1
|
Zhang X, Chen Y, Liu M, Long X, Guo C. Intervention strategies targeting virus and host factors against porcine reproductive and respiratory syndrome virus: A systematic review. Int J Biol Macromol 2024; 279:135403. [PMID: 39245101 DOI: 10.1016/j.ijbiomac.2024.135403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by porcine reproductive and respiratory syndrome virus (PRRSV) causes considerable economic losses to the global swine industry every year and seriously hinders the healthy development of this industry. Although tremendous efforts have been made over the past 30 years toward the development of prevention and control strategies against PRRSV infection, to date, treatments with proven efficacy have yet to be available due to our incomplete understanding of the molecular basis and complexity of the infection machinery. This review systematically discusses recent advances in the research and development of anti-PRRSV therapies targeting different stages of the viral life cycle. Furthermore, this review puts forward novel intervention targets and research approaches based on our in-depth exploration of virus-host interactions and the latest biological technologies, which have the potential to complement or transform current anti-PRRSV strategies and become breakthrough points for the control of PRRS in the future.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Yongjie Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Min Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Xiaoqin Long
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Chunhe Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
2
|
Fiers J, Cay AB, Maes D, Tignon M. A Comprehensive Review on Porcine Reproductive and Respiratory Syndrome Virus with Emphasis on Immunity. Vaccines (Basel) 2024; 12:942. [PMID: 39204065 PMCID: PMC11359659 DOI: 10.3390/vaccines12080942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in pig production worldwide and responsible for enormous production and economic losses. PRRSV infection in gestating gilts and sows induces important reproductive failure. Additionally, respiratory distress is observed in infected piglets and fattening pigs, resulting in growth retardation and increased mortality. Importantly, PRRSV infection interferes with immunity in the respiratory tract, making PRRSV-infected pigs more susceptible to opportunistic secondary pathogens. Despite the availability of commercial PRRSV vaccines for more than three decades, control of the disease remains a frustrating and challenging task. This paper provides a comprehensive overview of PRRSV, covering its history, economic and scientific importance, and description of the viral structure and genetic diversity. It explores the virus's pathogenesis, including cell tropism, viral entry, replication, stages of infection and epidemiology. It reviews the porcine innate and adaptative immune responses to comprehend the modulation mechanisms employed by PRRS for immune evasion.
Collapse
Affiliation(s)
- Jorian Fiers
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Ann Brigitte Cay
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| | - Dominiek Maes
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Marylène Tignon
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| |
Collapse
|
3
|
Ruedas-Torres I, Sánchez-Carvajal JM, Salguero FJ, Pallarés FJ, Carrasco L, Mateu E, Gómez-Laguna J, Rodríguez-Gómez IM. The scene of lung pathology during PRRSV-1 infection. Front Vet Sci 2024; 11:1330990. [PMID: 38566751 PMCID: PMC10985324 DOI: 10.3389/fvets.2024.1330990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important infectious diseases for the pig industry worldwide. The disease was firstly reported in 1987 and became endemic in many countries. Since then, outbreaks caused by strains of high virulence have been reported several times in Asia, America and Europe. Interstitial pneumonia, microscopically characterised by thickened alveolar septa, is the hallmark lesion of PRRS. However, suppurative bronchopneumonia and proliferative and necrotising pneumonia are also observed, particularly when a virulent strain is involved. This raises the question of whether the infection by certain strains results in an overstimulation of the proinflammatory response and whether there is some degree of correlation between the strain involved and a particular pattern of lung injury. Thus, it is of interest to know how the inflammatory response is modulated in these cases due to the interplay between virus and host factors. This review provides an overview of the macroscopic, microscopic, and molecular pathology of PRRSV-1 strains in the lung, emphasising the differences between strains of different virulence.
Collapse
Affiliation(s)
- Inés Ruedas-Torres
- United Kingdom Health Security Agency (UKHSA Porton Down), Salisbury, United Kingdom
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - José María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | | | - Francisco José Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Enric Mateu
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, Barcelona, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| |
Collapse
|
4
|
Lin C, Zeng M, Song J, Li H, Feng Z, Li K, Pei Y. PRRSV alters m 6A methylation and alternative splicing to regulate immune, extracellular matrix-associated function. Int J Biol Macromol 2023; 253:126741. [PMID: 37696370 DOI: 10.1016/j.ijbiomac.2023.126741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
The alternative splicing and N6-methyladenosine (m6A) modifications occurring during porcine reproductive and respiratory syndrome virus (PRRSV) infections remain poorly understood. Transcriptome and MeRIP-seq analyses were performed to identify the gene expression changes, splicing and m6A modifications in the lungs of PRRSV-infected pigs. In total, 1624 differentially expressed genes (DEGs) were observed between PRRSV-infected and uninfected pigs. We observed significant alterations in alternative splicing (54,367 events) and m6A modifications (2265 DASEs) in numerous genes, including LMO7, SLC25A27, ZNF185, and ECM1, during PRRSV infection. LMO7 and ZNF185 exhibited alternative splicing variants and reduced mRNA expression levels following PRRSV infection. Notably, LMO7 inhibited c-JUN, SMAD3, and FAK expression, whereas ZNF185 affected the expression of FAK, CDH1, and GSK3β downstream. Additionally, ECM1 influenced FAK expression by targeting ITGB3 and AKT2, suggesting its involvement in extracellular matrix accumulation through the ITGB3-AKT2/FAK pathway. These changes may facilitate viral invasion and replication by modulating the expression of genes and proteins participating in crucial cellular processes associated with immunity and the extracellular matrix. We highlight the importance of these genes and their associated pathways in PRRSV infections and suggest that targeting these may be a promising therapeutic approach for treating viral infections.
Collapse
Affiliation(s)
- Chenghong Lin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Mu Zeng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jia Song
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
| | - Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| |
Collapse
|
5
|
Afzal A, Khawar MB, Habiba U, Afzal H, Hamid SE, Rafiq M, Abbasi MH, Sheikh N, Abaidullah R, Asif Z, Saeed T. Diagnostic and therapeutic value of EVs in lungs diseases and inflammation. Mol Biol Rep 2023; 51:26. [PMID: 38127201 DOI: 10.1007/s11033-023-09045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023]
Abstract
Extracellular vesicles (EVs) are membrane-derived messengers which have been playing an important role in the inflammation and pathogenesis of lung diseases. EVs contain varieties of DNA, RNA, and membrane receptors through which they work as a delivery system for bioactive molecules as well as intracellular communicators. EV signaling mediates tumor progression and metastasis. EVs are linked with many diseases and perform a diagnostic role in lung injury and inflammation so are used to diagnose the severity of diseases. EVs containing a variety of biomolecules communicate with the recipient cells during pathophysiological mechanisms thereby acquiring the attention of clinicians toward the diagnostic and therapeutic potential of EVs in different lung diseases. In this review, we summarize the role of EVs in inflammation with an emphasis on their potential as a novel candidate in the diagnostics and therapeutics of chronic obstructive pulmonary disease, asthma, and sarcoidosis.
Collapse
Affiliation(s)
- Ali Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| | - Ume Habiba
- Department of Zoology, University of Education, Lahore, Pakistan
| | - Hanan Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Syeda Eisha Hamid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mussarat Rafiq
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Rimsha Abaidullah
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Zoya Asif
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Tahaa Saeed
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
6
|
Stas MR, Kreutzmann H, Stadler J, Sassu EL, Mair KH, Koch M, Knecht C, Stadler M, Dolezal M, Balka G, Zaruba M, Mötz M, Saalmüller A, Rümenapf T, Gerner W, Ladinig A. Influence of PRRSV-1 vaccination and infection on mononuclear immune cells at the maternal-fetal interface. Front Immunol 2022; 13:1055048. [PMID: 36426366 PMCID: PMC9679432 DOI: 10.3389/fimmu.2022.1055048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/18/2022] [Indexed: 10/21/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating viruses for the global swine industry. Infection during late gestation causes reproductive failure but the local immune response in utero remains poorly understood. In this study, an experimental PRRSV-infection model with two different PRRSV-1 field isolates was used to investigate the immune cell phenotypes at the maternal-fetal interface during late gestation. In addition, phenotypic changes induced by a modified live virus (MLV, ReproCyc® PRRS EU) vaccine were studied. Vaccinated (n = 12) and non-vaccinated pregnant gilts (n = 12) were challenged with either one of the PRRSV-1 field isolates (low vs. high virulent, LV or HV) or sham-inoculated at day 84 of gestation. Twenty-one days post infection all gilts were euthanized and the fetal preservation status for all fetuses per litter was assessed. Leukocytes from the maternal-fetal interface were isolated and PRRSV-induced changes were investigated using ex vivo phenotyping by flow cytometry. PRRSV load in tissue from the maternal endometrium (ME) and fetal placenta (FP) was determined by RT-qPCR. In the ME, a vast increase in CD8β T cells with CD8αposCD27dim early effector phenotype was found for fetuses from the non-vaccinated LV and HV-challenged gilts, compared to non-treated and vaccinated-only controls. HV-challenged fetuses also showed significant increases of lymphocytes with effector phenotypes in the FP, including NKp46pos NK cells, CD8αhigh γδ T cells, as well as CD8αposCD27pos/dim CD4 and CD8 T cells. In vaccinated animals, this common activation of effector phenotypes was more confined and the fetal preservation status significantly improved. Furthermore, a negative correlation between the viral load and CD163highCD169pos mononuclear phagocytic cells was observed in the FP of HV-infected animals. These results suggest that the strong expansion of effector lymphocytes in gilts that were only infected causes immune-pathogenesis rather than protection. In contrast, the attenuated MLV seems to dampen this effect, yet presumably induces memory cells that limit reproductive failure. This work provides valuable insights into changes of local immune cell phenotypes following PRRSV vaccination and infection.
Collapse
Affiliation(s)
- Melissa R. Stas
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Heinrich Kreutzmann
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Julia Stadler
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - Elena L. Sassu
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kerstin H. Mair
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Pathobiology, Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michaela Koch
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christian Knecht
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Maria Stadler
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Marlies Dolezal
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Marianne Zaruba
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Marlene Mötz
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Armin Saalmüller
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Till Rümenapf
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Wilhelm Gerner
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
7
|
You X, Lei Y, Zhang P, Xu D, Ahmed Z, Yang Y. Role of transcription factors in porcine reproductive and respiratory syndrome virus infection: A review. Front Microbiol 2022; 13:924004. [PMID: 35928151 PMCID: PMC9344050 DOI: 10.3389/fmicb.2022.924004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease caused by the PRRS virus that leads to reproductive disorders and severe dyspnoea in pigs, which has serious economic impacts. One of the reasons PRRSV cannot be effectively controlled is that it has developed countermeasures against the host immune response, allowing it to survive and replicate for long periods. Transcription Factors acts as a bridge in the interactions between the host and PRRSV. PRRSV can create an environment conducive to PRRSV replication through transcription factors acting on miRNAs, inflammatory factors, and immune cells. Conversely, some transcription factors also inhibit PRRSV proliferation in the host. In this review, we systematically described how PRRSV uses host transcription factors such as SP1, CEBPB, STATs, and AP-1 to escape the host immune system. Determining the role of transcription factors in immune evasion and understanding the pathogenesis of PRRSV will help to develop new treatments for PRRSV.
