1
|
Vemulawada C, Renavikar PS, Crawford MP, Steward-Tharp S, Karandikar NJ. Disruption of IFNγ, GZMB, PRF1, or LYST Results in Reduced Suppressive Function in Human CD8+ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1722-1732. [PMID: 38607279 PMCID: PMC11105984 DOI: 10.4049/jimmunol.2300388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
An imbalance between proinflammatory and regulatory processes underlies autoimmune disease pathogenesis. We have shown that acute relapses of multiple sclerosis are characterized by a deficit in the immune suppressive ability of CD8+ T cells. These cells play an important immune regulatory role, mediated in part through cytotoxicity (perforin [PRF]/granzyme [GZM]) and IFNγ secretion. In this study, we further investigated the importance of IFNγ-, GZMB-, PRF1-, and LYST-associated pathways in CD8+ T cell-mediated suppression. Using the CRISPR-Cas9 ribonucleoprotein transfection system, we first optimized efficient gene knockout while maintaining high viability in primary bulk human CD8+ T cells. Knockout was confirmed through quantitative real-time PCR assays in all cases, combined with flow cytometry where appropriate, as well as confirmation of insertions and/or deletions at genomic target sites. We observed that the knockout of IFNγ, GZMB, PRF1, or LYST, but not the knockout of IL4 or IL5, resulted in significantly diminished in vitro suppressive ability in these cells. Collectively, these results reveal a pivotal role for these pathways in CD8+ T cell-mediated immune suppression and provide important insights into the biology of human CD8+ T cell-mediated suppression that could be targeted for immunotherapeutic intervention.
Collapse
Affiliation(s)
- Chakrapani Vemulawada
- Department of Pathology, University of Iowa Health Care, 200 Hawkins Dr., Iowa City, IA 52242
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Pranav S. Renavikar
- Department of Pathology, University of Iowa Health Care, 200 Hawkins Dr., Iowa City, IA 52242
| | - Michael P. Crawford
- Department of Pathology, University of Iowa Health Care, 200 Hawkins Dr., Iowa City, IA 52242
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Scott Steward-Tharp
- Department of Pathology, University of Iowa Health Care, 200 Hawkins Dr., Iowa City, IA 52242
| | - Nitin J. Karandikar
- Department of Pathology, University of Iowa Health Care, 200 Hawkins Dr., Iowa City, IA 52242
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| |
Collapse
|
2
|
Neef T, Ifergan I, Beddow S, Penaloza-MacMaster P, Haskins K, Shea LD, Podojil JR, Miller SD. Tolerance Induced by Antigen-Loaded PLG Nanoparticles Affects the Phenotype and Trafficking of Transgenic CD4 + and CD8 + T Cells. Cells 2021; 10:3445. [PMID: 34943952 PMCID: PMC8699785 DOI: 10.3390/cells10123445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023] Open
Abstract
We have shown that PLG nanoparticles loaded with peptide antigen can reduce disease in animal models of autoimmunity and in a phase 1/2a clinical trial in celiac patients. Clarifying the mechanisms by which antigen-loaded nanoparticles establish tolerance is key to further adapting them to clinical use. The mechanisms underlying tolerance induction include the expansion of antigen-specific CD4+ regulatory T cells and sequestration of autoreactive cells in the spleen. In this study, we employed nanoparticles loaded with two model peptides, GP33-41 (a CD8 T cell epitope derived from lymphocytic choriomeningitis virus) and OVA323-339 (a CD4 T cell epitope derived from ovalbumin), to modulate the CD8+ and CD4+ T cells from two transgenic mouse strains, P14 and DO11.10, respectively. Firstly, it was found that the injection of P14 mice with particles bearing the MHC I-restricted GP33-41 peptide resulted in the expansion of CD8+ T cells with a regulatory cell phenotype. This correlated with reduced CD4+ T cell viability in ex vivo co-cultures. Secondly, both nanoparticle types were able to sequester transgenic T cells in secondary lymphoid tissue. Flow cytometric analyses showed a reduction in the surface expression of chemokine receptors. Such an effect was more prominently observed in the CD4+ cells rather than the CD8+ cells.
