1
|
Cao Y, Hou Y, Zhao L, Huang Y, Liu G. New insights into follicular regulatory T cells in the intestinal and tumor microenvironments. J Cell Physiol 2023. [PMID: 37210730 DOI: 10.1002/jcp.31039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023]
Abstract
Follicular regulatory T (Tfr) cells are a novel and unique subset of effector regulatory T (Treg) cells that are located in germinal centers (GCs). Tfr cells express transcription profiles that are characteristic of both follicular helper T (Tfh) cells and Treg cells and negatively regulate GC reactions, including Tfh cell activation and cytokine production, class switch recombination and B cell activation. Evidence also shows that Tfr cells have specific characteristics in different local immune microenvironments. This review focuses on the regulation of Tfr cell differentiation and function in unique local immune microenvironments, including the intestine and tumor.
Collapse
Affiliation(s)
- Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yueru Hou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Longhao Zhao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yijin Huang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
2
|
Anang DC, Ramwadhdoebe TH, Hähnlein JS, van Kuijk B, Smits N, van Lienden KP, Maas M, Gerlag DM, Tak PP, de Vries N, van Baarsen LGM. Increased Frequency of CD4+ Follicular Helper T and CD8+ Follicular T Cells in Human Lymph Node Biopsies during the Earliest Stages of Rheumatoid Arthritis. Cells 2022; 11:cells11071104. [PMID: 35406668 PMCID: PMC8997933 DOI: 10.3390/cells11071104] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
Follicular T helper cells (Tfh cells) provide key B-cell help and are essential in germinal center formation and (auto) antibody generation. To gain more insight into their role during the earliest phase of rheumatoid arthritis (RA), we analyzed their frequencies, phenotypes, and cytokine profiles in peripheral blood and lymph node biopsies of healthy controls (HCs), autoantibody-positive individuals at risk for developing RA (RA-risk individuals), and early RA patients. Subsequently, we confirmed their presence in lymph nodes and synovial tissue of RA patients using immunofluorescence microscopy. In the blood, the frequency of Tfh cells did not differ between study groups. In lymphoid and synovial tissues, Tfh cells were localized in B-cell areas, and their frequency correlated with the frequency of CD19+ B cells. Compared to lymphoid tissues of healthy controls, those of RA patients and RA-risk individuals showed more CD19+ B cells, CD4+CXCR5+ follicular helper T cells, and CD8+CXCR5+ follicular T cells. These Tfh cells produced less IL-21 upon ex vivo stimulation. These findings suggest that Tfh cells may present a novel rationale for therapeutic targeting during the preclinical stage of RA to prevent further disease progression.
Collapse
Affiliation(s)
- Dornatien Chuo Anang
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Tamara H. Ramwadhdoebe
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Janine S. Hähnlein
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Bo van Kuijk
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Noortje Smits
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Krijn P. van Lienden
- Department of Radiology, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands; (K.P.v.L.); (M.M.)
| | - Mario Maas
- Department of Radiology, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands; (K.P.v.L.); (M.M.)
| | - Daniëlle M. Gerlag
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- UCB Pharma, Slough SL1 3XE, UK
| | - Paul P. Tak
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Candel Therapeutics, Needham, MA 02494, USA
- Department of Internal Medicine, Cambridge University, Cambridge CB2 0QQ, UK
| | - Niek de Vries
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Lisa G. M. van Baarsen
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-20-56-64969; Fax: +31-20-69-19658
| |
Collapse
|
3
|
Ye Y, Wang M, Huang H. Follicular regulatory T cell biology and its role in immune-mediated diseases. J Leukoc Biol 2021; 110:239-255. [PMID: 33938586 DOI: 10.1002/jlb.1mr0321-601rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Follicular regulatory T (Tfr) cells are recently found to be a special subgroup of regulatory T (Treg) cells. Tfr cells play an important role in regulating the germinal center (GC) response, especially modulating follicular helper T (Tfh) cells and GC-B cells, thereby affecting the production of antibodies. Tfr cells are involved in the generation and development of many immune-related and inflammatory diseases. This article summarizes the advances in several aspects of Tfr cell biology, with special focus on definition and phenotype, development and differentiation, regulatory factors, functions, and interactions with T/B cells and molecules involved in performance and regulation of Tfr function. Finally, we highlight the current understanding of Tfr cells involvement in autoimmunity and alloreactivity, and describe some drugs targeting Tfr cells. These latest studies have answered some basic questions in Tfr cell biology and explored the roles of Tfr cells in immune-mediated diseases.
Collapse
Affiliation(s)
- Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Mowang Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Ding T, Su R, Wu R, Xue H, Wang Y, Su R, Gao C, Li X, Wang C. Frontiers of Autoantibodies in Autoimmune Disorders: Crosstalk Between Tfh/Tfr and Regulatory B Cells. Front Immunol 2021; 12:641013. [PMID: 33841422 PMCID: PMC8033031 DOI: 10.3389/fimmu.2021.641013] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Balance of Tfh/Tfr cell is critically important for the maintenance of immune tolerance, as evidenced by the fact that T follicular helper (Tfh) cells are central to the autoantibodies generation through providing necessary help for germinal center (GC) B cells, whereas T follicular regulatory (Tfr) cells significantly inhibit autoimmune inflammation process through restraining Tfh cell responses. However, signals underlying the regulation of Tfh and Tfr cells are largely undefined. Regulatory B cells (Bregs) is a heterogeneous subpopulation of B cells with immunosuppressive function. Considerable advances have been made in their functions to produce anti‐inflammatory cytokines and to regulate Th17, Th1, and Treg cells in autoimmune diseases. The recent identification of their correlations with dysregulated Tfr/Tfh cells and autoantibody production makes Bregs an important checkpoint in GC response. Bregs exert profound impacts on the differentiation, function, and distribution of Tfh and Tfr cells in the immune microenvironment. Thus, unraveling mechanistic information on Tfh-Breg and Tfr-Breg interactions will inspire novel implications for the establishment of homeostasis and prevention of autoantibodies in diverse diseases. This review summarizes the dysregulation of Tfh/Tfr cells in autoimmune diseases with a focus on the emerging role of Bregs in regulating the balance between Tfh and Tfr cells. The previously unsuspected crosstalk between Bregs and Tfh/Tfr cells will be beneficial to understand the cellular mechanisms of autoantibody production and evoke a revolution in immunotherapy for autoimmune diseases.
Collapse
Affiliation(s)
- Tingting Ding
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Xue
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanyan Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ronghui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Wang Z, Zhao M, Yin J, Liu L, Hu L, Huang Y, Liu A, Ouyang J, Min X, Rao S, Zhou W, Wu H, Yoshimura A, Lu Q. E4BP4-mediated inhibition of T follicular helper cell differentiation is compromised in autoimmune diseases. J Clin Invest 2021; 130:3717-3733. [PMID: 32191636 DOI: 10.1172/jci129018] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
T follicular helper (Tfh) cells are indispensable for the formation of germinal center (GC) reactions, whereas T follicular regulatory (Tfr) cells inhibit Tfh-mediated GC responses. Aberrant activation of Tfh cells contributes substantially to the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE). Nonetheless, the molecular mechanisms mitigating excessive Tfh cell differentiation are not fully understood. Herein we demonstrate that the adenovirus E4 promoter-binding protein (E4BP4) mediates a feedback loop and acts as a transcriptional brake to inhibit Tfh cell differentiation. Furthermore, we show that such an immunological mechanism is compromised in patients with SLE. Establishing mice with either conditional knockout (cKO) or knockin (cKI) of the E4bp4 gene in T cells reveals that E4BP4 strongly inhibits Tfh cell differentiation. Mechanistically, E4BP4 regulates Bcl6 transcription by recruiting the repressive epigenetic modifiers HDAC1 and EZH2. E4BP4 phosphorylation site mutants have limited capability with regard to inhibiting Tfh cell differentiation. In SLE, we detected impaired phosphorylation of E4BP4, finding that this compromised transcription factor is positively correlated with disease activity. These findings unveiled molecular mechanisms by which E4BP4 restrains Tfh cell differentiation, whose compromised function is associated with uncontrolled autoimmune reactions in SLE.
Collapse
Affiliation(s)
- Zijun Wang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Jinghua Yin
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Limin Liu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Longyuan Hu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Yi Huang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Aiyun Liu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Jiajun Ouyang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Xiaoli Min
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Shijia Rao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Wenhui Zhou
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| |
Collapse
|
6
|
Abstract
Follicular helper T (Tfh) cells play a key role in B cell activation and differentiation. Within recent years, distinct subsets of follicular T cells, including regulatory and cytotoxic T cells, have been identified. Apart from classical Tfh cells in secondary lymphoid organs, Tfh-like cells are found in chronically inflamed nonlymphoid tissues. Here, we provide protocols to identify different follicular T cell subsets in murine and human tissues by flow cytometry. This chapter also contains an immunization protocol for the induction of large numbers of Tfh cells in mice.
Collapse
|
7
|
Gassen RB, Fazolo T, Nascimento de Freitas D, Borges TJ, Lima K, Antunes GL, Maito F, Bueno Mendes DA, Báfica A, Rodrigues LC, Stein R, Duarte de Souza AP, Bonorino C. IL-21 treatment recovers follicular helper T cells and neutralizing antibody production in respiratory syncytial virus infection. Immunol Cell Biol 2020; 99:309-322. [PMID: 33068449 DOI: 10.1111/imcb.12418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/31/2020] [Accepted: 10/14/2020] [Indexed: 01/13/2023]
Abstract
Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infections in children under 1 year. RSV vaccines are currently unavailable, and children suffering from multiple reinfections by the same viral strain fail to develop protective responses. Although RSV-specific antibodies can be detected upon infection, these have limited neutralizing capacity. Follicular helper T (Tfh) cells are specialized in providing signals to B cells and help the production and affinity maturation of antibodies, mainly via interleukin (IL) 21 secretion. In this study, we evaluated whether RSV could inhibit Tfh responses. We observed that Tfh cells fail to upregulate IL-21 production upon RSV infection. In the lungs, RSV infection downregulated the expression of IL-21/interleukin-21 receptor (IL-21R) in Tfh cells and upregulated programmed death-ligand 1 (PD-L1) expression in dendritic cells (DCs) and B cells. PD-L1 blockade during infection recovered IL-21R expression in Tfh cells and increased the secretion of IL-21 in a DC-dependent manner. IL-21 treatment decreased RSV viral load and lung inflammation, inducing the formation of tertiary lymphoid organs in the lung. It also decreased regulatory follicular T cells, and increased Tfh cells, B cells, antibody avidity and neutralization capacity, leading to an overall improved anti-RSV humoral response in infected mice. Passive immunization with purified immunoglobulin G from IL-21-treated RSV-infected mice protected against RSV infection. Our results unveil a pathway by which RSV affects Tfh cells by increasing PD-L1 expression on antigen-presenting cells, highlighting the importance of an IL-21-PD-L1 axis for the generation of protective responses to RSV infection.
