1
|
Nian F, Chen Y, Xia Q, Zhu C, Wu L, Lu X. Gut microbiota metabolite trimethylamine N-oxide promoted NAFLD progression by exacerbating intestinal barrier disruption and intrahepatic cellular imbalance. Int Immunopharmacol 2024; 142:113173. [PMID: 39298816 DOI: 10.1016/j.intimp.2024.113173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide, with the gut microbiota and its metabolites are important regulators of its progression. Trimethylamine N-oxide (TMAO), a metabolite of the gut microbiota, has been closely associated with various metabolic diseases, but its relationship with NAFLD remains to be elucidated. In this study, we found that fecal TMAO levels correlated with NAFLD severity. Moreover, TMAO promoted lipid deposition in HepG2 fatty liver cells and exacerbated hepatic steatosis in NAFLD rats. In the colon, TMAO undermined the structure and function of the intestinal barrier at various levels, further activated the TLR4/MyD88/NF-κB pathway, and inhibited the WNT/β-catenin pathway. In the liver, TMAO induced endothelial dysfunction with capillarization of liver sinusoidal endothelial cells, while modulating macrophage polarization. In conclusion, our study suggests that gut microbiota metabolite TMAO promotes NAFLD progression by impairing the gut and liver and that targeting TMAO could be an alternative therapeutic strategy for NAFLD.
Collapse
Affiliation(s)
- Fulin Nian
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yueying Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiaoyun Xia
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Chen Zhu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Longyun Wu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xiaolan Lu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| |
Collapse
|
2
|
Kumar P, Schroder EA, Rajaram MVS, Harris EN, Ganesan LP. The Battle of LPS Clearance in Host Defense vs. Inflammatory Signaling. Cells 2024; 13:1590. [PMID: 39329771 PMCID: PMC11430141 DOI: 10.3390/cells13181590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Lipopolysaccharide (LPS) in blood circulation causes endotoxemia and is linked to various disease conditions. Current treatments focus on preventing LPS from interacting with its receptor Toll-like receptor 4 (TLR4) and reducing inflammation. However, our body has a natural defense mechanism: reticuloendothelial cells in the liver rapidly degrade and inactivate much of the circulating LPS within minutes. But this LPS clearance mechanism is not perfect. Excessive LPS that escape this clearance mechanism cause systemic inflammatory damage through TLR4. Despite its importance, the role of reticuloendothelial cells in LPS elimination is not well-studied, especially regarding the specific cells, receptors, and mechanisms involved. This gap hampers the development of effective therapies for endotoxemia and related diseases. This review consolidates the current understanding of LPS clearance, narrates known and explores potential mechanisms, and discusses the relationship between LPS clearance and LPS signaling. It also aims to highlight key insights that can guide the development of strategies to reduce circulating LPS by way of bolstering host defense mechanisms. Ultimately, we seek to provide a foundation for future research that could lead to innovative approaches for enhancing the body's natural ability to clear LPS and thereby lower the risk of endotoxin-related inflammatory diseases, including sepsis.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Evan A. Schroder
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA; (E.A.S.); (E.N.H.)
| | - Murugesan V. S. Rajaram
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Edward N. Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA; (E.A.S.); (E.N.H.)
| | - Latha P. Ganesan
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
3
|
Schuermans S, Kestens C, Marques PE. Systemic mechanisms of necrotic cell debris clearance. Cell Death Dis 2024; 15:557. [PMID: 39090111 PMCID: PMC11294570 DOI: 10.1038/s41419-024-06947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Necrosis is an overarching term that describes cell death modalities caused by (extreme) adverse conditions in which cells lose structural integrity. A guaranteed consequence of necrosis is the production of necrotic cell remnants, or debris. Necrotic cell debris is a strong trigger of inflammation, and although inflammatory responses are required for tissue healing, necrotic debris may lead to uncontrolled immune responses and collateral damage. Besides local phagocytosis by recruited leukocytes, there is accumulating evidence that extracellular mechanisms are also involved in necrotic debris clearance. In this review, we focused on systemic clearance mechanisms present in the bloodstream and vasculature that often cooperate to drive the clearance of cell debris. We reviewed the contribution and cooperation of extracellular DNases, the actin-scavenger system, the fibrinolytic system and reticuloendothelial cells in performing clearance of necrotic debris. Moreover, associations of the (mis)functioning of these clearance systems with a variety of diseases were provided, illustrating the importance of the mechanisms of clearance of dead cells in the organism.
Collapse
Affiliation(s)
- Sara Schuermans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Caine Kestens
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
He Q, He W, Dong H, Guo Y, Yuan G, Shi X, Wang D, Lu F. Role of liver sinusoidal endothelial cell in metabolic dysfunction-associated fatty liver disease. Cell Commun Signal 2024; 22:346. [PMID: 38943171 PMCID: PMC11214243 DOI: 10.1186/s12964-024-01720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells that represent the interface between blood cells on one side and hepatocytes on the other side. LSECs not only form a barrier within the hepatic sinus, but also play important physiological functions such as regulating hepatic vascular pressure, anti-inflammatory and anti-fibrotic. Pathologically, pathogenic factors can induce LSECs capillarization, that is, loss of fenestra and dysfunction, which are conducive to early steatosis, lay the foundation for the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), and accelerate metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. The unique localization, phenotype, and function of LSECs make them potential candidates for reducing liver injury, inflammation, and preventing or reversing fibrosis in the future.
Collapse
Affiliation(s)
- Qiongyao He
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wu He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Hui Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Yuan
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoli Shi
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Viral Liver Disease and Intestinal Gut–Liver Axis. GASTROINTESTINAL DISORDERS 2024; 6:64-93. [DOI: 10.3390/gidisord6010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The intestinal microbiota is closely related to liver diseases via the intestinal barrier and bile secretion to the gut. Impairment of the barrier can translocate microbes or their components to the liver where they can contribute to liver damage and fibrosis. The components of the barrier are discussed in this review along with the other elements of the so-called gut–liver axis. This bidirectional relation has been widely studied in alcoholic and non-alcoholic liver disease. However, the involvement of microbiota in the pathogenesis and treatment of viral liver diseases have not been extensively studied, and controversial data have been published. Therefore, we reviewed data regarding the integrity and function of the intestinal barrier and the changes of the intestinal microbioma that contribute to progression of Hepatitis B (HBV) and Hepatitis C (HCV) infection. Their consequences, such as cirrhosis and hepatic encephalopathy, were also discussed in connection with therapeutic interventions such as the effects of antiviral eradication and the use of probiotics that may influence the outcome of liver disease. Profound alterations of the microbioma with significant reduction in microbial diversity and changes in the abundance of both beneficial and pathogenic bacteria were found.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Ioannis Tsomidis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| |
Collapse
|
6
|
Huang R, Ding J, Xie WF. Liver cancer. SINUSOIDAL CELLS IN LIVER DISEASES 2024:349-366. [DOI: 10.1016/b978-0-323-95262-0.00017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Szafranska K, Sørensen KK, Lalor PF, McCourt P. Sinusoidal cells and liver immunology. SINUSOIDAL CELLS IN LIVER DISEASES 2024:53-75. [DOI: 10.1016/b978-0-323-95262-0.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Kui L, Kim AD, Onyuru J, Hoffman HM, Feldstein AE. BRP39 Regulates Neutrophil Recruitment in NLRP3 Inflammasome-Induced Liver Inflammation. Cell Mol Gastroenterol Hepatol 2023; 17:481-497. [PMID: 38092312 PMCID: PMC10837621 DOI: 10.1016/j.jcmgh.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND & AIMS Breast regression protein 39 (BRP39) (Chi3L1) and its human homolog YKL-40, is an established biomarker of liver fibrosis in nonalcoholic steatohepatitis (NASH) patients, but its role in NASH pathogenesis remains unclear. We recently identified Chi3L1 as one of the top up-regulated genes in mice with inducible gain-of-function NOD-like receptor protein 3 (NLRP3) activation that mimics several liver features of NASH. This study aimed to investigate the effects of BRP39 deficiency on NLRP3-induced liver inflammation using tamoxifen-inducible Nlrp3 knockin mice sufficient (Nlrp3A350V CRT) and deficient for BRP39 (Nlrp3A350V/BRP-/- CRT). METHODS Using Nlrp3A350V CRT mice and Nlrp3A350V BRP-/- CRT, we investigated the consequences of BRP39 deficiency influencing NLRP3-induced liver inflammation. RESULTS Our results showed that BRP39 deficiency in NLRP3-induced inflammation improved body weight and liver weight. Moreover, liver inflammation, fibrosis, and hepatic stellate cell activation were reduced significantly, corresponding to significantly decreased Ly6C+ infiltrating macrophages, CD68+ osteopontin-positive hepatic lipid-associated macrophages, and activated Lymphocyte antigen 6 complex locus G6D positive (Ly6G+) and citrullinated histone H3 postivie (H3Cit+) neutrophil accumulation in the liver. Further investigation showed that circulatory neutrophils from NLRP3-induced BRP39-deficient mice have impaired chemotaxis and migration ability, and this was confirmed by RNA bulk sequencing showing reduced immune activation, migration, and signaling responses in neutrophils. CONCLUSIONS These data showcase the importance of BRP39 in regulating the NLRP3 inflammasome during liver inflammation and fibrotic NASH by altering cellular activation, recruitment, and infiltration during disease progression, and revealing BRP39 to be a potential therapeutic target for future treatment of inflammatory NASH and its associated diseases.
