1
|
Yang LY, Tang DR, Luo SQ, Li WW, Jiang YH, Lin LB, Zhang QL. Time-dependent changes in genome-wide gene expression and post-transcriptional regulation across the post-death process in silkworm. DNA Res 2024; 31:dsae031. [PMID: 39546332 PMCID: PMC11605879 DOI: 10.1093/dnares/dsae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
Despite death marking the end of life, several gene expression and miRNA-mediated post-transcriptional regulation events may persist or be initiated. The silkworm (Bombyx mori) is a valuable model for exploring life processes, including death. In this study, we combined transcriptomics and miRNAomics analyses of young, old, and post-mortem silkworms across the entire process after death to unravel the dynamics of gene expression and miRNA-mediated post-transcriptional regulation. In total, 171 genes exhibited sustained differential expression in post-mortem silkworms compared to the pre-death state, which are primarily involved in nerve signalling, transport, and immune response. Post-mortem time-specific genes were associated with cell cycle regulation, thermogenesis, immunity, and zinc ion homeostasis. We found that the down-regulated expression of 36 genes related to transcription, epigenetic modification, and homeostasis resulted in a significant shift in global gene expression patterns at 2 h post-death. We also identified 5 mRNA-miRNA pairs (i.e. bmo-miR-2795-mhca, 2784-achi, 2762-oa1, 277-5p-creb, and 1000-tcb1) associated with stress hormone regulation, transcription activity, and signal transduction. The roles of these pairs were validated through in vivo experiments using miRNA mimics in silkworms. The findings provide valuable insights into the intricate mechanisms underlying the transcriptional and miRNA-mediated post-transcriptional regulation events in animals after death.
Collapse
Affiliation(s)
- Lin-Yu Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Da-Rui Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Shi-Qi Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei-Wei Li
- Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
| | - Yu-Hang Jiang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
2
|
Kuo HW, Hsu LY, Cheng W. Molecular characterization and functional roles for Vibrio alginolyticus resistance of an octopamine/tyramine receptor of the white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 130:22-30. [PMID: 36084884 DOI: 10.1016/j.fsi.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Octopamine and Tyramine are biogenic amines that have been demonstrated to play an important immunological role in white shrimp, Litopenaeus vannamei. G protein-coupled receptors, known as seven-transmembrane domain receptors, are a variety of neurotransmitter receptors which are sensitive to biogenic amines for initiating the cell signaling pathway. In present study, we cloned and characterized an octopamine/tyramine receptor (LvOA/TA-R) from the hemocytes of L. vannamei, with a 1194 b.p. open reading frame that encodes 398 amino acids. Several bioinformatics analyses indicated that LvOA/TA-R had seven conserved hydrophobic transmembrane domains. The phylogenetic analysis and multiple sequence alignment indicated that LvOA/TA-R was orthologous to the OA/TA receptor of tiger shrimp, P. monodon. LvOA/TA-R was expressed in hemocytes and nervous tissue including circumoesphageal connective tissue and the thoracic and abdominal ganglia. Significant increases in LvOA/TA-R occurred in hemocytes of L. vannamei under Vibrio alginolyticus infection within 30-60 min of infection. Here, we demonstrated that LvOA/TA-R expression is upregulated in response to Vibrio alginolyticus infection and appears to be functionally responsible for the observed immune response. These results suggest that LvOA/TA-R mediates regulation of immunity, which promotes the resistance of L. vannamei to V. alginolyticus.
Collapse
Affiliation(s)
- Hsin-Wei Kuo
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC
| | - Li-Yang Hsu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC
| | - Winton Cheng
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC.
| |
Collapse
|
3
|
Wang S, Tang H, Huang W, Liu X, Hou W, Cesar Piñero J, Peng X, Chen M. Octopamine receptor genes are involved in the starvation response of Rhopalosiphum padi (Hemiptera: Aphididae). INSECT MOLECULAR BIOLOGY 2022; 31:471-481. [PMID: 35312201 DOI: 10.1111/imb.12773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Insect octopamine (OA) receptors are G-protein coupled receptors (GPCRs) that play essential roles in physiological and behavioural processes. However, there is little information about the function of OA receptors in the aphids' response to stress. From the genome sequence of Rhopalosiphum padi genome sequence, a cosmopolitan cereal pest, we identified six OA receptor genes RpOAMB, RpOctR, RpOctβ1R, RpOctβ2R, RpOctβ3R, RpOctR-like with two, one, one, four, four, seven exons, respectively. All the OA receptors contain seven transmembrane domains, which were the signature of GPCRs. Our results showed that (1) the contents of OA increased significantly after food starvation, (2) the transcription levels of RpOAMB, RpOctR, RpOctβ2R and RpOctβ3R increased after starvation and were restored after re-feeding, and (3) the expression levels of these four genes decreased significantly 48 h post-injection of dsRNA that targeted the respective genes. Knockdown of RpOctR, RpOctβ2R or RpOctβ3R genes significantly increased aphid mortality under 24 h starvation conditions. Mortality of R. padi injected with dsRpOctR or dsRpOctβ2R was significantly higher than control under 48 h starvation treatments. This is the first report on the role of OA receptors in the starvation response of aphids. The current study provides knowledge for a better understanding the physiological roles of insect OA receptors.
Collapse
Affiliation(s)
- Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongcheng Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenjie Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Xi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenhua Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Jaime Cesar Piñero
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts, USA
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Deshpande SA, Rohrbach EW, Asuncion JD, Harrigan J, Eamani A, Schlingmann EH, Suto DJ, Lee PT, Schweizer FE, Bellen HJ, Krantz DE. Regulation of Drosophila oviduct muscle contractility by octopamine. iScience 2022; 25:104697. [PMID: 35880044 PMCID: PMC9307614 DOI: 10.1016/j.isci.2022.104697] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 04/21/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Octopamine is essential for egg-laying in Drosophila melanogaster, but the neuronal pathways and receptors by which it regulates visceral muscles in the reproductive tract are not known. We find that the two octopamine receptors that have been previously implicated in egg-laying–OAMB and Octβ2R-are expressed in octopaminergic and glutamatergic neurons that project to the reproductive tract, peripheral ppk(+) neurons within the reproductive tract and epithelial cells that line the lumen of the oviducts. Further optogenetic and mutational analyses indicate that octopamine regulates both oviduct contraction and relaxation via Octβ2 and OAMB respectively. Interactions with glutamatergic pathways modify the effects of octopamine. Octopaminergic activation of Octβ2R on glutamatergic processes provides a possible mechanism by which octopamine initiates lateral oviduct contractions. We speculate that aminergic pathways in the oviposition circuit may be comparable to some of the mechanisms that regulate visceral muscle contractility in mammals. The receptors Octβ2 and OAMB mediate oviduct muscle contraction and relaxation The receptors are detectably expressed in neurons and epithelia but not muscle cells The control of visceral muscles in flies and mammals may share common features
Collapse
Affiliation(s)
- Sonali A. Deshpande
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Gonda (Goldschmied) Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ethan W. Rohrbach
- Interdepartmental Program in Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - James D. Asuncion
- Medical Scientist Training Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jenna Harrigan
- Interdepartmental Program in Molecular Toxicology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Aditya Eamani
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Gonda (Goldschmied) Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ellery H. Schlingmann
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Gonda (Goldschmied) Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Daniel J. Suto
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Gonda (Goldschmied) Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Pei-Tseng Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Felix E. Schweizer
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Department of Neuroscience, Baylor College of Medicine, Howard Hughes Medical Institute, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - David E. Krantz
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Gonda (Goldschmied) Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Corresponding author
| |
Collapse
|
5
|
Kaya-Zeeb S, Engelmayer L, Straßburger M, Bayer J, Bähre H, Seifert R, Scherf-Clavel O, Thamm M. Octopamine drives honeybee thermogenesis. eLife 2022; 11:74334. [PMID: 35289743 PMCID: PMC8923666 DOI: 10.7554/elife.74334] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/15/2022] [Indexed: 12/13/2022] Open
Abstract
In times of environmental change species have two options to survive: they either relocate to a new habitat or they adapt to the altered environment. Adaptation requires physiological plasticity and provides a selection benefit. In this regard, the Western honeybee (Apis mellifera) protrudes with its thermoregulatory capabilities, which enables a nearly worldwide distribution. Especially in the cold, shivering thermogenesis enables foraging as well as proper brood development and thus survival. In this study, we present octopamine signaling as a neurochemical prerequisite for honeybee thermogenesis: we were able to induce hypothermia by depleting octopamine in the flight muscles. Additionally, we could restore the ability to increase body temperature by administering octopamine. Thus, we conclude that octopamine signaling in the flight muscles is necessary for thermogenesis. Moreover, we show that these effects are mediated by β octopamine receptors. The significance of our results is highlighted by the fact the respective receptor genes underlie enormous selective pressure due to adaptation to cold climates. Finally, octopamine signaling in the service of thermogenesis might be a key strategy to survive in a changing environment.