Collapse
Affiliation(s)
- Tobias Neef
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
| | - Igal Ifergan
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
| | - Sara Beddow
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
| | - Kathryn Haskins
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO 80045, USA;
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Joseph R. Podojil
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
- Research & Development, Cour Pharmaceuticals Development Company, Northbrook, IL 60062, USA
| | - Stephen D. Miller
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
| |
Collapse
|
3
|
Targeting immunosuppressor cells with nanoparticles in autoimmunity: How far have we come to? Cell Immunol 2021; 368:104412. [PMID: 34340162 DOI: 10.1016/j.cellimm.2021.104412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022]
Abstract
Autoimmunity is the assault of immune response towards self-antigens, resulting to inflammation and tissue injury. It is staged into three phases and caused by malfunction of immune tolerance. In our body, immune tolerance is synchronized by several immunosuppressor cells such as regulatory T cells and B cells as well as myeloid-derived suppressor cells, which are prominently dysregulated in autoimmunity. Hence, targeting these cell populations serve as a significant potential in the therapy of autoimmunity. Nanotechnology with its advantageous properties is shown to be a remarkable tool as drug delivery system in this field. This review focused on the development of therapeutics in autoimmune diseases utilizing various nanoparticles formulation based on two targeting approaches in autoimmunity, passive and active targeting. Lastly, this review outlined the approved present nanomedicines as well as in clinical evaluations and issues regarding the lack of translation of these nanomedicines into the market, despite the abundant of positive experimental observations.
Collapse
|
4
|
Renavikar PS, Sinha S, Brate AA, Borcherding N, Crawford MP, Steward-Tharp SM, Karandikar NJ. IL-12-Induced Immune Suppressive Deficit During CD8+ T-Cell Differentiation. Front Immunol 2020; 11:568630. [PMID: 33193343 PMCID: PMC7657266 DOI: 10.3389/fimmu.2020.568630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/02/2020] [Indexed: 11/13/2022] Open
Abstract
Autoimmune diseases are characterized by regulatory deficit in both the CD4+ and CD8+ T-cell compartments. We have shown that CD8+ T-cells associated with acute relapse of multiple sclerosis are significantly deficient in their immune suppressive ability. We hypothesized that distinct CD8+ cytotoxic T-cell (Tc) lineages, determined by cytokine milieu during naïve T-cell differentiation, may harbor differential ability to suppress effector CD4+ T-cells. We differentiated purified human naïve CD8+ T-cells in vitro toward Tc0 (media control), Tc1 and Tc17 lineages. Using in vitro flow cytometric suppression assays, we observed that Tc0 and Tc17 cells had similar suppressive ability. In contrast, Tc1 cells showed significant loss of suppressive ability against ex vivo CD4+ T-cells and in vitro-differentiated Th0, Th1 and Th17 cells. Of note, Tc1 cells were also suboptimal in suppressing CD4-induced acute xenogeneic graft versus host disease (xGVHD) in vivo. Tc subtypes derived under various cytokine combinations revealed that IL-12-containing conditions resulted in less suppressive cells exhibiting dysregulated cytotoxic degranulation. RNA sequencing transcriptome analyses indicated differential regulation of inflammatory genes and enrichment in GM-CSF-associated pathways. These studies provide insights into the role of T-cell differentiation in CD8 suppressive biology and may reveal therapeutically targetable pathways to reverse suppressive deficit during immune-mediated disease.
