: 10.1016/bs.apcsb.2021.01.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apoptosis, also named programmed cell death, is a fundament process required for morphogenetic homeostasis during early development and in pathophysiological conditions. It is come into existence in 1972 by work of Kerr, Wyllie and Currie and later on investigated during the research on development of the C. elegans. Trigger by several stimuli, apoptosis is necessary during the embryonic development and aging as homeostatic mechanism to control the cell population and also play a key role as defense mechanism against the immune responses and elimination of damaged cells. Cancer, a genetic disease, is a growing burden on the health and economy of both developing and developed countries. Every year there is tremendously increasing in the number of new cancer cases and mortality rate. Although, there is a significant improvement have been made in biotechnological and bioinformatic fields however, the therapeutic advantages and cancer etiology is still under explored. Several studies determined the deregulation of different apoptotic components during the cancer development and progression. Apoptosis relies on activation of distinct signaling pathways that are often deregulated in cancer. Thus, exploring the single or more than one apoptotic component underlying their expression in carcinogenesis could help to track the disease progression. Current book chapter will provide the several evidences supporting the use of different apoptotic components as prognosis and prediction markers in various human cancer types.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduation Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | - Neelam Goel
- Department of Information Technology, UIET, Panjab University, Chandigarh, India.
| |
Collapse
|
13
|
Du T, Gao Q, Zhao Y, Gao J, Li J, Wang L, Li P, Wang Y, Du L, Wang C. Long Non-coding RNA LINC02474 Affects Metastasis and Apoptosis of Colorectal Cancer by Inhibiting the Expression of GZMB. Front Oncol 2021; 11:651796. [PMID: 33898319 PMCID: PMC8063044 DOI: 10.3389/fonc.2021.651796] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most frequently diagnosed malignancies. Metastasis is the main event that impedes the therapeutic effect on CRC, and its underlying mechanisms remain largely unclear. LINC02474 is a novel long noncoding RNA (lncRNA) associated with metastasis of CRC, while little is known about how LINC02474 regulates these malignant characteristics. Methods Expressions of LINC02474 and granzyme B (GZMB) were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) or Western blotting analysis. Cell metastasis was detected by transwell assay and metastatic nude mouse model, and apoptosis was determined by Western blotting analysis and flow cytometry. Besides, the interaction between LINC02474 and GZMB was detected by dual-luciferase reporter assays. Results The expression of LINC02474 was significantly up-regulated in CRC tissues. Moreover, depletion of LINC02474 damaged the metastatic abilities of CRC cells in vivo and in vitro while boosting apoptosis. Besides, up-regulation of LINC02474 could promote migration and invasion, while apoptosis was inhibited in CRC cells. Besides, down-regulation of LINC02474 promoted the expression of GZMB, and interference of GZMB could increase the metastatic abilities of CRC cells while reducing apoptosis. Furthermore, LINC02474 was related to the transcriptional repression of GZMB in CRC cells determined by the dual-luciferase reporter assay. Conclusions The findings revealed that a novel lncRNA, LINC02474, as an oncogene, could promote metastasis, but limit apoptosis partly by impeding GZMB expression in CRC. Besides, LINC02474 had the potential to be used as a biomarker in the prognosis of CRC.
Collapse
Affiliation(s)
- Tiantian Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qinglun Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yinghui Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lili Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Engineering & Technology Research Center for Tumor Marker Detection, The Second Hospital of Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Engineering & Technology Research Center for Tumor Marker Detection, The Second Hospital of Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
14
|
Chen W, Zhang W, Zhou T, Cai J, Yu Z, Wu Z. A Newly Defined Pyroptosis-Related Gene Signature for the Prognosis of Bladder Cancer. Int J Gen Med 2021; 14:8109-8120. [PMID: 34803395 PMCID: PMC8594790 DOI: 10.2147/ijgm.s337735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Bladder cancer (BC), as the most common urinary system tumor type and the main cause of tumor-related death, has an unsatisfactory prognosis. In recent years, related literature has proposed that cell pyroptosis is an inflammatory form of programmed cell death. However, in BC, the relationship between the expression of pyroptosis-related genes and the prognosis has not been elucidated. METHODS We got the RNA sequencing data from TCGA and GEO datasets. Fifty-two pyroptosis-related genes were extracted for further explore. Then, we compared the gene expression levels between the normal bladder and BC tissues. After that, we develop and validate a pyroptosis-related gene prognostic model and made following functional enrichment analysis and single-sample gene set enrichment analysis of the differentially expressed genes between the high- and low-risk groups. RESULTS Twenty-nine differentially expressed genes (DEGs) were found between normal and tumor tissues. Based on the median score calculated by the risk score formula from 8 pyroptosis-related genes, 414 patients were equally divided into low- and high-risk subgroups. The survival probability of BC patients in the high-risk group was significantly lower than that in the low-risk group (P < 0.001). Through multivariate analysis, our risk score is an independent factor predicting OS in BC patients. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis show that high-risk populations are rich in immune-related genes and have a decreased immune status. All the above results have been externally verified from GEO cohort. CONCLUSION Pyroptosis-related genes are closely related to tumor immunity and are a potential prognostic tool for predicting BCs.