Collapse
Affiliation(s)
- Sinan Kaya-Zeeb
- Behavioral Physiology and Sociobiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Lorenz Engelmayer
- Behavioral Physiology and Sociobiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Mara Straßburger
- Behavioral Physiology and Sociobiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Jasmin Bayer
- Institute for Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Heike Bähre
- Institute of Pharmacology, Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Roland Seifert
- Institute of Pharmacology, Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Oliver Scherf-Clavel
- Institute for Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Markus Thamm
- Behavioral Physiology and Sociobiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
PaOctβ2R: Identification and Functional Characterization of an Octopamine Receptor Activating Adenylyl Cyclase Activity in the American Cockroach Periplaneta americana. Int J Mol Sci 2022; 23:ijms23031677. [PMID: 35163598 PMCID: PMC8835733 DOI: 10.3390/ijms23031677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
Biogenic amines constitute an important group of neuroactive substances that control and modulate various neural circuits. These small organic compounds engage members of the guanine nucleotide-binding protein coupled receptor (GPCR) superfamily to evoke specific cellular responses. In addition to dopamine- and 5-hydroxytryptamine (serotonin) receptors, arthropods express receptors that are activated exclusively by tyramine and octopamine. These phenolamines functionally substitute the noradrenergic system of vertebrates Octopamine receptors that are the focus of this study are classified as either α- or β-adrenergic-like. Knowledge on these receptors is scarce for the American cockroach (Periplaneta americana). So far, only an α–adrenergic-like octopamine receptor that primarily causes Ca2+ release from intracellular stores has been studied from the cockroach (PaOctα1R). Here we succeeded in cloning a gene from cockroach brain tissue that encodes a β-adrenergic-like receptor and leads to cAMP production upon activation. Notably, the receptor is 100-fold more selective for octopamine than for tyramine. A series of synthetic antagonists selectively block receptor activity with epinastine being the most potent. Bioinformatics allowed us to identify a total of 19 receptor sequences that build the framework of the biogenic amine receptor clade in the American cockroach. Phylogenetic analyses using these sequences and receptor sequences from model organisms showed that the newly cloned gene is an β2-adrenergic-like octopamine receptor. The functional characterization of PaOctβ2R and the bioinformatics data uncovered that the monoaminergic receptor family in the hemimetabolic P. americana is similarly complex as in holometabolic model insects like Drosophila melanogaster and the honeybee, Apis mellifera. Thus, investigating these receptors in detail may contribute to a better understanding of monoaminergic signaling in insect behavior and physiology.
Collapse
|
7
|
Hayashi T, Katoh L, Ozoe F, Ozoe Y. Structure-dependent receptor subtype selectivity and G protein subtype preference of heterocyclic agonists in heterologously expressed silkworm octopamine receptors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 177:104895. [PMID: 34301357 DOI: 10.1016/j.pestbp.2021.104895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/03/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
(R)-Octopamine (OA), a major invertebrate biogenic amine, plays an important role in a wide variety of physiological processes as a neurohormone, neuromodulator, and neurotransmitter in insects. OA receptors (OARs) are class A G protein-coupled receptors that specifically bind OA to activate downstream signaling cascades by coupling to G proteins and presumably other regulatory proteins. These receptors are broadly classified as α- and β-adrenergic-like OARs (α- and β-ALOARs). OARs are considered important targets of insecticides and acaricides. In the present study, we examined the actions of an array of 13 heterocyclic OAR agonists with the moieties that correspond to the phenyl group and the basic nitrogen atom of OA on α- and β-ALOARs from the silkworm (Bombyx mori) and the signaling pathways activated through these actions. The results indicated that these compounds display structure-dependent receptor subtype selectivity and G protein subtype preference, underscoring the need to determine which subtype and signaling pathway mediates toxicologically relevant effects for the efficient discovery of novel pest control chemicals. The results of insecticidal assays using B. mori larvae suggested that the activation of signal transduction pathways via α-ALOARs might be mainly responsible for the toxicological effects of the heterocycles.
Collapse
Affiliation(s)
- Takeshi Hayashi
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Lay Katoh
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Fumiyo Ozoe
- Interdisciplinary Institute for Science Research, Head Office for Research and Academic Information, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan; Interdisciplinary Institute for Science Research, Head Office for Research and Academic Information, Shimane University, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
8
|
Zheng LS, Liu XQ, Liu GG, Huang QQ, Wang JJ, Jiang HB. Knockdown of a β-Adrenergic-Like Octopamine Receptor Affects Locomotion and Reproduction of Tribolium castaneum. Int J Mol Sci 2021; 22:ijms22147252. [PMID: 34298876 PMCID: PMC8305664 DOI: 10.3390/ijms22147252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/27/2021] [Accepted: 06/27/2021] [Indexed: 11/16/2022] Open
Abstract
The neurohormone octopamine regulates many crucial physiological processes in insects and exerts its activity via typical G-protein coupled receptors. The roles of octopamine receptors in regulating behavior and physiology in Coleoptera (beetles) need better understanding. We used the red flour beetle, Tribolium castaneum, as a model species to study the contribution of the octopamine receptor to behavior and physiology. We cloned the cDNA of a β-adrenergic-like octopamine receptor (TcOctβ2R). This was heterologously expressed in human embryonic kidney (HEK) 293 cells and was demonstrated to be functional using an in vitro cyclic AMP assay. In an RNAi assay, injection of dsRNA demonstrated that TcOctβ2R modulates beetle locomotion, mating duration, and fertility. These data present some roles of the octopaminergic signaling system in T. castaneum. Our findings will also help to elucidate the potential functions of individual octopamine receptors in other insects.
Collapse
Affiliation(s)
- Li-Sha Zheng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (L.-S.Z.); (X.-Q.L.); (G.-G.L.); (Q.-Q.H.); (J.-J.W.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Xiao-Qiang Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (L.-S.Z.); (X.-Q.L.); (G.-G.L.); (Q.-Q.H.); (J.-J.W.)
- Laboratory of Integrated Pest Management on Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agriculture Sciences, Ministry of Agriculture, Haikou 570100, China
| | - Ge-Ge Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (L.-S.Z.); (X.-Q.L.); (G.-G.L.); (Q.-Q.H.); (J.-J.W.)
| | - Qian-Qiao Huang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (L.-S.Z.); (X.-Q.L.); (G.-G.L.); (Q.-Q.H.); (J.-J.W.)
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (L.-S.Z.); (X.-Q.L.); (G.-G.L.); (Q.-Q.H.); (J.-J.W.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (L.-S.Z.); (X.-Q.L.); (G.-G.L.); (Q.-Q.H.); (J.-J.W.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel.: +86-23-6825-0255; Fax: +86-23-6825-1269
| |
Collapse
|
9
|
Ozoe Y. Ion channels and G protein-coupled receptors as targets for invertebrate pest control: from past challenges to practical insecticides. Biosci Biotechnol Biochem 2021; 85:1563-1571. [PMID: 33988673 DOI: 10.1093/bbb/zbab089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 01/12/2023]
Abstract
In the late 1970s, we discovered that toxic bicyclic phosphates inhibit the generation of miniature inhibitory junction potentials, implying their antagonism of γ-aminobutyric acid (GABA) receptors (GABARs; GABA-gated chloride channels). This unique mode of action provided a strong incentive for our research on GABARs in later years. Furthermore, minor structural changes conferred insect GABAR selectivity to this class of compounds, convincing us of the possibility of GABARs as targets for insecticides. Forty years later, third-generation insecticides acting as allosteric modulator antagonists at a distinctive site of action in insect GABARs were developed. G protein-coupled receptors (GPCRs) are also promising targets for pest control. We characterized phenolamine receptors functionally and pharmacologically. Of the tested receptors, β-adrenergic-like octopamine receptors were revealed to be the most sensitive to the acaricide/insecticide amitraz. Given the presence of multiple sites of action, ion channels and GPCRs remain potential targets for invertebrate pest control.