Collapse
Affiliation(s)
- Xiangbin You
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, China
| | - Ying Lei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, China
| | - Ping Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Dequan Xu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Youbing Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, China
- *Correspondence: Youbing Yang
| |
Collapse
|
8
|
Wang TY, Sun MX, Zhang HL, Wang G, Zhan G, Tian ZJ, Cai XH, Su C, Tang YD. Evasion of Antiviral Innate Immunity by Porcine Reproductive and Respiratory Syndrome Virus. Front Microbiol 2021; 12:693799. [PMID: 34512570 PMCID: PMC8430839 DOI: 10.3389/fmicb.2021.693799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Innate immunity is the front line for antiviral immune responses and bridges adaptive immunity against viral infections. However, various viruses have evolved many strategies to evade host innate immunity. A typical virus is the porcine reproductive and respiratory syndrome virus (PRRSV), one of the most globally devastating viruses threatening the swine industry worldwide. PRRSV engages several strategies to evade the porcine innate immune responses. This review focus on the underlying mechanisms employed by PRRSV to evade pattern recognition receptors signaling pathways, type I interferon (IFN-α/β) receptor (IFNAR)-JAK-STAT signaling pathway, and interferon-stimulated genes. Deciphering the antiviral immune evasion mechanisms by PRRSV will enhance our understanding of PRRSV’s pathogenesis and help us to develop more effective methods to control and eliminate PRRSV.
Collapse
Affiliation(s)
- Tong-Yun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ming-Xia Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hong-Liang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guoqing Zhan
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Infectious Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chenhe Su
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
9
|
Hernández J, Li Y, Mateu E. Swine Dendritic Cell Response to Porcine Reproductive and Respiratory Syndrome Virus: An Update. Front Immunol 2021; 12:712109. [PMID: 34394113 PMCID: PMC8355811 DOI: 10.3389/fimmu.2021.712109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells, unique to initiate and coordinate the adaptive immune response. In pigs, conventional DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived DCs (moDCs) have been described in blood and tissues. Different pathogens, such as viruses, could infect these cells, and in some cases, compromise their response. The understanding of the interaction between DCs and viruses is critical to comprehend viral immunopathological responses. Porcine reproductive and respiratory syndrome virus (PRRSV) is the most important respiratory pathogen in the global pig population. Different reports support the notion that PRRSV modulates pig immune response in addition to their genetic and antigenic variability. The interaction of PRRSV with DCs is a mostly unexplored area with conflicting results and lots of uncertainties. Among the scarce certainties, cDCs and pDCs are refractory to PRRSV infection in contrast to moDCs. Additionally, response of DCs to PRRSV can be different depending on the type of DCs and maybe is related to the virulence of the viral isolate. The precise impact of this virus-DC interaction upon the development of the specific immune response is not fully elucidated. The present review briefly summarizes and discusses the previous studies on the interaction of in vitro derived bone marrow (bm)- and moDCs, and in vivo isolated cDCs, pDCs, and moDCs with PRRSV1 and 2.
Collapse
Affiliation(s)
- Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Yanli Li
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Enric Mateu
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Cerdanyola del Vallès, Spain
| |
Collapse
|
10
|
Ruedas-Torres I, Rodríguez-Gómez IM, Sánchez-Carvajal JM, Guil-Luna S, Larenas-Muñoz F, Pallarés FJ, Carrasco L, Gómez-Laguna J. Up-Regulation of Immune Checkpoints in the Thymus of PRRSV-1-Infected Piglets in a Virulence-Dependent Fashion. Front Immunol 2021; 12:671743. [PMID: 34046040 PMCID: PMC8144631 DOI: 10.3389/fimmu.2021.671743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022] Open
Abstract
Virulent porcine reproductive and respiratory syndrome virus (PRRSV) strains, such as the Lena strain, have demonstrated a higher thymus tropism than low virulent strains. Virulent PRRSV strains lead to severe thymus atrophy, which could be related to marked immune dysregulation. Impairment of T-cell functions through immune checkpoints has been postulated as a strategy executed by PRRSV to subvert the immune response, however, its role in the thymus, a primary lymphoid organ, has not been studied yet. Therefore, the goal of this study was to evaluate the expression of selected immune checkpoints (PD1/PDL1, CTLA4, TIM3, LAG3, CD200R1 and IDO1) in the thymus of piglets infected with two different PRRSV-1 strains. Thymus samples from piglets infected with the low virulent 3249 strain, the virulent Lena strain and mock-infected were collected at 1, 3, 6, 8 and 13 days post-infection (dpi) to analyze PRRSV viral load, relative quantification and immunohistochemical staining of immune checkpoints. PD1/PDL1, CTLA4, TIM3, LAG3 and IDO1 immune checkpoints were significantly up-regulated in the thymus of PRRSV infected piglets, especially in those infected with the virulent Lena strain from 6 dpi onwards. This up-regulation was associated with disease progression, high viral load and cell death. Co-expression of these molecules can affect T-cell development, maturation and selection, negatively regulating the host immune response against PRRSV.
Collapse
Affiliation(s)
- Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Irene M Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - José María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Silvia Guil-Luna
- Maimónides Institute for Biomedical Research of Córdoba, IMIBIC, Córdoba, Spain
| | - Fernanda Larenas-Muñoz
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Francisco J Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| |
Collapse
|
11
|
Chen X, Yuan S, Zhang J. Correlation study between blood cytokines and lymphocytes in early postoperative critical patients with compromised immune function. Medicine (Baltimore) 2020; 99:e22459. [PMID: 33080681 PMCID: PMC7571877 DOI: 10.1097/md.0000000000022459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Major surgery due to traumatic injury can activate early systemic postoperative pro-inflammatory responses and postoperative immunosuppression. However, the interaction between them is complex and not entirely clear. This study was performed in postoperative patients admitted to the intensive care unit (ICU) to elucidate the correlation between the systemic cellular immunity function and circulating cytokines levels in the early postoperative period.Twenty-four cases of postoperative patients admitted to the ICU were enrolled in this study. Twelve hours after admission, blood routine examination and measurement of circulating cytokines (interleukin-2 [IL-2], IL-4, IL-6, IL-10, IL-17A, interferon-γ, tumor necrosis factor-alpha [TNF-α], TNF-β, granulocyte-colony stimulating factor [G-CSF], and granulocyte-macrophage colony-stimulating factor [GM-CSF]) were performed. The correlation analysis between cytokines levels and absolute peripheral blood lymphocyte count or lymphocytes/neutrophils ratio was analyzed.The cytokines (IL-2, IL-4, IL-6, IL-10, IL-17A, TNF-α, G-CSF, and GM-CSF) levels were increased above the normal upper limit at 12 hours after surgery. The number of leukocytes and neutrophils were markedly increased. In contrast, the absolute count and relative ratio of lymphocytes decreased below the lower normal limit. Spearman correlation analysis showed a moderate negative correlation between absolute peripheral blood lymphocyte count and IL-2 or IL-4 level. A low-negative correlation between absolute peripheral blood lymphocyte count and GM-CSF levels was detected. We also found that lymphocytes/neutrophils ratio was also negatively correlated with plasma IL-2, IL-4, or GM-CSF level.In ICU patients with compromised immune function in the early postoperative period, the elevated levels of IL-2, IL-4, and GM-CSF may be the compensatory responses to systemic immunosuppression.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Critical Care Medicine
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Yuan
- Department of Critical Care Medicine
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Nazki S, Khatun A, Jeong CG, Mattoo SUS, Gu S, Lee SI, Kim SC, Park JH, Yang MS, Kim B, Park CK, Lee SM, Kim WI. Evaluation of local and systemic immune responses in pigs experimentally challenged with porcine reproductive and respiratory syndrome virus. Vet Res 2020; 51:66. [PMID: 32404209 PMCID: PMC7222343 DOI: 10.1186/s13567-020-00789-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
The host-associated defence system responsible for the clearance of porcine reproductive and respiratory syndrome virus (PRRSV) from infected pigs is currently poorly understood. To better understand the dynamics of host–pathogen interactions, seventy-five of 100 pigs infected with PRRSV-JA142 and 25 control pigs were euthanized at 3, 10, 21, 28 and 35 days post-challenge (dpc). Blood, lung, bronchoalveolar lavage (BAL) and bronchial lymph node (BLN) samples were collected to evaluate the cellular immune responses. The humoral responses were evaluated by measuring the levels of anti-PRRSV IgG and serum virus-neutralizing (SVN) antibodies. Consequently, the highest viral loads in the sera and lungs of the infected pigs were detected between 3 and 10 dpc, and these resulted in moderate to mild interstitial pneumonia, which resolved accompanied by the clearance of most of the virus by 28 dpc. At peak viremia, the frequencies of alveolar macrophages in infected pigs were significantly decreased, whereas the monocyte-derived DC/macrophage and conventional DC frequencies were increased, and these effects coincided with the early induction of local T-cell responses and the presence of proinflammatory cytokines/chemokines in the lungs, BAL, and BLN as early as 10 dpc. Conversely, the systemic T-cell responses measured in the peripheral blood mononuclear cells were delayed and significantly induced only after the peak viremic stage between 3 and 10 dpc. Taken together, our results suggest that activation of immune responses in the lung could be the key elements for restraining PRRSV through the early induction of T-cell responses at the sites of virus replication.
Collapse
Affiliation(s)
- Salik Nazki
- College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Amina Khatun
- College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea.,Department of Pathology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Chang-Gi Jeong
- College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Sameer Ul Salam Mattoo
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental & Biosource Science, Jeonbuk National University, Iksan, South Korea
| | - Suna Gu
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental & Biosource Science, Jeonbuk National University, Iksan, South Korea
| | - Sim-In Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Ji-Hyo Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Myoun-Sik Yang
- College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Sang-Myeong Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental & Biosource Science, Jeonbuk National University, Iksan, South Korea.
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea.
| |
Collapse
|
13
|
Zhang Y, Liu S, Jiang H, Deng H, Dong C, Shen W, Chen H, Gao C, Xiao S, Liu ZF, Wei D. G 2-quadruplex in the 3'UTR of IE180 regulates Pseudorabies virus replication by enhancing gene expression. RNA Biol 2020; 17:816-827. [PMID: 32070191 DOI: 10.1080/15476286.2020.1731664] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RNA secondary structure elements in the mRNA 3'-untranslated regions (3'UTR) play important roles in post-transcriptional regulation. RNA structure elements in the viral RNA provide valuable model for studying diverse regulation mechanisms. Herpesvirus genomes are double-stranded DNA with GC-rich sequences, which can be transcribed into abundant GC-rich RNAs. It is valuable to explore the structures and function of those GC-rich RNAs. We identified a G2-quadruplex-forming sequence named PQS18-1 in the 3'UTR of the unique immediate early gene of Pseudorabies virus (PRV), an important member of Alphaherpesvirinae subfamily. The RNA PQS18-1 was folded into parallel G-quadruplex structure, enhancing gene expression. Both non-G-quadruplex mutant and G3-quadruplex mutant in the 3'UTR showed lower gene expression level than the wildtype G2-quadruplex. TMPyP4 destroyed PQS18-1 G2-quadruplex and suppressed gene expression, accordingly reducing PRV replication by one titre in the PK15 cells at 24 h post infection. Our findings indicated that the RNA G2-quadruplex in 3'UTR was essential for high expression of IE180 gene, and it could be a specific post-transcription regulation element in response to small molecules or other macromolecules. This study discovers a novel RNA G2-quadruplex in the 3'UTR of an immediate early gene of alphaherpesvirus and provides a new nucleic acid target for anti-virus drug design.