Collapse
Affiliation(s)
- Weikang Chen
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Wenhao Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 325000, People’s Republic of China
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 325000, People’s Republic of China
| | - Tao Zhou
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Jian Cai
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Zhixian Yu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
- Correspondence: Zhixian Yu; Zhigang Wu Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Fuxue Road Lucheng District, Wenzhou, Zhejiang, 325000, People’s Republic of China Email ;
| | - Zhigang Wu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| |
Collapse
|
15
|
Syed Najmuddin SUF, Amin ZM, Tan SW, Yeap SK, Kalyanasundram J, Veerakumarasivam A, Chan SC, Chia SL, Yusoff K, Alitheen NB. Oncolytic effects of the recombinant Newcastle disease virus, rAF-IL12, against colon cancer cells in vitro and in tumor-challenged NCr-Foxn1nu nude mice. PeerJ 2020; 8:e9761. [PMID: 33354412 PMCID: PMC7731658 DOI: 10.7717/peerj.9761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Colon cancer remains one of the main cancers causing death in men and women worldwide as certain colon cancer subtypes are resistant to conventional treatments and the development of new cancer therapies remains elusive. Alternative modalities such as the use of viral-based therapeutic cancer vaccine is still limited, with only the herpes simplex virus (HSV) expressing granulocyte-macrophage colony- stimulating factor (GM-CSF) or talimogene laherparepvec (T-Vec) being approved in the USA and Europe so far. Therefore, it is imperative to continue the search for a new treatment modality. This current study evaluates a combinatorial therapy between the oncolytic Newcastle disease virus (NDV) and interleukin-12 (IL-12) cytokine as a potential therapeutic vaccine to the current anti-cancer drugs. Several in vitro analyses such as MTT assay, Annexin V/FITC flow cytometry, and cell cycle assay were performed to evaluate the cytotoxicity effect of recombinant NDV, rAF-IL12. Meanwhile, serum cytokine, serum biochemical, histopathology of organs and TUNEL assay were carried out to assess the anti-tumoral effects of rAF-IL12 in HT29 tumor-challenged nude mice. The apoptosis mechanism underlying the effect of rAF-IL12 treatment was also investigated using NanoString Gene expression analysis. The recombinant NDV, rAF-IL12 replicated in HT29 colon cancer cells as did its parental virus, AF2240-i. The rAF-IL12 treatment had slightly better cytotoxicity effects towards HT29 cancer cells when compared to the AF2240-i as revealed by the MTT, Annexin V FITC and cell cycle assay. Meanwhile, the 28-day treatment with rAF-IL12 had significantly (p < 0.05) perturbed the growth and progression of HT29 tumor in NCr-Foxn1nu nude mice when compared to the untreated and parental wild-type NDV strain AF2240-i. The rAF-IL12 also modulated the immune system in nude mice by significantly (p < 0.05) increased the level of IL-2, IL-12, and IFN-γ cytokines. Treatment with rAF-IL12 had also significantly (p < 0.05) increased the expression level of apoptosis-related genes such as Fas, caspase-8, BID, BAX, Smad3 and granzyme B in vitro and in vivo. Besides, rAF-IL12 intra-tumoral delivery was considered safe and was not hazardous to the host as evidenced in pathophysiology of the normal tissues and organs of the mice as well as from the serum biochemistry profile of liver and kidney. Therefore, this study proves that rAF-IL12 had better cytotoxicity effects than its parental AF2240-i and could potentially be an ideal treatment for colon cancer in the near future.