Collapse
Affiliation(s)
- Yoshihisa Ozoe
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane, Japan.,Interdisciplinary Institute for Science Research, Head Office for Research and Academic Information, Shimane University, Matsue, Shimane, Japan
| |
Collapse
|
10
|
White MA, Chen DS, Wolfner MF. She's got nerve: roles of octopamine in insect female reproduction. J Neurogenet 2021; 35:132-153. [PMID: 33909537 DOI: 10.1080/01677063.2020.1868457] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The biogenic monoamine octopamine (OA) is a crucial regulator of invertebrate physiology and behavior. Since its discovery in the 1950s in octopus salivary glands, OA has been implicated in many biological processes among diverse invertebrate lineages. It can act as a neurotransmitter, neuromodulator and neurohormone in a variety of biological contexts, and can mediate processes including feeding, sleep, locomotion, flight, learning, memory, and aggression. Here, we focus on the roles of OA in female reproduction in insects. OA is produced in the octopaminergic neurons that innervate the female reproductive tract (RT). It exerts its effects by binding to receptors throughout the RT to generate tissue- and region-specific outcomes. OA signaling regulates oogenesis, ovulation, sperm storage, and reproductive behaviors in response to the female's internal state and external conditions. Mating profoundly changes a female's physiology and behavior. The female's OA signaling system interacts with, and is modified by, male molecules transferred during mating to elicit a subset of the post-mating changes. Since the role of OA in female reproduction is best characterized in the fruit fly Drosophila melanogaster, we focus our discussion on this species but include discussion of OA in other insect species whenever relevant. We conclude by proposing areas for future research to further the understanding of OA's involvement in female reproduction in insects.
Collapse
Affiliation(s)
- Melissa A White
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Dawn S Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
11
|
Guo YF, Qiu JR, Chen T, Gao SJ, Su-Hong B, Wang R, Wang JD. Characterization and functional analysis of a β-adrenergic-like octopamine receptor from the oriental armyworm (Mythimna separata Walker). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21772. [PMID: 33719088 DOI: 10.1002/arch.21772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
The β-adrenergic-like octopamine receptor (OA2B2), which binds the biogenic amine octopamine, belongs to the class of G-protein coupled receptors and significantly regulates many physiological and behavioral processes in insects. In this study, the putative open reading frame sequence of the MsOA2B2 gene in Mythimna separata was cloned, the full-length complementary DNA was 1191 bp and it encoded a 396-amino acid protein (GenBank accession number MN822800). Orthologous sequence alignment, phylogenetic tree analysis, and protein sequence analysis all showed that the cloned receptor belongs to the OA2B2 protein family. Real-time quantitative polymerase chain reaction of spatial and temporal expression analysis revealed that the MsOAB2 gene was expressed in all developmental stages of M. separata and was most abundant in egg stages and second and fourth instars compared with other developmental stages, while the expression level during the pupal stage was much lower than that at the other stages. Further analysis with sixth instar M. separata larvae showed that the MsOA2B2 gene was expressed 1.81 times higher in the head than in integument and gut tissues. Dietary ingestion of dsMsOA2B2 significantly reduced the messenger RNA level of MsOA2B2 and decreased mortality following amitraz treatment. This study provides both a pharmacological characterization and the gene expression patterns of OA2B2 in M. separata, facilitating further research for insecticides using MsOA2B2 as a target.
Collapse
MESH Headings
- Animals
- Gene Expression/drug effects
- Genes, Insect
- Insect Control
- Insect Proteins/chemistry
- Insect Proteins/genetics
- Insect Proteins/metabolism
- Insecticides/pharmacology
- Larva/genetics
- Larva/metabolism
- Moths/genetics
- Moths/metabolism
- Phylogeny
- Pupa/genetics
- Pupa/metabolism
- Receptors, Adrenergic, beta/chemistry
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Receptors, Biogenic Amine/chemistry
- Receptors, Biogenic Amine/drug effects
- Receptors, Biogenic Amine/genetics
- Receptors, Biogenic Amine/metabolism
- Toluidines/pharmacology
Collapse
Affiliation(s)
- Yan-Fang Guo
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Jia-Ren Qiu
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Tao Chen
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| | - San-Ji Gao
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Bu Su-Hong
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Ran Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-da Wang
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| |
Collapse
|
12
|
The Insect Type 1 Tyramine Receptors: From Structure to Behavior. INSECTS 2021; 12:insects12040315. [PMID: 33915977 PMCID: PMC8065976 DOI: 10.3390/insects12040315] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary This review aims to describe the type 1 tyramine receptors (TAR1s) in insects with a multidisciplinary approach and might be an important tool for a wide scientific audience, including biochemists, molecular physiologists, ethologists, and neurobiologists with a biological entomology background. In fact, in the last years, TAR1 has received much attention due to its broad general interest. The review is composed of a general introduction about the tyraminergic and octopaminergic systems and the corresponding tyramine (TA) and octopamine (OA) receptors, including the recent classification as well as their brief structural and functional information. The four chapters then describe TAR1s: (1) Molecular and structural characterization, with the purpose to provide a clear biochemical overview of the receptor that ensures a well-defined TAR1 identity; (2) pharmacology, in which a clear TAR1-mediated intracellular signaling pathway is detailed; (3) physiology and behavior, focusing on the TAR1-controlled traits in insects; (4) insecticide target, in which the knowledge on TAR1 roles in insects is associated with the growing evidence about the pest management strategies based on this receptor. The conclusions summarize TAR1 features as well as future directions on which the receptor research should move. Abstract Tyramine is a neuroactive compound that acts as neurotransmitter, neuromodulator, and neurohormone in insects. Three G protein-coupled receptors, TAR1-3, are responsible for mediating the intracellular pathway in the complex tyraminergic network. TAR1, the prominent player in this system, was initially classified as an octopamine receptor which can also be activated by tyramine, while it later appeared to be a true tyramine receptor. Even though TAR1 is currently considered as a well-defined tyramine receptor and several insect TAR1s have been characterized, a defined nomenclature is still inconsistent. In the last years, our knowledge on the structural, biochemical, and functional properties of TAR1 has substantially increased. This review summarizes the available information on TAR1 from different insect species in terms of basic structure, its regulation and signal transduction mechanisms, and its distribution and functions in the brain and the periphery. A special focus is given to the TAR1-mediated intracellular signaling pathways as well as to their physiological role in regulating behavioral traits. Therefore, this work aims to correlate, for the first time, the physiological relevance of TAR1 functions with the tyraminergic system in insects. In addition, pharmacological studies have shed light on compounds with insecticidal properties having TAR1 as a target and on the emerging trend in the development of novel strategies for pest control.
Collapse
|
13
|
Takata M, Misato S, Ozoe F, Ozoe Y. A point mutation in the β-adrenergic-like octopamine receptor: possible association with amitraz resistance. PEST MANAGEMENT SCIENCE 2020; 76:3720-3728. [PMID: 32431064 DOI: 10.1002/ps.5921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Amitraz is a unique formamidine-class acaricide/insecticide that effectively controls ticks, mites, and insect pests. However, the recent emergence of amitraz-resistant cattle ticks is a serious problem that requires an urgent solution. A nonsynonymous single nucleotide polymorphism (A181T) leading to an amino acid substitution (I61F) in the β-adrenergic-like (β-AL) octopamine receptor (OAR) of amitraz-resistant southern cattle ticks (Rhipicephalus microplus) (RmβAOR) was proposed to be a cause of the amitraz resistance. However, it remains unclear whether this substitution exerts any functional effect on the action of amitraz. To make this clear, the functional role of this mutation was examined using an orthologous OAR (BmOAR2) from the silkworm (Bombyx mori). RESULTS Both amitraz and its metabolite N2 -(2,4-dimethylphenyl)-N1 -methyformamidine (DPMF) elevated intracellular cyclic AMP levels as orthosteric OAR agonists in HEK-293 cells stably expressing BmOAR2. The I45F mutant of BmOAR2 (equivalent to I61F in RmβAOR) was generated and tested for its sensitivity to amitraz and DPMF. The assay result showed that the I45F mutation reduces the potency of DPMF to a level similar to that of the endogenous agonist (R)-OA in wild-type BmOAR2. CONCLUSION The amino acid substitution found in the first transmembrane segment of RmβAOR most likely causes target-site insensitivity to DPMF, which might contribute to the resistance of R. microplus to amitraz. This needs to be further confirmed using RmβAOR. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mizuki Takata
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Seishi Misato
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Fumiyo Ozoe
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| |
Collapse
|
14
|
Li F, Li K, Wu LJ, Fan YL, Liu TX. Role of Biogenic Amines in Oviposition by the Diamondback Moth, Plutella xylostella L. Front Physiol 2020; 11:475. [PMID: 32528307 PMCID: PMC7247421 DOI: 10.3389/fphys.2020.00475] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/17/2020] [Indexed: 11/13/2022] Open
Abstract
Oviposition is an important reproductive behavior that is triggered by mating in insects, and biogenic amines might be involved in its regulation. The effects of biogenic amines on oviposition have only been studied in a few insect species, and the findings to date have not been conclusive. In addition, there are few studies on the effects of biogenic amines on oviposition of the diamondback moth, Plutella xylostella L. Here, we tested how mating and biogenic amines regulate oviposition of P. xylostella by injecting amines and amine receptor antagonists into virgin and mated females and counting the number of eggs laid afterward. Biogenic amines of octopamine and tyramine could induce virgin adults of P. xylostella to lay eggs, while dopamine and serotonin had no such effect on oviposition. Furthermore, the octopamine antagonists mianserin, epinastine, and phentolamine inhibited oviposition by mated females. The tyramine antagonist yohimbine, dopamine antagonist SCH23390, and serotonin antagonist ketanserin did not block oviposition by mated females, and octopamine and tyramine-inducing oviposition by virgin females could be inhibited by the octopamine antagonists mianserin and epinastine instead of the tyramine antagonist yohimbine. We conclude that octopamine and its receptors are involved in mating-triggered oviposition in P. xylostella, while tyramine acts as a subsidiary. Further, the inducing effect of tyramine on oviposition is achieved via octopamine receptors instead of tyramine receptors. This experiment is helpful to further understand the role of biogenic amines in mating regulation and to provide a new strategy for controlling P. xylostella.