Collapse
Affiliation(s)
- Lin Kui
- Department of Pediatrics, University of California San Diego, San Diego, California
| | - Andrea D Kim
- Department of Pediatrics, University of California San Diego, San Diego, California; Department of Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Janset Onyuru
- Department of Pediatrics, University of California San Diego, San Diego, California
| | - Hal M Hoffman
- Department of Pediatrics, University of California San Diego, San Diego, California
| | - Ariel E Feldstein
- Department of Pediatrics, University of California San Diego, San Diego, California; Global Drug Discovery, Novo Nordisk, Denmark.
| |
Collapse
|
9
|
Zhao J, Zhang X, Li Y, Yu J, Chen Z, Niu Y, Ran S, Wang S, Ye W, Luo Z, Li X, Hao Y, Zong J, Xia C, Xia J, Wu J. Interorgan communication with the liver: novel mechanisms and therapeutic targets. Front Immunol 2023; 14:1314123. [PMID: 38155961 PMCID: PMC10754533 DOI: 10.3389/fimmu.2023.1314123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
The liver is a multifunctional organ that plays crucial roles in numerous physiological processes, such as production of bile and proteins for blood plasma, regulation of blood levels of amino acids, processing of hemoglobin, clearance of metabolic waste, maintenance of glucose, etc. Therefore, the liver is essential for the homeostasis of organisms. With the development of research on the liver, there is growing concern about its effect on immune cells of innate and adaptive immunity. For example, the liver regulates the proliferation, differentiation, and effector functions of immune cells through various secreted proteins (also known as "hepatokines"). As a result, the liver is identified as an important regulator of the immune system. Furthermore, many diseases resulting from immune disorders are thought to be related to the dysfunction of the liver, including systemic lupus erythematosus, multiple sclerosis, and heart failure. Thus, the liver plays a role in remote immune regulation and is intricately linked with systemic immunity. This review provides a comprehensive overview of the liver remote regulation of the body's innate and adaptive immunity regarding to main areas: immune-related molecules secreted by the liver and the liver-resident cells. Additionally, we assessed the influence of the liver on various facets of systemic immune-related diseases, offering insights into the clinical application of target therapies for liver immune regulation, as well as future developmental trends.
Collapse
Affiliation(s)
- Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
10
|
Hassan GS, Flores Molina M, Shoukry NH. The multifaceted role of macrophages during acute liver injury. Front Immunol 2023; 14:1237042. [PMID: 37736102 PMCID: PMC10510203 DOI: 10.3389/fimmu.2023.1237042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
The liver is situated at the interface of the gut and circulation where it acts as a filter for blood-borne and gut-derived microbes and biological molecules, promoting tolerance of non-invasive antigens while driving immune responses against pathogenic ones. Liver resident immune cells such as Kupffer cells (KCs), a subset of macrophages, maintain homeostasis under physiological conditions. However, upon liver injury, these cells and others recruited from circulation participate in the response to injury and the repair of tissue damage. Such response is thus spatially and temporally regulated and implicates interconnected cells of immune and non-immune nature. This review will describe the hepatic immune environment during acute liver injury and the subsequent wound healing process. In its early stages, the wound healing immune response involves a necroinflammatory process characterized by partial depletion of resident KCs and lymphocytes and a significant infiltration of myeloid cells including monocyte-derived macrophages (MoMFs) complemented by a wave of pro-inflammatory mediators. The subsequent repair stage includes restoring KCs, initiating angiogenesis, renewing extracellular matrix and enhancing proliferation/activation of resident parenchymal and mesenchymal cells. This review will focus on the multifaceted role of hepatic macrophages, including KCs and MoMFs, and their spatial distribution and roles during acute liver injury.
Collapse
Affiliation(s)
- Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Manuel Flores Molina
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
11
|
Lotto J, Stephan TL, Hoodless PA. Fetal liver development and implications for liver disease pathogenesis. Nat Rev Gastroenterol Hepatol 2023; 20:561-581. [PMID: 37208503 DOI: 10.1038/s41575-023-00775-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/21/2023]
Abstract
The metabolic, digestive and homeostatic roles of the liver are dependent on proper crosstalk and organization of hepatic cell lineages. These hepatic cell lineages are derived from their respective progenitors early in organogenesis in a spatiotemporally controlled manner, contributing to the liver's specialized and diverse microarchitecture. Advances in genomics, lineage tracing and microscopy have led to seminal discoveries in the past decade that have elucidated liver cell lineage hierarchies. In particular, single-cell genomics has enabled researchers to explore diversity within the liver, especially early in development when the application of bulk genomics was previously constrained due to the organ's small scale, resulting in low cell numbers. These discoveries have substantially advanced our understanding of cell differentiation trajectories, cell fate decisions, cell lineage plasticity and the signalling microenvironment underlying the formation of the liver. In addition, they have provided insights into the pathogenesis of liver disease and cancer, in which developmental processes participate in disease emergence and regeneration. Future work will focus on the translation of this knowledge to optimize in vitro models of liver development and fine-tune regenerative medicine strategies to treat liver disease. In this Review, we discuss the emergence of hepatic parenchymal and non-parenchymal cells, advances that have been made in in vitro modelling of liver development and draw parallels between developmental and pathological processes.
Collapse
Affiliation(s)
- Jeremy Lotto
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC, Canada
| | - Tabea L Stephan
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC, Canada
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada.
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Kaden T, Graf K, Rennert K, Li R, Mosig AS, Raasch M. Evaluation of drug-induced liver toxicity of trovafloxacin and levofloxacin in a human microphysiological liver model. Sci Rep 2023; 13:13338. [PMID: 37587168 PMCID: PMC10432496 DOI: 10.1038/s41598-023-40004-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/03/2023] [Indexed: 08/18/2023] Open
Abstract
Drug-induced liver injury induced by already approved substances is a major threat to human patients, potentially resulting in drug withdrawal and substantial loss of financial resources in the pharmaceutical industry. Trovafloxacin, a broad-spectrum fluoroquinolone, was found to have unexpected side effects of severe hepatotoxicity, which was not detected by preclinical testing. To address the limitations of current drug testing strategies mainly involving 2D cell cultures and animal testing, a three-dimensional microphysiological model of the human liver containing expandable human liver sinusoidal endothelial cells, monocyte-derived macrophages and differentiated HepaRG cells was utilized to investigate the toxicity of trovafloxacin and compared it to the structurally-related non-toxic drug levofloxacin. In the model, trovafloxacin elicited vascular and hepatocellular toxicity associated with pro-inflammatory cytokine release already at clinically relevant concentrations, whereas levofloxacin did not provoke tissue injury. Similar to in vivo, cytokine secretion was dependent on a multicellular immune response, highlighting the potential of the complex microphysiological liver model for reliably detecting drug-related cytotoxicity in preclinical testing. Moreover, hepatic glutathione depletion and mitochondrial ROS formation were elucidated as intrinsic toxicity mechanisms contributing to trovafloxacin toxicity.
Collapse
Affiliation(s)
- Tim Kaden
- Dynamic42 GmbH, Jena, Germany
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | | | | | - Ruoya Li
- Biopredic International, St Gregoire, France
| | - Alexander S Mosig
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | | |
Collapse
|
13
|
Shen B, Gu T, Shen Z, Zhou C, Guo Y, Wang J, Li B, Xu X, Li F, Zhang Q, Cai X, Dong H, Lu L. Escherichia coli Promotes Endothelial to Mesenchymal Transformation of Liver Sinusoidal Endothelial Cells and Exacerbates Nonalcoholic Fatty Liver Disease Via Its Flagellin. Cell Mol Gastroenterol Hepatol 2023; 16:857-879. [PMID: 37572735 PMCID: PMC10598062 DOI: 10.1016/j.jcmgh.2023.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND&AIMS: Gut bacteria translocate into the liver through a disrupted gut vascular barrier, which is an early and common event in the development of nonalcoholic fatty liver disease (NAFLD). Liver sinusoidal endothelial cells (LSECs) are directly exposed to translocated gut microbiota in portal vein blood. Escherichia coli, a commensal gut bacterium with flagella, is markedly enriched in the gut microbiota of patients with NAFLD. However, the impact of E coli on NAFLD progression and its underlying mechanisms remains unclear. METHODS The abundance of E coli was analyzed by using 16S ribosomal RNA sequencing in a cohort of patients with NAFLD and healthy controls. The role of E coli was assessed in NAFLD mice after 16 weeks of administration, and the features of NAFLD were evaluated. Endothelial to mesenchymal transition (EndMT) in LSECs induced by E coli was analyzed through Western blotting and immunofluorescence. RESULTS The abundance of gut Enterobacteriaceae increased in NAFLD patients with severe fat deposition and fibrosis. Importantly, translocated E coli in the liver aggravated hepatic steatosis, inflammation, and fibrosis in NAFLD mice. Mechanistically, E coli induced EndMT in LSECs through the TLR5/MYD88/TWIST1 pathway during NAFLD development. The toll-like receptor 5 inhibitor attenuated E coli-induced EndMT in LSECs and liver injury in NAFLD mice. Interestingly, flagellin-deficient E coli promoted less EndMT in LSECs and liver injury in NAFLD mice. CONCLUSIONS E coli promoted the development of NAFLD and promoted EndMT in LSECs through toll-like receptor 5/nuclear factor kappa B-dependent activation of TWIST1 mediated by flagellin. Therapeutic interventions targeting E coli and/or flagellin may represent a promising candidate for NAFLD treatment.
Collapse
Affiliation(s)
- Bo Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyi Gu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyang Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Zhou
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuecheng Guo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjun Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binghang Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianjun Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Zhang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobo Cai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Dong
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Cooper SA, Kostallari E, Shah VH. Angiocrine Signaling in Sinusoidal Health and Disease. Semin Liver Dis 2023; 43:245-257. [PMID: 37442155 PMCID: PMC10798369 DOI: 10.1055/a-2128-5907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Liver sinusoidal endothelial cells (LSECs) are key players in maintaining hepatic homeostasis. They also play crucial roles during liver injury by communicating with liver cell types as well as immune cells and promoting portal hypertension, fibrosis, and inflammation. Cutting-edge technology, such as single cell and spatial transcriptomics, have revealed the existence of distinct LSEC subpopulations with a clear zonation in the liver. The signals released by LSECs are commonly called "angiocrine signaling." In this review, we summarize the role of angiocrine signaling in health and disease, including zonation in healthy liver, regeneration, fibrosis, portal hypertension, nonalcoholic fatty liver disease, alcohol-associated liver disease, aging, drug-induced liver injury, and ischemia/reperfusion, as well as potential therapeutic advances. In conclusion, sinusoidal endotheliopathy is recognized in liver disease and promising preclinical studies are paving the path toward LSEC-specific pharmacotherapies.