Collapse
Affiliation(s)
| | - Zahiah Mohamed Amin
- Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sheau Wei Tan
- Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | | | | | | | | | - Suet Lin Chia
- Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Khatijah Yusoff
- Universiti Putra Malaysia, Serdang, Malaysia.,Malaysian Genome Institute, National Institute of Biotechnology Malaysia, Kajang, Malaysia
| | - Noorjahan Banu Alitheen
- Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
16
|
Zhang J, Wang L, Xu X, Li X, Guan W, Meng T, Xu G. Transcriptome-Based Network Analysis Unveils Eight Immune-Related Genes as Molecular Signatures in the Immunomodulatory Subtype of Triple-Negative Breast Cancer. Front Oncol 2020; 10:1787. [PMID: 33042828 PMCID: PMC7530237 DOI: 10.3389/fonc.2020.01787] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
Objective: Triple-negative breast cancer (TNBC) is a high heterogeneity cancer. The identification of genomic aberrations that drive each of the TNBC subtypes may predict the prognosis of patients with TNBC and provide novel therapeutic strategies in clinical practice. This study focuses on the transcriptome-based gene expression of TNBC and aims to generate comprehensive gene co-expression networks correlated with the immune-related subtype of TNBC. Methods: The transcriptome profiles of 107 female patients with TNBC were analyzed. Weighted gene co-expression network analysis (WGCNA) was applied to construct related networks and to sort hub-genes associated with the survival of TNBC patients. The data of the transcriptional expression, genomic alteration, survival status, and tumor immune microenvironment, which associated with hub-genes, were extracted, retrieved, and analyzed from Oncomine, UALCAN, TCGA, starBase, Kaplan–Meier Plotter, cBioPortal, and TIMER databases. Results: Immune-related hub-genes, including BIRC3, BTN3A1, CSF2RB, GIMAP7, GZMB, HCLS1, LCP2, and SELL, were found to be associated with clinical features of TNBC evaluated by WGCNA. These hub-genes belonged to the immunomodulatory subtype of TNBC and were upregulated in the TNBC cells. The protein expression of eight immune-related hub-genes was further confirmed to be upregulated in TNBC/CD8+ tissues detected by immunohistochemical staining. Survival analysis revealed that overexpression of eight immune-related hub-genes was in favor of the survival of patients with TNBC. Moreover, a positive correlation between eight immune-related hub-genes and immune cell infiltration was observed in TNBC patients. Furthermore, checkpoint inhibitor genes such as PD-L1, PD-1, and CTLA4 were more enrichment in the immunomodulatory subtype of TNBC and the expression of PD-L1, PD-1, and CTLA4 was positively correlated with eight immune-related hub-genes in the breast cancer dataset of TCGA. Conclusions: Eight immune-related hub-genes were identified to be molecular signatures in the immunomodulatory subtype of TNBC, which may provide therapeutic targets for the treatment of patients with breast cancer.
Collapse
Affiliation(s)
- Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Wang
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaolin Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Ting Meng
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Sordo-Bahamonde C, Lorenzo-Herrero S, Payer ÁR, Gonzalez S, López-Soto A. Mechanisms of Apoptosis Resistance to NK Cell-Mediated Cytotoxicity in Cancer. Int J Mol Sci 2020; 21:ijms21103726. [PMID: 32466293 PMCID: PMC7279491 DOI: 10.3390/ijms21103726] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are major contributors to immunosurveillance and control of tumor development by inducing apoptosis of malignant cells. Among the main mechanisms involved in NK cell-mediated cytotoxicity, the death receptor pathway and the release of granules containing perforin/granzymes stand out due to their efficacy in eliminating tumor cells. However, accumulated evidence suggest a profound immune suppression in the context of tumor progression affecting effector cells, such as NK cells, leading to decreased cytotoxicity. This diminished capability, together with the development of resistance to apoptosis by cancer cells, favor the loss of immunogenicity and promote immunosuppression, thus partially inducing NK cell-mediated killing resistance. Altered expression patterns of pro- and anti-apoptotic proteins along with genetic background comprise the main mechanisms of resistance to NK cell-related apoptosis. Herein, we summarize the main effector cytotoxic mechanisms against tumor cells, as well as the major resistance strategies acquired by tumor cells that hamper the extrinsic and intrinsic apoptotic pathways related to NK cell-mediated killing.