Collapse
Affiliation(s)
- Fan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Ke Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Li-Juan Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
15
|
Pharmacological characterization of the 5-HT1A receptor of Bombyx mori and its role in locomotion. Comp Biochem Physiol A Mol Integr Physiol 2019; 231:56-65. [DOI: 10.1016/j.cbpa.2019.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 02/07/2023]
|
16
|
Qi YX, Xu G, Gu GX, Mao F, Ye GY, Liu W, Huang J. A new Drosophila octopamine receptor responds to serotonin. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 90:61-70. [PMID: 28942992 DOI: 10.1016/j.ibmb.2017.09.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
As the counterparts of the vertebrate adrenergic transmitters, octopamine and tyramine are important physiological regulators in invertebrates. They control and modulate many physiological and behavioral functions in insects. In this study, we reported the pharmacological properties of a new α2-adrenergic-like octopamine receptor (CG18208) from Drosophila melanogaster, named DmOctα2R. This new receptor gene encodes two transcripts by alternative splicing. The long isoform DmOctα2R-L differs from the short isoform DmOctα2R-S by the presence of an additional 29 amino acids within the third intracellular loop. When heterologously expressed in mammalian cell lines, both receptors were activated by octopamine, tyramine, epinephrine and norepinephrine, resulting in the inhibition of cAMP production in a dose-dependent manner. The long form is more sensitive to the above ligands than the short form. The adrenergic agonists naphazoline, tolazoline and clonidine can stimulate DmOctα2R as full agonists. Surprisingly, serotonin and serotoninergic agonists can also activate DmOctα2R. Several tested adrenergic antagonists and serotonin antagonists blocked the action of octopamine or serotonin on DmOctα2R. The data presented here reported an adrenergic-like G protein-coupled receptor activated by serotonin, suggesting that the neurotransmission and neuromodulation in the nervous system could be more complex than previously thought.
Collapse
Affiliation(s)
- Yi-Xiang Qi
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China; Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Gang Xu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gui-Xiang Gu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fen Mao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gong-Yin Ye
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Weiwei Liu
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Jia Huang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
17
|
PeaTAR1B: Characterization of a Second Type 1 Tyramine Receptor of the American Cockroach, Periplaneta americana. Int J Mol Sci 2017; 18:ijms18112279. [PMID: 29084141 PMCID: PMC5713249 DOI: 10.3390/ijms18112279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 11/17/2022] Open
Abstract
The catecholamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. In insects; these neuroactive substances are functionally replaced by the phenolamines octopamine and tyramine. Phenolamines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Type 1 tyramine receptors are better activated by tyramine than by octopamine. In contrast; type 2 tyramine receptors are almost exclusively activated by tyramine. Functionally; activation of type 1 tyramine receptors leads to a decrease in the intracellular concentration of cAMP ([cAMP]i) whereas type 2 tyramine receptors can mediate Ca2+ signals or both Ca2+ signals and effects on [cAMP]i. Here; we report that the American cockroach (Periplaneta americana) expresses a second type 1 tyramine receptor (PeaTAR1B) in addition to PeaTAR1A (previously called PeaTYR1). When heterologously expressed in flpTM cells; activation of PeaTAR1B by tyramine leads to a concentration-dependent decrease in [cAMP]i. Its activity can be blocked by a series of established antagonists. The functional characterization of two type 1 tyramine receptors from P. americana; PeaTAR1A and PeaTAR1B; which respond to tyramine by changing cAMP levels; is a major step towards understanding the actions of tyramine in cockroach physiology and behavior; particularly in comparison to the effects of octopamine.
Collapse
|
18
|
Lapied B, Defaix A, Stankiewicz M, Moreau E, Raymond V. Modulation of Low-Voltage-Activated Inward Current Permeable to Sodium and Calcium by DARPP-32 Drives Spontaneous Firing of Insect Octopaminergic Neurosecretory Cells. Front Syst Neurosci 2017; 11:31. [PMID: 28579948 PMCID: PMC5437719 DOI: 10.3389/fnsys.2017.00031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/03/2017] [Indexed: 12/02/2022] Open
Abstract
Identification of the different intracellular pathways that control phosphorylation/dephosphorylation process of ionic channels represents an exciting alternative approach for studying the ionic mechanisms underlying neuronal pacemaker activity. In the central nervous system of the cockroach Periplaneta americana, octopaminergic neurons, called dorsal unpaired median (DUM; DUM neurons), generate spontaneous repetitive action potentials. Short-term cultured adult DUM neurons isolated from the terminal abdominal ganglion (TAG) of the nerve cord were used to study the regulation of a tetrodotoxin-sensitive low-voltage-activated (LVA) channel permeable to sodium and calcium (Na/Ca), under whole cell voltage- and current-clamp conditions. A bell-shaped curve illustrating the regulation of the amplitude of the maintained current vs. [ATP]i was observed. This suggested the existence of phosphorylation mechanisms. The protein kinase A (PKA) inhibitor, H89 and elevating [cyclic adenosine 3′, 5′ monophosphate, cAMP]i, increased and decreased the current amplitude, respectively. This indicated a regulation of the current via a cAMP/PKA cascade. Furthermore, intracellular application of PP2B inhibitors, cyclosporine A, FK506 and PP1/2A inhibitor, okadaic acid decreased the current amplitude. From these results and because octopamine (OA) regulates DUM neuron electrical activity via an elevation of [cAMP]i, we wanted to know if, like in vertebrate dopaminergic neurons, OA receptor (OAR) stimulation could indirectly affect the current via PKA-mediated phosphorylation of Dopamine- and cAMP-regulated Phosphoprotein-32 (DARPP-32) known to inhibit PP1/2A. Experiments were performed using intracellular application of phospho-DARPP-32 and non-phospho-DARPP-32. Phospho-DARPP-32 strongly reduced the current amplitude whereas non-phospho-DARPP-32 did not affect the current. All together, these results confirm that DARPP-32-mediated inhibition of PP1/2A regulates the maintained sodium/calcium current, which contributes to the development of the pre-depolarizing phase of the DUM neuron pacemaker activity.