Collapse
Affiliation(s)
- Shawna A. Cooper
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
15
|
Zhou C, Shen Z, Shen B, Dai W, Sun Z, Guo Y, Xu X, Wang J, Lu J, Zhang Q, Luo X, Qu Y, Dong H, Lu L. FABP4 in LSECs promotes CXCL10-mediated macrophage recruitment and M1 polarization during NAFLD progression. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166810. [PMID: 37487374 DOI: 10.1016/j.bbadis.2023.166810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND AND AIMS Non-alcoholic liver disease (NAFLD) is emerging as the leading cause of end-stage liver disease with a serious threat to global health burden. Fatty acid-binding protein 4 (FABP4) is closely associated with metabolic syndromes. We aimed to explore the potential mechanisms of FABP4 in NAFLD progression. MATERIALS AND METHODS For NAFLD mice, animals were fed with high fat diet (HFD) for 20 weeks. The assays of hematoxylin and eosin, Sirius Red, oil red O staining and immunohistology were performed to evaluate hepatic pathology. Flow cytometric analysis was used to distinguish macrophage subtypes. RESULTS Serum FABP4 level was positively correlate with the severity of hepatic steatosis in NAFLD patients. FABP4 expression was mainly distributed in liver sinusoidal endothelial cells (LSECs), which was significantly increased in HFD mice. The level of CXCL10 was positively correlated with FABP4 at mRNA and serum level. FABP4 inhibition resulted in decreased expression of CXCL10. The percentage of M1 macrophage and CXCR3+ cells in infiltrated macrophage was increased in liver of HFD mice. Inhibition of FABP4 ameliorated HFD-induced M1 macrophage polarization as well as CXCR3+ macrophages recruitment. Recombinant CXCL10 and co-culturing with TMNK-1 stimulated macrophage toward M1 polarization, which could be reversed by CXCR3 inhibitor. Palmitic acid treatment resulted in increased nuclear P65 expression, which could be reversed by inhibiting FABP4. Cxcl10 expression was dramatically suppressed by NF-κB inhibitor. CONCLUSIONS FABP4 in LSECs may play a pathogenic role in NAFLD course by promoting CXCL10-mediated macrophage M1 polarization and CXCR3+ macrophage infiltration via activating NF-κB/p65 signaling.
Collapse
Affiliation(s)
- Cui Zhou
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyang Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiming Dai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongsang Sun
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuecheng Guo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianjun Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjun Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingqing Zhang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Luo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Qu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hui Dong
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Furuta K, Tang X, Islam S, Tapia A, Chen ZB, Ibrahim SH. Endotheliopathy in the metabolic syndrome: Mechanisms and clinical implications. Pharmacol Ther 2023; 244:108372. [PMID: 36894027 PMCID: PMC10084912 DOI: 10.1016/j.pharmthera.2023.108372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
The increasing prevalence of the metabolic syndrome (MetS) is a threat to global public health due to its lethal complications. Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the MetS characterized by hepatic steatosis, which is potentially progressive to the inflammatory and fibrotic nonalcoholic steatohepatitis (NASH). The adipose tissue (AT) is also a major metabolic organ responsible for the regulation of whole-body energy homeostasis, and thereby highly involved in the pathogenesis of the MetS. Recent studies suggest that endothelial cells (ECs) in the liver and AT are not just inert conduits but also crucial mediators in various biological processes via the interaction with other cell types in the microenvironment both under physiological and pathological conditions. Herein, we highlight the current knowledge of the role of the specialized liver sinusoidal endothelial cells (LSECs) in NAFLD pathophysiology. Next, we discuss the processes through which AT EC dysfunction leads to MetS progression, with a focus on inflammation and angiogenesis in the AT as well as on endothelial-to-mesenchymal transition of AT-ECs. In addition, we touch upon the function of ECs residing in other metabolic organs including the pancreatic islet and the gut, the dysregulation of which may also contribute to the MetS. Finally, we highlight potential EC-based therapeutic targets for human MetS, and NASH based on recent achievements in basic and clinical research and discuss how to approach unsolved problems in the field.
Collapse
Affiliation(s)
- Kunimaro Furuta
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA; Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xiaofang Tang
- Department of Diabetes Complications & Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Shahidul Islam
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Alonso Tapia
- Department of Diabetes Complications & Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications & Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| | - Samar H Ibrahim
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA; Division of Pediatric Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
17
|
Bozward A, Ce M, Dell'oro L, Oo YH, Ronca V. Breakdown in hepatic tolerance and its relation to autoimmune liver diseases. Minerva Gastroenterol (Torino) 2023; 69:10-22. [PMID: 33793157 DOI: 10.23736/s2724-5985.21.02853-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The liver is a complex immunological organ. It has both immunogenic and tolerogenic capacity. Tolerogenic potential of human liver with its protective firewalls is required to guard the body against the continuous influx of microbial product from the gut via the sinusoids and biliary tree. Immunotolerance and anergic state is maintained by a combined effort of both immune cells, parenchyma cells, epithelial and endothelial cells. Despite this, an unknown trigger can ignite the pathway towards breakdown in hepatic tolerance leading to autoimmune liver diseases. Understanding the initial stimulus which causes the hepatic immune system to switch from the regulatory arm towards self-reactive effector arm remains challenging. Dissecting this pathology using the current technological advances is crucial to develop curative immune based therapy in autoimmune liver diseases. We discuss the hepatic immune cells and non-immune cells which maintain liver tolerance and the evidence of immune system barrier breach which leads to autoimmune hepatitis, primary biliary cholangitis and primary sclerosing cholangitis.
Collapse
Affiliation(s)
- Amber Bozward
- Center for Liver and Gastro Research and NIHR Biomedical Research Center, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Center for Rare Diseases, European Reference Network Centre - Rare Liver, Birmingham, UK
| | - Maurizio Ce
- Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Ye H Oo
- Center for Liver and Gastro Research and NIHR Biomedical Research Center, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Center for Rare Diseases, European Reference Network Centre - Rare Liver, Birmingham, UK.,Liver Transplant and Hepatobiliary Unit, University Hospital of Birmingham NHS Foundation Trust, Birmingham, UK
| | - Vincenzo Ronca
- Center for Liver and Gastro Research and NIHR Biomedical Research Center, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK - .,Center for Rare Diseases, European Reference Network Centre - Rare Liver, Birmingham, UK.,Liver Transplant and Hepatobiliary Unit, University Hospital of Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
18
|
Zhang J, Zao X, Zhang J, Guo Z, Jin Q, Chen G, Gan D, Du H, Ye Y. Is it possible to intervene early cirrhosis by targeting toll-like receptors to rebalance the intestinal microbiome? Int Immunopharmacol 2023; 115:109627. [PMID: 36577151 DOI: 10.1016/j.intimp.2022.109627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
Cirrhosis is a progressive chronic liver disease caused by one or more causes and characterized by diffuse fibrosis, pseudolobules, and regenerated nodules. Once progression to hepatic decompensation, the function of the liver and other organs is impaired and almost impossible to reverse and recover, which often results in hospitalization, impaired quality of life, and high mortality. However, in the early stage of cirrhosis, there seems to be a possibility of cirrhosis reversal. The development of cirrhosis is related to the intestinal microbiota and activation of toll-like receptors (TLRs) pathways, which could regulate cell proliferation, apoptosis, expression of the hepatomitogen epiregulin, and liver inflammation. Targeting regulation of intestinal microbiota and TLRs pathways could affect the occurrence and development of cirrhosis and its complications. In this paper, we first reviewed the dynamic change of intestinal microbiota and TLRs during cirrhosis progression. And further discussed the interaction between them and potential therapeutic targets to reverse early staged cirrhosis.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaying Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Ziwei Guo
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Jin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guang Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Da'nan Gan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Hongbo Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Yong'an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
19
|
Vascularized Tissue Organoids. Bioengineering (Basel) 2023; 10:bioengineering10020124. [PMID: 36829618 PMCID: PMC9951914 DOI: 10.3390/bioengineering10020124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Tissue organoids hold enormous potential as tools for a variety of applications, including disease modeling and drug screening. To effectively mimic the native tissue environment, it is critical to integrate a microvasculature with the parenchyma and stroma. In addition to providing a means to physiologically perfuse the organoids, the microvasculature also contributes to the cellular dynamics of the tissue model via the cells of the perivascular niche, thereby further modulating tissue function. In this review, we discuss current and developing strategies for vascularizing organoids, consider tissue-specific vascularization approaches, discuss the importance of perfusion, and provide perspectives on the state of the field.
Collapse
|
20
|
Kaden T, Noerenberg A, Boldt J, Sagawe C, Johannssen T, Rennert K, Raasch M, Evenburg T. Generation & characterization of expandable human liver sinusoidal endothelial cells and their application to assess hepatotoxicity in an advanced in vitro liver model. Toxicology 2023; 483:153374. [PMID: 36396002 DOI: 10.1016/j.tox.2022.153374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells forming the hepatic sinusoidal wall. Besides their high endocytic potential, LSECs have been demonstrated to markedly contribute to liver homeostasis and immunity, and may partially explain unexpected hepatotoxicity of drug candidates. However, their use for in vitro investigations is compromised by poor cell yields and a limited proliferation capacity. Here, we report the transient expansion of primary human LSECs from three donors by lentiviral transduction. Transduced ("upcyte®") LSECs were able to undergo at least 25 additional population doublings (PDs) before growth arrest due to senescence. Expanded upcyte® LSECs maintained several characteristics of primary LSECs, including expression of surface markers such as MMR and LYVE-1 as well as rapid uptake of acetylated LDL and ovalbumin. We further investigated the suitability of expanded upcyte® LSECs and proliferating upcyte® hepatocytes for detecting acetaminophen toxicity at millimolar concentrations (0, 0.5, 1, 2, 5, 10 mM) in static 2D cultures and a microphysiological 3D model. upcyte® LSECs exhibited a higher sensitivity to acetaminophen-induced toxicity compared to upcyte® hepatocytes in 2D culture, however, culturing upcyte® LSECs together with upcyte® hepatocytes in a co-culture reduced APAP-induced toxicity compared to 2D monocultures. A perfused Dynamic42 3D model was more sensitive to acetaminophen than the 2D co-culture model. Cytotoxicity in the 3D model was evident by decreased cellular viability, elevated LDH release, reduced nuclei counts and impaired cell morphology. Taken together, our data demonstrate that transient expansion of LSECs represents a suitable method for generation of large quantities of cells while maintaining many characteristics of primary cells and responsiveness to acetaminophen.