Collapse
Affiliation(s)
- Christian Sordo-Bahamonde
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Correspondence: (C.S.-B.); (A.L.-S.)
| | - Seila Lorenzo-Herrero
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ángel R. Payer
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Segundo Gonzalez
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alejandro López-Soto
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain
- Correspondence: (C.S.-B.); (A.L.-S.)
| |
Collapse
|
18
|
Lopès A, Billard E, Casse AH, Villéger R, Veziant J, Roche G, Carrier G, Sauvanet P, Briat A, Pagès F, Naimi S, Pezet D, Barnich N, Dumas B, Bonnet M. Colibactin-positive Escherichia coli induce a procarcinogenic immune environment leading to immunotherapy resistance in colorectal cancer. Int J Cancer 2020; 146:3147-3159. [PMID: 32037530 DOI: 10.1002/ijc.32920] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 01/17/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
Colibactin-producing E. coli (CoPEC) are frequently detected in colorectal cancer (CRC) and exhibit procarcinogenic properties. Because increasing evidence show the role of immune environment and especially of antitumor T-cells in CRC development, we investigated the impact of CoPEC on these cells in human CRC and in the APCMin/+ mice colon. T-cell density was evaluated by immunohistochemistry in human tumors known for their CoPEC status. APCmin/+ mice were chronically infected with a CoPEC strain (11G5). Immune cells (neutrophils and T-cell populations) were then quantified by immunofluorescent staining of the colon. The quantification of lymphoid populations was also performed in the mesenteric lymph nodes (MLNs). Here, we show that the colonization of CRC patients by CoPEC is associated with a decrease of tumor-infiltrating T lymphocytes (CD3+ T-cells). Similarly, we demonstrated, in mice, that CoPEC chronic infection decreases CD3+ and CD8+ T-cells and increases colonic inflammation. In addition, we noticed a significant decrease in antitumor T-cells in the MLNs of CoPEC-infected mice compared to that of controls. Moreover, we show that CoPEC infection decreases the antimouse PD-1 immunotherapy efficacy in MC38 tumor model. Our findings suggest that CoPEC could promote a procarcinogenic immune environment through impairment of antitumor T-cell response, leading to tumoral resistance to immunotherapy. CoPEC could thus be a new biomarker predicting the anti-PD-1 response in CRC.
Collapse
Affiliation(s)
- Amélie Lopès
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France.,Biologics Research, Sanofi R&D, Vitry-Sur-Seine, France
| | - Elisabeth Billard
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
| | - Al Hassan Casse
- Histopathology and Bio-Imaging Group, Sanofi R&D, Vitry-Sur-Seine, France
| | - Romain Villéger
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
| | - Julie Veziant
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France.,Service de Chirurgie Digestive, CHU Clermont-Ferrand, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Gwenaëlle Roche
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
| | - Guillaume Carrier
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France.,Service de Chirurgie Digestive, CHU Clermont-Ferrand, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pierre Sauvanet
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France.,Service de Chirurgie Digestive, CHU Clermont-Ferrand, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Arnaud Briat
- UMR 1240 Inserm/Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Franck Pagès
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, Paris, France.,Inserm U872, Laboratory of Integrative Cancer Immunology, Paris, France.,Université Paris Descartes, Paris, France.,Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Souad Naimi
- Histopathology and Bio-Imaging Group, Sanofi R&D, Vitry-Sur-Seine, France
| | - Denis Pezet
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France.,Service de Chirurgie Digestive, CHU Clermont-Ferrand, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Nicolas Barnich
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
| | - Bruno Dumas
- Biologics Research, Sanofi R&D, Vitry-Sur-Seine, France
| | - Mathilde Bonnet
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
| |
Collapse
|
19
|
Arias M, Martínez-Lostao L, Santiago L, Ferrandez A, Granville DJ, Pardo J. The Untold Story of Granzymes in Oncoimmunology: Novel Opportunities with Old Acquaintances. Trends Cancer 2017; 3:407-422. [PMID: 28718416 DOI: 10.1016/j.trecan.2017.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 12/16/2022]
Abstract
For more than 20 years perforin and granzymes (GZMs) have been recognized as key cell death executors of cytotoxic T (Tc) and natural killer (NK) cells during cancer immunosurveillance. In immune surveillance, perforin and GZMB, the most potent cytotoxic molecules, act mainly as antitumoral and anti-infectious factors. However, when expressed by immune regulatory cells they may contribute to immune evasion of specific cancer types. By contrast, the other major granzyme, GZMA, seems not to play a major role in Tc/NK cell-mediated cytotoxicity, but acts as a proinflammatory cytokine that might contribute to cancer development. Members of the GZM family also regulate other biological processes unrelated to cell death, such as angiogenesis, vascular integrity, extracellular matrix remodeling, and barrier function, all of which contribute to cancer initiation and progression. Thus, a new paradigm is emerging in the field of oncoimmunology. Can GZMs act as protumoral factors under some circumstances? We review the diverse roles of GZMs in cancer progression, and new therapeutic opportunities emerging from targeting these protumoral roles.