Collapse
Affiliation(s)
- Bruno Lapied
- Laboratoire SiFCIR UPRES EA 2647/USC INRA 1330, Université Bretagne Loire, University of Angers, UFR SciencesAngers, France
| | - Antoine Defaix
- Laboratoire SiFCIR UPRES EA 2647/USC INRA 1330, Université Bretagne Loire, University of Angers, UFR SciencesAngers, France
| | - Maria Stankiewicz
- Faculty of Biology and Environment Protection, N. Copernicus UniversityTorun, Poland
| | - Eléonore Moreau
- Laboratoire SiFCIR UPRES EA 2647/USC INRA 1330, Université Bretagne Loire, University of Angers, UFR SciencesAngers, France
| | - Valérie Raymond
- Laboratoire SiFCIR UPRES EA 2647/USC INRA 1330, Université Bretagne Loire, University of Angers, UFR SciencesAngers, France
| |
Collapse
|
19
|
Kita T, Hayashi T, Ohtani T, Takao H, Takasu H, Liu G, Ohta H, Ozoe F, Ozoe Y. Amitraz and its metabolite differentially activate α- and β-adrenergic-like octopamine receptors. PEST MANAGEMENT SCIENCE 2017; 73:984-990. [PMID: 27484898 DOI: 10.1002/ps.4412] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND Amitraz is a formamidine acaricide and insecticide used to control ticks, mites and fleas. N2 -(2,4-Dimethylphenyl)-N1 -methyformamidine (DPMF), a metabolite of amitraz, is thought to be an active agent that exerts acaricidal and insecticidal effects by acting as an agonist on octopamine receptors. The emergence of cattle ticks resistant to amitraz is a serious problem that requires urgent attention. The objective of this research was to determine which type of octopamine receptor is the primary target of amitraz and thereby understand the molecular mechanisms of action and resistance to amitraz. RESULTS Amitraz and DPMF potently activated Bombyx mori α- and β-adrenergic-like octopamine receptors (α- and β-AL OARs) that were stably expressed in HEK-293 cells. Notably, DPMF elevated intracellular cAMP levels, with an EC50 of 79.6 pm in β-AL OARs, the transcripts of which were prevalently and widely localised in B. mori body parts. Furthermore, DPMF elevated the intracellular Ca2+ levels, with an EC50 of 1.17 nm in α-AL OARs. CONCLUSION Although both amitraz and DPMF acted as OAR agonists, the metabolite DPMF was more potent than amitraz and differentially activated α- and β-AL OARs. The present findings provide a basis for studies to examine the mechanism of amitraz resistance and to develop novel acaricides and insecticides. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tomo Kita
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Present address: Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Takeshi Hayashi
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Tomohiro Ohtani
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Haruka Takao
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Hiroshi Takasu
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Genyan Liu
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Present address: School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Hiroto Ohta
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Fumiyo Ozoe
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Yoshihisa Ozoe
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| |
Collapse
|
20
|
Identification of multiple functional receptors for tyramine on an insect secretory epithelium. Sci Rep 2017; 7:168. [PMID: 28279025 PMCID: PMC5427925 DOI: 10.1038/s41598-017-00120-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 02/08/2017] [Indexed: 11/15/2022] Open
Abstract
The biogenic amine tyramine (TA) regulates many aspects of invertebrate physiology and development. Although three TA receptor subtypes have been identified (TAR1-3), specific receptors have not been linked to physiological responses in native tissue. In the Malpighian (renal) tubule of Drosophila melanogaster, TA activates a transepithelial chloride conductance, resulting in diuresis and depolarization of the transepithelial potential. In the current work, mutation or RNAi-mediated knockdown in the stellate cells of the tubule of TAR2 (tyrR, CG7431) resulted in a dramatic reduction, but not elimination, of the TA-mediated depolarization. Mutation or knockdown of TAR3 (tyrRII, CG16766) had no effect. However, deletion of both genes, or knockdown of TAR3 on a TAR2 mutant background, eliminated the TA responses. Thus while TAR2 is responsible for the majority of the TA sensitivity of the tubule, TAR3 also contributes to the response. Knockdown or mutation of TAR2 also eliminated the response of tubules to the related amine octopamine (OA), indicating that OA can activate TAR2. This finding contrasts to reports that heterologously expressed TAR2 is highly selective for TA over OA. This is the first report of TA receptor function in a native tissue and indicates unexpected complexity in the physiology of the Malpighian tubule.
Collapse
|
21
|
Li HM, Jiang HB, Gui SH, Liu XQ, Liu H, Lu XP, Smagghe G, Wang JJ. Characterization of a β-Adrenergic-Like Octopamine Receptor in the Oriental Fruit Fly, Bactrocera dorsalis (Hendel). Int J Mol Sci 2016; 17:ijms17101577. [PMID: 27669213 PMCID: PMC5085626 DOI: 10.3390/ijms17101577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/04/2016] [Accepted: 09/13/2016] [Indexed: 11/16/2022] Open
Abstract
The biogenic amine octopamine plays a critical role in the regulation of many physiological processes in insects. Octopamine transmits its action through a set of specific G-protein coupled receptors (GPCRs), namely octopamine receptors. Here, we report on a β-adrenergic-like octopamine receptor gene (BdOctβR1) from the oriental fruit fly, Bactrocera dorsalis (Hendel), a destructive agricultural pest that occurs in North America and the Asia-Pacific region. As indicated by RT-qPCR, BdOctβR1 was highly expressed in the central nervous system (CNS) and Malpighian tubules (MT) in the adult flies, suggesting it may undertake important roles in neural signaling in the CNS as well as physiological functions in the MT of this fly. Furthermore, its ligand specificities were tested in a heterologous expression system where BdOctβR1 was expressed in HEK-293 cells. Based on cyclic AMP response assays, we found that BdOctβR1 could be activated by octopamine in a concentration-dependent manner, confirming that this receptor was functional, while tyramine and dopamine had much less potency than octopamine. Naphazoline possessed the highest agonistic activity among the tested agonists. In antagonistic assays, mianserin had the strongest activity and was followed by phentolamine and chlorpromazine. Furthermore, when the flies were kept under starvation, there was a corresponding increase in the transcript level of BdOctβR1, while high or low temperature stress could not induce significant expression changes. The above results suggest that BdOctβR1 may be involved in the regulation of feeding processes in Bactrocera dorsalis and may provide new potential insecticide leads targeting octopamine receptors.
Collapse
Affiliation(s)
- Hui-Min Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Shun-Hua Gui
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Xiao-Qiang Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Hong Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Xue-Ping Lu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Department of Crop Protection, Ghent University, Ghent 9000, Belgium.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
22
|
Schendzielorz T, Schirmer K, Stolte P, Stengl M. Octopamine regulates antennal sensory neurons via daytime-dependent changes in cAMP and IP3 levels in the hawkmoth Manduca sexta. PLoS One 2015; 10:e0121230. [PMID: 25785721 PMCID: PMC4364694 DOI: 10.1371/journal.pone.0121230] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/29/2015] [Indexed: 01/01/2023] Open
Abstract
The biogenic amine octopamine (OA) mediates reward signals in olfactory learning and memory as well as circadian rhythms of sleep and activity. In the crepuscular hawkmoth Manduca sexta, OA changed pheromone detection thresholds daytime-dependently, suggesting that OA confers circadian control of olfactory transduction. Thus, with enzyme-linked immunosorbent assays we searched hawkmoth antennae for daytime-dependent changes in the concentration of OA and its respective second messengers. Antennal stimulation with OA raised cAMP- and IP3 levels. Furthermore, antennae expressed daytime-dependent changes in the concentration of OA, with maxima at Zeitgebertime (ZT) 20 when moths were active and also maximal concentrations of cAMP occurred. Maximal IP3 levels at ZT 18 and 23 correlated with maximal flight activity of male moths, while minimal IP3 levels at dusk correlated with peaks of feeding activity. Half maximal effective concentration (EC50) for activation of the OA-receptor decreased during the moth’s activity phase suggesting daytime-dependent changes in OA receptor sensitivity. With an antiserum against tyramine, the precursor of OA, two centrifugal neurons were detected projecting out into the sensory cell layer of the antenna, possibly mediating more rapid stimulus-dependent OA actions. Indeed, in fast kinetic assays OA receptor stimulation increased cAMP concentrations within 50 msec. Thus, we hypothesize that fast, stimulus-dependent centrifugal control of OA-release in the antenna occurs. Additional slow systemic OA actions might be based upon circadian release of OA into the hemolymph mediating circadian rhythms of antennal second messenger levels. The resulting rhythms of odor sensitivity are suggested to underlie circadian rhythms in odor-mediated behavior.