Collapse
Affiliation(s)
- Rodrigo Benedetti Gassen
- Laboratório de Imunologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tiago Fazolo
- Laboratório de Imunologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Deise Nascimento de Freitas
- Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thiago J Borges
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karina Lima
- Laboratório de Imunologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Imunoterapia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Géssica L Antunes
- Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fábio Maito
- Laboratório de Histologia, Faculdade de Odontologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniel Ag Bueno Mendes
- Laboratório de Imunobiologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - André Báfica
- Laboratório de Imunobiologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Luiz Carlos Rodrigues
- Laboratório de Imunovirologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Renato Stein
- Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Paula Duarte de Souza
- Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristina Bonorino
- Laboratório de Imunoterapia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Department of Surgery, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
De Groot AS, Skowron G, White JR, Boyle C, Richard G, Serreze D, Martin WD. Therapeutic administration of Tregitope-Human Albumin Fusion with Insulin Peptides to promote Antigen-Specific Adaptive Tolerance Induction. Sci Rep 2019; 9:16103. [PMID: 31695065 PMCID: PMC6834854 DOI: 10.1038/s41598-019-52331-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/16/2019] [Indexed: 01/12/2023] Open
Abstract
Type 1 Diabetes (T1D) is an autoimmune disease that is associated with effector T cell (Teff) destruction of insulin-producing pancreatic beta-islet cells. Among the therapies being evaluated for T1D is the restoration of regulatory T cell (Treg) activity, specifically directed toward down-modulation of beta-islet antigen-specific T effector cells. This is also known as antigen-specific adaptive tolerance induction for T1D (T1D ASATI). Tregitopes (T regulatory cell epitopes) are natural T cell epitopes derived from immunoglobulin G (IgG) that were identified in 2008 and have been evaluated in several autoimmune disease models. In the T1D ASATI studies presented here, Tregitope peptides were administered to non-obese diabetic (NOD) mice at the onset of diabetes within two clinically-relevant delivery systems (liposomes and in human serum albumin [HSA]-fusion products) in combination with preproinsulin (PPI) target antigen peptides. The combination of Tregitope-albumin fusions and PPI peptides reduced the incidence of severe diabetes and reversed mild diabetes, over 49 days of treatment and observation. Combining HSA-Tregitope fusions with PPI peptides is a promising ASATI approach for therapy of T1D.
Collapse
Affiliation(s)
- Anne S. De Groot
- grid.421087.8EpiVax, Inc., 188 Valley St., Providence, RI 02909 USA
| | - Gail Skowron
- grid.421087.8EpiVax, Inc., 188 Valley St., Providence, RI 02909 USA
| | | | - Christine Boyle
- grid.421087.8EpiVax, Inc., 188 Valley St., Providence, RI 02909 USA
| | - Guilhem Richard
- grid.421087.8EpiVax, Inc., 188 Valley St., Providence, RI 02909 USA
| | | | | |
Collapse
|
9
|
Beecher G, Putko BN, Wagner AN, Siddiqi ZA. Therapies Directed Against B-Cells and Downstream Effectors in Generalized Autoimmune Myasthenia Gravis: Current Status. Drugs 2019; 79:353-364. [PMID: 30762205 DOI: 10.1007/s40265-019-1065-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Myasthenia gravis is a rare, heterogeneous, classical autoimmune disease characterized by fatigable skeletal muscle weakness, which is directly mediated by autoantibodies targeting various components of the neuromuscular junction, including the acetylcholine receptor, muscle specific tyrosine kinase, and lipoprotein-related protein 4. Subgrouping of myasthenia gravis is dependent on the age of onset, pattern of clinical weakness, autoantibody detected, type of thymic pathology, and response to immunotherapy. Generalized immunosuppressive therapies are effective in all subgroups of myasthenia gravis; however, approximately 15% remain refractory and more effective treatments with improved safety profiles are needed. In recent years, successful utilization of targeted B-cell therapies in this disease has triggered renewed focus in unraveling the underlying immunopathology in attempts to identify newer therapeutic targets. While myasthenia gravis is predominantly B-cell mediated, T cells, T cell-B cell interactions, and B-cell-related factors are increasingly recognized to play key roles in its immunopathology, particularly in autoantibody production, and novel therapies have focused on targeting these specific immune system components. This overview describes the current understanding of myasthenia gravis immunopathology before discussing B-cell-related therapies, their therapeutic targets, and the rationale and evidence for their use. Several prospective studies demonstrated efficacy of rituximab in various myasthenia gravis subtypes, particularly that characterized by antibodies against muscle-specific tyrosine kinase. However, a recent randomized control trial in patients with acetylcholine receptor antibodies was negative. Eculizumab, a complement inhibitor, has recently gained regulatory approval for myasthenia gravis based on a phase III trial that narrowly missed its primary endpoint while achieving robust results in all secondary endpoints. Zilucoplan is a subcutaneously administered terminal complement inhibitor that recently demonstrated significant improvements in functional outcome measures in a phase II trial. Rozanolixizumab, CFZ533, belimumab, and bortezomib are B-cell-related therapies that are in the early stages of evaluation in treating myasthenia gravis. The rarity of myasthenia gravis, heterogeneity in its clinical manifestations, and variability in immunosuppressive regimens are challenges to conducting successful trials. Nonetheless, these are promising times for myasthenia gravis, as renewed research efforts provide novel insights into its immunopathology, allowing for development of targeted therapies with increased efficacy and safety.
Collapse
Affiliation(s)
- Grayson Beecher
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta Hospital, 7-112 Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Brendan Nicholas Putko
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta Hospital, 7-112 Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Amanda Nicole Wagner
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta Hospital, 7-112 Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Zaeem Azfer Siddiqi
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta Hospital, 7-112 Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
10
|
Xie MM, Liu H, Corn C, Koh BH, Kaplan MH, Turner MJ, Dent AL. Roles of T Follicular Helper Cells and T Follicular Regulatory Cells in Autoantibody Production in IL-2-Deficient Mice. Immunohorizons 2019; 3:306-316. [PMID: 31356160 DOI: 10.4049/immunohorizons.1900034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/27/2019] [Indexed: 12/17/2022] Open
Abstract
Autoantibodies can result from excessive T follicular helper (Tfh) cell activity, whereas T follicular regulatory (Tfr) cells negatively regulate autoantibody production. IL-2 knockout (KO) mice on the BALB/c background have elevated Tfh responses, produce autoantibodies, and develop lethal autoimmunity. We analyzed Tfh and Tfr cells in IL-2 KO mice on the C57BL/6 (B6) genetic background. In B6 IL-2 KO mice, the spontaneous formation of Tfh cells and germinal center B cells was greatly enhanced, along with production of anti-DNA autoantibodies. IL-2 has been reported to repress Tfr cell differentiation; however, Tfr cells were not increased over wild-type levels in the B6 IL-2 KO mice. To assess Tfh and Tfr cell regulation of autoantibody production in IL-2 KO mice, we generated IL-2 KO mice with a T cell-specific deletion of the master Tfh cell transcription factor Bcl6. In IL-2 KO Bcl6 conditional KO (2KO-Bcl6TC) mice, Tfh cells, Tfr cells, and germinal center B cells were ablated. In contrast to expectations, autoantibody IgG titers in 2KO-Bcl6TC mice were significantly elevated over autoantibody IgG titers in IL-2 KO mice. Specific deletion of Tfr cells with Foxp3-cre Bcl6-flox alleles in IL-2 KO mice led to early lethality, before high levels of autoantibodies could develop. We found IL-2+/+ Tfr cell-deficient mice produce significant levels of autoantibodies. Our overall findings provide evidence that Tfh cells are dispensable for high-level production of autoantibodies and also reveal a complex interplay between Tfh and Tfr cells in autoantibody production and autoimmune disease.
Collapse
Affiliation(s)
- Markus M Xie
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Hong Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Caleb Corn
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Byung-Hee Koh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202.,Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; and
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202.,Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; and
| | - Matthew J Turner
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202.,Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202;
| |
Collapse
|
11
|
Grötsch B, Lux A, Rombouts Y, Hoffmann AC, Andreev D, Nimmerjahn F, Xiang W, Scherer HU, Schett G, Bozec A. Fra1 Controls Rheumatoid Factor Autoantibody Production by Bone Marrow Plasma Cells and the Development of Autoimmune Bone Loss. J Bone Miner Res 2019; 34:1352-1365. [PMID: 30779858 DOI: 10.1002/jbmr.3705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/21/2019] [Accepted: 02/05/2019] [Indexed: 11/11/2022]
Abstract
Next to proinflammatory cytokines, autoimmunity has been identified as a key trigger for osteoclast activation and bone loss. IgG-rheumatoid factor (IgG-RF) immune complexes, which are present in patients with rheumatoid arthritis, were shown to boost osteoclast differentiation. To date, the regulation of IgG-RF production in the absence of inflammatory triggers is unknown. Herein, we describe Fra1 as a key checkpoint that controls IgG-RF production by plasma cells and regulates autoimmune-mediated bone loss. Fra1 deficiency in B cells (Fra1ΔBcell ) led to increased IgG1-producing bone marrow plasma cells, enhanced IgG-RF production, and increased bone loss associated with elevated osteoclast numbers after immunization. The effect of IgG-RF on osteoclasts in vitro and on osteoclasts associated with bone loss in vivo was dependent on FcγR, especially FcγR3. Furthermore, immunization of WT mice with T-cell-dependent antigens induced a significant and robust decrease in Fra1 expression in bone marrow B cells, which was followed by increased IgG1 production and the induction of osteoclast-mediated bone loss. Overall, these data identify Fra1 as a key mediator of IgG-RF production and autoimmune-mediated bone loss. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Bettina Grötsch
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anja Lux
- Division of Genetics, University of Erlangen-Nuremberg, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yoann Rombouts
- Leiden University Medical Center, Leiden, The Netherlands.,Institut de Pharmacologie et de Biologie Structurale, CNRS/University of Toulouse, France
| | - Anna-Carin Hoffmann
- Institute of Biochemistry, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Darja Andreev
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, University of Erlangen-Nuremberg, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wei Xiang
- Institute of Biochemistry, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Georg Schett
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
12
|
Yap XZ, Hustin LSP, Sauerwein RW. T H1-Polarized T FH Cells Delay Naturally-Acquired Immunity to Malaria. Front Immunol 2019; 10:1096. [PMID: 31156642 PMCID: PMC6533880 DOI: 10.3389/fimmu.2019.01096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/30/2019] [Indexed: 11/15/2022] Open
Abstract
Humoral immunity is a critical effector arm for protection against malaria but develops only slowly after repeated infections. T cell-mediated regulatory dynamics affect the development of antibody responses to Plasmodium parasites. Here, we hypothesize that T follicular helper cell (TFH) polarization generated by repeated Plasmodium asexual blood-stage infections delays the onset of protective humoral responses. IFN-γ production promotes polarization toward TFH1 and increased generation of regulatory follicular helper cells (TFR). Delineating the mechanisms that drive TH1 polarization will provide clues for appropriate induction of lasting, protective immunity against malaria.