Collapse
|
21
|
Toll- like receptor 2 polymorphism and IL-6 profile in relation to disease progression in chronic HBV infection: a case control study in Egyptian patients. Clin Exp Med 2023; 23:117-129. [PMID: 35119591 PMCID: PMC9939497 DOI: 10.1007/s10238-022-00792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/04/2022] [Indexed: 11/03/2022]
Abstract
Chronic hepatitis B (CHB) has a wide range of outcomes depending on host immune responses mainly Toll-like receptors (TLRs) signaling and released cytokines. Toll-like receptor 2 (TLR2) single nucleotide polymorphisms (SNPs) and interleukin 6 (IL-6) may influence the course of CHB. We aimed to elucidate the relation between TLR-2 polymorphism, IL-6 profile, and CHB progression. We analyzed TLR-2 polymorphism (SNP; rs3804099) in 185 CHB patients and 60 controls using TaqMan allelic discrimination assay. Serum IL-6 levels were assessed by ELISA. IL-6 levels were considerably higher in active CHB and cirrhotic patients compared with inactive carriers and controls (P < 0.001). IL-6 showed positive correlation with ALT and advanced fibrosis in active CHB patients (r = 0.31, P = 0.02). A significant positive correlation was noticed between IL-6 and HBV DNA PCR in all CHB groups. TT genotype of rs3804099/TLR-2 was significantly more prevalent in inactive carriers compared to active hepatitis patients (P = 0.04, OR = 0.39 and 95% CI: 0.16-0.95). Both heterozygous CT and mutant TT genotypes were significantly more frequent among inactive carriers compared to cirrhotic patients (P = 0.01, OR = 0.33, 95% CI: 0.13-0.81 and P = 0.009, OR = 0.32, 95% CI: 0.13-0.77). TT genotype was significantly related to lower IL-6 levels in active hepatitis and cirrhotic groups (P = 0.005 and P = 0.001, respectively) showing that TLR mutations would be associated with milder hepatitis activity and lower possibility for disease progression. There may be a positive association between TLR2 rs3804099 polymorphism and hepatitis B activity. IL-6 is a good indicator of CHB disease progression.
Collapse
|
22
|
Toward Establishing an Ideal Adjuvant for Non-Inflammatory Immune Enhancement. Cells 2022; 11:cells11244006. [PMID: 36552770 PMCID: PMC9777512 DOI: 10.3390/cells11244006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The vertebrate immune system functions to eliminate invading foreign nucleic acids and foreign proteins from infectious diseases and malignant tumors. Because pathogens and cancer cells have unique amino acid sequences and motifs (e.g., microbe-associated molecular patterns, MAMPs) that are recognized as "non-self" to the host, immune enhancement is one strategy to eliminate invading cells. MAMPs contain nucleic acids specific or characteristic of the microbe and are potential candidates for immunostimulants or adjuvants. Adjuvants are included in many vaccines and are a way to boost immunity by deliberately administering them along with antigens. Although adjuvants are an important component of vaccines, it is difficult to evaluate their efficacy ex vivo and in vivo on their own (without antigens). In addition, inflammation induced by currently candidate adjuvants may cause adverse events, which is a hurdle to their approval as drugs. In addition, the lack of guidelines for evaluating the safety and efficacy of adjuvants in drug discovery research also makes regulatory approval difficult. Viral double-stranded (ds) RNA mimics have been reported as potent adjuvants, but the safety barrier remains unresolved. Here we present ARNAX, a noninflammatory nucleic acid adjuvant that selectively targets Toll-like receptor 3 (TLR3) in antigen-presenting dendritic cells (APCs) to safely induce antigen cross-presentation and subsequently induce an acquired immune response independent of inflammation. This review discusses the challenges faced in the clinical development of novel adjuvants.
Collapse
|
23
|
Zhang X, Liu H, Hashimoto K, Yuan S, Zhang J. The gut–liver axis in sepsis: interaction mechanisms and therapeutic potential. Crit Care 2022; 26:213. [PMID: 35831877 PMCID: PMC9277879 DOI: 10.1186/s13054-022-04090-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/09/2022] [Indexed: 12/20/2022] Open
Abstract
Sepsis is a potentially fatal condition caused by dysregulation of the body's immune response to an infection. Sepsis-induced liver injury is considered a strong independent prognosticator of death in the critical care unit, and there is anatomic and accumulating epidemiologic evidence that demonstrates intimate cross talk between the gut and the liver. Intestinal barrier disruption and gut microbiota dysbiosis during sepsis result in translocation of intestinal pathogen-associated molecular patterns and damage-associated molecular patterns into the liver and systemic circulation. The liver is essential for regulating immune defense during systemic infections via mechanisms such as bacterial clearance, lipopolysaccharide detoxification, cytokine and acute-phase protein release, and inflammation metabolic regulation. When an inappropriate immune response or overwhelming inflammation occurs in the liver, the impaired capacity for pathogen clearance and hepatic metabolic disturbance can result in further impairment of the intestinal barrier and increased disruption of the composition and diversity of the gut microbiota. Therefore, interaction between the gut and liver is a potential therapeutic target. This review outlines the intimate gut–liver cross talk (gut–liver axis) in sepsis.
Collapse
|
24
|
Khanmohammadi S, Kuchay MS. Toll-like receptors and metabolic (dysfunction)-associated fatty liver disease. Pharmacol Res 2022; 185:106507. [DOI: 10.1016/j.phrs.2022.106507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
|
25
|
Contribution of T- and B-cell intrinsic toll-like receptors to the adaptive immune response in viral infectious diseases. Cell Mol Life Sci 2022; 79:547. [PMID: 36224474 PMCID: PMC9555683 DOI: 10.1007/s00018-022-04582-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/03/2022]
Abstract
Toll-like receptors (TLRs) comprise a class of highly conserved molecules that recognize pathogen-associated molecular patterns and play a vital role in host defense against multiple viral infectious diseases. Although TLRs are highly expressed on innate immune cells and play indirect roles in regulating antiviral adaptive immune responses, intrinsic expression of TLRs in adaptive immune cells, including T cells and B cells, cannot be ignored. TLRs expressed in CD4 + and CD8 + T cells play roles in enhancing TCR signal-induced T-cell activation, proliferation, function, and survival, serving as costimulatory molecules. Gene knockout of TLR signaling molecules has been shown to diminish antiviral adaptive immune responses and affect viral clearance in multiple viral infectious animal models. These results have highlighted the critical role of TLRs in the long-term immunological control of viral infection. This review summarizes the expression and function of TLR signaling pathways in T and B cells, focusing on the in vitro and vivo mechanisms and effects of intrinsic TLR signaling in regulating T- and B-cell responses during viral infection. The potential clinical use of TLR-based immune regulatory drugs for viral infectious diseases is also explored.
Collapse
|
26
|
Nasiri-Ansari N, Androutsakos T, Flessa CM, Kyrou I, Siasos G, Randeva HS, Kassi E, Papavassiliou AG. Endothelial Cell Dysfunction and Nonalcoholic Fatty Liver Disease (NAFLD): A Concise Review. Cells 2022; 11:2511. [PMID: 36010588 PMCID: PMC9407007 DOI: 10.3390/cells11162511] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide. It is strongly associated with obesity, type 2 diabetes (T2DM), and other metabolic syndrome features. Reflecting the underlying pathogenesis and the cardiometabolic disorders associated with NAFLD, the term metabolic (dysfunction)-associated fatty liver disease (MAFLD) has recently been proposed. Indeed, over the past few years, growing evidence supports a strong correlation between NAFLD and increased cardiovascular disease (CVD) risk, independent of the presence of diabetes, hypertension, and obesity. This implies that NAFLD may also be directly involved in the pathogenesis of CVD. Notably, liver sinusoidal endothelial cell (LSEC) dysfunction appears to be implicated in the progression of NAFLD via numerous mechanisms, including the regulation of the inflammatory process, hepatic stellate activation, augmented vascular resistance, and the distortion of microcirculation, resulting in the progression of NAFLD. Vice versa, the liver secretes inflammatory molecules that are considered pro-atherogenic and may contribute to vascular endothelial dysfunction, resulting in atherosclerosis and CVD. In this review, we provide current evidence supporting the role of endothelial cell dysfunction in the pathogenesis of NAFLD and NAFLD-associated atherosclerosis. Endothelial cells could thus represent a "golden target" for the development of new treatment strategies for NAFLD and its comorbid CVD.
Collapse
Affiliation(s)
- Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Theodoros Androutsakos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Gerasimos Siasos
- Third Department of Cardiology, ‘Sotiria’ Thoracic Diseases General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
27
|
Du Y, Wu J, Liu J, Zheng X, Yang D, Lu M. Toll-like receptor-mediated innate immunity orchestrates adaptive immune responses in HBV infection. Front Immunol 2022; 13:965018. [PMID: 35967443 PMCID: PMC9372436 DOI: 10.3389/fimmu.2022.965018] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains to be a substantial global burden, especially for end-stage liver diseases. It is well accepted that HBV-specific T and B cells are essential for controlling HBV infection. Toll-like receptors (TLRs) represent one of the major first-line antiviral defenses through intracellular signaling pathways that induce antiviral inflammatory cytokines and interferons, thereby shaping adaptive immunity. However, HBV has evolved strategies to counter TLR responses by suppressing the expression of TLRs and blocking the downstream signaling pathways, thus limiting HBV-specific adaptive immunity and facilitating viral persistence. Recent studies have stated that stimulation of the TLR signaling pathway by different TLR agonists strengthens host innate immune responses and results in suppression of HBV replication. In this review, we will discuss how TLR-mediated responses shape HBV-specific adaptive immunity as demonstrated in different experimental models. This information may provide important insight for HBV functional cure based on TLR agonists as immunomodulators.