Collapse
Affiliation(s)
| | - Katja Schirmer
- University of Kassel, Biology, Animal Physiology, 34132, Kassel, Germany
| | - Paul Stolte
- University of Kassel, Biology, Animal Physiology, 34132, Kassel, Germany
| | - Monika Stengl
- University of Kassel, Biology, Animal Physiology, 34132, Kassel, Germany
- * E-mail:
| |
Collapse
|
23
|
Kastner KW, Shoue DA, Estiu GL, Wolford J, Fuerst MF, Markley LD, Izaguirre JA, McDowell MA. Characterization of the Anopheles gambiae octopamine receptor and discovery of potential agonists and antagonists using a combined computational-experimental approach. Malar J 2014; 13:434. [PMID: 25407998 PMCID: PMC4253978 DOI: 10.1186/1475-2875-13-434] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Octopamine receptors (OARs) perform key functions in the biological pathways of primarily invertebrates, making this class of G-protein coupled receptors (GPCRs) a potentially good target for insecticides. However, the lack of structural and experimental data for this insect-essential GPCR family has promoted the development of homology models that are good representations of their biological equivalents for in silico screening of small molecules. METHODS Two Anopheles gambiae OARs were cloned, analysed and functionally characterized using a heterologous cell reporter system. Four antagonist- and four agonist-binding homology models were generated and virtually screened by docking against compounds obtained from the ZINC database. Resulting compounds from the virtual screen were tested experimentally using an in vitro reporter assay and in a mosquito larvicide bioassay. RESULTS Six An. gambiae OAR/tyramine receptor genes were identified. Phylogenetic analysis revealed that the OAR (AGAP000045) that encodes two open reading frames is an α-adrenergic-like receptor. Both splice variants signal through cAMP and calcium. Mutagenesis analysis revealed that D100 in the TM3 region and S206 and S210 in the TM5 region are important to the activation of the GPCR. Some 2,150 compounds from the virtual screen were structurally analysed and 70 compounds were experimentally tested against AgOAR45B expressed in the GloResponse™CRE-luc2P HEK293 reporter cell line, revealing 21 antagonists, 17 weak antagonists, 2 agonists, and 5 weak agonists. CONCLUSION Reported here is the functional characterization of two An. gambiae OARs and the discovery of new OAR agonists and antagonists based on virtual screening and molecular dynamics simulations. Four compounds were identified that had activity in a mosquito larva bioassay, three of which are imidazole derivatives. This combined computational and experimental approach is appropriate for the discovery of new and effective insecticides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mary Ann McDowell
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
24
|
A Secreted Placental Alkaline Phosphatase-Based Reporter Assay System for Screening of Compounds Acting at an Octopamine Receptor Stably Expressed in a Mammalian Cell Line. Biosci Biotechnol Biochem 2014; 76:209-11. [DOI: 10.1271/bbb.110690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Lawal HO, Terrell A, Lam HA, Djapri C, Jang J, Hadi R, Roberts L, Shahi V, Chou MT, Biedermann T, Huang B, Lawless GM, Maidment NT, Krantz DE. Drosophila modifier screens to identify novel neuropsychiatric drugs including aminergic agents for the possible treatment of Parkinson's disease and depression. Mol Psychiatry 2014; 19:235-42. [PMID: 23229049 PMCID: PMC3610854 DOI: 10.1038/mp.2012.170] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 08/21/2012] [Accepted: 09/17/2012] [Indexed: 01/05/2023]
Abstract
Small molecules that increase the presynaptic function of aminergic cells may provide neuroprotection in Parkinson's disease (PD) as well as treatments for attention deficit hyperactivity disorder (ADHD) and depression. Model genetic organisms such as Drosophila melanogaster may enhance the detection of new drugs via modifier or 'enhancer/suppressor' screens, but this technique has not been applied to processes relevant to psychiatry. To identify new aminergic drugs in vivo, we used a mutation in the Drosophila vesicular monoamine transporter (dVMAT) as a sensitized genetic background and performed a suppressor screen. We fed dVMAT mutant larvae ∼ 1000 known drugs and quantitated rescue (suppression) of an amine-dependent locomotor deficit in the larva. To determine which drugs might specifically potentiate neurotransmitter release, we performed an additional secondary screen for drugs that require presynaptic amine storage to rescue larval locomotion. Using additional larval locomotion and adult fertility assays, we validated that at least one compound previously used clinically as an antineoplastic agent potentiates the presynaptic function of aminergic circuits. We suggest that structurally similar agents might be used to development treatments for PD, depression and ADHD, and that modifier screens in Drosophila provide a new strategy to screen for neuropsychiatric drugs. More generally, our findings demonstrate the power of physiologically based screens for identifying bioactive agents for select neurotransmitter systems.
Collapse
Affiliation(s)
- Hakeem O. Lawal
- Department of Psychiatry and Biobehavioral Sciences, Gonda Center for Neuroscience and Genetics Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Ashley Terrell
- Department of Biological Sciences, University of Minnesota, Minneapolis MN, 55455 USA
| | - Hoa A. Lam
- Department of Psychiatry and Biobehavioral Sciences, Gonda Center for Neuroscience and Genetics Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Christine Djapri
- Department of Psychiatry and Biobehavioral Sciences, Gonda Center for Neuroscience and Genetics Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Jennifer Jang
- Department of Psychiatry and Biobehavioral Sciences, Gonda Center for Neuroscience and Genetics Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Richard Hadi
- Department of Psychiatry and Biobehavioral Sciences, Gonda Center for Neuroscience and Genetics Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Logan Roberts
- Department of Psychiatry and Biobehavioral Sciences, Gonda Center for Neuroscience and Genetics Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Varun Shahi
- Department of Psychiatry and Biobehavioral Sciences, Gonda Center for Neuroscience and Genetics Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Man-Ting Chou
- Department of Psychiatry and Biobehavioral Sciences, Gonda Center for Neuroscience and Genetics Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Traci Biedermann
- Department of Psychiatry and Biobehavioral Sciences, Gonda Center for Neuroscience and Genetics Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Brian Huang
- Department of Psychiatry and Biobehavioral Sciences, Gonda Center for Neuroscience and Genetics Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | | | - Nigel T. Maidment
- Department of Psychiatry and Biobehavioral Sciences, Gonda Center for Neuroscience and Genetics Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - David E. Krantz
- Department of Psychiatry and Biobehavioral Sciences, Gonda Center for Neuroscience and Genetics Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA,Corresponding Author: tel. 1 310 206 8508, fax 1 310 206 9877,
| |
Collapse
|
26
|
Balfanz S, Jordan N, Langenstück T, Breuer J, Bergmeier V, Baumann A. Molecular, pharmacological, and signaling properties of octopamine receptors from honeybee (Apis mellifera) brain. J Neurochem 2013; 129:284-96. [PMID: 24266860 DOI: 10.1111/jnc.12619] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/07/2013] [Accepted: 11/19/2013] [Indexed: 01/07/2023]
Abstract
G protein-coupled receptors are important regulators of cellular signaling processes. Within the large family of rhodopsin-like receptors, those binding to biogenic amines form a discrete subgroup. Activation of biogenic amine receptors leads to transient changes of intracellular Ca²⁺-([Ca²⁺](i)) or 3',5'-cyclic adenosine monophosphate ([cAMP](i)) concentrations. Both second messengers modulate cellular signaling processes and thereby contribute to long-lasting behavioral effects in an organism. In vivo pharmacology has helped to reveal the functional effects of different biogenic amines in honeybees. The phenolamine octopamine is an important modulator of behavior. Binding of octopamine to its receptors causes elevation of [Ca²⁺](i) or [cAMP](i). To date, only one honeybee octopamine receptor that induces Ca²⁺ signals has been molecularly and pharmacologically characterized. Here, we examined the pharmacological properties of four additional honeybee octopamine receptors. When heterologously expressed, all receptors induced cAMP production after binding to octopamine with EC₅₀(s) in the nanomolar range. Receptor activity was most efficiently blocked by mianserin, a substance with antidepressant activity in vertebrates. The rank order of inhibitory potency for potential receptor antagonists was very similar on all four honeybee receptors with mianserin >> cyproheptadine > metoclopramide > chlorpromazine > phentolamine. The subroot of octopamine receptors activating adenylyl cyclases is the largest that has so far been characterized in arthropods, and it should now be possible to unravel the contribution of individual receptors to the physiology and behavior of honeybees.
Collapse
Affiliation(s)
- Sabine Balfanz
- Institute of Complex Systems, ICS-4, Forschungszentrum Jülich, Jülich, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Wu SF, Xu G, Qi YX, Xia RY, Huang J, Ye GY. Two splicing variants of a novel family of octopamine receptors with different signaling properties. J Neurochem 2013; 129:37-47. [PMID: 24279508 DOI: 10.1111/jnc.12526] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/22/2013] [Accepted: 10/29/2013] [Indexed: 11/29/2022]
Abstract
The octopamine and tyramine, as the invertebrate counterparts of the vertebrate adrenergic transmitters, control and modulate many physiological and behavioral processes. Both molecules mediate their effects by binding to specific receptors belonging to the superfamily of G-protein-coupled receptors. So far, four families of octopamine and tyramine receptors have been reported. Here, we described the functional characterization of one putative octopamine/tyramine receptor gene from the rice stem borer, Chilo suppressalis. By a mechanism of alternative splicing, this receptor gene (CsOA3) encodes two molecularly distinct transcripts, CsOA3S and CsOA3L. CsOA3L differs from CsOA3S on account of the presence of an additional 30 amino acids within the third intracellular loop. When heterologously expressed, both receptors cause increases of intracellular Ca(2+) concentration. The short form, CsOA3S, was activated by both octopamine and tyramine, resulting in decreased intracellular cAMP levels ([cAMP]i ) in a dose-dependent manner, whereas dopamine and serotonin are not effective. However, CsOA3L did not show any impact on [cAMP]i . Studies with series of agonists and antagonists confirmed that CsOA3 has a different pharmacological profile from that of other octopamine receptor families. The CsOA3 is, to our knowledge, a novel family of insect octopamine receptors.