Collapse
Affiliation(s)
- Xi Zen Yap
- Department of Medical Microbiology, RadboudUMC Centre for Infectious Diseases, Nijmegen, Netherlands
| | - Lucie S P Hustin
- Department of Medical Microbiology, RadboudUMC Centre for Infectious Diseases, Nijmegen, Netherlands.,Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | - Robert W Sauerwein
- Department of Medical Microbiology, RadboudUMC Centre for Infectious Diseases, Nijmegen, Netherlands
| |
Collapse
|
13
|
Benet ZL, Marthi M, Ke F, Wu R, Turner JS, Gabayre JB, Ivanitskiy MI, Sethi SS, Grigorova IL. CCL3 Promotes Germinal Center B Cells Sampling by Follicular Regulatory T Cells in Murine Lymph Nodes. Front Immunol 2018; 9:2044. [PMID: 30271404 PMCID: PMC6146081 DOI: 10.3389/fimmu.2018.02044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022] Open
Abstract
Previous studies and our findings suggest upregulated expression of proinflammatory chemokines CCL3/4 in germinal center (GC) centrocytes. However, the role of CCL3/4 for centrocyte interactions with follicular T cells and regulation of humoral immunity is poorly understood. We found that CCL3 promotes chemotaxis of Tfr cells ex vivo. Two-photon imaging revealed that B cells-intrinsic production of CCL3 promotes their probing by follicular regulatory T cells (Tfr) within GCs of murine lymph nodes. Overall this study suggests that CCL3 facilitates direct interactions of foreign antigen-specific GC B cells and their negative regulation with Tfr cells in vivo.
Collapse
Affiliation(s)
- Zachary L Benet
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Matangi Marthi
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Fang Ke
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Rita Wu
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jackson S Turner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jahan B Gabayre
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Michael I Ivanitskiy
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Sahil S Sethi
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Irina L Grigorova
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Fazilleau N, Aloulou M. Several Follicular Regulatory T Cell Subsets With Distinct Phenotype and Function Emerge During Germinal Center Reactions. Front Immunol 2018; 9:1792. [PMID: 30150980 PMCID: PMC6100207 DOI: 10.3389/fimmu.2018.01792] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/20/2018] [Indexed: 12/27/2022] Open
Abstract
An efficient B cell immunity requires a dynamic equilibrium between positive and negative signals. In germinal centers (GCs), T follicular helper cells are supposed to be the positive regulator while T follicular regulatory (Tfr) cells were assigned to be the negative regulators. Indeed, Tfr cells are considered as a homogenous cell population dedicated to dampen the GC extent. Moreover, Tfr cells prevent autoimmunity since their dysregulation leads to production of self-reactive antibodies (Ab). However, a growing corpus of evidence has revealed additional and unexpected functions for Tfr cells in the regulation of B cell responses. This review provides an overview of the Tfr cell contribution and presents Tfr cell proprieties in the context of vaccination.
Collapse
Affiliation(s)
- Nicolas Fazilleau
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.,INSERM U1043, Toulouse, France.,CNRS UMR5282, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Meryem Aloulou
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.,INSERM U1043, Toulouse, France.,CNRS UMR5282, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| |
Collapse
|
15
|
Gensous N, Charrier M, Duluc D, Contin-Bordes C, Truchetet ME, Lazaro E, Duffau P, Blanco P, Richez C. T Follicular Helper Cells in Autoimmune Disorders. Front Immunol 2018; 9:1637. [PMID: 30065726 PMCID: PMC6056609 DOI: 10.3389/fimmu.2018.01637] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022] Open
Abstract
T follicular helper (Tfh) cells are a distinct subset of CD4+ T lymphocytes, specialized in B cell help and in regulation of antibody responses. They are required for the generation of germinal center reactions, where selection of high affinity antibody producing B cells and development of memory B cells occur. Owing to the fundamental role of Tfh cells in adaptive immunity, the stringent control of their production and function is critically important, both for the induction of an optimal humoral response against thymus-dependent antigens but also for the prevention of self-reactivity. Indeed, deregulation of Tfh activities can contribute to a pathogenic autoantibody production and can play an important role in the promotion of autoimmune diseases. In the present review, we briefly introduce the molecular factors involved in Tfh cell formation in the context of a normal immune response, as well as markers associated with their identification (transcription factor, surface marker expression, and cytokine production). We then consider in detail the role of Tfh cells in the pathogenesis of a broad range of autoimmune diseases, with a special focus on systemic lupus erythematosus and rheumatoid arthritis, as well as on the other autoimmune/inflammatory disorders. We summarize the observed alterations in Tfh numbers, activation state, and circulating subset distribution during autoimmune and some other inflammatory disorders. In addition, central role of interleukin-21, major cytokine produced by Tfh cells, is discussed, as well as the involvement of follicular regulatory T cells, which share characteristics with both Tfh and regulatory T cells.
Collapse
Affiliation(s)
- Noémie Gensous
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Manon Charrier
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Dorothée Duluc
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | | | | | - Estibaliz Lazaro
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Pierre Duffau
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Patrick Blanco
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Christophe Richez
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
16
|
Kleinman AJ, Sivanandham R, Pandrea I, Chougnet CA, Apetrei C. Regulatory T Cells As Potential Targets for HIV Cure Research. Front Immunol 2018; 9:734. [PMID: 29706961 PMCID: PMC5908895 DOI: 10.3389/fimmu.2018.00734] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/23/2018] [Indexed: 12/19/2022] Open
Abstract
T regulatory cells (Tregs) are a key component of the immune system, which maintain a delicate balance between overactive responses and immunosuppression. As such, Treg deficiencies are linked to autoimmune disorders and alter the immune control of pathogens. In HIV infection, Tregs play major roles, both beneficial and detrimental. They regulate the immune system such that inflammation and spread of virus through activated T cells is suppressed. However, suppression of immune activation also limits viral clearance and promotes reservoir formation. Tregs can be directly targeted by HIV, thereby harboring a fraction of the viral reservoir. The vital role of Tregs in the pathogenesis and control of HIV makes them a subject of interest for manipulation in the search of an HIV cure. Here, we discuss the origin and generation, homeostasis, and functions of Tregs, particularly their roles and effects in HIV infection. We also present various Treg manipulation strategies, including Treg depletion techniques and interventions that alter Treg function, which may be used in different cure strategies, to simultaneously boost HIV-specific immune responses and induce reactivation of the latent virus.
Collapse
Affiliation(s)
- Adam J Kleinman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ranjit Sivanandham
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ivona Pandrea
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Claire A Chougnet
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati University, Cincinnati, OH, United States
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Abstract
Germinal centers (GCs) are organized lymphoid tissue microstructures where B cells proliferate and differentiate into memory B cells and plasma cells. A few distinctive subsets of highly specialized T cells gain access to the GCs by expressing the B cell zone–homing C-X-C chemokine receptor type 5 (CXCR5) while losing the T cell zone–homing chemokine receptor CCR7. Help from T cells is critical to induce B cell proliferation and somatic hyper mutation and to limit GC reactions. CD4+ T follicular helper (TFH) cells required for the formation of GCs and for the generation of long-lived, high-affinity B cells. Regulatory CD4+ (TFR) and CD8+ T cells co-localize with TFH cells and keep their expansion in check, thus limiting GC reactions. A cytotoxic CXCR5pos CD8+ T cell subset has been described in GCs in humans: although low in number, GC CD8+ T cells can expand rapidly during certain viral infections. Because these subsets find their home in secondary lymphoid tissues (lymph nodes and spleen) that are difficult to obtain in humans, GC–homing T cells have been extensively studied in mice. Nevertheless, significant limitations in using this model, such as evolutionary divergences between mice and humans and the lack of an optimal mouse model for certain human diseases, have prompted investigators to characterize GC–homing T cells in macaques instead. This review will focus on discoveries made in macaques, particularly in the non-human primate models of simian immunodeficiency virus and simian–human immunodeficiency virus infection. Indeed, experimental studies in these models have allowed researchers to gain insight into the relative role of follicular T cell subsets in HIV progression, virus persistence, and specific B cell responses induced by HIV vaccines. These discoveries have prompted the testing of novel approaches aimed to manipulate follicular T cells to increase the efficacy of HIV vaccines and to eliminate HIV reservoirs.
Collapse
Affiliation(s)
- Monica Vaccari
- Animal Models and Vaccine Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Genoveffa Franchini
- Animal Models and Vaccine Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
18
|
The shifted balance between circulating follicular regulatory T cells and follicular helper T cells in patients with ulcerative colitis. Clin Sci (Lond) 2017; 131:2933-2945. [PMID: 29109300 DOI: 10.1042/cs20171258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/25/2017] [Accepted: 11/06/2017] [Indexed: 12/15/2022]
Abstract
B-cell immunity participates in the pathogenesis of ulcerative colitis (UC). The immune balance between follicular regulatory T (TFR) cells and follicular helper T (TFH) cells is important in regulating B-cell responses. However, the alteration of TFR/TFH balance in UC remains unclear. Peripheral blood from 25 UC patients and 15 healthy controls was examined for the frequencies of circulating TFR, TFH, and regulatory T (Treg) cells by flow cytometry. Levels of serum cytokines were measured using cytometric bead array (CBA). Disease activity was evaluated by the Mayo Clinic Score. Compared with controls, UC patients exhibited significant reductions in circulating Foxp3+CXCR5+ TFR cells, the subset interleukin (IL)-10+Foxp3+CXCR5+ cells, and Treg cells, but significant expansions in Foxp3-CXCR5+ TFH cells and IL-21+Foxp3-CXCR5+ cells. UC patients also had reduced levels of serum IL-10 and elevated levels of serum IL-21. The values of Mayo Clinic Score, C-reactive protein (CRP), or erythrocyte sedimentation rate (ESR) in UC patients were negatively correlated with circulating TFR cells, serum IL-10 level, and TFR/TFH ratio, while positively correlated with circulating TFH cells and serum IL-21 level. Alterations in circulating TFR and TFH cells shift the balance from immune tolerance to immune responsive state, contributing to dysregulated B-cell immunity and the pathogenesis of UC.