Collapse
Affiliation(s)
- Maykel Arias
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; These authors contributed equally to this work
| | - Luis Martínez-Lostao
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Department of Biochemistry and Molecular and Cell Biology, and Department of Microbiology, Preventive Medicine, and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; Servicio de Inmunología Hospital Clínico Universitario Lorenzo Blesa, Zaragoza, Spain; Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain; These authors contributed equally to this work
| | - Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Angel Ferrandez
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Servicio de Aparato Digestivo, Hospital Clínico Universitario Lorenzo Blesa, Zaragoza, Spain
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Julián Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Department of Biochemistry and Molecular and Cell Biology, and Department of Microbiology, Preventive Medicine, and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain; Aragon I+D Foundation (ARAID), Zaragoza, Spain.
| |
Collapse
|
20
|
Prizment AE, Vierkant RA, Smyrk TC, Tillmans LS, Nelson HH, Lynch CF, Pengo T, Thibodeau SN, Church TR, Cerhan JR, Anderson KE, Limburg PJ. Cytotoxic T Cells and Granzyme B Associated with Improved Colorectal Cancer Survival in a Prospective Cohort of Older Women. Cancer Epidemiol Biomarkers Prev 2017; 26:622-631. [PMID: 27979806 PMCID: PMC5380516 DOI: 10.1158/1055-9965.epi-16-0641] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/06/2016] [Accepted: 12/06/2016] [Indexed: 12/22/2022] Open
Abstract
Background: Host immune response may predict the course of colorectal cancer. We examined the survival of 468 colorectal cancer patients associated with two tumor-infiltrating immune biomarkers, the number of cytotoxic T lymphocytes (CTLs), and the activated CTLs, as reflected by the number of cells expressing granzyme B (GZMB) in the prospective Iowa Women's Health Study.Methods: Using paraffin-embedded tissue samples, we constructed and immunostained tumor microarrays with CD8 (for CTL) and GZMB antibodies. We scored CTL and GZMB densities in tumor epithelial and stromal tissues and also created a composite score for each biomarker (sum of the scores across tissue compartments). Cox regression estimated the HR and 95% confidence intervals (CI) for all-cause and colorectal cancer-specific death associated with each composite score.Results: CTL and GZMB composite scores were positively correlated (r = 0.65) and each biomarker was inversely correlated with stage at diagnosis. Both composite scores were higher in proximal colon tumors and tumors characterized by MSI-high, CIMP-high, or BRAF mutation status. HRs (95% CI) were 0.53 (0.38-0.75; Ptrend = 0.0004) and 0.66 (0.51-0.86; Ptrend = 0.002) for all-cause death, respectively, and 0.30 (0.18-0.51; Ptrend < 0.0001) and 0.41 (0.27-0.63; Ptrend < 0.0001) for colorectal cancer-related death, respectively. Including CTL and GZMB scores simultaneously in the model significantly improved the predictive performance of the models for all-cause and colorectal cancer-related death.Conclusions: Higher tumor infiltration with CTL and GZMB cells is associated with improved all-cause and cancer-specific survival of colorectal cancer patients.Impact: Both the number of CTLs and GZMB appear to be useful prognostic factors in colorectal cancer, irrespective of stage. Cancer Epidemiol Biomarkers Prev; 26(4); 622-31. ©2016 AACR.
Collapse
Affiliation(s)
- Anna E Prizment
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota.