Collapse
Affiliation(s)
- Shun-Fan Wu
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Pesticide Sciences, College of Plant Protection, Nanjing Agricultural University, Jiangsu Key Laboratory of Pesticide Sciences, Nanjing, China
| | | | | | | | | | | |
Collapse
|
28
|
Reyes-Ruiz JM, Limon A, Korn MJ, Nakamura PA, Shirkey NJ, Wong JK, Miledi R. Profiling neurotransmitter receptor expression in the Ambystoma mexicanum brain. Neurosci Lett 2013; 538:32-7. [PMID: 23353105 DOI: 10.1016/j.neulet.2013.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/18/2012] [Accepted: 01/11/2013] [Indexed: 11/25/2022]
Abstract
Ability to regenerate limbs and central nervous system (CNS) is unique to few vertebrates, most notably the axolotl (Ambystoma sp.). However, despite the fact the neurotransmitter receptors are involved in axonal regeneration, little is known regarding its expression profile. In this project, RT-PCR and qPCR were performed to gain insight into the neurotransmitter receptors present in Ambystoma. Its functional ability was studied by expressing axolotl receptors in Xenopus laevis oocytes by either injection of mRNA or by direct microtransplantation of brain membranes. Oocytes injected with axolotl mRNA expressed ionotropic receptors activated by GABA, aspartate+glycine and kainate, as well as metabotropic receptors activated by acetylcholine and glutamate. Interestingly, we did not see responses following the application of serotonin. Membranes from the axolotl brain were efficiently microtransplanted into Xenopus oocytes and two types of native GABA receptors that differed in the temporal course of their responses and affinities to GABA were observed. Results of this study are necessary for further characterization of axolotl neurotransmitter receptors and may be useful for guiding experiments aimed at understanding activity-dependant limb and CNS regeneration.
Collapse
|
29
|
Beggs KT, Tyndall JDA, Mercer AR. Honey bee dopamine and octopamine receptors linked to intracellular calcium signaling have a close phylogenetic and pharmacological relationship. PLoS One 2011; 6:e26809. [PMID: 22096499 PMCID: PMC3214027 DOI: 10.1371/journal.pone.0026809] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 10/04/2011] [Indexed: 12/04/2022] Open
Abstract
Background Three dopamine receptor genes have been identified that are highly conserved among arthropod species. One of these genes, referred to in honey bees as Amdop2, shows a close phylogenetic relationship to the a-adrenergic-like octopamine receptor family. In this study we examined in parallel the functional and pharmacological properties of AmDOP2 and the honey bee octopamine receptor, AmOA1. For comparison, pharmacological properties of the honey bee dopamine receptors AmDOP1 and AmDOP3, and the tyramine receptor AmTYR1, were also examined. Methodology/Principal Findings Using HEK293 cells heterologously expressing honey bee biogenic amine receptors, we found that activation of AmDOP2 receptors, like AmOA1 receptors, initiates a rapid increase in intracellular calcium levels. We found no evidence of calcium signaling via AmDOP1, AmDOP3 or AmTYR1 receptors. AmDOP2- and AmOA1-mediated increases in intracellular calcium were inhibited by 10 µM edelfosine indicating a requirement for phospholipase C-β activity in this signaling pathway. Edelfosine treatment had no effect on AmDOP2- or AmOA1-mediated increases in intracellular cAMP. The synthetic compounds mianserin and epinastine, like cis-(Z)-flupentixol and spiperone, were found to have significant antagonist activity on AmDOP2 receptors. All 4 compounds were effective antagonists also on AmOA1 receptors. Analysis of putative ligand binding sites offers a possible explanation for why epinastine acts as an antagonist at AmDOP2 receptors, but fails to block responses mediated via AmDOP1. Conclusions/Significance Our results indicate that AmDOP2, like AmOA1, is coupled not only to cAMP, but also to calcium-signalling and moreover, that the two signalling pathways are independent upstream of phospholipase C-β activity. The striking similarity between the pharmacological properties of these 2 receptors suggests an underlying conservation of structural properties related to receptor function. Taken together, these results strongly support phylogenetic analyses indicating that the AmDOP2 and AmOA1 receptor genes are immediate paralogs.
Collapse
Affiliation(s)
- Kyle T. Beggs
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Alison R. Mercer
- Department of Zoology, University of Otago, Dunedin, New Zealand
- * E-mail:
| |
Collapse
|
30
|
Torkkeli PH, Panek I, Meisner S. Ca²(+) /calmodulin-dependent protein kinase II mediates the octopamine-induced increase in sensitivity in spider VS-3 mechanosensory neurons. Eur J Neurosci 2011; 33:1186-96. [PMID: 21366726 DOI: 10.1111/j.1460-9568.2011.07624.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G-protein-coupled octopamine (OA) receptors mediate their effects by Ca²(+) signaling or adjusting intracellular cAMP levels. Depending on OA concentration and cell type, activation of OA receptors in excitable cells triggers excitatory or inhibitory effects, but the mechanisms by which Ca²(+) or cAMP mediates these effects are not well understood. We investigated signaling mechanisms that are potentially activated by OA, and OA effects on excitability and frequency sensitivity in mechanosensory neurons innervating the VS-3 slit sensilla on the patella of the spider Cupiennius salei. These neurons are directly innervated by octopaminergic efferents, and possess OA receptors that were immunoreactive to an antibody against an OA receptor highly expressed in mushroom bodies. OA application enhanced VS-3 neuron sensitivity, especially at high stimulation frequencies. This enhancement lasted for at least 1 h after OA application. Changes in sensitivity were also detected when the Ca²(+) ionophore ionomycin or the cAMP analog 8-Br-cAMP was applied. However, the cAMP pathway was unlikely to mediate the OA effect, as the protein kinase A inhibitor RP-cAMPS did not diminish this effect. In contrast, the OA-induced sensitivity enhancement was significantly reduced by KN-62, an inhibitor of Ca²(+) /calmodulin-dependent protein kinase II (CaMKII), and by the Ca²(+) chelator BAPTA-AM. OA depolarized the neurons by 3.8 mV from resting potential, well below the threshold for opening of voltage-activated Ca²(+) channels. OA also reduced the amplitudes of voltage-activated K(+) currents. We propose that OA receptors in VS-3 neurons activate inositol 1,4,5-trisphosphate, leading to Ca²(+) release from intracellular stores. The Ca²(+) surge switches on CaMKII, which modulates voltage-activated K(+) channels, resulting in persistent enhancement in excitability.
Collapse
Affiliation(s)
- Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada.
| | | | | |
Collapse
|
31
|
Duportets L, Barrozo RB, Bozzolan F, Gaertner C, Anton S, Gadenne C, Debernard S. Cloning of an octopamine/tyramine receptor and plasticity of its expression as a function of adult sexual maturation in the male moth Agrotis ipsilon. INSECT MOLECULAR BIOLOGY 2010; 19:489-499. [PMID: 20491982 DOI: 10.1111/j.1365-2583.2010.01009.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In the male moth Agrotis ipsilon behavioural response and antennal lobe (AL) neuron sensitivity to the female-produced sex pheromone increase with age and juvenile hormone (JH) level. We recently showed that the neuromodulator, octopamine (OA), interacts with JH in this age-dependent olfactory plasticity. To further elucidate its role, we cloned a full cDNA encoding a protein that presents biochemical features essential to OA/tyramine receptor (AipsOAR/TAR) function. The AipsOAR/TAR transcript was detected predominantly in the antennae, the brain and, more specifically, in ALs where its expression level varied concomitantly with age. This expression plasticity indicates that AipsOAR/TAR might be involved in central processing of the pheromone signal during maturation of sexual behaviour in A. ipsilon.
Collapse
Affiliation(s)
- L Duportets
- UMR 1272, UPMC-INRA, Physiologie de l'Insecte: Signalisation et Communication, Université Paris VI, Bât A, 7 quai Saint Bernard, Paris, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Fan Y, Sun P, Wang Y, He X, Deng X, Chen X, Zhang G, Chen X, Zhou N. The G protein-coupled receptors in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:581-591. [PMID: 20685615 DOI: 10.1016/j.ibmb.2010.05.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 05/07/2010] [Accepted: 05/27/2010] [Indexed: 05/29/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and most versatile family of transmembrane receptors in the cell, occupying the highest hierarchical positions in the regulation of many physiological processes. Although they have been extensively studied in a number of model insects, there have been few investigations of GPCRs in large Lepidopterans, such as Bombyx mori, an organism that provides a means to perform detailed tissue expression analyses, which may help to characterize GPCRs and their ligands. In addition, B. mori, also known as the silkworm, is an insect of substantial economic importance, due to its use in silk production and traditional medicines. In this work, we computationally identified 90 putative GPCRs in B. mori, 33 of which represent novel proteins. These GPCRs were annotated and compared with their homologs in Drosophila melanogaster and Anopheles gambiae. Phylogenetics analyses of the GPCRs from these three insects showed that GPCRs may easily duplicate or disappear during insect evolution, especially in the neuropeptide and protein hormone receptor subfamily. Interestingly, we observed a decrease in the quantity and diversity of the stress-tolerance gene, Methuselah, in B. mori, which may be related to its long history of domestication. Moreover, the presence of many Bombyx-specific GPCRs suggests that neither Drosophila nor Anopheles is good representatives for the GPCRs in the Class Insecta.