Collapse
Affiliation(s)
- Yanqin Du
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jun Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Mengji Lu,
| |
Collapse
|
28
|
Geng A, Flint E, Bernsmeier C. Plasticity of monocytes and macrophages in cirrhosis of the liver. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:937739. [PMID: 36926073 PMCID: PMC10013015 DOI: 10.3389/fnetp.2022.937739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/27/2022] [Indexed: 06/06/2023]
Abstract
Cirrhosis of the liver is a systemic condition with raising prevalence worldwide. Patients with cirrhosis are highly susceptible to develop bacterial infections leading to acute decompensation and acute-on-chronic liver failure both associated with a high morbidity and mortality and sparse therapeutic options other than transplantation. Mononuclear phagocytes play a central role in innate immune responses and represent a first line of defence against pathogens. Their function includes phagocytosis, killing of bacteria, antigen presentation, cytokine production as well as recruitment and activation of immune effector cells. Liver injury and development of cirrhosis induces activation of liver resident Kupffer cells and recruitment of monocytes to the liver. Damage- and pathogen-associated molecular patterns promote systemic inflammation which involves multiple compartments besides the liver, such as the circulation, gut, peritoneal cavity and others. The function of circulating monocytes and tissue macrophages is severely impaired and worsens along with cirrhosis progression. The underlying mechanisms are complex and incompletely understood. Recent 'omics' technologies help to transform our understanding of cellular diversity and function in health and disease. In this review we point out the current state of knowledge on phenotypical and functional changes of monocytes and macrophages during cirrhosis evolution in different compartments and their role in disease progression. We also discuss the value of potential prognostic markers for cirrhosis-associated immuneparesis, and future immunotherapeutic strategies that may reduce the need for transplantation and death.
Collapse
Affiliation(s)
- Anne Geng
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Emilio Flint
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Christine Bernsmeier
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| |
Collapse
|
29
|
Wu X, Roberto JB, Knupp A, Greninger AL, Truong CD, Hollingshead N, Kenerson HL, Tuefferd M, Chen A, Koelle DM, Horton H, Jerome KR, Polyak SJ, Yeung RS, Crispe IN. Response of Human Liver Tissue to Innate Immune Stimuli. Front Immunol 2022; 13:811551. [PMID: 35355993 PMCID: PMC8959492 DOI: 10.3389/fimmu.2022.811551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Precision-cut human liver slice cultures (PCLS) have become an important alternative immunological platform in preclinical testing. To further evaluate the capacity of PCLS, we investigated the innate immune response to TLR3 agonist (poly-I:C) and TLR4 agonist (LPS) using normal and diseased liver tissue. Pathological liver tissue was obtained from patients with active chronic HCV infection, and patients with former chronic HCV infection cured by recent Direct-Acting Antiviral (DAA) drug therapy. We found that hepatic innate immunity in response to TLR3 and TLR4 agonists was not suppressed but enhanced in the HCV-infected tissue, compared with the healthy controls. Furthermore, despite recent HCV elimination, DAA-cured liver tissue manifested ongoing abnormalities in liver immunity: sustained abnormal immune gene expression in DAA-cured samples was identified in direct ex vivo measurements and in TLR3 and TLR4 stimulation assays. Genes that were up-regulated in chronic HCV-infected liver tissue were mostly characteristic of the non-parenchymal cell compartment. These results demonstrated the utility of PCLS in studying both liver pathology and innate immunity.
Collapse
Affiliation(s)
- Xia Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Jessica B Roberto
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Allison Knupp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Institute, Seattle, WA, United States
| | - Camtu D Truong
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Nicole Hollingshead
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Heidi L Kenerson
- Department of Surgery, University of Washington, Seattle, WA, United States
| | - Marianne Tuefferd
- Infectious Diseases and Vaccines, Janssen Research and Development, Beerse, Belgium
| | - Antony Chen
- Infectious Diseases and Vaccines, Janssen Research and Development, Beerse, Belgium
| | - David M Koelle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Institute, Seattle, WA, United States.,Department of Translational Research, Benaroya Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Helen Horton
- Infectious Diseases and Vaccines, Janssen Research and Development, Beerse, Belgium
| | - Keith R Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Institute, Seattle, WA, United States
| | - Stephen J Polyak
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Raymond S Yeung
- Department of Surgery, University of Washington, Seattle, WA, United States
| | - Ian N Crispe
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| |
Collapse
|
30
|
Abstract
Blood vessel endothelial cells (ECs) have long been known to modulate inflammation by regulating immune cell trafficking, activation status and function. However, whether the heterogeneous EC populations in various tissues and organs differ in their immunomodulatory capacity has received insufficient attention, certainly with regard to considering them for alternative immunotherapy. Recent single-cell studies have identified specific EC subtypes that express gene signatures indicative of phagocytosis or scavenging, antigen presentation and immune cell recruitment. Here we discuss emerging evidence suggesting a tissue-specific and vessel type-specific immunomodulatory role for distinct subtypes of ECs, here collectively referred to as 'immunomodulatory ECs' (IMECs). We propose that IMECs have more important functions in immunity than previously recognized, and suggest that these might be considered as targets for new immunotherapeutic approaches.
Collapse
|
31
|
Werner M, Schefczyk S, Trippler M, Treckmann JW, Baba HA, Gerken G, Schlaak JF, Broering R. Antiviral Toll-like Receptor Signaling in Non-Parenchymal Liver Cells Is Restricted to TLR3. Viruses 2022; 14:218. [PMID: 35215812 PMCID: PMC8874605 DOI: 10.3390/v14020218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
The role of non-parenchymal liver cells as part of the hepatic, innate immune system in the defense against hepatotropic viruses is not well understood. Here, primary human Kupffer cells, liver sinusoidal endothelial cells and hepatic stellate cells were isolated from liver tissue obtained after tumor resections or liver transplantations. Cells were stimulated with Toll-like receptor 1-9 ligands for 6-24 h. Non-parenchymal liver cells expressed and secreted inflammatory cytokines (IL6, TNF and IL10). Toll-like receptor- and cell type-specific downstream signals included the phosphorylation of NF-κB, AKT, JNK, p38 and ERK1/2. However, only supernatants of TLR3-activated Kupffer cells, liver sinusoidal endothelial cells and hepatic stellate cells contained type I and type III interferons and mediated an antiviral activity in the interferon-sensitive subgenomic hepatitis C virus replicon system. The antiviral effect could not be neutralized by antibodies against IFNA, IFNB nor IFNL, but could be abrogated using an interferon alpha receptor 2-specific neutralization. Interestingly, TLR3 responsiveness was enhanced in liver sinusoidal endothelial cells isolated from hepatitis C virus-positive donors, compared to uninfected controls. In conclusion, non-parenchymal liver cells are potent activators of the hepatic immune system by mediating inflammatory responses. Furthermore, liver sinusoidal endothelial cells were identified to be hyperresponsive to viral stimuli in chronic hepatitis C virus infection.
Collapse
Affiliation(s)
- Melanie Werner
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital of Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany; (M.W.); (S.S.); (M.T.); (G.G.); (J.F.S.)
| | - Stefan Schefczyk
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital of Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany; (M.W.); (S.S.); (M.T.); (G.G.); (J.F.S.)
| | - Martin Trippler
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital of Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany; (M.W.); (S.S.); (M.T.); (G.G.); (J.F.S.)
| | - Juergen W. Treckmann
- Department of General-, Visceral- and Transplantation-Surgery, University Hospital of Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany;
| | - Hideo A. Baba
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany;
| | - Guido Gerken
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital of Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany; (M.W.); (S.S.); (M.T.); (G.G.); (J.F.S.)
- Helios Hospital, Gastroenterology, Hepatology and Palliative Medicine, Robert-Koch-Straße 2, 42549 Velbert, Germany
| | - Joerg F. Schlaak
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital of Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany; (M.W.); (S.S.); (M.T.); (G.G.); (J.F.S.)
- AMEOS Hospital, St. Clemens, Internal Medicine—Hepatology, Gastroenterology, Infectiology and Diabetology, Wilhelmstr. 34, 46145 Oberhausen, Germany
| | - Ruth Broering
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital of Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany; (M.W.); (S.S.); (M.T.); (G.G.); (J.F.S.)
| |
Collapse
|
32
|
Argemi J, Ponz-Sarvise M, Sangro B. Immunotherapies for hepatocellular carcinoma and intrahepatic cholangiocarcinoma: Current and developing strategies. Adv Cancer Res 2022; 156:367-413. [PMID: 35961706 DOI: 10.1016/bs.acr.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Cabral F, Al-Rahem M, Skaggs J, Thomas TA, Kumar N, Wu Q, Fadda P, Yu L, Robinson JM, Kim J, Pandey E, Sun X, Jarjour WN, Rajaram MV, Harris EN, Ganesan LP. Stabilin receptors clear LPS and control systemic inflammation. iScience 2021; 24:103337. [PMID: 34816100 PMCID: PMC8591421 DOI: 10.1016/j.isci.2021.103337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/17/2021] [Accepted: 10/20/2021] [Indexed: 01/17/2023] Open
Abstract
Lipopolysaccharides (LPSs) cause lethal endotoxemia if not rapidly cleared from blood circulation. Liver sinusoidal endothelial cells (LSEC) systemically clear LPS by unknown mechanisms. We discovered that LPS clearance through LSEC involves endocytosis and lysosomal inactivation via Stabilin-1 and 2 (Stab1 and Stab2) but does not involve TLR4. Cytokine production was inversely related to clearance/endocytosis of LPS by LSEC. When exposed to LPS, Stabilin double knockout mice (Stab DK) and Stab1 KO, but not Stab2 KO, showed significantly enhanced systemic inflammatory cytokine production and early death compared with WT mice. Stab1 KO is not significantly different from Stab DK in circulatory LPS clearance, LPS uptake and endocytosis by LSEC, and cytokine production. These data indicate that (1) Stab1 receptor primarily facilitates the proactive clearance of LPS and limits TLR4-mediated inflammation and (2) TLR4 and Stab1 are functionally opposing LPS receptors. These findings suggest that endotoxemia can be controlled by optimizing LPS clearance by Stab1.