Collapse
Affiliation(s)
- Pranav S Renavikar
- Department of Pathology, University of Iowa Health Care, Iowa City, IA, United States
| | - Sushmita Sinha
- Department of Pathology, University of Iowa Health Care, Iowa City, IA, United States
| | - Ashley A Brate
- Department of Pathology, University of Iowa Health Care, Iowa City, IA, United States
| | - Nicholas Borcherding
- Department of Pathology, University of Iowa Health Care, Iowa City, IA, United States
| | - Michael P Crawford
- Department of Pathology, University of Iowa Health Care, Iowa City, IA, United States
| | - Scott M Steward-Tharp
- Department of Pathology, University of Iowa Health Care, Iowa City, IA, United States
| | - Nitin J Karandikar
- Department of Pathology, University of Iowa Health Care, Iowa City, IA, United States
| |
Collapse
|
5
|
Stocks BT, Wilson CS, Marshall AF, Hoopes EM, Moore DJ. Regulation of Diabetogenic Immunity by IL-15-Activated Regulatory CD8 T Cells in Type 1 Diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:158-166. [PMID: 31127035 PMCID: PMC6581590 DOI: 10.4049/jimmunol.1800976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 05/01/2019] [Indexed: 01/10/2023]
Abstract
Unchecked collaboration between islet-reactive T and B lymphocytes drives type 1 diabetes (T1D). In the healthy setting, CD8 T regulatory cells (Tregs) terminate ongoing T-B interactions. We determined that specific CD8 Tregs from NOD mice lack suppressive function, representing a previously unreported regulatory cell deficit in this T1D-prone strain. NOD mice possess 11-fold fewer Ly-49+ CD8 Tregs than nonautoimmune mice, a deficiency that worsens as NOD mice age toward diabetes and leaves them unable to regulate CD4 T follicular helper cells. As IL-15 is required for Ly-49+ CD8 Treg development, we determined that NOD macrophages inadequately trans-present IL-15. Despite reduced IL-15 trans-presentation, NOD Ly-49+ CD8 Tregs can effectively transduce IL-15-mediated survival signals when they are provided. Following stimulation with an IL-15/IL-15Ra superagonist complex, Ly-49+ CD8 Tregs expanded robustly and became activated to suppress the Ag-specific Ab response. IL-15/IL-15Ra superagonist complex-activated CD8+CD122+ T cells also delayed diabetes transfer, indicating the presence of an underactivated CD8 T cell subset with regulatory capacity against late stage T1D. We identify a new cellular contribution to anti-islet autoimmunity and demonstrate the correction of this regulatory cell deficit. Infusion of IL-15-activated CD8 Tregs may serve as an innovative cellular therapy for the treatment of T1D.
Collapse
Affiliation(s)
- Blair T Stocks
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN 37232; and
| | - Christopher S Wilson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232
| | - Andrew F Marshall
- Ian Burr Division of Endocrinology and Diabetes, Department of Pediatrics, Vanderbilt University, Nashville, TN 37232
| | - Emilee M Hoopes
- Ian Burr Division of Endocrinology and Diabetes, Department of Pediatrics, Vanderbilt University, Nashville, TN 37232
| | - Daniel J Moore
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232;
- Ian Burr Division of Endocrinology and Diabetes, Department of Pediatrics, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
6
|
An altered CD8 + T cell epitope of insulin prevents type 1 diabetes in humanized NOD mice. Cell Mol Immunol 2018; 16:590-601. [PMID: 29955175 DOI: 10.1038/s41423-018-0058-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/31/2018] [Indexed: 11/08/2022] Open
Abstract
Autoreactive CD8+ T cells, which play an indispensable role in β cell destruction, represent an emerging target for the prevention of type 1 diabetes (T1D). Altered peptide ligands (APLs) can efficiently induce antigen-specific T cells anergy, apoptosis or shifts in the immune response. Here, we found that HLA-A*0201-restricted CD8+ T cell responses against a primary β-cell autoantigen insulin epitope InsB15-14 were present in both NOD.β2mnull.HHD NOD mice and T1D patients. We generated several APL candidates for InsB15-14 by residue substitution at the p6 position. Only H6F exhibited an inhibitory effect on mInsB15-14-specific CD8+ T cell responses in vitro. H6F treatment significantly reduced the T1D incidence, which was accompanied by diminished autoreactive CD8+ T cell responses to mInsB15-14, inhibited infiltration of CD8+ and CD4+ T cells in the pancreas and reduced pro-inflammatory cytokine production in pancreatic and splenic T cells in NOD.β2mnull.HHD mice. Mechanistically, H6F treatment significantly augmented a tiny portion of CD8+CD25+Foxp3+ T cells in the spleen and especially in the pancreas. This subset exhibited typical Treg phenotypes and required peptide-specific restimulation to exert immunosuppressive activity. Therefore, this APL H6F may be a promising candidate with potential clinical application value for antigen-specific prevention of T1D.