Collapse
Affiliation(s)
- Yashu Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, China.,College of Science, Huazhong Agricultural University , Wuhan, China.,College of Plant Science and Technology, Huazhong Agricultural University , Wuhan, China
| | - Sisi Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, China.,College of Science, Huazhong Agricultural University , Wuhan, China
| | - Hui Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, China
| | - Hui Deng
- College of Science, Huazhong Agricultural University , Wuhan, China
| | - Chen Dong
- College of Science, Huazhong Agricultural University , Wuhan, China
| | - Wei Shen
- College of Science, Huazhong Agricultural University , Wuhan, China
| | - Haifeng Chen
- College of Science, Huazhong Agricultural University , Wuhan, China
| | - Chao Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, China.,College of Science, Huazhong Agricultural University , Wuhan, China.,College of Plant Science and Technology, Huazhong Agricultural University , Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, China
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, China.,College of Science, Huazhong Agricultural University , Wuhan, China
| |
Collapse
|
14
|
Ke H, Lee S, Kim J, Liu HC, Yoo D. Interaction of PIAS1 with PRRS virus nucleocapsid protein mediates NF-κB activation and triggers proinflammatory mediators during viral infection. Sci Rep 2019; 9:11042. [PMID: 31363150 PMCID: PMC6667501 DOI: 10.1038/s41598-019-47495-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) activates NF-κB during infection. We examined the ability of all 22 PRRSV genes for NF-κB regulation and determined the nucleocapsid (N) protein as the NF-κB activator. Protein inhibitor of activated STAT1 (signal transducer and activator of transcription 1) (PIAS1) was identified as a cellular protein binding to N. PIAS1 is known to bind to p65 (RelA) in the nucleus and blocks its DNA binding, thus functions as a repressor of NF-κB. Binding of N to PIAS1 released p65 for NF-κB activation. The N-terminal half of PIAS1 was mapped as the N-binding domain, and this region overlapped its p65-binding domain. For N, the region between 37 and 72 aa was identified as the binding domain to PIAS1, and this domain alone was able to activate NF-κB. A nuclear localization signal (NLS) knock-out mutant N did not activate NF-κB, and this is mostly likely due to the lack of its interaction with PIAS1 in the nucleus, demonstrating the positive correlation between the binding of N to PIAS1 and the NF-κB activation. Our study reveals a role of N in the nucleus for NF-κB activation and proinflammatory cytokine production during infection.
Collapse
Affiliation(s)
- Hanzhong Ke
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sera Lee
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jineui Kim
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
15
|
Cellular Innate Immunity against PRRSV and Swine Influenza Viruses. Vet Sci 2019; 6:vetsci6010026. [PMID: 30862035 PMCID: PMC6466325 DOI: 10.3390/vetsci6010026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Porcine respiratory disease complex (PRDC) is a polymicrobial syndrome that results from a combination of infectious agents, such as environmental stressors, population size, management strategies, age, and genetics. PRDC results in reduced performance as well as increased mortality rates and production costs in the pig industry worldwide. This review focuses on the interactions of two enveloped RNA viruses—porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza virus (SwIV)—as major etiological agents that contribute to PRDC within the porcine cellular innate immunity during infection. The innate immune system of the porcine lung includes alveolar and parenchymal/interstitial macrophages, neutrophils (PMN), conventional dendritic cells (DC) and plasmacytoid DC, natural killer cells, and γδ T cells, thus the in vitro and in vivo interactions between those cells and PRRSV and SwIV are reviewed. Likewise, the few studies regarding PRRSV-SwIV co-infection are illustrated together with the different modulation mechanisms that are induced by the two viruses. Alterations in responses by natural killer (NK), PMN, or γδ T cells have not received much attention within the scientific community as their counterpart antigen-presenting cells and there are numerous gaps in the knowledge regarding the role of those cells in both infections. This review will help in paving the way for future directions in PRRSV and SwIV research and enhancing the understanding of the innate mechanisms that are involved during infection with these viruses.
Collapse
|
16
|
Montaner-Tarbes S, Del Portillo HA, Montoya M, Fraile L. Key Gaps in the Knowledge of the Porcine Respiratory Reproductive Syndrome Virus (PRRSV). Front Vet Sci 2019; 6:38. [PMID: 30842948 PMCID: PMC6391865 DOI: 10.3389/fvets.2019.00038] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important swine diseases in the world. It is causing an enormous economic burden due to reproductive failure in sows and a complex respiratory syndrome in pigs of all ages, with mortality varying from 2 to 100% in the most extreme cases of emergent highly pathogenic strains. PRRSV displays complex interactions with the immune system and a high mutation rate, making the development, and implementation of control strategies a major challenge. In this review, the biology of the virus will be addressed focusing on newly discovered functions of non-structural proteins and novel dissemination mechanisms. Secondly, the role of different cell types and viral proteins will be reviewed in natural and vaccine-induced immune response together with the role of different immune evasion mechanisms focusing on those gaps of knowledge that are critical to generate more efficacious vaccines. Finally, novel strategies for antigen discovery and vaccine development will be discussed, in particular the use of exosomes (extracellular vesicles of endocytic origin). As nanocarriers of lipids, proteins and nucleic acids, exosomes have potential effects on cell activation, modulation of immune responses and antigen presentation. Thus, representing a novel vaccination approach against this devastating disease.
Collapse
Affiliation(s)
- Sergio Montaner-Tarbes
- Innovex Therapeutics S.L, Badalona, Spain.,Departamento de Ciencia Animal, Escuela Técnica Superior de Ingenieria Agraria (ETSEA), Universidad de Lleida, Lleida, Spain
| | - Hernando A Del Portillo
- Innovex Therapeutics S.L, Badalona, Spain.,Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - María Montoya
- Innovex Therapeutics S.L, Badalona, Spain.,Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Lorenzo Fraile
- Innovex Therapeutics S.L, Badalona, Spain.,Departamento de Ciencia Animal, Escuela Técnica Superior de Ingenieria Agraria (ETSEA), Universidad de Lleida, Lleida, Spain
| |
Collapse
|
17
|
Bordet E, Blanc F, Tiret M, Crisci E, Bouguyon E, Renson P, Maisonnasse P, Bourge M, Leplat JJ, Giuffra E, Jouneau L, Schwartz-Cornil I, Bourry O, Bertho N. Porcine Reproductive and Respiratory Syndrome Virus Type 1.3 Lena Triggers Conventional Dendritic Cells 1 Activation and T Helper 1 Immune Response Without Infecting Dendritic Cells. Front Immunol 2018; 9:2299. [PMID: 30333837 PMCID: PMC6176214 DOI: 10.3389/fimmu.2018.02299] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/17/2018] [Indexed: 12/03/2022] Open
Abstract
Porcine Reproductive and Respiratory Syndrome virus (PRRSV) is an arterivirus responsible for highly contagious infection and huge economic losses in pig industry. Two species, PRRSV-1 and PRRSV-2 are distinguished, PRRSV-1 being more prevalent in Europe. PRRSV-1 can further be divided in subtypes. PRRSV-1.3 such as Lena are more pathogenic than PRRSV-1.1 such as Lelystad or Flanders13. PRRSV-1.3 viruses trigger a higher Th1 response than PRRSV-1.1, although the role of the cellular immune response in PRRSV clearance remains ill defined. The pathogenicity as well as the T cell response inductions may be differentially impacted according to the capacity of the virus strain to infect and/or activate DCs. However, the interactions of PRRSV with in vivo-differentiated-DC subtypes such as conventional DC1 (cDC1), cDC2, and monocyte-derived DCs (moDC) have not been thoroughly investigated. Here, DC subpopulations from Lena in vivo infected pigs were analyzed for viral genome detection. This experiment demonstrates that cDC1, cDC2, and moDC are not infected in vivo by Lena. Analysis of DC cytokines production revealed that cDC1 are clearly activated in vivo by Lena. In vitro comparison of 3 Europeans strains revealed no infection of the cDC1 and cDC2 and no or little infection of moDC with Lena, whereas the two PRRSV-1.1 strains infect none of the 3 DC subtypes. In vitro investigation of T helper polarization and cytokines production demonstrate that Lena induces a higher Th1 polarization and IFNγ secretion than FL13 and LV. Altogether, this work suggests an activation of cDC1 by Lena associated with a Th1 immune response polarization.
Collapse
Affiliation(s)
- Elise Bordet
- Virologie et Immunologie Moléculaire, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Fany Blanc
- UMR Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mathieu Tiret
- UMR Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elisa Crisci
- UMR Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Edwige Bouguyon
- Virologie et Immunologie Moléculaire, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Patricia Renson
- Virologie et Immunologie Porcines, Agence Nationale de Sécurité Sanitaire, Ploufragan, France.,Université Bretagne Loire, Rennes, France.,Union des Groupements de Producteurs de Viande de Bretagne (UGPVB), Rennes, France
| | - Pauline Maisonnasse
- Virologie et Immunologie Moléculaire, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mickael Bourge
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-Jacques Leplat
- UMR Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elisabetta Giuffra
- UMR Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Luc Jouneau
- Virologie et Immunologie Moléculaire, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Isabelle Schwartz-Cornil
- Virologie et Immunologie Moléculaire, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Olivier Bourry
- Virologie et Immunologie Porcines, Agence Nationale de Sécurité Sanitaire, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Nicolas Bertho
- Virologie et Immunologie Moléculaire, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
18
|
Reséndiz M, Valenzuela O, Hernández J. Response of the cDC1 and cDC2 subtypes of tracheal dendritic cells to porcine reproductive and respiratory syndrome virus. Vet Microbiol 2018; 223:27-33. [PMID: 30173748 DOI: 10.1016/j.vetmic.2018.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the most important disease affecting the swine industry worldwide. Although monocytes and macrophages, especially tissue-resident and alveolar macrophages, are the primary target of PRRSV, monocyte- and bone marrow-derived dendritic cells (DCs) are also susceptible to PRRSV infection. It has been shown that lung DCs cannot be infected with PRRSV, but the response and susceptibility of bona fide conventional DC subtypes (cDCs; cDC1 and cDC2) is unknown. In this work, evaluation of the response of tracheal cDC1 and cDC2 subsets to PRRSV revealed differential cytokine expression, whereby cDC1 subsets expressed higher levels of IFN-α and cDC2 subsets more IL-10. Toll-like receptors (TLRs) were also affected: cDC2 cells induced greater upregulation of TLR2 and TLR4, and CD163+ cells showed TLR3 upregulation. However, we could not demonstrate under our experimental conditions that cDC1 and cCD2 subsets are susceptible to PRRSV infection. Our findings show the effects of PRRSV on cDC1 and cDC2 subsets and that these cells were not infected by PRRSV.
Collapse
Affiliation(s)
- Mónica Reséndiz
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a la Victoria km 0.6 C.P. 83304, Hermosillo, Sonora, Mexico
| | - Olivia Valenzuela
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a la Victoria km 0.6 C.P. 83304, Hermosillo, Sonora, Mexico.
| |
Collapse
|
19
|
Identification of the RNA Pseudoknot within the 3' End of the Porcine Reproductive and Respiratory Syndrome Virus Genome as a Pathogen-Associated Molecular Pattern To Activate Antiviral Signaling via RIG-I and Toll-Like Receptor 3. J Virol 2018; 92:JVI.00097-18. [PMID: 29618647 DOI: 10.1128/jvi.00097-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/28/2018] [Indexed: 12/24/2022] Open
Abstract
Once infected by viruses, cells can detect pathogen-associated molecular patterns (PAMPs) on viral nucleic acid by host pattern recognition receptors (PRRs) to initiate the antiviral response. Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of porcine reproductive and respiratory syndrome (PRRS), characterized by reproductive failure in sows and respiratory diseases in pigs of different ages. To date, the sensing mechanism of PRRSV has not been elucidated. Here, we reported that the pseudoknot region residing in the 3' untranslated regions (UTR) of the PRRSV genome, which has been proposed to regulate RNA synthesis and virus replication, was sensed as nonself by retinoic acid-inducible gene I (RIG-I) and Toll-like receptor 3 (TLR3) and strongly induced type I interferons (IFNs) and interferon-stimulated genes (ISGs) in porcine alveolar macrophages (PAMs). The interaction between the two stem-loops inside the pseudoknot structure was sufficient for IFN induction, since disruption of the pseudoknot interaction powerfully dampened the IFN induction. Furthermore, transfection of the 3' UTR pseudoknot transcripts in PAMs inhibited PRRSV replication in vitro Importantly, the predicted similar structures of other arterivirus members, including equine arteritis virus (EAV), lactate dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus (SHFV), also displayed strong IFN induction activities. Together, in this work we identified an innate recognition mechanism by which the PRRSV 3' UTR pseudoknot region served as PAMPs of arteriviruses and activated innate immune signaling to produce IFNs that inhibit virus replication. All of these results provide novel insights into innate immune recognition during virus infection.IMPORTANCE PRRS is the most common viral disease in the pork industry. It is caused by PRRSV, a positive single-stranded RNA virus, whose infection often leads to persistent infection. To date, it is not yet clear how PRRSV is recognized by the host and what is the exact mechanism of IFN induction. Here, we investigated the nature of PAMPs on PRRSV and the associated PRRs. We found that the 3' UTR pseudoknot region of PRRSV, which has been proposed to regulate viral RNA synthesis, could act as PAMPs recognized by RIG-I and TLR3 to induce type I IFN production to suppress PRRSV infection. This report is the first detailed description of pattern recognition for PRRSV, which is important in understanding the antiviral response of arteriviruses, especially PRRSV, and extends our knowledge on virus recognition.