Collapse
Affiliation(s)
- Fatima Cabral
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Mustafa Al-Rahem
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - John Skaggs
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Thushara A. Thomas
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Naresh Kumar
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Qian Wu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Paolo Fadda
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - John M. Robinson
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jonghan Kim
- Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, MA 01854, USA
| | - Ekta Pandey
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Wael N. Jarjour
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Murugesan V.S. Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Edward N. Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Latha P. Ganesan
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
34
|
Getachew A, Hussain M, Huang X, Li Y. Toll-like receptor 2 signaling in liver pathophysiology. Life Sci 2021; 284:119941. [PMID: 34508761 DOI: 10.1016/j.lfs.2021.119941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
Chronic liver diseases (CLD) are among the major cause of mortality and morbidity worldwide. Despite current achievements in the area of hepatitis virus, chronic alcohol abuse and high-fat diet are still fueling an epidemic of severe liver disease, for which, an effective therapy has yet not been discovered. In particular, the therapeutic regimens that could prevent the progression of fibrosis and, in turn, aid cirrhotic liver to develop a robust regenerative capability are intensively needed. To this context, a better understanding of the signaling pathways regulating hepatic disease development may be of critical value. In general, the liver responds to various insults with an orchestrated healing process involving variety of signaling pathways. One such pathway is the TLR2 signaling pathway, which essentially regulates adult liver pathogenesis and thus has emerged as an attractive target to treat liver disease. TLR2 is expressed by different liver cells, including Kupffer cells (KCs), hepatocytes, and hepatic stellate cells (HSCs). From a pathologic perspective, the crosstalk between antigens and TLR2 may preferentially trigger a distinctive set of signaling mechanisms in these liver cells and, thereby, induce the production of inflammatory and fibrogenic cytokines that can initiate and prolong liver inflammation, ultimately leading to fibrosis. In this review, we summarize the currently available evidence regarding the role of TLR2 signaling in hepatic disease progression. We first elaborate its pathological involvement in liver-disease states, such as inflammation, fibrosis, and cirrhosis. We then discuss how therapeutic targeting of this pathway may help to alleviate its disease-related functioning.
Collapse
Affiliation(s)
- Anteneh Getachew
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Muzammal Hussain
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinping Huang
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yinxiong Li
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China.
| |
Collapse
|
35
|
Bruneau A, Hundertmark J, Guillot A, Tacke F. Molecular and Cellular Mediators of the Gut-Liver Axis in the Progression of Liver Diseases. Front Med (Lausanne) 2021; 8:725390. [PMID: 34650994 PMCID: PMC8505679 DOI: 10.3389/fmed.2021.725390] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
The gut-liver axis covers the bidirectional communication between the gut and the liver, and thus includes signals from liver-to-gut (e.g., bile acids, immunoglobulins) and from gut-to-liver (e.g., nutrients, microbiota-derived products, and recirculating bile acids). In a healthy individual, liver homeostasis is tightly controlled by the mostly tolerogenic liver resident macrophages, the Kupffer cells, capturing the gut-derived antigens from the blood circulation. However, disturbances of the gut-liver axis have been associated to the progression of varying chronic liver diseases, such as non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, and primary sclerosing cholangitis. Notably, changes of the gut microbiome, or intestinal dysbiosis, combined with increased intestinal permeability, leads to the translocation of gut-derived bacteria or their metabolites into the portal vein. In the context of concomitant or subsequent liver inflammation, the liver is then infiltrated by responsive immune cells (e.g., monocytes, neutrophils, lymphoid, or dendritic cells), and microbiota-derived products may provoke or exacerbate innate immune responses, hence perpetuating liver inflammation and fibrosis, and potentiating the risks of developing cirrhosis. Similarly, food derived antigens, bile acids, danger-, and pathogen-associated molecular patterns are able to reshape the liver immune microenvironment. Immune cell intracellular signaling components, such as inflammasome activation, toll-like receptor or nucleotide-binding oligomerization domain-like receptors signaling, are potent targets of interest for the modulation of the immune response. This review describes the current understanding of the cellular landscape and molecular pathways involved in the gut-liver axis and implicated in chronic liver disease progression. We also provide an overview of innovative therapeutic approaches and current clinical trials aiming at targeting the gut-liver axis for the treatment of patients with chronic liver and/or intestinal diseases.
Collapse
Affiliation(s)
- Alix Bruneau
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Jana Hundertmark
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
36
|
Gao M, Cai C, Han X, Wang L, Zhang W, Zhang L, Yang L. The early stage of pregnancy modulates toll-like receptor signaling in the ovine liver. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1990935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Meihong Gao
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, People’s Republic of China
| | - Chunjiang Cai
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, People’s Republic of China
| | - Xu Han
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, People’s Republic of China
| | - Luyu Wang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, People’s Republic of China
| | - Weifeng Zhang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, People’s Republic of China
| | - Leying Zhang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, People’s Republic of China
| | - Ling Yang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, People’s Republic of China
| |
Collapse
|
37
|
Tripathi DM, Rohilla S, Kaur I, Siddiqui H, Rawal P, Juneja P, Kumar V, Kumari A, Naidu VGM, Ramakrishna S, Banerjee S, Puria R, Sarin SK, Kaur S. Immunonano-Lipocarrier-Mediated Liver Sinusoidal Endothelial Cell-Specific RUNX1 Inhibition Impedes Immune Cell Infiltration and Hepatic Inflammation in Murine Model of NASH. Int J Mol Sci 2021; 22:ijms22168489. [PMID: 34445195 PMCID: PMC8395158 DOI: 10.3390/ijms22168489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Runt-related transcription factor (RUNX1) regulates inflammation in non-alcoholic steatohepatitis (NASH). Methods: We performed in vivo targeted silencing of the RUNX1 gene in liver sinusoidal endothelial cells (LSECs) by using vegfr3 antibody tagged immunonano-lipocarriers encapsulated RUNX1 siRNA (RUNX1 siRNA) in murine models of methionine choline deficient (MCD) diet-induced NASH. MCD mice given nanolipocarriers-encapsulated negative siRNA were vehicle, and mice with standard diet were controls. Results: Liver RUNX1 expression was increased in the LSECs of MCD mice in comparison to controls. RUNX1 protein expression was decreased by 40% in CD31-positive LSECs of RUNX1 siRNA mice in comparison to vehicle, resulting in the downregulation of adhesion molecules, ICAM1 expression, and VCAM1 expression in LSECs. There was a marked decrease in infiltrated T cells and myeloid cells along with reduced inflammatory cytokines in the liver of RUNX1 siRNA mice as compared to that observed in the vehicle. Conclusions: In vivo LSEC-specific silencing of RUNX1 using immunonano-lipocarriers encapsulated siRNA effectively reduces its expression of adhesion molecules, infiltrate on of immune cells in liver, and inflammation in NASH.
Collapse
Affiliation(s)
- Dinesh Mani Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India; (D.M.T.); (I.K.); (H.S.); (P.J.); (A.K.); (S.K.S.)
| | - Sumati Rohilla
- School of Biotechnology, Gautam Buddha University, Greater Noida 201312, India; (S.R.); (P.R.); (R.P.)
| | - Impreet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India; (D.M.T.); (I.K.); (H.S.); (P.J.); (A.K.); (S.K.S.)
| | - Hamda Siddiqui
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India; (D.M.T.); (I.K.); (H.S.); (P.J.); (A.K.); (S.K.S.)
| | - Preety Rawal
- School of Biotechnology, Gautam Buddha University, Greater Noida 201312, India; (S.R.); (P.R.); (R.P.)
| | - Pinky Juneja
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India; (D.M.T.); (I.K.); (H.S.); (P.J.); (A.K.); (S.K.S.)
| | - Vikash Kumar
- Stem Cell Biology Laboratory, National Institute of Immunology, New Delhi 110067, India;
| | - Anupama Kumari
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India; (D.M.T.); (I.K.); (H.S.); (P.J.); (A.K.); (S.K.S.)
| | - Vegi Ganga Modi Naidu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781122, India; (V.G.M.N.); (S.B.)
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore;
| | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781122, India; (V.G.M.N.); (S.B.)
| | - Rekha Puria
- School of Biotechnology, Gautam Buddha University, Greater Noida 201312, India; (S.R.); (P.R.); (R.P.)
| | - Shiv K. Sarin
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India; (D.M.T.); (I.K.); (H.S.); (P.J.); (A.K.); (S.K.S.)
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India; (D.M.T.); (I.K.); (H.S.); (P.J.); (A.K.); (S.K.S.)
- Correspondence:
| |
Collapse
|
38
|
Ibrahim SH. Sinusoidal endotheliopathy in nonalcoholic steatohepatitis: therapeutic implications. Am J Physiol Gastrointest Liver Physiol 2021; 321:G67-G74. [PMID: 34037463 PMCID: PMC8321796 DOI: 10.1152/ajpgi.00009.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Liver sinusoidal endothelial cells (LSECs) are distinct subtypes of endothelial cells lining a low flow vascular bed at the interface of the liver parenchyma and the circulating immune cells and soluble factors. Emerging literature implicates LSEC in the pathogenesis and progression of nonalcoholic fatty liver disease (NAFLD). During the evolution of NAFLD, LSEC dysfunction ensues. LSECs undergo morphological and functional transformation known as "capillarization," as well as a pathogenic increase in surface adhesion molecules expression, referred to in this review as "endotheliopathy." LSECs govern the composition of hepatic immune cell populations in nonalcoholic steatohepatis (NASH) by mediating leukocyte subset adhesion through specific combinations of activated adhesion molecules and secreted chemokines. Moreover, extracellular vesicles released by hepatocyte under lipotoxic stress in NASH act as a catalyst for the inflammatory response and promote immune cell chemotaxis and adhesion. In the current review, we highlight leukocyte adhesion to LSEC as an initiating event in the sterile inflammatory response in NASH. We discuss preclinical studies targeting immune cells adhesion in NASH mouse models and potential therapeutic anti-inflammatory strategies for human NASH.