Collapse
|
7
|
Sinha S, Boyden AW, Itani FR, Crawford MP, Karandikar NJ. CD8(+) T-Cells as Immune Regulators of Multiple Sclerosis. Front Immunol 2015; 6:619. [PMID: 26697014 PMCID: PMC4674574 DOI: 10.3389/fimmu.2015.00619] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/26/2015] [Indexed: 11/13/2022] Open
Abstract
The vast majority of studies regarding the immune basis of MS (and its animal model, EAE) have largely focused on CD4(+) T-cells as mediators and regulators of disease. Interestingly, CD8(+) T-cells represent the predominant T-cell population in human MS lesions and are oligoclonally expanded at the site of pathology. However, their role in the autoimmune pathologic process has been both understudied and controversial. Several animal models and MS patient studies support a pathogenic role for CNS-specific CD8(+) T-cells, whereas we and others have demonstrated a regulatory role for these cells in disease. In this review, we describe studies that have investigated the role of CD8(+) T-cells in MS and EAE, presenting evidence for both pathogenic and regulatory functions. In our studies, we have shown that cytotoxic/suppressor CD8(+) T-cells are CNS antigen-specific, MHC class I-restricted, IFNγ- and perforin-dependent, and are able to inhibit disease. The clinical relevance for CD8(+) T-cell suppressive function is best described by a lack of their function during MS relapse, and importantly, restoration of their suppressive function during quiescence. Furthermore, CD8(+) T-cells with immunosuppressive functions can be therapeutically induced in MS patients by glatiramer acetate (GA) treatment. Unlike CNS-specific CD8(+) T-cells, these immunosuppressive GA-induced CD8(+) T-cells appear to be HLA-E restricted. These studies have provided greater fundamental insight into the role of autoreactive as well as therapeutically induced CD8(+) T-cells in disease amelioration. The clinical implications for these findings are immense and we propose that this natural process can be harnessed toward the development of an effective immunotherapeutic strategy.
Collapse
Affiliation(s)
- Sushmita Sinha
- Department of Pathology, University of Iowa , Iowa City, IA , USA
| | | | - Farah R Itani
- Department of Pathology, University of Iowa , Iowa City, IA , USA
| | | | | |
Collapse
|
8
|
Abstract
The role of CD8+ T cells in the process of autoimmune pathology has been both understudied and controversial. Multiple sclerosis (MS) is an inflammatory, demyelinating disorder of the central nervous system (CNS) with underlying T cell-mediated immunopathology. CD8+ T cells are the predominant T cells in human MS lesions, showing oligoclonal expansion at the site of pathology. It is still unclear whether these cells represent pathogenic immune responses or disease-regulating elements. Through studies in human MS and its animal model, experimental autoimmune encephalomyelitis (EAE), we have discovered two novel CD8+ T cell populations that play an essential immunoregulatory role in disease: (1) MHC class Ia-restricted neuroantigen-specific "autoregulatory" CD8+ T cells and (2) glatiramer acetate (GA/Copaxone(®)) therapy-induced Qa-1/HLA-E-restricted GA-specific CD8+ T cells. These CD8+ Tregs suppress proliferation of pathogenic CD4+ CD25- T cells when stimulated by their cognate antigens. Similarly, CD8+ Tregs significantly suppress EAE when transferred either pre-disease induction or during peak disease. The mechanism of disease inhibition depends, at least in part, on an antigen-specific, contact-dependent process and works through modulation of CD4+ T cell responses as well as antigen-presenting cells through a combination of cytotoxicity and cytokine-mediated modulation. This review provides an overview of our understanding of CD8+ T cells in immune-mediated disease, focusing particularly on our findings regarding regulatory CD8+ T cells both in MS and in EAE. Clinical relevance of these novel CD8-regulatory populations is discussed, providing insights into a potentially intriguing, novel therapeutic strategy for these diseases.
Collapse
|
9
|
Cunnusamy K, Baughman EJ, Franco J, Ortega SB, Sinha S, Chaudhary P, Greenberg BM, Frohman EM, Karandikar NJ. Disease exacerbation of multiple sclerosis is characterized by loss of terminally differentiated autoregulatory CD8+ T cells. Clin Immunol 2014; 152:115-26. [PMID: 24657764 DOI: 10.1016/j.clim.2014.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system (CNS). Although its etiology remains unknown, pathogenic T cells are thought to underlie MS immune pathology. We recently showed that MS patients harbor CNS-specific CD8+ Tregs that are deficient during disease relapse. We now demonstrate that CNS-specific CD8+ Tregs were cytolytic and could eliminate pathogenic CD4+ T cells. These CD8+ Tregs were present primarily in terminally differentiated (CD27-, CD45RO-) subset and their suppression was IFNγ, perforin and granzyme B-dependent. Interestingly, MS patients with acute relapse displayed a significant loss in terminally differentiated CD8+ T cells, with a concurrent loss in expression of perforin and granzyme B. Pre-treatment of exacerbation-derived CD8+ T cells with IL-12 significantly restored suppressive capability of these cells through upregulation of granzyme B. Our studies uncover immune-suppressive mechanisms of CNS-specific CD8+ Tregs, and may contribute to design of novel immune therapies for MS.