Collapse
|
19
|
Luo S, Yang M, Jin H, Xu ZQ, Li YF, Xia P, Yang YR, Chen BC, Zhang Y. The role of sildenafil in the development of transplant arteriosclerosis in rat aortic grafts. Am J Transl Res 2017; 9:4914-4924. [PMID: 29218089 PMCID: PMC5714775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Chronic rejection (CR), which is characterized histologically by progressive graft arteriosclerosis, remains a significant barrier to the long-term survival of a graft. Sildenafil has been shown to protect vascular endothelial cells. In this study, we found that sildenafil significantly reduces the thickness of transplant vascular intima in a rat aortic transplant model. Moreover, sildenafil dramatically decreased the expression of transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), and α-smooth muscle actin (α-SMA) in the grafted aortas and increased the concentrations of cyclic guanosine monophosphate (cGMP) and endothelial nitric oxide synthase (eNOS) in serum. Furthermore, the ratio of regulatory T (Treg) cells and the expression of FoxP3 were increased, and the ratio of Th17 cells was decreased in the sildenafil-treated group. These results demonstrate that sildenafil enhances nitric oxide (NO) signaling by increasing the availability of cGMP, leading to an increase in the ratio of Treg/Th17 cells to attenuate transplant arteriosclerosis in a rat aortic transplant model.
Collapse
Affiliation(s)
- Shuai Luo
- Transplantation Centre, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325015, Zhejiang Province, China
- Department of Urology, Huangshi Central HospitalHuangshi 435000, Hubei Province, China
| | - Mei Yang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325015, Zhejiang Province, China
| | - Hao Jin
- Transplantation Centre, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325015, Zhejiang Province, China
| | - Zi-Qiang Xu
- Transplantation Centre, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325015, Zhejiang Province, China
| | - Yi-Fu Li
- Transplantation Centre, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325015, Zhejiang Province, China
| | - Peng Xia
- Transplantation Centre, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325015, Zhejiang Province, China
| | - Yi-Rrong Yang
- Transplantation Centre, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325015, Zhejiang Province, China
| | - Bi-Cheng Chen
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325015, Zhejiang Province, China
| | - Yan Zhang
- Transplantation Centre, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325015, Zhejiang Province, China
| |
Collapse
|
20
|
Boumediene A, Vachin P, Sendeyo K, Oniszczuk J, Zhang SY, Henique C, Pawlak A, Audard V, Ollero M, Guigonis V, Sahali D. NEPHRUTIX: A randomized, double-blind, placebo vs Rituximab-controlled trial assessing T-cell subset changes in Minimal Change Nephrotic Syndrome. J Autoimmun 2017; 88:91-102. [PMID: 29056249 DOI: 10.1016/j.jaut.2017.10.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/11/2022]
Abstract
Minimal-change nephrotic syndrome (MCNS) is an immune-mediated glomerular disease. We have analyzed the modifications on T-cell subsets in twenty-three patients who were highly steroid/calcineurin inhibitor and/or mycophenolate mofetil-dependent for frequently relapsing nephrotic syndrome (FRNS) and who were enrolled in a multicenter, double-blind, randomized, placebo vs Rituximab-controlled trial. Patients with FRNS entered the trial at remission and were randomly assigned to receive either Rituximab or placebo. In both groups, patient blood samples were analyzed at inclusion and then monthly until six months post-perfusion. Disclosure of patient's allocation code occurred in relapse or at the end of the trial. All patients under placebo displaying relapse were subsequently treated with Rituximab. Despite the significant decrease of immunosuppressive drugs, remission was maintained in all patients included in the Rituximab group, except one (n = 9/10). On the other hand, relapses occurred within a few weeks (means ≈ 7.3 weeks) in all patients receiving placebo (n = 13). At inclusion, before rituximab therapy, the frequency of different T-cell subsets were highly similar in both groups, except for CD8+ and invariant TCRVα24 T-cell subsets, which were significantly increased in patients of the Placebo group ((p = 0,0414 and p = 0.0428, respectively). Despite the significant decrease of immunosuppressive drugs, remission was maintained in all patients included in the Rituximab group (n = 10), except one. Relapses were associated with a significant decrease in CD4+CD25highFoxP3high Tregulatory cells (p = 0.0005) and IL2 expression (p = 0.0032), while CMIP abundance was significantly increased (p = 0.03). Remissions after Rituximab therapy were associated in both groups with significant decrease in the frequency of CD4+CD45RO+CXCR5+, invariant natural killer T-cells (INKT) and CD4-CD8- (double-negative, DN) T-cells expressing the invariant Vα24 chain (DN-TCR Vα24) T-cells, suggesting that MCNS involves a disorder of innate and adaptive immune response, which can be stabilized by Rituximab treatment.
Collapse
Affiliation(s)
- Ahmed Boumediene
- Centre de Biologie et de Recherche en Santé, Hôpital universitaire Limoges Dupuytren, 87000, Limoges, France
| | - Pauline Vachin
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 955, Equipe 21, Créteil, F-94010, France; Université Paris-Est-Créteil (UPEC), Faculté de Médecine, UMRS 955, Equipe 21, Créteil, F-94010, France
| | - Kelhia Sendeyo
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 955, Equipe 21, Créteil, F-94010, France; Université Paris-Est-Créteil (UPEC), Faculté de Médecine, UMRS 955, Equipe 21, Créteil, F-94010, France
| | - Julie Oniszczuk
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 955, Equipe 21, Créteil, F-94010, France; Université Paris-Est-Créteil (UPEC), Faculté de Médecine, UMRS 955, Equipe 21, Créteil, F-94010, France
| | - Shao-Yu Zhang
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 955, Equipe 21, Créteil, F-94010, France; Université Paris-Est-Créteil (UPEC), Faculté de Médecine, UMRS 955, Equipe 21, Créteil, F-94010, France
| | - Carole Henique
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 955, Equipe 21, Créteil, F-94010, France; Université Paris-Est-Créteil (UPEC), Faculté de Médecine, UMRS 955, Equipe 21, Créteil, F-94010, France
| | - Andre Pawlak
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 955, Equipe 21, Créteil, F-94010, France; Université Paris-Est-Créteil (UPEC), Faculté de Médecine, UMRS 955, Equipe 21, Créteil, F-94010, France
| | - Vincent Audard
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 955, Equipe 21, Créteil, F-94010, France; Université Paris-Est-Créteil (UPEC), Faculté de Médecine, UMRS 955, Equipe 21, Créteil, F-94010, France; Assistance Publique des Hôpitaux de Paris (AP-HP), Groupe Henri-Mondor Albert-Chenevier, Service de Néphrologie-Transplantation, Créteil, F-94010, France; Institut francilien de recherche en néphrologie et transplantation, France
| | - Mario Ollero
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 955, Equipe 21, Créteil, F-94010, France; Université Paris-Est-Créteil (UPEC), Faculté de Médecine, UMRS 955, Equipe 21, Créteil, F-94010, France
| | - Vincent Guigonis
- Département de Pédiatrie, Hôpital universitaire Limoges Dupuytren, 87000, Limoges, France
| | - Djillali Sahali
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 955, Equipe 21, Créteil, F-94010, France; Université Paris-Est-Créteil (UPEC), Faculté de Médecine, UMRS 955, Equipe 21, Créteil, F-94010, France; Assistance Publique des Hôpitaux de Paris (AP-HP), Groupe Henri-Mondor Albert-Chenevier, Service de Néphrologie-Transplantation, Créteil, F-94010, France; Institut francilien de recherche en néphrologie et transplantation, France.
| |
Collapse
|
21
|
Xu L, Huang Q, Wang H, Hao Y, Bai Q, Hu J, Li Y, Wang P, Chen X, He R, Li B, Yang X, Zhao T, Zhang Y, Wang Y, Ou J, Liang H, Wu Y, Zhou X, Ye L. The Kinase mTORC1 Promotes the Generation and Suppressive Function of Follicular Regulatory T Cells. Immunity 2017; 47:538-551.e5. [PMID: 28930662 DOI: 10.1016/j.immuni.2017.08.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/12/2017] [Accepted: 08/18/2017] [Indexed: 01/17/2023]
Abstract
Follicular regulatory T (Tfr) cells differentiate from conventional regulatory T (Treg) cells and suppress excessive germinal center (GC) responses by acting on both GC B cells and T follicular helper (Tfh) cells. Here, we examined the impact of mTOR, a serine/threonine protein kinase that senses and integrates diverse environmental cues, on the differentiation and functional competency of Tfr cells in response to protein immunization or viral infection. By genetically deleting Rptor or Rictor, essential components for mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), respectively, we found that mTORC1 but not mTORC2 is essential for Tfr differentiation. Mechanistically, mTORC1-mediated phosphorylation of the transcription factor STAT3 induced the expression of the transcription factor TCF-1 by promoting STAT3 binding to the Tcf7 5'-regulatory region. Subsequently, TCF-1 bound to the Bcl6 promoter to induce Bcl6 expression, which launched the Tfr cell differentiation program. Thus, mTORC1 initiates Tfr cell differentiation by activating the TCF-1-Bcl-6 axis during immunization or infection.
Collapse
Affiliation(s)
- Lifan Xu
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Qizhao Huang
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Haoqiang Wang
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Yaxing Hao
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Qiang Bai
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Jianjun Hu
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Yiding Li
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Pengcheng Wang
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Xiangyu Chen
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Ran He
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Bingshou Li
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Xia Yang
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Tingting Zhao
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Yanyan Zhang
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Yifei Wang
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Juanjuan Ou
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Houjie Liang
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yuzhang Wu
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Xinyuan Zhou
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
22
|
Maceiras AR, Fonseca VR, Agua-Doce A, Graca L. T follicular regulatory cells in mice and men. Immunology 2017; 152:25-35. [PMID: 28617936 DOI: 10.1111/imm.12774] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/01/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
It has long been known that CD4 T cells are necessary to provide help to B cells, triggering a germinal centre (GC) reaction where affinity maturation and isotype switching occur. However, the nature of the dedicated CD4 helper T cells, known as T follicular helper (Tfh), was only recently described. Here, we review the biology and function of the recently described T follicular regulatory (Tfr) cells, another CD4 T-cell population also found within GCs but with regulatory function and characteristics. Tfr cells have been identified in mice and humans as simultaneously presenting characteristics of T follicular cells (namely CXCR5 expression) and regulatory T cells (including Foxp3 expression). These Tfr cells have been implicated in the regulation of the magnitude of the GC reaction, as well as in protection from immune-mediated pathology.