Collapse
|
20
|
Intercellular transfer of mitochondria rescues virus-induced cell death but facilitates cell-to-cell spreading of porcine reproductive and respiratory syndrome virus. Virology 2018; 517:122-134. [DOI: 10.1016/j.virol.2017.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 11/21/2022]
|
21
|
Transcriptome profile of lung dendritic cells after in vitro porcine reproductive and respiratory syndrome virus (PRRSV) infection. PLoS One 2017; 12:e0187735. [PMID: 29140992 PMCID: PMC5687707 DOI: 10.1371/journal.pone.0187735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/25/2017] [Indexed: 12/02/2022] Open
Abstract
The porcine reproductive and respiratory syndrome (PRRS) is an infectious disease that leads to high financial and production losses in the global swine industry. The pathogenesis of this disease is dependent on a multitude of factors, and its control remains problematic. The immune system generally defends against infectious diseases, especially dendritic cells (DCs), which play a crucial role in the activation of the immune response after viral infections. However, the understanding of the immune response and the genetic impact on the immune response to PRRS virus (PRRSV) remains incomplete. In light of this, we investigated the regulation of the host immune response to PRRSV in porcine lung DCs using RNA-sequencing (RNA-Seq). Lung DCs from two different pig breeds (Pietrain and Duroc) were collected before (0 hours) and during various periods of infection (3, 6, 9, 12, and 24 hours post infection (hpi)). RNA-Seq analysis revealed a total of 20,396 predicted porcine genes, which included breed-specific differentially expressed immune genes. Pietrain and Duroc infected lung DCs showed opposite gene expression courses during the first time points post infection. Duroc lung DCs reacted more strongly and distinctly than Pietrain lung DCs during these periods (3, 6, 9, 12 hpi). Additionally, cluster analysis revealed time-dependent co-expressed groups of genes that were involved in immune-relevant pathways. Key clusters and pathways were identified, which help to explain the biological and functional background of lung DCs post PRRSV infection and suggest IL-1β1 as an important candidate gene. RNA-Seq was also used to characterize the viral replication of PRRSV for each breed. PRRSV was able to infect and to replicate differently in lung DCs between the two mentioned breeds. These results could be useful in investigations on immunity traits in pig breeding and enhancing the health of pigs.
Collapse
|
22
|
Brockmeier SL, Loving CL, Eberle KC, Hau SJ, Buckley A, Van Geelen A, Montiel NA, Nicholson T, Lager KM. Interferon alpha inhibits replication of a live-attenuated porcine reproductive and respiratory syndrome virus vaccine preventing development of an adaptive immune response in swine. Vet Microbiol 2017; 212:48-51. [PMID: 29173587 DOI: 10.1016/j.vetmic.2017.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/31/2017] [Accepted: 11/05/2017] [Indexed: 01/12/2023]
Abstract
Type I interferons, such as interferon alpha (IFN-α), contribute to innate antiviral immunity by promoting production of antiviral mediators and are also involved in promoting an adaptive immune response. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating and costly viruses to the swine industry world-wide and has been shown to induce a meager IFN-α response. Previously we administered porcine IFN-α using a replication-defective adenovirus vector (Ad5-IFN-α) at the time of challenge with virulent PRRSV and demonstrated an increase in the number of virus-specific IFNγ secreting cells, indicating that the presence of IFN-α at the time of infection can alter the adaptive immune responses to PRRSV. In the current experiment, we explored the use of IFN-α as an adjuvant administered with live-attenuated PRRSV vaccine as a method to enhance immune response to the vaccine. Unlike the previous studies with fully virulent virus, one injection of the Ad5-IFN-α abolished replication of the vaccine virus and as a result there was no detectible adaptive immune response. Although IFN-α did not have the desired adjuvant effect, the results further highlight the use of IFN-α as a treatment for PRRSV infection.
Collapse
Affiliation(s)
- Susan L Brockmeier
- USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, Ames, IA, 50010, United States.
| | - Crystal L Loving
- USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, Ames, IA, 50010, United States
| | - Kirsten C Eberle
- USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, Ames, IA, 50010, United States
| | - Samantha J Hau
- USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, Ames, IA, 50010, United States
| | - Alexandra Buckley
- USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, Ames, IA, 50010, United States
| | - Albert Van Geelen
- USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, Ames, IA, 50010, United States
| | - Nestor A Montiel
- USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, Ames, IA, 50010, United States
| | - Tracy Nicholson
- USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, Ames, IA, 50010, United States
| | - Kelly M Lager
- USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, Ames, IA, 50010, United States
| |
Collapse
|
23
|
Lee Y, Kiupel M, Soboll Hussey G. Characterization of respiratory dendritic cells from equine lung tissues. BMC Vet Res 2017; 13:313. [PMID: 29110660 PMCID: PMC5674750 DOI: 10.1186/s12917-017-1240-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/30/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Dendritic cells (DCs) are professional antigen-presenting cells that have multiple subpopulations with different phenotypes and immune functions. Previous research demonstrated that DCs have strong potential for anti-viral defense in the host. However, viruses including alphaherpesvirinae have developed strategies to interfere with the function or maturation of DCs, causing immune dysfunction and avoidance of pathogen elimination. The goal of the present study was to isolate and characterize equine lung-derived DCs (L-DCs) for use in studies of respiratory viruses and compare their features with equine blood-derived DCs (B-DCs), which are currently used for these types of studies. RESULTS We found that L-DCs were morphologically similar to B-DCs. Overall, B-DCs demonstrated higher expression of CD86 and CD172α than L-DCs, but both cell types expressed high levels of MHC class II and CD44, as well as moderate amounts of CD163, CD204, and Bla36. In contrast, the endocytic activity of L-DCs was elevated compared to that of B-DCs. Finally, mononuclear cells isolated from lung (L-MCs), which are used as precursors for L-DCs, expressed more antigen-presenting cell-associated markers such as MHC class II and CD172α compared to their counterparts from blood. CONCLUSIONS Our results indicate that L-DCs may be in an earlier differentiation stage compared to B-DCs. Concurrent with this observation, L-MCs possessed significantly more antigen-uptake capacity compared to their counterparts from blood. It is likely that L-DCs play an important role in antigen uptake and processing of respiratory pathogens and are major contributors to respiratory tract immunity and may be ideal tools for future in vitro or ex vivo studies.
Collapse
Affiliation(s)
- Yao Lee
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Rd, A13, East Lansing, MI, 48824, USA
| | - Matti Kiupel
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Rd, A13, East Lansing, MI, 48824, USA
| | - Gisela Soboll Hussey
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Rd, A13, East Lansing, MI, 48824, USA.
| |
Collapse
|
24
|
Wang L, Zhou L, Hu D, Ge X, Guo X, Yang H. Porcine reproductive and respiratory syndrome virus suppresses post-transcriptionally the protein expression of IFN-β by upregulating cellular microRNAs in porcine alveolar macrophages in vitro. Exp Ther Med 2017; 15:115-126. [PMID: 29387185 PMCID: PMC5769220 DOI: 10.3892/etm.2017.5397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/21/2017] [Indexed: 01/11/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been recognized to inhibit the response of type I interferon (IFN) both in vivo and in vitro. However, the post-transcriptional mechanism by which PRRSV suppresses type I IFN induction in virus-infected host cells remains unclear. The present study first demonstrated that PRRSV inhibited post-transcriptionally the protein induction of IFN-β in primary porcine alveolar macrophages (PAMs) during early infection, and the inhibition effect mediated by the Chinese highly pathogenic (HP)-PRRSV was stronger. Next, we analyzed the cellular microRNA (miRNA)-modulated protein expression of porcine IFN-β by dual firefly/Renilla luciferase reporter assay, transfection of miRNA mimics and inhibitor assay and polyinosinic-polycytidylic acid (poly I:C) treatment of PAMs, showing that porcine miRNAs including let-7b, miR-26a, miR-34a and miR-145 are able to inhibit IFN-β protein expression in primary PAMs by directly targeting sequences within the porcine IFN-β 3'UTR locating at 160-181, 9-31, 27-47 and 12-32 bp, respectively. Finally, we confirmed that let-7b, miR-26a, miR-34a and miR-145, were upregulated in PRRSV-infected PAMs early in vitro, and the expression level of these miRNAs in HP-PRRSV JXwn06-infected PAMs were higher than those in low pathogenic PRRSV HB-1/3.9-infected PAMs. The endogenous cellular miRNA-mediated inhibition of IFN-β induction in PRRSV-infected PAMs early could be relieved by miRNA antagonists. Taken together, our findings suggest for the first time that PRRSV can suppress post-transcriptionally protein expression of IFN-β by upregulating cellular miRNAs in PAMs in vitro, providing novel insight into mechanisms in relation to the PRRSV-mediated immunomodulation of porcine innate immunity.
Collapse
Affiliation(s)
- Lilin Wang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, P.R. China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, P.R. China
| | - Dongmei Hu
- Veterinary Diagnostic Laboratory, China Animal Disease Control Center, Beijing 102600, P.R. China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, P.R. China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, P.R. China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
25
|
Liu Q, Miller LC, Blecha F, Sang Y. Reduction of infection by inhibiting mTOR pathway is associated with reversed repression of type I interferon by porcine reproductive and respiratory syndrome virus. J Gen Virol 2017; 98:1316-1328. [PMID: 28613152 DOI: 10.1099/jgv.0.000802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Type I interferons (IFNs) are critical in animal antiviral regulation. IFN-mediated signalling regulates hundreds of genes that are directly associated with antiviral, immune and other physiological responses. The signalling pathway mediated by mechanistic target of rapamycin (mTOR), a serine/threonine kinase regulated by IFNs, is key in regulation of cellular metabolism and was recently implicated in host antiviral responses. However, little is known about how animal type I IFN signalling coordinates immunometabolic reactions during antiviral defence. Here, using porcine reproductive and respiratory syndrome virus (PRRSV), we found that the genes in the mTOR signalling pathway were differently regulated in PRRSV-infected porcine alveolar macrophages at different activation statuses. Moreover, mTOR signalling regulated PRRSV infection in MARC-145 and primary porcine cells, in part, through modulating the production and signalling of type I IFNs. Taken together, we determined that the mTOR signalling pathway involves PRRSV infection and regulates expression and signalling of type I IFNs against viral infection. These findings suggest that the mTOR signalling pathway has a bi-directional loop with the type I IFN system and imply that some components in the mTOR signalling pathway can be utilized as targets for studying antiviral immunity and for designing therapeutic reagents.