Collapse
Affiliation(s)
- Khrishen Cunnusamy
- Department of Pathology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9072, USA
| | - Ethan J Baughman
- Department of Pathology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9072, USA
| | - Jorge Franco
- Department of Pathology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9072, USA
| | - Sterling B Ortega
- Department of Pathology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9072, USA
| | - Sushmita Sinha
- Department of Pathology, University of Iowa, 200 Hawkins Dr., Iowa City, IA 52242, USA
| | - Parul Chaudhary
- Department of Neurology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9072, USA
| | - Benjamin M Greenberg
- Department of Neurology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9072, USA
| | - Elliot M Frohman
- Department of Neurology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9072, USA
| | - Nitin J Karandikar
- Department of Pathology, University of Iowa, 200 Hawkins Dr., Iowa City, IA 52242, USA.
| |
Collapse
|
10
|
Tsai S, Clemente-Casares X, Santamaria P. CD8(+) Tregs in autoimmunity: learning "self"-control from experience. Cell Mol Life Sci 2011; 68:3781-95. [PMID: 21671120 PMCID: PMC11114820 DOI: 10.1007/s00018-011-0738-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/10/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
Abstract
Autoreactive CD8(+) regulatory T cells (Tregs) play important roles as modulators of immune responses against self, and numerical and functional defects in CD8(+) Tregs have been linked to autoimmunity. Several subsets of CD8(+) Tregs have been described. However, the origin of these T cells and how they participate in the natural progression of autoimmunity remain poorly defined. We discuss several lines of evidence suggesting that the autoimmune process itself promotes the development of autoregulatory CD8(+) T cells. We posit that chronic autoantigenic exposure fosters the differentiation of non-pathogenic autoreactive CD8(+) T cells into antigen-experienced, memory-like autoregulatory T cells, to generate a "negative feedback" regulatory loop capable of countering pathogenic autoreactive effectors. This hypothesis predicts that approaches capable of boosting autoregulatory T cell memory will be able to blunt autoimmunity without compromising systemic immunity.
Collapse
Affiliation(s)
- Sue Tsai
- Julia McFarlane Diabetes Research Centre, Faculty of Medicine, The University of Calgary, 3330 Hospital Dr. N.W, Calgary, AB T2N 4N1 Canada
| | - Xavier Clemente-Casares
- Julia McFarlane Diabetes Research Centre, Faculty of Medicine, The University of Calgary, 3330 Hospital Dr. N.W, Calgary, AB T2N 4N1 Canada
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre, Faculty of Medicine, The University of Calgary, 3330 Hospital Dr. N.W, Calgary, AB T2N 4N1 Canada
- Department of Microbiology and Infectious Diseases, Institute of Inflammation, Infection and Immunity, Faculty of Medicine, The University of Calgary, 3330 Hospital Dr. N.W, Calgary, AB T2N 4N1 Canada
| |
Collapse
|
11
|
Chang WC, Li CH, Huang SC, Chang DY, Chou LY, Sheu BC. Clinical significance of regulatory T cells and CD8+ effector populations in patients with human endometrial carcinoma. Cancer 2010; 116:5777-88. [PMID: 20734397 DOI: 10.1002/cncr.25371] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 02/14/2010] [Accepted: 03/09/2010] [Indexed: 12/24/2022]
Abstract