Collapse
Affiliation(s)
- Ana Raquel Maceiras
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Valter R Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.,Centro Hospitalar Lisboa Norte - Hospital de Santa Maria, Lisboa, Portugal
| | - Ana Agua-Doce
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Luis Graca
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
23
|
Truffault F, de Montpreville V, Eymard B, Sharshar T, Le Panse R, Berrih-Aknin S. Thymic Germinal Centers and Corticosteroids in Myasthenia Gravis: an Immunopathological Study in 1035 Cases and a Critical Review. Clin Rev Allergy Immunol 2017; 52:108-124. [PMID: 27273086 DOI: 10.1007/s12016-016-8558-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The most common form of Myasthenia gravis (MG) is due to anti-acetylcholine receptor (AChR) antibodies and is frequently associated with thymic pathology. In this review, we discuss the immunopathological characteristics and molecular mechanisms of thymic follicular hyperplasia, the effects of corticosteroids on this thymic pathology, and the role of thymic epithelial cells (TEC), a key player in the inflammatory thymic mechanisms. This review is based not only on the literature data but also on thymic transcriptome results and analyses of pathological and immunological correlations in a vast cohort of 1035 MG patients without thymoma. We show that among patients presenting a thymic hyperplasia with germinal centers (GC), 80 % are females, indicating that thymic follicular hyperplasia is mainly a disease of women. The presence of anti-AChR antibodies is correlated with the degree of follicular hyperplasia, suggesting that the thymus is a source of anti-AChR antibodies. The degree of hyperplasia is not dependent upon the time from the onset, implying that either the antigen is chronically expressed and/or that the mechanisms of the resolution of the GC are not efficiently controlled. Glucocorticoids, a conventional therapy in MG, induce a significant reduction in the GC number, together with changes in the expression of chemokines and angiogenesis. These changes are likely related to the acetylation molecular process, overrepresented in corticosteroid-treated patients, and essential for gene regulation. Altogether, based on the pathological and molecular thymic abnormalities found in MG patients, this review provides some explanations for the benefit of thymectomy in early-onset MG patients.
Collapse
Affiliation(s)
- Frédérique Truffault
- INSERM U974, Paris, France.,CNRS FRE3617, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,AIM, Institut de myologie, Paris, France
| | | | - Bruno Eymard
- Department of Neuromuscular Disorders, CHU Salpêtrière, Paris, France
| | - Tarek Sharshar
- General Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Raymond Poincaré Hospital, University of Versailles Saint-Quentin en Yvelines, 92380, Garches, France
| | - Rozen Le Panse
- INSERM U974, Paris, France.,CNRS FRE3617, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Sonia Berrih-Aknin
- INSERM U974, Paris, France. .,CNRS FRE3617, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, Paris, France. .,AIM, Institut de myologie, Paris, France. .,UMRS 974 UPMC, INSERM, FRE 3617 CNRS, AIM, Center of Research in Myology, 105 Boulevard de l'Hôpital, Paris, 75013, France.
| |
Collapse
|
24
|
Rathod SB, Tripathy AS. TGF-β 1 and contact mediated suppression by CD4 +CD25 +CD127 - T regulatory cells of patients with self-limiting hepatitis E. Hum Immunol 2016; 77:1254-1263. [PMID: 27720959 DOI: 10.1016/j.humimm.2016.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 09/07/2016] [Accepted: 10/05/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Literature on the role of Regulatory T cells (Tregs) in acute viral infections is limited. Having established that the Tregs in self-limiting hepatitis E infection are elevated and functional, this study has focused on characterizing the specificity, phenotypes and identifying the molecules or factors responsible for enhancement of Treg cells and abrogation of Treg-mediated suppression in hepatitis E. METHODS HEV rORF2p specific (a) Treg frequency, subset analysis and expression of surface and intracellular markers on Tregs and CFSE based functional analysis by flow cytometry (b) key cytokines quantification by multiplex (c) suppressive functional assay in the presence of anti-TGF-β1 or anti-IL-10 or both antibodies or Transwell insert or in combination were performed on samples from 58 acute patients (AVH-E), 45 recovered individuals from hepatitis E and 55 controls. RESULTS In AVH-E, the increased frequencies of Tregs and Teff cells were HEV rORF2p specific and Treg cells were of effector memory phenotype. Higher expressions of HEV rORF2p stimulated CTLA-4, GITR, PD1L, CD103, CD39, TLR2 and TGF-β1 molecules on Tregs of AVH-E were observed. Tregs produced TGF-β1 and inhibited the secretion of IFN-γ. Transwell insert and cytokines blocking assays indicated Tregs mediated suppression in AVH-E patients is majorly TGF-β1 mediated and partly cell-cell contact mediated. CONCLUSION Overall, we have identified beneficial involvement of HEV specific, functional Tregs and TGF-β1 as the regulatory molecule responsible for enhancement of Tregs in self-limiting HEV infection. Therefore, use of TGF-β1 as a possible supplement for boosting Treg response in recovery from severe hepatitis E needs evaluation.
Collapse
Affiliation(s)
- Sanjay B Rathod
- Hepatitis Group, National Institute of Virology, Pune, India
| | | |
Collapse
|
25
|
Affiliation(s)
- Carola G. Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia;
| | - Michelle A. Linterman
- Lymphocyte Signalling and Development Institute Strategic Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom;
| | - Di Yu
- Laboratory for Molecular Immunomodulation, Department of Biochemistry and Molecular Biology, and Center for Inflammatory Diseases, Monash University, Melbourne, Victoria 3800, Australia;
| | - Ian C.M. MacLennan
- School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
26
|
Xiong Y, Ahmad S, Iwami D, Brinkman CC, Bromberg JS. T-bet Regulates Natural Regulatory T Cell Afferent Lymphatic Migration and Suppressive Function. THE JOURNAL OF IMMUNOLOGY 2016; 196:2526-40. [PMID: 26880765 DOI: 10.4049/jimmunol.1502537] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/16/2016] [Indexed: 01/31/2023]
Abstract
T-bet is essential for natural regulatory T cells (nTreg) to regulate Th1 inflammation, but whether T-bet controls other Treg functions after entering the inflammatory site is unknown. In an islet allograft model, T-bet(-/-) nTreg, but not induced Treg, failed to prolong graft survival as effectively as wild-type Treg. T-bet(-/-) nTreg had no functional deficiency in vitro but failed to home from the graft to draining lymph nodes (dLN) as efficiently as wild type. T-bet regulated expression of adhesion- and migration-related molecules, influencing nTreg distribution in tissues, so that T-bet(-/-) nTreg remained in the grafts rather than migrating to lymphatics and dLN. In contrast, both wild-type and T-bet(-/-) CD4(+) conventional T cells and induced Treg migrated normally toward afferent lymphatics. T-bet(-/-) nTreg displayed instability in the graft, failing to suppress Ag-specific CD4(+) T cells and prevent their infiltration into the graft and dLN. Thus, T-bet regulates nTreg migration into afferent lymphatics and dLN and consequently their suppressive stability in vivo.
Collapse
Affiliation(s)
- Yanbao Xiong
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Sarwat Ahmad
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Daiki Iwami
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
| | - C Colin Brinkman
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jonathan S Bromberg
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201; and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
27
|
Jandl C, King C. Cytokines in the Germinal Center Niche. Antibodies (Basel) 2016; 5:antib5010005. [PMID: 31557986 PMCID: PMC6698856 DOI: 10.3390/antib5010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/11/2016] [Accepted: 01/27/2016] [Indexed: 12/14/2022] Open
Abstract
Cytokines are small, secreted, glycoproteins that specifically affect the interactions and communications between cells. Cytokines are produced transiently and locally, acting in a paracrine or autocrine manner, and they are extremely potent, ligating high affinity cell surface receptors to elicit changes in gene expression and protein synthesis in the responding cell. Cytokines produced during the differentiation of T follicular helper (Tfh) cells and B cells within the germinal center (GC) niche play an important role in ensuring that the humoral immune response is robust, whilst retaining flexibility, during the generation of affinity matured antibodies. Cytokines produced by B cells, antigen presenting cells and stromal cells are important for the differentiation of Tfh cells and Tfh cell produced cytokines act both in an autocrine fashion to firm Tfh cell differentiation and in a paracrine fashion to support the differentiation of memory B cells and plasma cells. In this review, we discuss the role of cytokines during the GC reaction with a particular focus on the influence of cytokines on Tfh cells.
Collapse
Affiliation(s)
- Christoph Jandl
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
- St Vincents Medical School, University of New South Wales, Sydney, NSW 2010, Australia.
| | - Cecile King
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
- St Vincents Medical School, University of New South Wales, Sydney, NSW 2010, Australia.
| |
Collapse
|
28
|
Colineau L, Rouers A, Yamamoto T, Xu Y, Urrutia A, Pham HP, Cardinaud S, Samri A, Dorgham K, Coulon PG, Cheynier R, Hosmalin A, Oksenhendler E, Six A, Kelleher AD, Zaunders J, Koup RA, Autran B, Moris A, Graff-Dubois S. HIV-Infected Spleens Present Altered Follicular Helper T Cell (Tfh) Subsets and Skewed B Cell Maturation. PLoS One 2015; 10:e0140978. [PMID: 26501424 PMCID: PMC4621058 DOI: 10.1371/journal.pone.0140978] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/16/2015] [Indexed: 12/27/2022] Open
Abstract
Follicular helper T (Tfh) cells within secondary lymphoid organs control multiple steps of B cell maturation and antibody (Ab) production. HIV-1 infection is associated with an altered B cell differentiation and Tfh isolated from lymph nodes of HIV-infected (HIV+) individuals provide inadequate B cell help in vitro. However, the mechanisms underlying this impairment of Tfh function are not fully defined. Using a unique collection of splenocytes, we compared the frequency, phenotype and transcriptome of Tfh subsets in spleens from HIV negative (HIV-) and HIV+ subjects. We observed an increase of CXCR5+PD-1highCD57-Tfh and germinal center (GC) CD57+ Tfh in HIV+ spleens. Both subsets showed a reduced mRNA expression of the transcription factor STAT-3, co-stimulatory, regulatory and signal transduction molecules as compared to HIV- spleens. Similarly, Foxp3 expressing follicular regulatory T (Tfr) cells were increased, suggesting sustained GC reactions in chronically HIV+ spleens. As a consequence, GC B cell populations were expanded, however, complete maturation into memory B cells was reduced in HIV+ spleens where we evidenced a compromised production of B cell-activating cytokines such as IL-4 and IL-10. Collectively our data indicate that, although Tfh proliferation and GC reactions seem to be ongoing in HIV-infected spleens, Tfh “differentiation” and expression of costimulatory molecules is skewed with a profound effect on B cell maturation.