Collapse
Affiliation(s)
- Qinfang Liu
- Departments of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Laura C Miller
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, 1920 Dayton Avenue, Ames, IA 50010, USA
| | - Frank Blecha
- Departments of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Yongming Sang
- Present address: Department of Agricultural and Environmental Sciences, College of Agriculture, Human and Natural Sciences, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN, USA
- Departments of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
26
|
The viral innate immune antagonism and an alternative vaccine design for PRRS virus. Vet Microbiol 2017; 209:75-89. [PMID: 28341332 PMCID: PMC7111430 DOI: 10.1016/j.vetmic.2017.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 02/06/2023]
Abstract
PRRS virus has evolved to suppress the antiviral innate immunity during infection. Type I interferons are potent antiviral cytokines and function to stimulate the adaptive immune responses. Six viral proteins have been identified as interferon antagonists and characterized for their molecular actions. Interferon antagonism-negative viruses are attenuated and have been proven induce protective immunity. Interferon suppression-negative PRRS virus may serve as an alternative vaccine for PRRS.
Porcine reproductive and respiratory syndrome (PRRS) remains one of the most economically significant diseases in the swine industry worldwide. The current vaccines are less satisfactory to confer protections from heterologous infections and long-term persistence, and the need for better vaccines are urgent. The immunological hallmarks in PRRSV-infected pigs include the unusually poor production of type I interferons (IFNs-α/β) and the aberrant and delayed adaptive immune responses, indicating that PRRSV has the ability to suppress both innate and adaptive immune responses in the host. Type I IFNs are the potent antiviral cytokines and recent studies reveal their pleiotropic functions in the priming of expansion and maturation of adaptive immunity. Thus, IFN antagonism-negative PRRSV is hypothesized to be attenuated and to build effective and broad- spectrum innate and adaptive immune responses in pigs. Such vaccines are promising alternatives to traditional vaccines for PRRSV.
Collapse
|
27
|
Diseases Primarily Affecting the Reproductive System. Vet Med (Auckl) 2017. [PMCID: PMC7150237 DOI: 10.1016/b978-0-7020-5246-0.00018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Liu J, Wei S, Liu L, Shan F, Zhao Y, Shen G. The role of porcine reproductive and respiratory syndrome virus infection in immune phenotype and Th1/Th2 balance of dendritic cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:245-252. [PMID: 27473784 DOI: 10.1016/j.dci.2016.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to characterize the immune response of dendritic cells derived from monocytes (Mo-DCs) in the porcine peripheral blood following infection with porcine reproductive and respiratory syndrome virus (PRRSV). Viral load assays indicated that PRRSV efficiently infected Mo-DCs but failed to replicate, whereas PRRSV infection of Mo-DCs decreased the expression of SLA-I, SLA-II, CD80 and CD40 compared with those of mock Mo-DCs. Furthermore, we analyzed the cytokine profiles using quantitative RT-PCR and ELISA. Results indicated apparent changes in IL-10 and IL-12 p40 expression but not in IFN-γ and TNF-α among Mo-DCs infected with PRRSV and uninfected Mo-DCs. Additionally, flow cytometry analysis of the altered Mo-DCs together with IL-4 and GM-CSF induction for 7days revealed the typical morphology and phenotype with 91.73% purity before infection with PRRSV. Overall, our data demonstrate that PRRSV impaired the normal antigen presentation of Mo-DCs and led to inadequate adaptive immune response by down-regulating the expression of SLA-I,SLA-II, CD80 and CD40. Enhanced Th2 -type cytokine IL-10 secretion and reduced Th1-type cytokines IL-12p40,IFN-γ and TNF-α secretion results in Th1/Th2 imbalance.
Collapse
Affiliation(s)
- Jinling Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Shu Wei
- The Preventive Center of Animal Disease of LiaoNing Province, No.95, Renhe Road, Shenbei District, Shenyang 110164, PR China
| | - Lixia Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Fengping Shan
- Department of Immunology, Basic School of Medicine, China Medical University, No. 92, North Second Road, Shenyang 110001, PR China
| | - Yujun Zhao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Guoshun Shen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, PR China.
| |
Collapse
|
29
|
Overend CC, Cui J, Grubman MJ, Garmendia AE. The activation of the IFNβ induction/signaling pathway in porcine alveolar macrophages by porcine reproductive and respiratory syndrome virus is variable. Vet Res Commun 2016; 41:15-22. [PMID: 27896670 DOI: 10.1007/s11259-016-9665-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/08/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND It has been recognized that the expression of type I interferon (IFNα/β) may be suppressed during infection with porcine reproductive, respiratory syndrome virus (PRRSV). This causes profound negative effects on both the innate and adaptive immunity of the host resulting in persistence of infection. OBJECTIVE Test the effects of PRRSV infection of porcine alveolar macrophages (PAMs), the main target cell, on the expression of interferon beta (IFNβ) and downstream signaling events. METHODS In order to examine those effects, PAMs harvested from lungs of healthy PRRSV-free animals were infected with virulent, attenuated, infectious clone-derived chimeric viruses, or field PRRS virus strains. Culture supernatants from the infected PAMs were tested for IFNβ protein expression by means of indirect ELISA and for bioactivity by a vesicular stomatitis virus plaque reduction assay. The expression of the Mx protein was assayed to ascertain signaling events. RESULTS These experiments demonstrated that PRRSV does induce variably, the expression of bioactive IFNβ protein in the natural host cell. To further elucidate the effects of PRRSV infection on IFNβ signaling, Mx-1 an interferon stimulated gene (ISG), was also tested for expression. Interestingly, Mx-1 expression by infected PAMs generally correlated with IFNβ production. CONCLUSION The results of this study demonstrate that the induction of IFNβ and signaling in PAMs after PRRSV infection is variable.
Collapse
Affiliation(s)
- Christopher C Overend
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Rd, Storrs, CT, 06269, USA.,Department of Biomedical Sciences and Pathobiology Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA, 24061-0913, USA
| | - Junru Cui
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Rd, Storrs, CT, 06269, USA
| | | | - Antonio E Garmendia
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Rd, Storrs, CT, 06269, USA.
| |
Collapse
|
30
|
Liu J, Wei S, Liu L, Yu L, Wang C, Zhao Y, Shan F, Shen G. Data on PRRSV infection promoted the subtype of porcine dendritic cells from mDCs to pDCs in vivo. Data Brief 2016; 9:155-8. [PMID: 27642622 PMCID: PMC5018077 DOI: 10.1016/j.dib.2016.08.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 10/26/2022] Open
Abstract
The related study has confirmed that porcine reproductive and respiratory syndrome virus (PRRSV) infection may impair mature states of DCs can lead to suboptimal adaptive immune response ("The role of porcine reproductive and respiratory syndrome virus infection in immunephenotype and Th1/Th2 balance of dendritic cells" (Jinling Liu, We Shu, Liaxia Liu et al., 2016) [1]). In this data article,the porcine dendritic cells (DCs) isolated from porcine peripheral blood and spleen were collected after infection with PRRSV, then the characteristics of the subset differentiation of DCs were analyzed with FACS Calibur Cytometer and fluorescence microscope respectively. This data is an important foundation for further investigation into immune suppression by PRRSV infection, and that, it also provides new data for the development of potential antiviral therapies based on DCs and PRRS vaccines.
Collapse
Affiliation(s)
- Jinling Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Shu Wei
- The Preventive Center of Animal Disease of LiaoNing Province, No.95, Renhe Road, Shenbei District, Shenyang 110164, P.R. China
| | - Lixia Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Lihui Yu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Chunyan Wang
- The 705 hospital Shen Xiang, Shenyang 110016, P.R. China
| | - Yujun Zhao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Fengping Shan
- Department of Immunology, Basic School of Medicine, China Medical University, No. 92, North Second Road, Shenyang 110001, P.R. China
| | - Guoshun Shen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, P.R. China
| |
Collapse
|
31
|
Piñeyro PE, Subramaniam S, Kenney SP, Heffron CL, Giménez-Lirola LG, Meng XJ. Modulation of Proinflammatory Cytokines in Monocyte-Derived Dendritic Cells by Porcine Reproductive and Respiratory Syndrome Virus Through Interaction with the Porcine Intercellular-Adhesion-Molecule-3-Grabbing Nonintegrin. Viral Immunol 2016; 29:546-556. [PMID: 27643915 DOI: 10.1089/vim.2016.0104] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important global swine pathogen. PRRSV infects porcine dendritic cells (DCs), but the effects of the interactions with DCs are largely unknown. Current research focuses on the production and regulation of interferons and selected inflammatory cytokines in DCs, which may play key roles in immune modulation. In addition, PRRSV also downregulates swine leukocyte antigen class I (SLA-I), SLA-II, and CD80/86 costimulatory molecules in DCs. In this study, we aim to evaluate the PRRSV immunomodulatory effects on monocyte-derived DCs (MoDCs) through interactions with porcine DC-SIGN (pDC-SIGN) receptor. We demonstrated that blocking the PRRSV and pDC-SIGN interactions in MoDCs with recombinant hICAM-3 did not affect the regulatory effects of PRRSV on SLA-I, SLA-II, or CD80/86 molecules. The hICAM-3 did not affect the morphological changes on MoDCs associated with their activation and maturation after PRRSV infection, and did not impair the virus infectivity in these cells either. The mRNA levels of tumor necrosis factor alpha (TNF-α), IL-12p35, IL-1β, and IL-6 were upregulated after hICAM-3 treatment or PRRSV infection, but in the presence of the blockage of pDC-SIGN in MoDCs with hICAM-3, PRRSV did not modulate the expression of these genes. However, in the presence of an anti-pDC-SIGN monoclonal antibody (mAb), we showed that PRRSV infection significantly reduced the mRNA expression levels of TNF-α and IL-1α, but enhanced the expression of IL-12p35 in MoDCs. Both hICAM-3-Fc and pDC-SIGN mAb treatments did not modulate proinflammatory cytokine protein levels in the culture supernatants of PRRSV-infected MoDCs. The results indicate that blocking the PRRSV-pDC-SIGN interactions by recombinant hICAM-3-Fc did not significantly affect virus infectivity, DC maturation, and proinflammatory cytokine gene expression in infected MoDCs. However, blocking the PRRSV-pDC-SIGN interactions on MoDCs with an anti-pDC-SIGN mAb revealed differential regulatory effects on specific proinflammatory gene expressions in those cells.
Collapse
Affiliation(s)
- Pablo E Piñeyro
- 1 Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University , Blacksburg, Virginia.,2 Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University College of Veterinary Medicine , Ames, Iowa
| | - Sakthivel Subramaniam
- 1 Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Scott P Kenney
- 1 Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - C Lynn Heffron
- 1 Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Luis G Giménez-Lirola
- 2 Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University College of Veterinary Medicine , Ames, Iowa
| | - Xiang-Jin Meng
- 1 Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| |
Collapse
|
32
|
Singleton H, Graham SP, Bodman-Smith KB, Frossard JP, Steinbach F. Establishing Porcine Monocyte-Derived Macrophage and Dendritic Cell Systems for Studying the Interaction with PRRSV-1. Front Microbiol 2016; 7:832. [PMID: 27313573 PMCID: PMC4889594 DOI: 10.3389/fmicb.2016.00832] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/17/2016] [Indexed: 11/13/2022] Open
Abstract
Monocyte-derived macrophages (MoMØ) and monocyte-derived dendritic cells (MoDC) are two model systems well established in human and rodent systems that can be used to study the interaction of pathogens with host cells. Porcine reproductive and respiratory syndrome virus (PRRSV) is known to infect myeloid cells, such as macrophages (MØ) and dendritic cells (DC). Therefore, this study aimed to establish systems for the differentiation and characterization of MoMØ and MoDC for subsequent infection with PRRSV-1. M-CSF differentiated MoMØ were stimulated with activators for classical (M1) or alternative (M2) activation. GM-CSF and IL-4 generated MoDC were activated with the well established maturation cocktail containing PAMPs and cytokines. In addition, MoMØ and MoDC were treated with dexamethasone and IL-10, which are known immuno-suppressive reagents. Cells were characterized by morphology, phenotype, and function and porcine MØ subsets highlighted some divergence from described human counterparts, while MoDC, appeared more similar to mouse and human DCs. The infection with PRRSV-1 strain Lena demonstrated different replication kinetics between MoMØ and MoDC and within subsets of each cell type. While MoMØ susceptibility was significantly increased by dexamethasone and IL-10 with an accompanying increase in CD163/CD169 expression, MoDC supported only a minimal replication of PRRSV These findings underline the high variability in the susceptibility of porcine myeloid cells toward PRRSV-1 infection.