BACKGROUND A study was carried out to determine the functional attributes of CD4(+) CD25(+) regulatory T cells in cancer progression by suppressing antitumor immunity. METHODS Triple-color flow cytometry was used to study the phenotype expression of CD4(+) CD25(+) regulatory T cells and CD8(+) T cells in the peripheral blood lymphocytes (PBLs) and tumor-infiltrating lymphocytes (TILs) of 57 cases of stage I to IV endometrial carcinoma. The expression of T cell subsets was correlated with clinical prognostic parameters. RESULTS The prevalence of CD4(+) CD25(+) T cells was significantly higher in the TILs than PBLs. The expression of CD4(+) CD25(+) regulatory T cells in cancer milieu correlated with the tumor grade, stage, and myometrium invasion. The expression of FOXP3 and GITR in CD4(+) CD25(+) regulatory T cells was lower in PBLs than TILs. Most tumor-infiltrating CD8(+) T cells were CD28(-) CD45RA(-) CD45RO(+) CCR7(-) , suggesting good terminal differentiation. Most of them had an activated role with CD69(+) CD103(+) CD152(+) . Functionally, both granzyme B and perforin were scarcely expressed in peripheral regulatory T cells but were highly expressed in peripheral regulatory T cells in the tumor microenvironment. In contrast, CD8(+) cytotoxic T cells derived from PBLs expressed both granzyme B and perforin, and at significantly higher levels than in TILs. Further functional assays demonstrated that Th1 cytokines and cytotoxic molecules can be synchronously up-regulated in CD8(+) cytotoxic T cells. CONCLUSIONS Regulatory T cells in the tumor microenvironment may abrogate CD8(+) T cell cytotoxicity in a granzyme B- and perforin-dependent conduit. Decreases in both Th1 cytokines and cytotoxic enzymes are relevant for regulatory T cell-mediated restraint of tumor clearance in vivo. Of clinical significance, the expression of regulatory T cells in TILs may mediate T cell immune repression within cancer milieu and thus greatly correlate with cancer progression.
Collapse
Affiliation(s)
- Wen-Chun Chang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
12
|
Filaci G, Fenoglio D, Indiveri F. CD8(+) T regulatory/suppressor cells and their relationships with autoreactivity and autoimmunity. Autoimmunity 2010; 44:51-7. [PMID: 20670118 DOI: 10.3109/08916931003782171] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Regulatory T lymphocytes (Treg) are fundamental for immune homeostasis since they contribute to the induction of peripheral tolerance to autologous antigens and regulate effector immune responses. Treg subsets are present within both the CD4+and the CD8(+) T cell compartments. Considering the CD8(+) Treg, in the last decades several subpopulations, provided with different phenotypes and mechanisms of action, have been characterized. This review is an attempt of integrating in an organic scenario the different CD8(+) Treg subpopulations. Moreover, it summarizes the findings so far achieved on the existence of CD8(+) Treg alterations in autoimmune diseases.
Collapse
Affiliation(s)
- Gilberto Filaci
- Department of Internal Medicine (DIMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy.
| | | | | |
Collapse
|
13
|
Dinesh RK, Skaggs BJ, La Cava A, Hahn BH, Singh RP. CD8+ Tregs in lupus, autoimmunity, and beyond. Autoimmun Rev 2010; 9:560-8. [PMID: 20385256 DOI: 10.1016/j.autrev.2010.03.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 03/30/2010] [Indexed: 12/12/2022]
Abstract
While CD4(+)CD25(high) regulatory T cells (Tregs) have garnered much attention for their role in the maintenance of immune homeostasis, recent findings have shown that subsets of CD8(+) T cells (CD8(+) Tregs) display immunoregulatory functions as well. Both CD4(+) Tregs and CD8(+) Tregs appear impaired in number and/or function in several autoimmune diseases and in experimental animal models of autoimmunity, suggesting the possibility of immunotherapeutic targeting of these cells for improved management of autoimmune conditions. Our group has developed a strategy to induce CD8(+) Tregs in autoimmune mice through the use of a tolerogenic self-peptide, and new information has been gained on the phenotype, function and role of induced CD8(+) Tregs in autoimmunity. Here we present an overview of the role and mechanisms of action of CD8(+) Tregs in autoimmunity, with a special focus on lupus. We also discuss the potential role of CD8(+) Tregs in other diseases, including chronic infection and cancer.