Collapse
Affiliation(s)
- Samar H. Ibrahim
- 1Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota,2Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
39
|
Jiang L, Schnabl B. Gut Microbiota in Liver Disease: What Do We Know and What Do We Not Know? Physiology (Bethesda) 2021; 35:261-274. [PMID: 32490750 DOI: 10.1152/physiol.00005.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The gut and the liver have a bidirectional communication via the biliary system and the portal vein. The intestinal microbiota and microbial products play an important role for modulating liver diseases such as alcohol-associated liver disease, non-alcoholic fatty liver disease and steatohepatitis, and cholestatic liver diseases. Here, we review the role of the gut microbiota and its products for the pathogenesis and therapy of chronic liver diseases.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Medicine, University of California San Diego, La Jolla, California; and Department of Medicine, VA San Diego Healthcare System, San Diego, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California; and Department of Medicine, VA San Diego Healthcare System, San Diego, California
| |
Collapse
|
40
|
Eritoran Attenuates Hepatic Inflammation and Fibrosis in Mice with Chronic Liver Injury. Cells 2021; 10:cells10061562. [PMID: 34205789 PMCID: PMC8235164 DOI: 10.3390/cells10061562] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptor 4 (TLR4) signaling plays a key role in liver inflammation and fibrosis. The therapeutic effects of eritoran, a TLR4 antagonist, in mice with chronic liver injury remained unclear. C57BL/6 mice were fed a fast-food diet (FFD) or treated with carbon tetrachloride (CCl4) to induce chronic liver injury. Eritoran (10 mg/kg) or a vehicle was randomly intraperitoneally administered to the FFD-fed mice and the CCl4-injured mice. Primary mouse liver cells were cultured with lipopolysaccharide (LPS) or eritoran. In both FFD and CCl4 mouse models, eritoran significantly reduced serum ALT levels and decreased hepatic inflammatory cell infiltration without altering hepatic steatosis. Additionally, eritoran attenuated liver fibrosis by decreasing hepatic stellate cells (HSCs) activation and the abundance of α-smooth muscle actin and transforming growth factor-β1. Hepatic TLR4 downstream signaling including MyD88 expression, NF-κB p65 nuclear translocation, p38 and JNK phosphorylation were successfully inhibited by eritoran. In the in vitro study, LPS-induced nuclear translocation of NF-κB in primary HSCs and Kupffer cells was significantly suppressed by eritoran. In conclusion, eritoran attenuated hepatic inflammation and fibrosis by inhibition of the TLR4 signaling pathway in mice with chronic liver injury. Eritoran may serve as a potential drug for chronic liver disease.
Collapse
|
41
|
Bartneck M. Lipid nanoparticle formulations for targeting leukocytes with therapeutic RNA in liver fibrosis. Adv Drug Deliv Rev 2021; 173:70-88. [PMID: 33774114 DOI: 10.1016/j.addr.2021.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/27/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023]
Abstract
Obesity and low-grade inflammation are promoters of a multitude of diseases including liver fibrosis. Activation of the mobile leukocytes has a major impact on the outcome of inflammatory disease and can hence foster or mitigate liver fibrosis. This renders immunological targets valuable for directed interventions using nanomedicines. Particularly, RNA-based drugs formulated as lipid nanoparticles (LNP) can open new avenues for the personalized treatment of liver fibrosis both through specific interference and via the induction of the expression of functional and therapeutic proteins. Using microfluidics technology, all components, including lipid-anchored targeting ligands, are assembled in a single-step mixing process. A highlight is set to immunologically relevant liver cell types that are most vulnerable for being reached by LNP. A selection of LNP from other therapeutic fields applicable for reaching these cells in liver fbrosis is summarized. Furthermore, recent proceedings and major obstacles in the field of these targeted LNP are presented.
Collapse
|
42
|
Yang M, Zhang C. The role of liver sinusoidal endothelial cells in cancer liver metastasis. Am J Cancer Res 2021; 11:1845-1860. [PMID: 34094657 PMCID: PMC8167702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are the gatekeeper cells in the liver, contributing critical roles in liver physiological and pathological changes. Factors such as dietary macronutrients, toxins, and aging impact LSEC fenestration. Defenestration of LSECs changes their phenotype and function. Under liver injury, capillarized LSECs promote hepatic stellate cells (HSCs) activation and fibrogenesis, while decapillarized LSECs protect the activation of HSCs and liver injury. The expression of chemokines, such as CXCL9 and CXCL16, changes and impacts the infiltration of immune cells in the liver during disease progression, including hepatocellular carcinoma (HCC). As the largest solid organ, liver is one of the most favorable organs into where tumor cells metastasize. The increased interaction and adhesion of circulating tumor cells (CTCs) with LSECs in the local microenvironment and LSEC-induced tolerance of immunity promote cancer liver metastasis. Several strategies can be applied to target LSEC to modulate their function to prevent cancer liver metastasis, including gut microbiota modulation, microRNA therapy, and medical treatment. Delivery of different treatment agents with nanoparticles may promote precise target treatment. Overall, targeting LSECs is a potential strategy for treatment of early liver diseases and prevention of cancer liver metastasis.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of MissouriColumbia, Missouri, USA
| | - Chunye Zhang
- Department of Veterinary Pathobiology, University of MissouriColumbia, Missouri, USA
| |
Collapse
|
43
|
Gerussi A, Natalini A, Antonangeli F, Mancuso C, Agostinetto E, Barisani D, Di Rosa F, Andrade R, Invernizzi P. Immune-Mediated Drug-Induced Liver Injury: Immunogenetics and Experimental Models. Int J Mol Sci 2021; 22:4557. [PMID: 33925355 PMCID: PMC8123708 DOI: 10.3390/ijms22094557] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) is a challenging clinical event in medicine, particularly because of its ability to present with a variety of phenotypes including that of autoimmune hepatitis or other immune mediated liver injuries. Limited diagnostic and therapeutic tools are available, mostly because its pathogenesis has remained poorly understood for decades. The recent scientific and technological advancements in genomics and immunology are paving the way for a better understanding of the molecular aspects of DILI. This review provides an updated overview of the genetic predisposition and immunological mechanisms behind the pathogenesis of DILI and presents the state-of-the-art experimental models to study DILI at the pre-clinical level.
Collapse
Affiliation(s)
- Alessio Gerussi
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), 00185 Rome, Italy; (A.N.); (F.A.); (F.D.R.)
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), 00185 Rome, Italy; (A.N.); (F.A.); (F.D.R.)
| | - Clara Mancuso
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Elisa Agostinetto
- Academic Trials Promoting Team, Institut Jules Bordet, L’Universite’ Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
- Medical Oncology and Hematology Unit, Humanitas Clinical and Research Center—IRCCS, Humanitas Cancer Center, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
| | - Donatella Barisani
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), 00185 Rome, Italy; (A.N.); (F.A.); (F.D.R.)
| | - Raul Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), UGC Aparato Digestivo, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29016 Málaga, Spain;
| | - Pietro Invernizzi
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| |
Collapse
|
44
|
Wang XK, Peng ZG. Targeting Liver Sinusoidal Endothelial Cells: An Attractive Therapeutic Strategy to Control Inflammation in Nonalcoholic Fatty Liver Disease. Front Pharmacol 2021; 12:655557. [PMID: 33935770 PMCID: PMC8082362 DOI: 10.3389/fphar.2021.655557] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), especially its advanced stage nonalcoholic steatohepatitis (NASH), has become a threatened public health problem worldwide. However, no specific drug has been approved for clinical use to treat patients with NASH, though there are many promising candidates against NAFLD in the drug development pipeline. Recently, accumulated evidence showed that liver sinusoidal endothelial cells (LSECs) play an essential role in the occurrence and development of liver inflammation in patients with NAFLD. LSECs, as highly specialized endothelial cells with unique structure and anatomical location, contribute to the maintenance of liver homeostasis and could be a promising therapeutic target to control liver inflammation of NAFLD. In this review, we outline the pathophysiological roles of LSECs related to inflammation of NAFLD, highlight the pro-inflammatory and anti-inflammatory effects of LSECs, and discuss the potential drug development strategies against NAFLD based on targeting to LSECs.
Collapse
Affiliation(s)
- Xue-Kai Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Biotechnology of Antibiotics, National Health and Family Planning Commission, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
45
|
Coelho I, Duarte N, Macedo MP, Penha-Gonçalves C. Insights into Macrophage/Monocyte-Endothelial Cell Crosstalk in the Liver: A Role for Trem-2. J Clin Med 2021; 10:1248. [PMID: 33802948 PMCID: PMC8002813 DOI: 10.3390/jcm10061248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Liver disease accounts for millions of deaths worldwide annually being a major cause of global morbidity. Hepatotoxic insults elicit a multilayered response involving tissue damage, inflammation, scar formation, and tissue regeneration. Liver cell populations act coordinately to maintain tissue homeostasis and providing a barrier to external aggressors. However, upon hepatic damage, this tight regulation is disrupted, leading to liver pathology which spans from simple steatosis to cirrhosis. Inflammation is a hallmark of liver pathology, where macrophages and endothelial cells are pivotal players in promoting and sustaining disease progression. Understanding the drivers and mediators of these interactions will provide valuable information on what may contribute to liver resilience against disease. Here, we summarize the current knowledge on the role of macrophages and liver sinusoidal endothelial cells (LSEC) in homeostasis and liver pathology. Moreover, we discuss the expanding body of evidence on cell-to-cell communication between these two cell compartments and present triggering receptor expressed on myeloid cells-2 (Trem-2) as a plausible mediator of this cellular interlink. This review consolidates relevant knowledge that might be useful to guide the pursue of successful therapeutic targets and pharmacological strategies for controlling liver pathogenesis.
Collapse
Affiliation(s)
- Inês Coelho
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal; (I.C.); (M.P.M.)
| | - Nádia Duarte
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
| | - Maria Paula Macedo
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal; (I.C.); (M.P.M.)