Collapse
Affiliation(s)
- Helen Singleton
- Virology Department, Animal and Plant Health AgencySurrey, UK; Faculty of Health and Medical Sciences, University of SurreySurrey, UK
| | - Simon P Graham
- Virology Department, Animal and Plant Health AgencySurrey, UK; Faculty of Health and Medical Sciences, University of SurreySurrey, UK
| | | | | | - Falko Steinbach
- Virology Department, Animal and Plant Health AgencySurrey, UK; Faculty of Health and Medical Sciences, University of SurreySurrey, UK
| |
Collapse
|
33
|
Hu Y, Cong X, Chen L, Qi J, Wu X, Zhou M, Yoo D, Li F, Sun W, Wu J, Zhao X, Chen Z, Yu J, Du Y, Wang J. Synergy of TLR3 and 7 ligands significantly enhances function of DCs to present inactivated PRRSV antigen through TRIF/MyD88-NF-κB signaling pathway. Sci Rep 2016; 6:23977. [PMID: 27046485 PMCID: PMC4820752 DOI: 10.1038/srep23977] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/17/2016] [Indexed: 12/28/2022] Open
Abstract
PRRS is one of the most important diseases in swine industry. Current PRRS inactivated vaccine provides only a limited protection and cannot induce sufficient cell-mediated immune responses. In this study, we first found that the mRNA and protein levels of Th1-type cytokines (IFN-γ, IL-12) and Th2-type cytokines (IL-6, IL-10) were significantly increased through TRIF/MyD88-NF-κB signaling pathway when porcine peripheral blood monocyte-derived dendritic cells (MoDCs) were treated with poly (I: C) of TLR3 ligand and imiquimod of TLR7 ligand, along with inactivated PRRSV antigen. Meanwhile, the ability of catching PRRSV antigen was also significantly enhanced. In mice experiment, it was found that the PRRSV-specific T lymphocyte proliferation, the percentages of CD4+, CD8+ T lymphocytes and PRRSV-specific CD3+ T cells producing IFN-γ and IL-4, the levels of Th1- and Th2-type cytokines and the titers of neutralization antibody were significantly enhanced in poly (I: C), imiquimod along with inactivated PRRSV group. Taken together, results of our experiments described for the first time that synergy of TLR3 and 7 ligands could significantly enhance the function of DCs to present inactivated PRRSV antigen through TRIF/MyD88-NF-κB signaling pathway and be used as adjuvant candidate for the development of novel PRRS inactivated vaccine.
Collapse
Affiliation(s)
- Yue Hu
- Key Laboratory of animal biotechnology and disease control and prevention of Shandong Province, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China
| | - Xiaoyan Cong
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China
| | - Lei Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China
| | - Jing Qi
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China
| | - Xiangju Wu
- Key Laboratory of animal biotechnology and disease control and prevention of Shandong Province, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China
| | - Mingming Zhou
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802, USA
| | - Feng Li
- Department of Biology and Microbiology, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Wenbo Sun
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China
| | - Xiaomin Zhao
- Key Laboratory of animal biotechnology and disease control and prevention of Shandong Province, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Zhi Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China
| | - Jiang Yu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China
| | - Jinbao Wang
- Key Laboratory of animal biotechnology and disease control and prevention of Shandong Province, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China
| |
Collapse
|
34
|
Lunney JK, Fang Y, Ladinig A, Chen N, Li Y, Rowland B, Renukaradhya GJ. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): Pathogenesis and Interaction with the Immune System. Annu Rev Anim Biosci 2015; 4:129-54. [PMID: 26646630 DOI: 10.1146/annurev-animal-022114-111025] [Citation(s) in RCA: 461] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review addresses important issues of porcine reproductive and respiratory syndrome virus (PRRSV) infection, immunity, pathogenesis, and control. Worldwide, PRRS is the most economically important infectious disease of pigs. We highlight the latest information on viral genome structure, pathogenic mechanisms, and host immunity, with a special focus on immune factors that modulate PRRSV infections during the acute and chronic/persistent disease phases. We address genetic control of host resistance and probe effects of PRRSV infection on reproductive traits. A major goal is to identify cellular/viral targets and pathways for designing more effective vaccines and therapeutics. Based on progress in viral reverse genetics, host transcriptomics and genomics, and vaccinology and adjuvant technologies, we have identified new areas for PRRS control and prevention. Finally, we highlight the gaps in our knowledge base and the need for advanced molecular and immune tools to stimulate PRRS research and field applications.
Collapse
Affiliation(s)
- Joan K Lunney
- Animal Parasitic Diseases Laboratory, BARC ARS USDA, Beltsville, Maryland 20705;
| | - Ying Fang
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506-5600; , ,
| | - Andrea Ladinig
- University of Veterinary Medicine, Vienna 1210, Austria;
| | - Nanhua Chen
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506-5600; , , .,College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China;
| | - Yanhua Li
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506-5600; , ,
| | - Bob Rowland
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506-5600; , ,
| | | |
Collapse
|
35
|
Li Z, Wang G, Wang Y, Zhang C, Huang B, Li Q, Li L, Xue B, Ding P, Cai X, Wang C, Zhou EM. Immune responses of pigs immunized with a recombinant porcine reproductive and respiratory syndrome virus expressing porcine GM-CSF. Vet Immunol Immunopathol 2015; 168:40-8. [PMID: 26300317 DOI: 10.1016/j.vetimm.2015.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/27/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has spread worldwide, causing huge economic losses to the swine industry. The current PRRSV vaccines have failed to provide broad protection against various strains. Granulocyte macrophage colony-stimulating factor (GM-CSF), an efficacious adjuvant, has been shown to enhance the immunogenicity of various vaccines. The purpose of this study was to construct a recombinant live attenuated PRRSV that expresses porcine GM-CSF (pGM-CSF) and evaluate the immune responses of pigs immunized with the recombinant virus. The results showed that the recombinant PRRSV was successfully rescued and had similar growth properties to parental virus grown in Marc-145 cells. The recombinant virus was stable for 10 passages in cell culture. Pigs intramuscularly immunized with the recombinant virus produced a similar humoral response to that elicited using parental virus. With regard to cell-mediated immunity assessed in peripheral blood, the recombinant virus induced higher proportion of CD4(+)CD8(+) double-positive T cells (DPT), higher IFN-γ level at 0 and 7 days post-challenge (DPC), and lower viremia at 21 DPC than pigs immunized with parental virus. These results indicate that recombinant PRRSV expressing pGM-CSF can induce a significant higher cellular immune response and reduce the persistent infection compared pigs vaccinated with the parental virus. This is first report of evaluation of immune response in pigs elicited by a recombinant live attenuated PRRSV expressing porcine GM-CSF. It may represent a novel strategy for future development of genetic engineered vaccines against PRRSV infection.
Collapse
Affiliation(s)
- Zhijun Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, Heilongjiang Province 150001, China
| | - Yan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Chong Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, Heilongjiang Province 150001, China
| | - Baicheng Huang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Qiongyi Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Liangliang Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Biyun Xue
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Peiyang Ding
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, Heilongjiang Province 150001, China
| | - Chengbao Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
36
|
Loving CL, Osorio FA, Murtaugh MP, Zuckermann FA. Innate and adaptive immunity against Porcine Reproductive and Respiratory Syndrome Virus. Vet Immunol Immunopathol 2015. [PMID: 26209116 PMCID: PMC7112826 DOI: 10.1016/j.vetimm.2015.07.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many highly effective vaccines have been produced against viruses whose virulent infection elicits strong and durable protective immunity. In these cases, characterization of immune effector mechanisms and identification of protective epitopes/immunogens has been informative for the development of successful vaccine programs. Diseases in which the immune system does not rapidly clear the acute infection and/or convalescent immunity does not provide highly effective protection against secondary challenge pose a major hurdle for clinicians and scientists. Porcine reproductive and respiratory syndrome virus (PRRSV) falls primarily into this category, though not entirely. PRRSV causes a prolonged infection, though the host eventually clears the virus. Neutralizing antibodies can provide passive protection when present prior to challenge, though infection can be controlled in the absence of detectable neutralizing antibodies. In addition, primed pigs (through natural exposure or vaccination with a modified-live vaccine) show some protection against secondary challenge. While peripheral PRRSV-specific T cell responses have been examined, their direct contribution to antibody-mediated immunity and viral clearance have not been fully elucidated. The innate immune response following PRRSV infection, particularly the antiviral type I interferon response, is meager, but when provided exogenously, IFN-α enhances PRRSV immunity and viral control. Overall, the quality of immunity induced by natural PRRSV infection is not ideal for informing vaccine development programs. The epitopes necessary for protection may be identified through natural exposure or modified-live vaccines and subsequently applied to vaccine delivery platforms to accelerate induction of protective immunity following vaccination. Collectively, further work to identify protective B and T cell epitopes and mechanisms by which PRRSV eludes innate immunity will enhance our ability to develop more effective methods to control and eliminate PRRS disease.
Collapse
Affiliation(s)
- Crystal L Loving
- USDA-ARS-National Animal Disease Center, Ames, IA, United States.
| | - Fernando A Osorio
- Nebraska Center for Virology and School of Veterinary & Biomedical Sciences, University of Nebraska-Lincoln, United States
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Federico A Zuckermann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL, United States
| |
Collapse
|
37
|
López-Robles G, Silva-Campa E, Burgara-Estrella A, Hernández J. Characterization of antigen-presenting cells from the porcine respiratory system. Res Vet Sci 2015; 100:80-7. [DOI: 10.1016/j.rvsc.2015.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/01/2015] [Accepted: 04/13/2015] [Indexed: 12/23/2022]
|
38
|
Abstract
Porcine reproductive and respiratory disease syndrome (PRRS) is a viral pandemic that especially affects neonates within the “critical window” of immunological development. PRRS was recognized in 1987 and within a few years became pandemic causing an estimated yearly $600,000 economic loss in the USA with comparative losses in most other countries. The causative agent is a single-stranded, positive-sense enveloped arterivirus (PRRSV) that infects macrophages and plasmacytoid dendritic cells. Despite the discovery of PRRSV in 1991 and the publication of >2,000 articles, the control of PRRS is problematic. Despite the large volume of literature on this disease, the cellular and molecular mechanisms describing how PRRSV dysregulates the host immune system are poorly understood. We know that PRRSV suppresses innate immunity and causes abnormal B cell proliferation and repertoire development, often lymphopenia and thymic atrophy. The PRRSV genome is highly diverse, rapidly evolving but amenable to the generation of many mutants and chimeric viruses for experimental studies. PRRSV only replicates in swine which adds to the experimental difficulty since no inbred well-defined animal models are available. In this article, we summarize current knowledge and apply it toward developing a series of provocative and testable hypotheses to explain how PRRSV immunomodulates the porcine immune system with the goal of adding new perspectives on this disease.