Collapse
Affiliation(s)
- Ravi K Dinesh
- Division of Rheumatology, Dept of Medicine at the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1670, USA
| | | | | | | | | |
Collapse
|
14
|
Konya C, Goronzy JJ, Weyand CM. Treating autoimmune disease by targeting CD8(+) T suppressor cells. Expert Opin Biol Ther 2009; 9:951-65. [PMID: 19522557 DOI: 10.1517/14712590903020759] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Current treatments for autoimmune disease are hampered by the non-specificity of immunomodulatory interventions, having to accept broad suppression of immunoresponsiveness with potentially serious side effects, such as infection or malignancy. The development of antigen-specific approaches, downregulating pathogenic immune responses while maintaining protective immunity, would be a major step forward. One possible approach involves the targeting of physiological regulatory mechanisms, such as inhibitory CD8 T cells that are now recognized to fine-tune many aspects of immune responses. CD8 T suppressor (Ts) cells may directly inhibit other T cells or condition antigen-presenting cells in such a way that immune amplification steps are dampened. The promise of CD8 Ts cells lies in their potential to disrupt host-injurious immune responses in a targeted fashion. For therapeutic purposes, such CD8 Ts cells could either be generated in vitro and transferred into the host or their numbers and activity could be modulated by treating the patient with established or novel immunomodulators. Emerging evidence shows that several subsets of CD8 Ts cells exist. While there is still considerable uncertainty about the molecular mechanisms through which CD8 Ts cells can reset immune responses to protect the host, their potential diagnostic and therapeutic use is intriguing and has generated renewed interest.
Collapse
Affiliation(s)
- Christine Konya
- Emory University School of Medicine, Kathleen B. and Mason I. Lowance Center for Human Immunology and Rheumatology, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
15
|
Abstract
Most individuals have viral infections at some point in their life, however, only few develop autoreactivity to cardiac myosin following infection suggesting a genetic predisposition. Population studies have shown that among all the genetic factors linked with autoimmune disease development, MHC class II genes are the most significant genetic factors. Experimental autoimmune myocarditis resembling human Dilated cardiomyopathy can be induced in susceptible mice by infection with coxsackie virus as well as immunization with purified foreign and murine cardiac specific a-myosin. We generated transgenic mice lacking endogenous class II molecules, HLA-DR3.Abo and HLA-DQ8.Abo transgenic mice in NOD and HLA-DQ8.Abo in B10 background, to study the role of MHC in spontaneous autoimmunity. The HLA molecules in these mice are expressed on cell surface and can positively select CD4+ T cells expressing various Vb T cell receptors. NOD.DQ8 female mice spontaneously developed myocarditis and dilated cardiomyopathy. Histopathology of heart revealed mononuclear infiltrate consisting of CD4 and Mac-1+ cells and myocyte necrosis. NOD.DQ8 mice showed cellular and humoral autoreactive response to self cardiac myosin.. Depletion of CD8 and CD4 + cells suggested that CD8 T cells may act as regulatory cells while CD4 cells are required as effector cells. NOD.DR3 and B10.DQ8 mice did not develop any cardiac pathology suggesting DQ8 is required for predisposition to the spontaneous autoreactivity while NOD background influences onset and progression of disease. Thus these mice provide powerful tools to understand the role of HLA class II molecules in predisposition and onset of human diseases and to develop immunotherapy.
Collapse
|
16
|
Alderuccio F, Chan J, Scott DW, Toh BH. Gene therapy and bone marrow stem-cell transfer to treat autoimmune disease. Trends Mol Med 2009; 15:344-51. [PMID: 19665432 DOI: 10.1016/j.molmed.2009.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/09/2009] [Accepted: 06/09/2009] [Indexed: 12/14/2022]
Abstract
Current treatment of human autoimmune disease by autologous bone marrow stem-cell transfer is hampered by frequent disease relapses. This is most probably owing to re-emergent self-reactive lymphocytes. Gene therapy combined with bone marrow stem cells has successfully introduced genes lacking in immunodeficiences. Because the bone marrow compartment has a key role in establishing immune tolerance, this combination strategy should offer a rational approach to prevent re-emergent self-reactive lymphocytes by establishing solid, life-long immune tolerance to causative self-antigen. Indeed, we have recently demonstrated the success of this combination approach to prevent and cure an experimental autoimmune disease. We suggest that this combination strategy has the potential for translation to treat human autoimmune diseases in which causative self-antigens are known.
Collapse
Affiliation(s)
- Frank Alderuccio
- Department of Immunology, Nursing and Health Sciences, Monash University, Victoria 3181, Australia.
| | | | | | | |
Collapse
|