- APDP Diabetes Portugal, Education and Research Center (APDP-ERC), 1250-189 Lisbon, Portugal
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Penha-Gonçalves
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
- APDP Diabetes Portugal, Education and Research Center (APDP-ERC), 1250-189 Lisbon, Portugal
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
46
|
Zhang W, Wang L, Sun XH, Liu X, Xiao Y, Zhang J, Wang T, Chen H, Zhan YQ, Yu M, Ge CH, Li CY, Ren GM, Yin RH, Yang XM. Toll-like receptor 5-mediated signaling enhances liver regeneration in mice. Mil Med Res 2021; 8:16. [PMID: 33622404 PMCID: PMC7901072 DOI: 10.1186/s40779-021-00309-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/10/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Toll-like receptor 5 (TLR5)-mediated pathways play critical roles in regulating the hepatic immune response and show hepatoprotective effects in mouse models of hepatic diseases. However, the role of TLR5 in experimental models of liver regeneration has not been reported. This study aimed to investigate the role of TLR5 in partial hepatectomy (PHx)-induced liver regeneration. METHODS We performed 2/3 PHx in wild-type (WT) mice, TLR5 knockout mice, or TLR5 agonist CBLB502 treated mice, as a model of liver regeneration. Bacterial flagellin content was measured with ELISA, and hepatic TLR5 expression was determined with quantitative PCR analyses and flow cytometry. To study the effects of TLR5 on hepatocyte proliferation, we analyzed bromodeoxyuridine (BrdU) incorporation and proliferating cell nuclear antigen (PCNA) expression with immunohistochemistry (IHC) staining. The effects of TLR5 during the priming phase of liver regeneration were examined with quantitative PCR analyses of immediate early gene mRNA levels, and with Western blotting analysis of hepatic NF-κB and STAT3 activation. Cytokine and growth factor production after PHx were detected with real-time PCR and cytometric bead array (CBA) assays. Oil Red O staining and hepatic lipid concentrations were analyzed to examine the effect of TLR5 on hepatic lipid accumulation after PHx. RESULTS The bacterial flagellin content in the serum and liver increased, and the hepatic TLR5 expression was significantly up-regulated in WT mice after PHx. TLR5-deficient mice exhibited diminished numbers of BrdU- and PCNA-positive cells, suppressed immediate early gene expression, and decreased cytokine and growth factor production. Moreover, PHx-induced hepatic NF-κB and STAT3 activation was inhibited in Tlr5-/- mice, as compared with WT mice. Consistently, the administration of CBLB502 significantly promoted PHx-mediated hepatocyte proliferation, which was correlated with enhanced production of proinflammatory cytokines and the recruitment of macrophages and neutrophils in the liver. Furthermore, Tlr5-/- mice displayed significantly lower hepatic lipid concentrations and smaller Oil Red O positive areas than those in control mice after PHx. CONCLUSION We reveal that TLR5 activation contributes to the initial events of liver regeneration after PHx. Our findings demonstrate that TLR5 signaling positively regulates liver regeneration and suggest the potential of TLR5 agonist to promote liver regeneration.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Lei Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xue-Hua Sun
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xian Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yang Xiao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jie Zhang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ting Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yi-Qun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Chang-Hui Ge
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chang-Yan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Guang-Ming Ren
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Rong-Hua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Xiao-Ming Yang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
47
|
Immunostimulatory siRNA with a uridine bulge leads to potent inhibition of HBV and activation of innate immunity. Virol J 2021; 18:37. [PMID: 33602251 PMCID: PMC7890953 DOI: 10.1186/s12985-021-01509-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is difficult to cure. HBV-specific immune tolerance plays a key role in HBV persistence, and enhancing cellular and humoral immunity will improve the control of HBV infection. The purpose of the study was to explore the anti-HBV and immunostimulatory effects of msiRNAs that introduce unpaired uridine bulges in the passenger strand. METHODS msiRNAs targeting the HBV S and X genes were designed and named msiHBs and msiHBx, respectively. HepG2 cells were cotransfected with siRNA or msiRNA and the HBV replication-competent plasmid pHY106-wta or pHY106-X15. HepG2.215 cells were transfected with siRNA or msiRNA. The levels of HBsAg, HBeAg, and the cytokines TNF-α, IFN-α, IFN-β, IL-1α, and IL-6 in the culture supernatant was detected by ELISA. The levels of intracellular HBV RNA, nuclear HBV replication intermediates, and HBV DNA in the supernatant were measured by quantitative RT-PCR and PCR. The levels of HBV replication intermediates were detected by Southern blotting. Peripheral blood mononuclear cells were transfected with siRNA or msiRNA, and the levels of secreted cytokines IFN-α and IFN-β were detected by ELISA. The bioactivity of type I interferons in the supernatants was detected by the virus protection assay. RESULTS msiHBx treatment led to a significant decrease in HBsAg (to a negative level) and HBV DNA (95.5%) in the supernatant and intrahepatocellular HBV replication intermediates (89.8%) in HepG2 cells with transient HBV replication and in HepG2.2.15 cells. There was no significant difference between msiHBx and siHBx in terms of the reduction in HBV proteins and HBV replication (P > 0.05). Compared with siHBx, msiHBx treatment of HepG2 cells transfected with the HBV replication-competent plasmid led to a significant increase in the levels of the antiviral cytokines TNF-α (3.3-fold), IFN-α (1.4-fold), and IFN-β (2.5-fold) (P < 0.01), without upregulation of the proinflammatory cytokines IL-1α and IL-6. The virus protection assay results showed msiHBx-mediated type I interferons effectively protected L929 cells against ECMV infection. CONCLUSIONS msiHBx could effectively inhibit HBV expression and replication and induce an antiviral innate immune response without proinflammatory activation. The dual RNAi and immunostimulatory activity of msiRNAs may play an important role in the control of HBV infection.
Collapse
|
48
|
Zhou Z, Qi J, Yang D, Yang MS, Jeong H, Lim CW, Kim JW, Kim B. Exogenous activation of toll-like receptor 5 signaling mitigates acetaminophen-induced hepatotoxicity in mice. Toxicol Lett 2021; 342:58-72. [PMID: 33571619 DOI: 10.1016/j.toxlet.2021.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/06/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Acetaminophen (APAP) poisoning is the most common cause of drug-induced acute liver injury (ALI). Our results showed that toll-like receptor 5 (TLR5) was abundantly expressed in hepatocytes and dramatically downregulated in the toxic mouse livers. Hence, we herein investigated the role of TLR5 signaling after APAP overdose. Mice were intraperitoneally (i.p.) injected with APAP to induce ALI, and then injected with flagellin at one hour after APAP administration. Flagellin attenuated APAP-induced ALI based on decreased histopathologic lesions, serum biochemical, oxidative stress, and inflammation. Furthermore, the protective effects of flagellin were abolished by TH1020 (a TLR5 antagonist) treatment. These results suggest that flagellin exerted protective effects on ALI via TLR5 activation. Mechanistically, flagellin injection promoted the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus in hepatocytes. Consistent with the in vivo results, flagellin increased the activation of Nrf2 in hepatocytes, resulting in decreased APAP toxicity. ML385, a selective inhibitor of Nrf2, abolished the flagellin-mediated hepatoprotective effects in damaged livers and hepatocytes. Additionally, the flagellin-induced Nrf2 translocation was dependent upon the activation of TLR5-JNK/p38 pathways. These findings suggest that TLR5 signaling-induced Nrf2 activation, at least partially, contributed to the protection against APAP-induced ALI by flagellin treatment.
Collapse
Affiliation(s)
- Zixiong Zhou
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, University Town, Fuzhou, 350122, Fujian, China
| | - Jing Qi
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, University Town, Fuzhou, 350122, Fujian, China
| | - Daram Yang
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Myeon-Sik Yang
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Hyuneui Jeong
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Chae Woong Lim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Jong-Won Kim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea.
| |
Collapse
|
49
|
Szentirmai É, Massie AR, Kapás L. Lipoteichoic acid, a cell wall component of Gram-positive bacteria, induces sleep and fever and suppresses feeding. Brain Behav Immun 2021; 92:184-192. [PMID: 33307170 PMCID: PMC7897295 DOI: 10.1016/j.bbi.2020.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 11/19/2022] Open
Abstract
Fragments of the bacterial cell wall are bioactive microbial molecules that have profound effects on the function of the brain. Some of the cell wall constituents are common to both Gram-positive and Gram-negative bacteria, e.g., peptidoglycans, while other cell wall components are specific to either Gram-positive or Gram-negative microbes. Lipopolysaccharide (LPS), also called endotoxin, is found exclusively in Gram-negative bacteria, while lipoteichoic acid (LTA) is specific to Gram-positive bacteria. The effects of peptidoglycans, their fragments, and LPS are well characterized, they induce sleep, fever and anorexia. In the present study, we investigated the sleep, body temperature and food intake modulating effects of LTA. We found that intraperitoneal injection of 100 and 250 μg LTA from B. subtilis and S. aureus increases non-rapid-eye movement sleep (NREMS) in mice. The effects were dose-dependent, and the changes were accompanied by decreased motor activity and feeding as well as febrile responses. Intraperitoneal injection of 10 μg LTA induced monophasic increases in body temperature, while 100 and 250 μg LTA from B. subtilis induced initial hypothermia followed by fever. Treatment with 250 μg LTA from S. aureus elicited monophasic hypothermia. Administration of 300 μg/kg LTA from S. aureus directly into the portal vein elicited similar sleep responses in rats but did not affect body temperature. The sleep-modulating effects of LTA were similar to that of LPS in mice, although LTA appears to be less potent. These findings suggest that the role of LTA in signaling by Gram-positive bacteria in the host body is analogous to the role of LPS/endotoxin in signaling by Gram-negative microbes. LTA may play a role in the development of sickness response in clinically manifest Gram-positive bacterial infections and may contribute to sleep signaling by the commensal intestinal microbiota.
Collapse
Affiliation(s)
- Éva Szentirmai
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, WA, United States; Sleep and Performance Research Center, Washington State University, Spokane, WA, United States.
| | - Ashley R Massie
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, WA, United States
| | - Levente Kapás
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, WA, United States; Sleep and Performance Research Center, Washington State University, Spokane, WA, United States
| |
Collapse
|
50
|
Role of Peripheral Immune Cells in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. SCI 2021. [DOI: 10.3390/sci3010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that affects the myelination of the neurons present in the central nervous system (CNS). The exact etiology of MS development is unclear, but various environmental and genetic factors might play a role in initiating the disease. Experimental autoimmune encephalomyelitis (EAE) is a mouse model that is used to study the pathophysiology of MS disease as well as the effects of possible therapeutic agents. In addition, autoreactive immune cells trigger an inflammatory process upon the recognition of CNS antigens, which leads to destruction of the neurons. These include innate immune cells such as macrophages, dendritic cells, and natural killer cells. Additionally, the activation and extravasation of adaptive immune cells such as CD4+ T cells into the CNS may lead to further exacerbation of the disease. However, many studies revealed that immune cells could have either a protective or pathological role in MS. In this review, we highlight the roles of innate and adaptive immune cellular and soluble players that contribute to the pathogenesis of MS and EAE, which may be used as potential targets for therapy.
Collapse
|