Collapse
|
39
|
Development of a genome copy specific RT-qPCR assay for divergent strains of type 2 porcine reproductive and respiratory syndrome virus. J Virol Methods 2015; 218:1-6. [PMID: 25766790 DOI: 10.1016/j.jviromet.2015.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/10/2014] [Accepted: 02/08/2015] [Indexed: 11/21/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) became a significant pathogen of swine upon its emergence in the late 1980s and since then has exemplified a rapidly evolving, constantly re-emerging pathogen. In addition to the challenges faced in development of vaccines and diagnostics, research on the basic molecular pathogenesis of PRRSV is also restrained by the ability to accurately and comparatively quantitate levels of replication in different tissues and between strains. This is further complicated by the presence of non-genomic RNA within infected tissues which are generally detected with equivalent efficiency by RT-qPCR based techniques, thereby introducing inherent error in these measurements that may differ significantly by tissue and strain. To address this, an RT-qPCR based technique was developed which targets the viral RNA-dependent RNA polymerase gene (nsp9) which is unique to genomic RNA, being absent from all subgenomic and heteroclite RNAs. This assay targets a region of considerable sequence conservation, and based on sequence only, should be quantitative for approximately 40% of all Type 2 PRRSV strains in GenBank for which nsp9 sequence is available. The assay was demonstrated to be linear over nine orders of magnitude (10(10)-10(2) copies) and can be readily adapted for multiplex detection of additional divergent PRRSV strains. This assay will add significantly to the ability to assess and compare PRRSV replication in a variety of tissues and between divergent strains, including highly pathogenic strains of considerable concern to the global pork industry.
Collapse
|
40
|
Han M, Yoo D. Modulation of innate immune signaling by nonstructural protein 1 (nsp1) in the family Arteriviridae. Virus Res 2014; 194:100-9. [PMID: 25262851 PMCID: PMC7114407 DOI: 10.1016/j.virusres.2014.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 12/24/2022]
Abstract
Arteriviruses infect immune cells and may cause persistence in infected hosts. Inefficient induction of pro-inflammatory cytokines and type I IFNs are observed during infection of this group of viruses, suggesting that they may have evolved to escape the host immune surveillance for efficient survival. Recent studies have identified viral proteins regulating the innate immune signaling, and among these, nsp1 (nonstructural protein 1) is the most potent IFN antagonist. For porcine reproductive and respiratory syndrome virus (PRRSV), individual subunits (nsp1α and nsp1β) of nsp1 suppress type I IFN production. In particular, PRRSV-nsp1α degrades CREB (cyclic AMP responsive element binding)-binding protein (CBP), a key component of the IFN enhanceosome, whereas PRRSV-nsp1β degrades karyopherin-α1 which is known to mediate the nuclear import of ISGF3 (interferon-stimulated gene factor 3). All individual subunits of nsp1 of PRRSV, equine arteritis virus (EAV), lactate dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus (SHFV) appear to contain IFN suppressive activities. As with PRRSV-nsp1α, CBP degradation is evident by LDV-nsp1α and partly by SHFV-nsp1γ. This review summarizes the biogenesis and the role of individual subunits of nsp1 of arteriviruses for innate immune modulation.
Collapse
Affiliation(s)
- Mingyuan Han
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA.
| |
Collapse
|
41
|
Abstract
UNLABELLED Monocytic cells, including macrophages and dendritic cells, exist in different activation states that are critical to the regulation of antimicrobial immunity. Many pandemic viruses are monocytotropic, including porcine reproductive and respiratory syndrome virus (PRRSV), which directly infects subsets of monocytic cells and interferes with antiviral responses. To study antiviral responses in PRRSV-infected monocytic cells, we characterized inflammatory cytokine responses and genome-wide profiled signature genes to investigate response pathways in uninfected and PRRSV-infected monocytic cells at different activation states. Our findings showed suppressed interferon (IFN) production in macrophages in non-antiviral states and an arrest of lipid metabolic pathways in macrophages at antiviral states. Importantly, porcine monocytic cells at different activation states were susceptible to PRRSV and responded differently to viral infection. Based on Gene Ontology (GO) analysis, two approaches were used to potentiate antiviral activity: (i) pharmaceutical modulation of cellular lipid metabolism and (ii) in situ PRRSV replication-competent expression of interferon alpha (IFN-α). Both approaches significantly suppressed exogenous viral infection in monocytic cells. In particular, the engineered IFN-expressing PRRSV strain eliminated exogenous virus infection and sustained cell viability at 4 days postinfection in macrophages. These findings suggest an intricate interaction of viral infection with the activation status of porcine monocytic cells. An understanding and integration of antiviral infection with activation status of monocytic cells may provide a means of potentiating antiviral immunity. IMPORTANCE Activation statuses of monocytic cells, including monocytes, macrophages (Mϕs), and dendritic cells (DCs), are critically important for antiviral immunity. Unfortunately, the activation status of porcine monocytic cells or how cell activation status functionally interacts with antiviral immunity remains largely unknown. This is a significant omission because many economically important porcine viruses are monocytotropic, including our focus, PRRSV, which alone causes nearly $800 million economic loss annually in the U.S. swine industries. PRRSV is ideal for deciphering how monocytic cell activation statuses interact with antiviral immunity, because it directly infects subsets of monocytic cells and subverts overall immune responses. In this study, we systematically investigate the activation status of porcine monocytic cells to determine the intricate interaction of viral infection with activation statuses and functionally regulate antiviral immunity within the framework of the activation paradigm. Our findings may provide a means of potentiating antiviral immunity and leading to novel vaccines for PRRS prevention.
Collapse
|
42
|
Antagonizing interferon-mediated immune response by porcine reproductive and respiratory syndrome virus. BIOMED RESEARCH INTERNATIONAL 2014; 2014:315470. [PMID: 25101271 PMCID: PMC4101967 DOI: 10.1155/2014/315470] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/18/2014] [Accepted: 06/18/2014] [Indexed: 11/25/2022]
Abstract
Interferons (IFNs) are important components in innate immunity involved in the first line of defense to protect host against viral infection. Porcine reproductive and respiratory syndrome virus (PRRSV) leads to severe economic losses for swine industry since being first identified in early 1990s. PRRSV interplays with host IFN production and IFN-activated signaling, which may contribute to the delayed onset and low level of neutralizing antibodies, as well as weak cell-mediated immune response in infected pigs. PRRSV encodes several proteins that act as antagonists for the IFN signaling. In this review, we summarized the various strategies used by PRRSV to antagonize IFN production and thwart IFN-activated antiviral signaling, as well as the variable interference with IFN-mediated immune response by different PRRSV strains. Thorough understanding of the interaction between PRRSV and host innate immune response will facilitate elucidation of PRRSV pathogenesis and development of a better strategy to control PRRS.
Collapse
|
43
|
Badaoui B, Rutigliano T, Anselmo A, Vanhee M, Nauwynck H, Giuffra E, Botti S. RNA-sequence analysis of primary alveolar macrophages after in vitro infection with porcine reproductive and respiratory syndrome virus strains of differing virulence. PLoS One 2014; 9:e91918. [PMID: 24643046 PMCID: PMC3958415 DOI: 10.1371/journal.pone.0091918] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 02/18/2014] [Indexed: 12/03/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) mainly infects porcine alveolar macrophages (PAMs), resulting in porcine reproductive and respiratory syndrome (PRRS) in pigs. Most of the transcriptomic studies on PAMs infected with PRRSV conducted thus far have made use of microarray technology. Here, we investigated the transcriptome of PAMs in vitro at 12 h post-infection with two European PRRSV strains characterized by low (Lelystad, LV) and high (Lena) virulence through RNA-Seq. The expression levels of genes, isoforms, alternative transcription start sites (TSS) and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation upon infection with the two strains. Gene ontology analysis confirmed that infection of PAMs with both the Lena and LV strains affected signaling pathways directly linked to the innate immune response, including interferon regulatory factors (IRF), RIG1-like receptors, TLRs and PKR pathways. The results confirmed that interferon signaling is crucial for transcriptional regulation during PAM infection. IFN-β1 and IFN-αω, but not IFN-α, were up-regulated following infection with either the LV or Lena strain. The down-regulation of canonical pathways, such as the interplay between the innate and adaptive immune responses, cell death and TLR3/TLR7 signaling, was observed for both strains, but Lena triggered a stronger down-regulation than LV. This analysis contributes to a better understanding of the interactions between PRRSV and PAMs and outlines the differences in the responses of PAMs to strains with different levels of virulence, which may lead to the development of new PRRSV control strategies.
Collapse
Affiliation(s)
- Bouabid Badaoui
- Parco Tecnologico Padano, Via Einstein, Lodi, Italy
- * E-mail:
| | | | - Anna Anselmo
- Parco Tecnologico Padano, Via Einstein, Lodi, Italy
| | - Merijn Vanhee
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | | | - Sara Botti
- Parco Tecnologico Padano, Via Einstein, Lodi, Italy
| |
Collapse
|
44
|
Miller LC, Jiang Z, Sang Y, Harhay GP, Lager KM. Evolutionary characterization of pig interferon-inducible transmembrane gene family and member expression dynamics in tracheobronchial lymph nodes of pigs infected with swine respiratory disease viruses. Vet Immunol Immunopathol 2014; 159:180-91. [PMID: 24656980 DOI: 10.1016/j.vetimm.2014.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Studies have found that a cluster of duplicated gene loci encoding the interferon-inducible transmembrane proteins (IFITMs) family have antiviral activity against several viruses, including influenza A virus. The gene family has 5 and 7 members in humans and mice, respectively. Here, we confirm the current annotation of pig IFITM1, IFITM2, IFITM3, IFITM5, IFITM1L1 and IFITM1L4, manually annotated IFITM1L2, IFITM1L3, IFITM5L, IFITM3L1 and IFITM3L2, and provide expressed sequence tag (EST) and/or mRNA evidence, not contained with the NCBI Reference Sequence database (RefSeq), for the existence of IFITM6, IFITM7 and a new IFITM1-like (IFITM1LN) gene in pigs. Phylogenic analyses showed seven porcine IFITM genes with highly conserved human/mouse orthologs known to have anti-viral activity. Digital Gene Expression Tag Profiling (DGETP) of swine tracheobronchial lymph nodes (TBLN) of pigs infected with swine influenza virus (SIV), porcine pseudorabies virus, porcine reproductive and respiratory syndrome virus or porcine circovirus type 2 over 14 days post-inoculation (dpi) showed that gene expression abundance differs dramatically among pig IFITM family members, ranging from 0 to over 3000 tags per million. In particular, SIV up-regulated IFITM1 by 5.9 fold at 3 dpi. Bayesian framework further identified pig IFITM1 and IFITM3 as differentially expressed genes in the overall transcriptome analysis. In addition to being a component of protein complexes involved in homotypic adhesion, the IFITM1 is also associated with pathways related to regulation of cell proliferation and IFITM3 is involved in immune responses.
Collapse
Affiliation(s)
- Laura C Miller
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, 1920 Dayton Avenue, Ames, IA 50010, USA.