- University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
| | - Robert A Vierkant
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Thomas C Smyrk
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Lori S Tillmans
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Heather H Nelson
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota
- University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
| | - Charles F Lynch
- Department of Epidemiology, University of Iowa, Iowa City, Iowa
| | - Thomas Pengo
- University Imaging Centers, University of Minnesota, Minneapolis, Minnesota
| | - Stephen N Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Timothy R Church
- Division of Environmental Health Sciences, University of Minnesota School of Public Health, Minneapolis, Minnesota
| | - James R Cerhan
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Kristin E Anderson
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota
- University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
| | - Paul J Limburg
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
21
|
Liu L, Zhao G, Wu W, Rong Y, Jin D, Wang D, Lou W, Qin X. Low intratumoral regulatory T cells and high peritumoral CD8(+) T cells relate to long-term survival in patients with pancreatic ductal adenocarcinoma after pancreatectomy. Cancer Immunol Immunother 2016; 65:73-82. [PMID: 26646849 PMCID: PMC11029368 DOI: 10.1007/s00262-015-1775-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
The prognosis for pancreatic ductal adenocarcinoma (PDAC) remains extremely poor. Recent studies have focused on the role of lymphocytes in the PDAC microenvironment. Using immunohistochemistry, our study explored the clinical significance of intratumoral or peritumoral CD4(+)Foxp3(+) regulatory T cells (Tregs) and CD8(+) T cells in the tumor microenvironment and analyzed their relation to the prognosis of PDAC in a consecutive series of 92 patients after resection. CD8(+) T cells were more frequently seen within peritumoral sites, while CD4(+)Foxp3(+) Tregs were more frequent within intratumoral areas. Neither exhibited any relationship with other clinicopathologic factors. Patients with low levels of intratumoral Tregs had longer disease-free survival than those with higher levels (DFS 22.2 vs. 11.2 months, p < 0.001), and patients with higher levels of peritumoral CD8(+) T cells had longer overall survival than those with lower levels (OS 31.0 vs. 14.2 months, p < 0.001). Multivariate analysis demonstrated that intratumoral Tregs (hazard ratio, HR 3.39, p = 0.010) and peritumoral CD8(+) T cells (HR 0.10, p < 0.001) are related to DFS and OS, respectively. These results indicate that intratumoral Tregs are a negative predictor of DFS, while peritumoral CD8(+) T cells are a positive predictor of OS for PDAC patients with pancreatectomy.
Collapse
Affiliation(s)
- Li Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Guochao Zhao
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Wenchuan Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Yefei Rong
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Dayong Jin
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Dansong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Wenhui Lou
- Institute of General Surgery, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Xinyu Qin
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| |
Collapse
|
22
|
Norton SE, Ward-Hartstonge KA, Taylor ES, Kemp RA. Immune cell interplay in colorectal cancer prognosis. World J Gastrointest Oncol 2015; 7:221-32. [PMID: 26483876 PMCID: PMC4606176 DOI: 10.4251/wjgo.v7.i10.221] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/12/2015] [Accepted: 08/25/2015] [Indexed: 02/05/2023] Open
Abstract
The immune response to colorectal cancer has proven to be a reliable measure of patient outcome in several studies. However, the complexity of the immune response in this disease is not well understood, particularly the interactions between tumour-associated cells and cells of the innate and adaptive immune system. This review will discuss the relationship between cancer associated fibroblasts and macrophages, as well as between macrophages and T cells, and demonstrate how each population may support or prevent tumour growth in a different immune environment.
Collapse
|
23
|
CCL18 as an independent favorable prognostic biomarker in patients with colorectal cancer. J Surg Res 2013; 183:163-9. [PMID: 23433718 DOI: 10.1016/j.jss.2013.01.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 12/28/2012] [Accepted: 01/10/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND CCL18 has been shown to have an important role in the progression of gastric and breast cancers. However, the prognostic value of CCL18 in colorectal cancer (CRC) remains unknown. MATERIALS AND METHODS We used immunohistochemistry to examine the expression of CCL18 in CRC patients. We applied both univariate and multivariate analysis to evaluate the prognostic value of CCL18 on CRC patients' survival. We used double staining to investigate the relationship between CCL18 and macrophages. RESULTS A total 371 CRC patient samples were enrolled in immunohistochemical analysis. According to our criteria, 118 samples (31.8%) showed a high CCL18 expression level. Clinicopathologic analysis revealed an association between the expression level of CCL18 and the preoperative carcino embryonic antigen level (P = 0.001), and the preoperative carbohydrate antigen 19-9 level (P = 0.003). Survival analysis and multivariate analysis revealed that CCL18 was an independent favorable prognostic factor in patients with CRC (P = 0.033). Double staining implied that CCL18 was expressed by macrophages. CONCLUSIONS A high CCL18 level might be an independent biomarker for predicting better survival of patients with CRC.
Collapse
|