Collapse
Affiliation(s)
- Lucie Colineau
- Sorbonne Universités, UPMC Université Paris 06, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- INSERM, U1135, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- CNRS, ERL 8255, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
| | - Angeline Rouers
- Sorbonne Universités, UPMC Université Paris 06, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- INSERM, U1135, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- CNRS, ERL 8255, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
| | - Takuya Yamamoto
- Immunology Laboratory, Vaccine research center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, United States of America
| | - Yin Xu
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Alejandra Urrutia
- Sorbonne Universités, UPMC Université Paris 06, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- INSERM, U1135, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- CNRS, ERL 8255, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
| | - Hang-Phuong Pham
- Sorbonne Universités UPMC Université Paris 06, UMRS 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France
- INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France
- CNRS, FRE3632, Immunology-Immunopathology-Immunotherapy (I3), Paris, France
| | - Sylvain Cardinaud
- Sorbonne Universités, UPMC Université Paris 06, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- INSERM, U1135, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- CNRS, ERL 8255, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
| | - Assia Samri
- Sorbonne Universités, UPMC Université Paris 06, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- INSERM, U1135, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- AP-HP, Hôpital Pitié-Salpêtière, Department of Immunology, Paris, France
| | - Karim Dorgham
- Sorbonne Universités, UPMC Université Paris 06, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- INSERM, U1135, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- AP-HP, Hôpital Pitié-Salpêtière, Department of Immunology, Paris, France
| | - Pierre-Grégoire Coulon
- Sorbonne Universités, UPMC Université Paris 06, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- INSERM, U1135, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- CNRS, ERL 8255, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
| | - Rémi Cheynier
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Hosmalin
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- AP-HP, Hôpital Cochin, Paris, France
| | - Eric Oksenhendler
- Université Paris Diderot, Assistance Publique-Hôpitaux de Paris, Département d’Immunologie Clinique, Hôpital Saint-Louis, Paris, France
| | - Adrien Six
- Sorbonne Universités UPMC Université Paris 06, UMRS 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France
- INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France
- CNRS, FRE3632, Immunology-Immunopathology-Immunotherapy (I3), Paris, France
| | - Anthony D. Kelleher
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - John Zaunders
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - Richard A. Koup
- Immunology Laboratory, Vaccine research center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, United States of America
| | - Brigitte Autran
- Sorbonne Universités, UPMC Université Paris 06, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- INSERM, U1135, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- AP-HP, Hôpital Pitié-Salpêtière, Department of Immunology, Paris, France
| | - Arnaud Moris
- Sorbonne Universités, UPMC Université Paris 06, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- INSERM, U1135, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- CNRS, ERL 8255, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- AP-HP, Hôpital Pitié-Salpêtière, Department of Immunology, Paris, France
| | - Stéphanie Graff-Dubois
- Sorbonne Universités, UPMC Université Paris 06, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- INSERM, U1135, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- CNRS, ERL 8255, Center for Immunology and Microbial Infections—CIMI-Paris, Paris, France
- * E-mail:
| |
Collapse
|
29
|
Chowdhury A, Del Rio Estrada PM, Del Rio PME, Tharp GK, Trible RP, Amara RR, Chahroudi A, Reyes-Teran G, Bosinger SE, Silvestri G. Decreased T Follicular Regulatory Cell/T Follicular Helper Cell (TFH) in Simian Immunodeficiency Virus-Infected Rhesus Macaques May Contribute to Accumulation of TFH in Chronic Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:3237-47. [PMID: 26297764 PMCID: PMC4575868 DOI: 10.4049/jimmunol.1402701] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 07/13/2015] [Indexed: 01/12/2023]
Abstract
T follicular helper cells (TFH) are critical for the development and maintenance of germinal center (GC) and humoral immune responses. During chronic HIV/SIV infection, TFH accumulate, possibly as a result of Ag persistence. The HIV/SIV-associated TFH expansion may also reflect lack of regulation by suppressive follicular regulatory CD4(+) T cells (TFR). TFR are natural regulatory T cells (TREG) that migrate into the follicle and, similar to TFH, upregulate CXCR5, Bcl-6, and PD1. In this study, we identified TFR as CD4(+)CD25(+)FOXP3(+)CXCR5(+)PD1(hi)Bcl-6(+) within lymph nodes of rhesus macaques (RM) and confirmed their localization within the GC by immunohistochemistry. RNA sequencing showed that TFR exhibit a distinct transcriptional profile with shared features of both TFH and TREG, including intermediate expression of FOXP3, Bcl-6, PRDM1, IL-10, and IL-21. In healthy, SIV-uninfected RM, we observed a negative correlation between frequencies of TFR and both TFH and GC B cells, as well as levels of CD4(+) T cell proliferation. Post SIV infection, the TFR/TFH ratio was reduced with no change in the frequency of TREG or TFR within the total CD4(+) T cell pool. Finally, we examined whether higher levels of direct virus infection of TFR were responsible for their relative depletion post SIV infection. We found that TFH, TFR, and TREG sorted from SIV-infected RM harbor comparable levels of cell-associated viral DNA. Our data suggest that TFR may contribute to the regulation and proliferation of TFH and GC B cells in vivo and that a decreased TFR/TFH ratio in chronic SIV infection may lead to unchecked expansion of both TFH and GC B cells.
Collapse
Affiliation(s)
- Ankita Chowdhury
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329
| | - Perla Mariana Del Rio Estrada
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329; Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosio Villegas," Tlapan, Sección XVI, 14080 City of Mexico Federal District, Mexico; and
| | - Perla Maria Estrada Del Rio
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329; Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosio Villegas," Tlapan, Sección XVI, 14080 City of Mexico Federal District, Mexico; and
| | - Greg K Tharp
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329
| | - Ronald P Trible
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329
| | - Rama R Amara
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329
| | - Ann Chahroudi
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30329
| | - Gustavo Reyes-Teran
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosio Villegas," Tlapan, Sección XVI, 14080 City of Mexico Federal District, Mexico; and
| | - Steven E Bosinger
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329
| | - Guido Silvestri
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329;
| |
Collapse
|
30
|
Blackburn MJ, Zhong-Min M, Caccuri F, McKinnon K, Schifanella L, Guan Y, Gorini G, Venzon D, Fenizia C, Binello N, Gordon SN, Miller CJ, Franchini G, Vaccari M. Regulatory and Helper Follicular T Cells and Antibody Avidity to Simian Immunodeficiency Virus Glycoprotein 120. THE JOURNAL OF IMMUNOLOGY 2015; 195:3227-36. [PMID: 26297759 DOI: 10.4049/jimmunol.1402699] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 07/13/2015] [Indexed: 12/11/2022]
Abstract
T follicular regulatory cells (TFR) are a suppressive CD4(+) T cell subset that migrates to germinal centers (GC) during Ag presentation by upregulating the chemokine receptor CXCR5. In the GC, TFR control T follicular helper cell (TFH) expansion and modulate the development of high-affinity Ag-specific responses. In this study, we identified and characterized TFR as CXCR5(+)CCR7(-) "follicular" T regulatory cells in lymphoid tissues of healthy rhesus macaques, and we studied their dynamics throughout infection in a well-defined animal model of HIV pathogenesis. TFR were infected by SIVmac251 and had comparable levels of SIV DNA to CXCR5(-)CCR7(+) "T zone" T regulatory cells and TFH. Contrary to the SIV-associated TFH expansion in the chronic phase of infection, we observed an apparent reduction of TFR frequency in cell suspension, as well as a decrease of CD3(+)Foxp3(+) cells in the GC of intact lymph nodes. TFR frequency was inversely associated with the percentage of TFH and, interestingly, with the avidity of the Abs that recognize the SIV gp120 envelope protein. Our findings show changes in the TFH/TFR ratio during chronic infection and suggest possible mechanisms for the unchecked expansion of TFH cells in HIV/SIV infection.
Collapse
Affiliation(s)
- Matthew J Blackburn
- Animal Models and Retroviral Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ma Zhong-Min
- California National Primate Research Center, University of California Davis, Davis, CA 95616
| | - Francesca Caccuri
- Animal Models and Retroviral Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Katherine McKinnon
- Animal Models and Retroviral Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Luca Schifanella
- Animal Models and Retroviral Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yongjun Guan
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201; and
| | - Giacomo Gorini
- Animal Models and Retroviral Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20852
| | - Claudio Fenizia
- Animal Models and Retroviral Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Nicolò Binello
- Animal Models and Retroviral Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shari N Gordon
- Animal Models and Retroviral Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Christopher J Miller
- California National Primate Research Center, University of California Davis, Davis, CA 95616
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Monica Vaccari
- Animal Models and Retroviral Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
31
|
T follicular regulatory cells in the regulation of B cell responses. Trends Immunol 2015; 36:410-8. [PMID: 26091728 DOI: 10.1016/j.it.2015.05.005] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022]
Abstract
High affinity antibodies result from interactions between B cells and T follicular helper (Tfh) cells in germinal centers (GCs). Recent studies have identified an effector subset of T regulatory cells termed T follicular regulatory (Tfr) cells that specifically controls GC responses by suppressing Tfh and B cells. The discovery of Tfr cells has shed new light on pathways regulating humoral immunity that enable potent and specific responses to pathogens while restricting autoimmunity. Here, we review the current understanding of the cellular and molecular mechanisms underlying the differentiation and function of Tfr cells. In this context we discuss recent insights into the role of Tfh cells in disease, how this knowledge may be translated therapeutically, and important areas of further research.
Collapse
|
32
|
Dhaeze T, Stinissen P, Liston A, Hellings N. Humoral autoimmunity: a failure of regulatory T cells? Autoimmun Rev 2015; 14:735-41. [PMID: 25913138 DOI: 10.1016/j.autrev.2015.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 04/12/2015] [Indexed: 01/28/2023]
Abstract
Regulatory T cells (Tregs) are essential in maintaining tolerance to self. Several lines of evidence indicate that Tregs are functionally impaired in a variety of autoimmune diseases, leading to inefficient regulation of autoimmune T cells. Recent findings also suggest that Tregs are essential in controlling autoreactive B cells. The recently identified follicular regulatory T cell subset (TFR) is thought to regulate the production of autoantibodies in the germinal center (GC) response. Here we provide an update on the role of Tregs in controlling the GC response, and whether defective control over B cell tolerance contributes to autoimmunity.