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA.
| | - Yongming Sang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Gregory P Harhay
- Animal Health Research Unit, United States Meat Animal Research Center-USDA-ARS, Clay Center, NE 68933, USA
| | - Kelly M Lager
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, 1920 Dayton Avenue, Ames, IA 50010, USA
| |
Collapse
|
45
|
Gao J, Xiao S, Liu X, Wang L, Zhang X, Ji Q, Wang Y, Mo D, Chen Y. Inhibition of HSP90 attenuates porcine reproductive and respiratory syndrome virus production in vitro. Virol J 2014; 11:17. [PMID: 24490822 PMCID: PMC3942275 DOI: 10.1186/1743-422x-11-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/29/2014] [Indexed: 12/29/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) infection leads to substantial economic losses to the swine industry worldwide. However, no effective countermeasures exist to combat this virus infection so far. The most common antiviral strategy relies on directly inhibiting viral proteins. However, this strategy invariably leads to the emergence of drug resistance due to the error-prone nature of viral ploymerase. Targeting cellular proteins required for viral infection for developing new generation of antivirals is gaining concern. Recently, heat shock protein 90 (HSP90) was found to be an important host factor for the replication of multiple viruses and the inhibition of HSP90 showed significant antiviral effects. It is thought that the inhibition of HSP90 could be a promising broad-range antiviral approach. However, the effects of HSP90 inhibition on PRRSV infection have not been evaluated. In the current research, we tried to inhibit HSP90 and test whether the inhibition affect PRRSV infection. Methods We inhibit the function of HSP90 with two inhibitors, geldanamycin (GA) and 17- allylamono-demethoxygeldanamycin (17-AAG), and down-regulated the expression of endogenous HSP90 with specific small-interfering RNAs (siRNAs). Cell viability was measured with alamarBlue. The protein level of viral N was determined by western blotting and indirect immunofluorescence (IFA). Besides, IFA was employed to examine the level of viral double-stranded RNA (dsRNA). The viral RNA copy number and the level of IFN-β mRNA were determined by quantitative real-time PCR (qRT-PCR). Results Our results indicated that both HSP90 inhibitors showed strong anti-PRRSV activity. They could reduce viral production by preventing the viral RNA synthesis. These inhibitory effects were not due to the activation of innate interferon response. In addition, we observed that individual knockdown targeting HSP90α or HSP90β did not show dramatic inhibitory effect. Combined knockdown of these two isoforms was required to reduce viral infection. Conclusions Our results shed light on the possibility of developing potential therapeutics targeting HSP90 against PRRSV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
46
|
Islam ZU, Bishop SC, Savill NJ, Rowland RRR, Lunney JK, Trible B, Doeschl-Wilson AB. Quantitative analysis of porcine reproductive and respiratory syndrome (PRRS) viremia profiles from experimental infection: a statistical modelling approach. PLoS One 2013; 8:e83567. [PMID: 24358295 PMCID: PMC3866253 DOI: 10.1371/journal.pone.0083567] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/13/2013] [Indexed: 11/18/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically significant viral diseases facing the global swine industry. Viremia profiles of PRRS virus challenged pigs reflect the severity and progression of infection within the host and provide crucial information for subsequent control measures. In this study we analyse the largest longitudinal PRRS viremia dataset from an in-vivo experiment. The primary objective was to provide a suitable mathematical description of all viremia profiles with biologically meaningful parameters for quantitative analysis of profile characteristics. The Wood's function, a gamma-type function, and a biphasic extended Wood's function were fit to the individual profiles using Bayesian inference with a likelihood framework. Using maximum likelihood inference and numerous fit criteria, we established that the broad spectrum of viremia trends could be adequately represented by either uni- or biphasic Wood's functions. Three viremic categories emerged: cleared (uni-modal and below detection within 42 days post infection(dpi)), persistent (transient experimental persistence over 42 dpi) and rebound (biphasic within 42 dpi). The convenient biological interpretation of the model parameters estimates, allowed us not only to quantify inter-host variation, but also to establish common viremia curve characteristics and their predictability. Statistical analysis of the profile characteristics revealed that persistent profiles were distinguishable already within the first 21 dpi, whereas it is not possible to predict the onset of viremia rebound. Analysis of the neutralizing antibody(nAb) data indicated that there was a ubiquitous strong response to the homologous PRRSV challenge, but high variability in the range of cross-protection of the nAbs. Persistent pigs were found to have a significantly higher nAb cross-protectivity than pigs that either cleared viremia or experienced rebound within 42 dpi. Our study provides novel insights into the nature and degree of variation of hosts' responses to infection as well as new informative traits for subsequent genomic and modelling studies.
Collapse
Affiliation(s)
- Zeenath U. Islam
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
- * E-mail:
| | - Stephen C. Bishop
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Nicholas J. Savill
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Raymond R. R. Rowland
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Joan K. Lunney
- United State Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, Maryland, United States of America
| | - Benjamin Trible
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | | |
Collapse
|
47
|
Yun SI, Lee YM. Overview: Replication of porcine reproductive and respiratory syndrome virus. J Microbiol 2013; 51:711-23. [PMID: 24385346 PMCID: PMC7091224 DOI: 10.1007/s12275-013-3431-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/07/2013] [Indexed: 02/06/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus that causes significant losses in the pig industry, is one of the most important animal pathogens of global significance. Since the discovery of the virus, significant progress has been made in understanding its epidemiology and transmission, but no adequate control measures are yet available to eliminate infection with this pathogen. The genome replication of PRRSV is required to reproduce, within a few hours of infection, the millions of progeny virions that establish, disseminate, and maintain infection. Replication of the viral RNA genome is a multistep process involving a replication complex that is formed not only from components of viral and cellular origin but also from the viral genomic RNA template; this replication complex is embedded within particular virus-induced membrane vesicles. PRRSV RNA replication is directed by at least 14 replicase proteins that have both common enzymatic activities, including viral RNA polymerase, and also unusual and poorly understood RNA-processing functions. In this review, we summarize our current understanding of PRRSV replication, which is important for developing a successful strategy for the prevention and control of this pathogen.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322-4815 USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322-4815 USA
| |
Collapse
|
48
|
Frydas IS, Verbeeck M, Cao J, Nauwynck HJ. Replication characteristics of porcine reproductive and respiratory syndrome virus (PRRSV) European subtype 1 (Lelystad) and subtype 3 (Lena) strains in nasal mucosa and cells of the monocytic lineage: indications for the use of new receptors of PRRSV (Lena). Vet Res 2013; 44:73. [PMID: 24007551 PMCID: PMC3849772 DOI: 10.1186/1297-9716-44-73] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/27/2013] [Indexed: 11/10/2022] Open
Abstract
Recently, it has been demonstrated that subtype 3 strains of European type porcine reproductive and respiratory syndrome virus (PRRSV) are more virulent/pathogenic than subtype 1 strains. This points to differences in the pathogenesis. In the present study, a new polarized nasal mucosa explant system was used to study the invasion of the low virulent subtype 1 PRRSV strain Lelystad (LV) and the highly virulent subtype 3 PRRSV strain Lena at the portal of entry. Different cell types of the monocytic lineage (alveolar macrophages (PAM), cultured blood monocytes and monocyte-derived dendritic cells (moDC)) were enclosed to examine replication kinetics of both strains in their putative target cells. At 0, 12, 24, 48 and 72 hours post inoculation (hpi), virus production was analyzed and the infected cells were quantified and identified. Lena replicated much more efficiently than LV in the nasal mucosa explants and to a lesser extent in PAM. Differences in replication were not found in monocytes and moDC. Confocal microscopy demonstrated that for LV, almost all viral antigen positive cells were CD163+Sialoadhesin (Sn)+, which were mainly located in the lamina propria of the respiratory mucosa. In Lena-infected nasal mucosa, CD163+Sn+, CD163+Sn- and to a lesser extent CD163-Sn- monocytic subtypes were involved in infection. CD163+Sn- cells were mostly located within or in the proximity of the epithelium. Our results show that, whereas LV replicates in a restricted subpopulation of CD163+Sn+ monocytic cells in the upper respiratory tract, Lena hijacks a broader range of subpopulations to spread within the mucosa. Replication in CD163+Sn- cells suggests that an alternative entry receptor may contribute to the wider tropism of Lena.
Collapse
Affiliation(s)
- Ilias S Frydas
- Laboratory of Virology, Department of Virology, Immunology and Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke B-9820, Belgium.
| | | | | | | |
Collapse
|
49
|
Baumann A, Mateu E, Murtaugh MP, Summerfield A. Impact of genotype 1 and 2 of porcine reproductive and respiratory syndrome viruses on interferon-α responses by plasmacytoid dendritic cells. Vet Res 2013; 44:33. [PMID: 23675981 PMCID: PMC3672080 DOI: 10.1186/1297-9716-44-33] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/18/2013] [Indexed: 12/31/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) infections are characterized by prolonged viremia and viral shedding consistent with incomplete immunity. Type I interferons (IFN) are essential for mounting efficient antiviral innate and adaptive immune responses, but in a recent study, North American PRRSV genotype 2 isolates did not induce, or even strongly inhibited, IFN-α in plasmacytoid dendritic cells (pDC), representing “professional IFN-α-producing cells”. Since inhibition of IFN-α expression might initiate PRRSV pathogenesis, we further characterized PRRSV effects and host modifying factors on IFN-α responses of pDC. Surprisingly, a variety of type 1 and type 2 PRRSV directly stimulated IFN-α secretion by pDC. The effect did not require live virus and was mediated through the TLR7 pathway. Furthermore, both IFN-γ and IL-4 significantly enhanced the pDC production of IFN-α in response to PRRSV exposure. PRRSV inhibition of IFN-α responses from enriched pDC stimulated by CpG oligodeoxynucleotides was weak or absent. VR-2332, the prototype genotype 2 PRRSV, only suppressed the responses by 34%, and the highest level of suppression (51%) was induced by a Chinese highly pathogenic PRRSV isolate. Taken together, these findings demonstrate that pDC respond to PRRSV and suggest that suppressive activities on pDC, if any, are moderate and strain-dependent. Thus, pDC may be a source of systemic IFN-α responses reported in PRRSV-infected animals, further contributing to the puzzling immunopathogenesis of PRRS.
Collapse
Affiliation(s)
- Arnaud Baumann
- Institute of Virology and Immunoprophylaxis (IVI), Sensemattstrasse 293, Mittelhäusern, 3147, Switzerland.
| | | | | | | |
Collapse
|
50
|
Charerntantanakul W, Yamkanchoo S, Kasinrerk W. Plasmids expressing porcine interferon gamma up-regulate pro-inflammatory cytokine and co-stimulatory molecule expression which are suppressed by porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2013; 153:107-17. [PMID: 23507439 DOI: 10.1016/j.vetimm.2013.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 02/08/2013] [Accepted: 02/18/2013] [Indexed: 01/15/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses the pro-inflammatory immune response following infection of myeloid antigen-presenting cells. A reduced pro-inflammatory immune response modulates PRRSV replication, clinical disease, and persistent infection of the virus. Numerous efforts have been made to enhance the pro-inflammatory immune response to PRRSV, but only a few attempts have so far elicited satisfactory results. The present study aims to evaluate in vitro the potential of plasmids expressing porcine interferon gamma (pcDNA-IFNγ) to enhance the expression of pro-inflammatory immune parameters in PRRSV-inoculated monocytes. Naïve blood monocytes from eight PRRSV-seronegative pigs were inoculated with PRRSV and subsequently transfected with pcDNA-IFNγ or pcDNA (empty plasmid vector) and stimulated with lipopolysaccharide (LPS). The mRNA expression levels of IFNγ, interleukin-1 beta (IL-1β), IL-10, IL-12p40, tumor necrosis factor alpha (TNFα), transforming growth factor beta (TGFβ), CD80, and CD86 were evaluated by real-time PCR. The IFNγ, IL-10, and TNFα protein production was determined by ELISA. Compared with PRRSV-inoculated monocyte control, transfection with pcDNA-IFNγ, but not pcDNA, significantly enhanced IFNγ, TNFα, CD80, and CD86 mRNA expression, and IFNγ and TNFα protein production. A slight increase in IL-1β and IL-12p40 mRNA expression was also observed. Neither pcDNA-IFNγ nor pcDNA transfection affected IL-10 and TGFβ expression. Our results thus suggest that pcDNA-IFNγ may be an effective immunostimulator for potentiating the pro-inflammatory immune response to PRRSV.
Collapse
|