Collapse
Affiliation(s)
- Tessa Dhaeze
- Hasselt University, Biomedisch Onderzoeksinstituut and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Piet Stinissen
- Hasselt University, Biomedisch Onderzoeksinstituut and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Adrian Liston
- Autoimmune Genetics Laboratory, VIB, Leuven, Belgium; Department of Microbiology and Immunology, University of Leuven, Belgium
| | - Niels Hellings
- Hasselt University, Biomedisch Onderzoeksinstituut and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium.
| |
Collapse
|
33
|
Phetsouphanh C, Xu Y, Zaunders J. CD4 T Cells Mediate Both Positive and Negative Regulation of the Immune Response to HIV Infection: Complex Role of T Follicular Helper Cells and Regulatory T Cells in Pathogenesis. Front Immunol 2015; 5:681. [PMID: 25610441 PMCID: PMC4285174 DOI: 10.3389/fimmu.2014.00681] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
HIV-1 infection results in chronic activation of cells in lymphoid tissue, including T cells, B-cells, and myeloid lineage cells. The resulting characteristic hyperplasia is an amalgam of proliferating host immune cells in the adaptive response, increased concentrations of innate response mediators due to viral and bacterial products, and homeostatic responses to inflammation. While it is generally thought that CD4 T cells are greatly depleted, in fact, two types of CD4 T cells appear to be increased, namely, regulatory T cells (Tregs) and T follicular helper cells (Tfh). These cells have opposing roles, but may both be important in the pathogenic process. Whether Tregs are failing in their role to limit lymphocyte activation is unclear, but there is no doubt now that Tfh are associated with B-cell hyperplasia and increased germinal center activity. Antiretroviral therapy may reduce the lymphocyte activation, but not completely, and therefore, there is a need for interventions that selectively enhance normal CD4 function without exacerbating Tfh, B-cell, or Treg dysfunction.
Collapse
Affiliation(s)
- Chansavath Phetsouphanh
- Centre for Applied Medical Research, Kirby Institute, St Vincent's Hospital, University of New South Wales , Sydney, NSW , Australia
| | - Yin Xu
- Centre for Applied Medical Research, Kirby Institute, St Vincent's Hospital, University of New South Wales , Sydney, NSW , Australia
| | - John Zaunders
- Centre for Applied Medical Research, Kirby Institute, St Vincent's Hospital, University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
34
|
McCarron MJ, Marie JC. TGF-β prevents T follicular helper cell accumulation and B cell autoreactivity. J Clin Invest 2014; 124:4375-86. [PMID: 25157822 DOI: 10.1172/jci76179] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/11/2014] [Indexed: 02/03/2023] Open
Abstract
T follicular helper (Tfh) cells contribute to the establishment of humoral immunity by controlling the delivery of helper signals to activated B cells; however, Tfh development must be restrained, as aberrant accumulation of these cells is associated with positive selection of self-reactive germinal center B cells and autoimmunity in both humans and mice. Here, we show that TGF-β signaling in T cells prevented Tfh cell accumulation, self-reactive B cell activation, and autoantibody production. Using mice with either T cell-specific loss or constitutive activation of TGF-β signaling, we demonstrated that TGF-β signaling is required for the thymic maturation of CD44⁺CD122⁺Ly49⁺CD8⁺ regulatory T cells (Tregs), which induce Tfh apoptosis and thus regulate this cell population. Moreover, peripheral Tfh cells escaping TGF-β control were resistant to apoptosis, exhibited high levels of the antiapoptotic protein BCL2, and remained refractory to regulation by CD8+ Tregs. The unrestrained accumulation of Tfh cells in the absence of TGF-β was dependent on T cell receptor engagement and required B cells. Together, these data indicate that TGF-β signaling restrains Tfh cell accumulation and B cell-associated autoimmunity and thereby controls self-tolerance.
Collapse
|
35
|
Toll-like receptor 9 signaling acts on multiple elements of the germinal center to enhance antibody responses. Proc Natl Acad Sci U S A 2014; 111:E3224-33. [PMID: 25053813 DOI: 10.1073/pnas.1323985111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent studies have demonstrated important roles of nucleic acid-sensing Toll-like receptors (TLRs) in promoting protective antibody responses against several viruses. To dissect how recognition of nucleic acids by TLRs enhances germinal center (GC) responses, mice selectively deleted for myeloid differentiation primary-response protein 88 (MyD88) in B cells or dendritic cells (DCs) were immunized with a haptenated protein antigen bound to a TLR9 ligand. TLR9 signaling in DCs led to greater numbers of follicular helper T (TFH) cells and GC B cells, and accelerated production of broad-affinity antihapten IgG. In addition to modulating GC selection by increasing inducible costimulator (ICOS) expression on TFH cells and reducing the number of follicular regulatory T cells, MyD88-dependent signaling in B cells enhanced GC output by augmenting a class switch to IgG2a, affinity maturation, and the memory antibody response. Thus, attachment of a TLR9 ligand to an oligovalent antigen acted on DCs and B cells to coordinate changes in the T-cell compartment and also promoted B cell-intrinsic effects that ultimately programmed a more potent GC response.
Collapse
|
36
|
FoxP3+ regulatory T cells promote influenza-specific Tfh responses by controlling IL-2 availability. Nat Commun 2014; 5:3495. [PMID: 24633065 PMCID: PMC4013682 DOI: 10.1038/ncomms4495] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/24/2014] [Indexed: 01/08/2023] Open
Abstract
Here, we test the role of FoxP3(+) regulatory T cells (Tregs) in controlling T follicular helper (Tfh) and germinal centre (GC) B-cell responses to influenza. In contrast to the idea that Tregs suppress T-cell responses, we find that Treg depletion severely reduces the Tfh cell response to influenza virus. Furthermore, Treg depletion prevents the accumulation of influenza-specific GCs. These effects are not due to alterations in TGFβ availability or a precursor-progeny relationship between Tregs and Tfh cells, but are instead mediated by increased availability of IL-2, which suppresses the differentiation of Tfh cells and as a consequence, compromises the GC B response. Thus, Tregs promote influenza-specific GC responses by preventing excessive IL-2 signalling, which suppresses Tfh cell differentiation.
Collapse
|
37
|
Vaeth M, Müller G, Stauss D, Dietz L, Klein-Hessling S, Serfling E, Lipp M, Berberich I, Berberich-Siebelt F. Follicular regulatory T cells control humoral autoimmunity via NFAT2-regulated CXCR5 expression. ACTA ACUST UNITED AC 2014; 211:545-61. [PMID: 24590764 PMCID: PMC3949566 DOI: 10.1084/jem.20130604] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
T cell–specific NFAT2 deletion results in reduced CXCR5+ follicular regulatory T cells, leading to uncontrolled germinal center responses and humoral autoimmunity. Maturation of high-affinity B lymphocytes is precisely controlled during the germinal center reaction. This is dependent on CD4+CXCR5+ follicular helper T cells (TFH) and inhibited by CD4+CXCR5+Foxp3+ follicular regulatory T cells (TFR). Because NFAT2 was found to be highly expressed and activated in follicular T cells, we addressed its function herein. Unexpectedly, ablation of NFAT2 in T cells caused an augmented GC reaction upon immunization. Consistently, however, TFR cells were clearly reduced in the follicular T cell population due to impaired homing to B cell follicles. This was TFR-intrinsic because only in these cells NFAT2 was essential to up-regulate CXCR5. The physiological relevance for humoral (auto-)immunity was corroborated by exacerbated lupuslike disease in the presence of NFAT2-deficient TFR cells.
Collapse
Affiliation(s)
- Martin Vaeth
- Department of Molecular Pathology, Institute of Pathology and 4 Comprehensive Cancer Center Mainfranken, Julius-Maximilians-University of Wuerzburg, 97080 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Immunotherapy for cancer using antibodies to enhance T-cell function has been successful in recent clinical trials. Many molecules that improve activation and effector function of T cells have been investigated as potential new targets for immunomodulatory antibodies, including the tumor necrosis factor receptor superfamily members GITR and OX40. Antibodies engaging GITR or OX40 result in significant tumor protection in preclinical models. In this study, we observed that the GITR agonist antibody DTA-1 causes anaphylaxis in mice upon repeated intraperitoneal dosing. DTA-1-induced anaphylaxis requires GITR, CD4(+) T cells, B cells, and interleukin-4. Transfer of serum antibodies from DTA-1-treated mice, which contain high levels of DTA-1-specific immunoglobulin G1 (IgG1), can induce anaphylaxis in naive mice upon administration of an additional dose of DTA-1, suggesting that anaphylaxis results from anti-DTA-1 antibodies. Depletion of basophils and blockade of platelet-activating factor, the key components of the IgG1 pathway of anaphylaxis, rescues the mice from DTA-1-induced anaphylaxis. These results demonstrate a previously undescribed lethal side effect of repetitive doses of an agonist immunomodulatory antibody as well as insight into the mechanism of toxicity, which may offer a means of preventing adverse effects in future clinical trials using anti-GITR or other agonist antibodies as immunotherapies.
Collapse
|
39
|
Zhang Y, Zhang Y, Gu W, Sun B. TH1/TH2 cell differentiation and molecular signals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 841:15-44. [PMID: 25261203 DOI: 10.1007/978-94-017-9487-9_2] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The distinctive differentiated states of the CD4+ T helper cells are determined by the set of transcription factors and the genes transcribed by the transcription factors. In vitro induction models, the major determinants of the cytokines present during the T-cell receptor (TCR)-mediated activation process. IL-12 and IFN-γ make Naive CD4+ T cells highly express T-bet and STAT4 and differentiate to TH1 cells, while IL-4 make Naive CD4+ T cells highly express STAT6 and GATA3 and differentiated to TH2 cells. Even through T-bet and GATA3 are master regulators for TH1/TH2 cells differentiation. There are many other transcription factors, such as RUNX family proteins, IRF4, Dec2, Gfi1, Hlx, and JunB that can impair TH1/TH2 cells differentiation. In recent years, noncoding RNAs (microRNA and long noncoding RNA) join in the crowd. The leukocytes should migrate to the right place to show their impact. There are some successful strategies, which are revealed to targeting chemokines and their receptors, that have been developed to treat human immune-related diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | | | | | | |
Collapse
|
40
|
|
41
|
Qi H, Chen X, Chu C, Lu P, Xu H, Yan J. Follicular T‐helper cells: controlled localization and cellular interactions. Immunol Cell Biol 2013; 92:28-33. [DOI: 10.1038/icb.2013.59] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/01/2013] [Accepted: 09/04/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Hai Qi
- Tsinghua‐Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, School of Life Sciences, Tsinghua UniversityBeijingChina
| | - Xin Chen
- Tsinghua‐Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, School of Life Sciences, Tsinghua UniversityBeijingChina
| | - Coco Chu
- Tsinghua‐Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, School of Life Sciences, Tsinghua UniversityBeijingChina
| | - Peiwen Lu
- Tsinghua‐Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, School of Life Sciences, Tsinghua UniversityBeijingChina
| | - Heping Xu
- Tsinghua‐Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, School of Life Sciences, Tsinghua UniversityBeijingChina
| | - Jiacong Yan
- Tsinghua‐Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, School of Life Sciences, Tsinghua UniversityBeijingChina
| |
Collapse
|
42
|
Persistent Antigen and Germinal Center B Cells Sustain T Follicular Helper Cell Responses and Phenotype. Immunity 2013; 38:596-605. [DOI: 10.1016/j.immuni.2012.11.020] [Citation(s) in RCA: 344] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/12/2012] [Indexed: 01/29/2023]
|
43
|
Lee SY, Cho ML, Oh HJ, Ryu JG, Park MJ, Jhun JY, Park MK, Stone JC, Ju JH, Hwang SY, Park SH, Surh CD, Kim HY. Interleukin-2/anti-interleukin-2 monoclonal antibody immune complex suppresses collagen-induced arthritis in mice by fortifying interleukin-2/STAT5 signalling pathways. Immunology 2013; 137:305-16. [PMID: 23167249 DOI: 10.1111/imm.12008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/29/2012] [Accepted: 08/14/2012] [Indexed: 02/02/2023] Open
Abstract
In this study, we investigated the effects of administration of interleukin-2 (IL-2)/JES6-1 (anti-IL-2 monoclonal antibody) immune complexes on the expansion and activation of regulatory T (Treg) cells, the down-regulation of T helper type 17 (Th17) cells, and the control of the severity of collagen-induced arthritis (CIA). Wild-type and CIA-induced wild-type mice were injected intraperitoneally (i.p.) with IL-2 or IL-2/JES6-1 complex three times at 2-day intervals. Treg cell surface markers were analysed by flow cytometry. After injecting IL-2 or IL-2/JES6-1, the time kinetics of IL-2 signalling molecules was examined by FACS and Western blotting. Concentrations of IL-17 and IL-10 were measured by ELISA. Injection of IL-2/JES6-1 increased the proportion of Foxp3+ Treg cells among splenic CD4+ T cells, which reached the highest level on day 4 after injection. Up-regulation of CTLA4, GITR and glycoprotein-A repetitions predominant (GARP) was observed. Activation of p-signal transducer and activator of transcription 5 (STAT5) was apparent within 3 hr after injection of IL-2/JES6-1 complexes. Expression of IL-2 signalling molecules, including p-AKT and p-p38/mitogen-activated protein kinase, was also higher in splenocytes treated with IL-2/JES6-1 complexes. Injection of IL-2/JES6-1 complexes suppressed the induction of CIA and the production of IL-17 and inflammatory responses while increasing the level of IL-10 in the spleen. The expansion of Treg cells (via STAT5) and the concomitant increase in IL-2 signalling pathways by IL-2/JES6-1 complexes suggests their potential use as a novel therapeutic agent for the treatment of autoimmune arthritis.
Collapse
Affiliation(s)
- Seon-Yeong Lee
- The Rheumatism Research Centre, Catholic Research Institute of Medical Science, The Catholic University of Korea, Banpo-dong, Seocho-gu, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Roybel R. Ramiscal
- Department of Pathogens and Immunity, John Curtin School of Medical Research; Australian National University; Canberra; ACT; Australia
| | - Carola G. Vinuesa
- Department of Pathogens and Immunity, John Curtin School of Medical Research; Australian National University; Canberra; ACT; Australia
| |
Collapse
|
45
|
Koskinas J, Tampaki M, Doumba P, Rallis E. Hepatitis B virus reactivation during therapy with ustekinumab for psoriasis in a hepatitis B surface-antigen-negative anti-HBs-positive patient. Br J Dermatol 2013; 168:679-80. [DOI: 10.1111/bjd.12120] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Regulatory T cells in HIV infection: can immunotherapy regulate the regulator? Clin Dev Immunol 2012; 2012:908314. [PMID: 23251223 PMCID: PMC3509372 DOI: 10.1155/2012/908314] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 08/28/2012] [Indexed: 12/25/2022]
Abstract
Regulatory T cells (Tregs) have a dominant role in self-tolerance and control of autoimmune diseases. These cells also play a pivotal role in chronic viral infections and cancer by limiting immune activation and specific immune response. The role of Tregs in HIV pathogenesis remains poorly understood as their function, changes according to the phases of infection. Tregs can suppress anti-HIV specific responses and conversely can have a beneficial role by reducing the deleterious impact of immune activation. We review the frequency, function and homing potential of Tregs in the blood and lymphoid tissues as well as their interaction with dendritic cells in the context of HIV infection. We also examine the new insights generated by recombinant IL-2 and IL-7 clinical trials in HIV-infected adults, including the immunomodulatory effects of Tregs. Based on their detrimental role in limiting anti-HIV responses, we propose Tregs as potential targets for immunotherapeutic strategies aimed at decreasing Tregs frequency and/or immunosuppressive function. However, such approaches require a better understanding of the time upon infection when interfering with Treg function may not cause a deleterious state of hyperimmune activation.
Collapse
|
47
|
Limon JJ, Fruman DA. Akt and mTOR in B Cell Activation and Differentiation. Front Immunol 2012; 3:228. [PMID: 22888331 PMCID: PMC3412259 DOI: 10.3389/fimmu.2012.00228] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/14/2012] [Indexed: 01/08/2023] Open
Abstract
Activation of phosphoinositide 3-kinase (PI3K) is required for B cell proliferation and survival. PI3K signaling also controls key aspects of B cell differentiation. Upon engagement of the B cell receptor (BCR), PI3K activation promotes Ca2+ mobilization and activation of NFκB-dependent transcription, events which are essential for B cell proliferation. PI3K also initiates a distinct signaling pathway involving the Akt and mTOR serine/threonine kinases. It has been generally assumed that activation of Akt and mTOR downstream of PI3K is essential for B cell function. However, Akt and mTOR have complex roles in B cell fate decisions and suppression of this pathway can enhance certain B cell responses while repressing others. In this review we will discuss genetic and pharmacological studies of Akt and mTOR function in normal B cells, and in malignancies of B cell origin.
Collapse
Affiliation(s)
- Jose J Limon
- Department of Molecular Biology and Biochemistry, Institute for Immunology, University of California Irvine Irvine, CA, USA
| | | |
Collapse
|
48
|
Boyden AW, Legge KL, Waldschmidt TJ. Pulmonary infection with influenza A virus induces site-specific germinal center and T follicular helper cell responses. PLoS One 2012; 7:e40733. [PMID: 22792401 PMCID: PMC3394713 DOI: 10.1371/journal.pone.0040733] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/12/2012] [Indexed: 11/19/2022] Open
Abstract
Protection from influenza A virus (IAV) challenge requires switched, high affinity Abs derived from long-lived memory B cells and plasma cells. These B cell subsets are generated in germinal centers (GCs), hallmark structures of T helper cell-driven B cell immunity. A full understanding of the GC reaction after respiratory IAV infection is lacking, as is the characterization of T follicular helper (TFH) cells that support GCs. Here, GC B cell and TFH cell responses were studied in mice following pulmonary challenge with IAV. Marked GC reactions were induced in draining lymph nodes (dLNs), lung, spleen and nasal-associated lymphoid tissue (NALT), although the magnitude and kinetics of the response was site-specific. Examination of switching within GCs demonstrated IgG2+ cells to compose the largest fraction in dLNs, lung and spleen. IgA+ GC B cells were infrequent in these sites, but composed a significant subset of the switched GC population in NALT. Further experiments demonstrated splenectomized mice to withstand a lethal recall challenge, suggesting the spleen to be unnecessary for long-term protection in spite of strong GC responses in this organ. Final studies showed that TFH cell numbers were highest in dLNs and spleen, and peaked in all sites prior to the height of the GC reaction. TFH cells purified from dLNs generated IL-21 and IFNγ upon activation, although CD4+CXCR5− T effector cells produced higher levels of all cytokines. Collectively, these findings reveal respiratory IAV infection to induce strong T helper cell-driven B cell responses in various organs, with each site displaying unique attributes.
Collapse
Affiliation(s)
- Alexander W. Boyden
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Kevin L. Legge
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Thomas J. Waldschmidt
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
49
|
Tian L, Humblet-Baron S, Liston A. Immune tolerance: are regulatory T cell subsets needed to explain suppression of autoimmunity? Bioessays 2012; 34:569-75. [PMID: 22419393 DOI: 10.1002/bies.201100180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The potential for self-reactive T cells to cause autoimmune disease is held in check by Foxp3(+) regulatory T cells (Tregs), essential mediators of peripheral immunological tolerance. Tregs have the capacity to suppress multiple branches of the immune system, tightly controlling the different subsets of effector T cells across multiple different tissue environments. Recent genetic experiments have found mutations that disrupt specific Treg: effector T cell relationships, leading to the possibility that subsets of Tregs are required to suppress each subset of effector T cells. Here we review the environmental factors and mechanisms that allow Tregs to suppress specific subsets of effector T cells, and find that a parsimonious explanation of the genetic data can be made without invoking Treg subsets. Instead, Tregs show a functional and chemotactic plasticity based on microenvironmental influences that allows the common pool of cells to suppress multiple distinct immune responses.
Collapse
Affiliation(s)
- Lei Tian
- VIB Autoimmune Genetics Laboratory, University of Leuven, Leuven, Belgium
| | | | | |
Collapse
|
50
|
Abstract
Follicular helper T (T(FH)) cells are essential for B-cell maturation and immunoglobulin production after immunization with thymus-dependent antigens. Nevertheless, the development and function of T(FH) cells have been less clearly defined than classic CD4(+) effector T-cell subsets, including T-helper-1 (T(H)1), T(H)2 and T(H)17 cells. As such, our understanding of the genesis of T(FH) cells in humans and their role in the development of autoimmunity remains incomplete. However, evidence from animal models of systemic lupus erythematosus (SLE) and patients with systemic autoimmune diseases suggests that these cells are necessary for pathogenic autoantibody production, in a manner analogous to their role in promotion of B-cell maturation during normal immune responses. In this Review, I discuss the findings that have increased our knowledge of T(FH)-cell development and function in normal and aberrant immune responses. Such information might improve our understanding of autoimmune diseases, such as SLE, and highlights the potential of T(FH) cells as therapeutic targets in these diseases.
Collapse
|