Collapse
Affiliation(s)
- Yi Fan
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Verlinden H, Vleugels R, Marchal E, Badisco L, Pflüger HJ, Blenau W, Broeck JV. The role of octopamine in locusts and other arthropods. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:854-867. [PMID: 20621695 DOI: 10.1016/j.jinsphys.2010.05.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 05/29/2023]
Abstract
The biogenic amine octopamine and its biological precursor tyramine are thought to be the invertebrate functional homologues of the vertebrate adrenergic transmitters. Octopamine functions as a neuromodulator, neurotransmitter and neurohormone in insect nervous systems and prompts the whole organism to "dynamic action". A growing number of studies suggest a prominent role for octopamine in modulating multiple physiological and behavioural processes in invertebrates, as for example the phase transition in Schistocerca gregaria. Both octopamine and tyramine exert their effects by binding to specific receptor proteins that belong to the superfamily of G protein-coupled receptors. Since these receptors do not appear to be present in vertebrates, they may present very suitable and specific insecticide and acaricide targets.
Collapse
Affiliation(s)
- Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
34
|
Lind U, Alm Rosenblad M, Hasselberg Frank L, Falkbring S, Brive L, Laurila JM, Pohjanoksa K, Vuorenpää A, Kukkonen JP, Gunnarsson L, Scheinin M, Mårtensson Lindblad LGE, Blomberg A. Octopamine Receptors from the Barnacle Balanus improvisus Are Activated by the α2-Adrenoceptor Agonist Medetomidine. Mol Pharmacol 2010; 78:237-48. [DOI: 10.1124/mol.110.063594] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
35
|
Flecke C, Nolte A, Stengl M. Perfusion with cAMP analogue affects pheromone-sensitive trichoid sensilla of the hawkmoth Manduca sexta in a time-dependent manner. ACTA ACUST UNITED AC 2010; 213:842-52. [PMID: 20154200 DOI: 10.1242/jeb.032839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Octopamine causes time-dependent disadaptation of pheromone-sensitive olfactory receptor neurons (ORNs) of Manduca sexta. Because the majority of insect octopamine receptors are positively coupled to adenylyl cyclases we examined whether cyclic adenosine monophosphate (cAMP) mimics octopamine-dependent modulation of pheromone transduction in a time-dependent manner. Long-term tip recordings of single trichoid sensilla of Manduca sexta were performed during three zeitgeber times (ZTs, ZT 0=lights on), while stimulating the sensilla with two doses of the main pheromone component bombykal in a non-adapting protocol. The membrane-permeable cAMP analogue 8bcAMP increased the normalized sensillar potential amplitude in a time- and bombykal dose-dependent way. At the higher bombykal dose only, the applied 8bcAMP antagonized an endogenous decrease in the mean sensillar potential amplitude at ZT 1-4 and ZT 8-11 when ORNs were adapted but not at ZT 22-1, when ORNs were sensitized. In contrast to octopamine, 8bcAMP did not consistently affect the initial pheromone-dependent action potential frequency, the phasic/tonic response pattern, or the time-dependent shift to lower mean action potential frequencies at ZT 8-11. Furthermore, 8bcAMP increased the spontaneous action potential frequency time dependently, but differently from octopamine. In conclusion, our results show that cAMP only partly mimics the octopamine-dependent disadaptation of olfactory receptor neurons during photophase, apparently due to another missing octopamine-dependent synergistic factor such as defined intracellular calcium levels.
Collapse
Affiliation(s)
- Christian Flecke
- Biologie, Tierphysiologie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | | | | |
Collapse
|
36
|
Huang J, Hamasaki T, Ozoe Y. Pharmacological characterization of a Bombyx mori alpha-adrenergic-like octopamine receptor stably expressed in a mammalian cell line. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 73:74-86. [PMID: 19918790 DOI: 10.1002/arch.20341] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Series of agonists and antagonists were examined for their actions on a Bombyx morialpha-adrenergic-like octopamine receptor (OAR) stably expressed in HEK-293 cells. The rank order of potency of the agonists was clonidine>naphazoline>tolazoline in Ca(2+) mobilization assays, and that of the antagonists was chlorpromazine>yohimbine. These findings suggest that the B. mori OAR is more closely related to the class-1 OAR in the intact tissue than to the other classes. N'-(4-Chloro-o-tolyl)-N-methylformamidine (DMCDM) and 2-(2,6-diethylphenylimino)imidazolidine (NC-5) elevated the intracellular calcium concentration ([Ca(2+)](i)) with EC(50)s of 92.8 microM and 15.2 nM, respectively. DMCDM and NC-5 led to increases in intracellular cAMP concentration ([cAMP](i)) with EC(50)s of 234 nM and 125 nM, respectively. The difference in DMCDM potencies between the cAMP and Ca(2+) assays might be due to "functional selectivity." The Ca(2+) and cAMP assay results for DMCDM suggest that the elevation of [cAMP](i), but not that of [Ca(2+)](i), might account for the insecticidal effect of formamidine insecticides.
Collapse
Affiliation(s)
- Jia Huang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | | | | |
Collapse
|
37
|
Ohta H, Tsuchihara K, Mitsumasu K, Yaginuma T, Ozoe Y, Asaoka K. Comparative pharmacology of two D1-like dopamine receptors cloned from the silkworm Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:342-347. [PMID: 19507304 DOI: 10.1016/j.ibmb.2009.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Dopamine (DA) is a physiologically important biogenic amine in insect peripheral and nervous tissues.We recently cloned two DA receptors (BmDopR1 and BmDopR2) from the silkworm Bombyx mori and identified them as D1-like receptors, which activate adenylate cyclase to increase intracellular cAMP levels. In this study, these two receptors were stably expressed in HEK-293 cells, and the dose-responsiveness to DA and their pharmacological properties were examined using cAMP assays. BmDopR1 showed a dose-dependent increase in cAMP levels at DA concentrations up to 10(-7) M with EC(50) of 3.30 nM, while BmDopR2 required 10(-6) M DA for activation. In BmDopR1-expressing cells, DA at 10(-6)-10(-4) M induced 30-50% lower cAMP production than 10(-7) MDA. BmDopR2-expressing cells showed a standard sigmoidal dose-response, with maximum cAMP levels attained with 10(-5)-10(-4) M DA and EC(50) of 1.30 microM. Both receptors had similar agonist profiles, and the typical vertebrate D1-like receptor agonist SKF-38393 was ineffective. Experiments with antagonists revealed that BmDopR1 exhibits D1-like features. However, the pharmacology of BmDopR2 was distinct from D1-like receptors; the typical vertebrate D1-like receptor antagonist SCH-23390 was less potent than the nonselective antagonist flupenthixol and the D2-like receptor antagonist chlorpromazine. The rank order of activities of several antagonists for BmDopR1 and BmDopR2 was more similar to that of Drosophila melanogaster DA receptors than Apis mellifera DA receptors. These data suggest that DA receptors could be potential targets for specific insecticides or insectistatics.
Collapse
Affiliation(s)
- Hiroto Ohta
- National Institute of Agrobiological Sciences, Ohwashi, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Brigaud I, Grosmaître X, François MC, Jacquin-Joly E. Cloning and expression pattern of a putative octopamine/tyramine receptor in antennae of the noctuid moth Mamestra brassicae. Cell Tissue Res 2008; 335:455-63. [PMID: 19034524 DOI: 10.1007/s00441-008-0722-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 10/10/2008] [Indexed: 11/26/2022]
Abstract
In insects, biogenic amines have been shown to play an important role in olfactory plasticity. In a first attempt to decipher the underlying molecular mechanisms, we report the molecular cloning and precise expression pattern of a newly identified octopamine/tyramine-receptor-encoding gene in the antennae of the noctuid moth Mamestra brassicae (MbraOAR/TAR). A full-length cDNA has been obtained through homology cloning in combination with rapid amplification of cDNA ends/polymerase chain reaction; the deduced protein exhibits high identities with previously identified octopamine/tyramine receptors in other moths. In situ hybridization within the antennae has revealed that MbraOAR/TAR is expressed at the bases of both pheromone-sensitive and non-sensitive olfactory sensilla and in cells with a neurone-like shape. In accordance with previous physiological studies that have revealed a role of biogenic amines in the electrical activity of the receptor neurones, our results suggest that biogenic amines (either octopamine or tyramine) target olfactory receptor neurones to modulate olfactory coding as early as the antennal level.
Collapse
Affiliation(s)
- Isabelle Brigaud
- INRA, UMR 1272 INRA-UPMC-AgroParisTech PISC Physiologie de l'Insecte: Signalisation et Communication, Route de Saint-Cyr, 78000 Versailles, France
| | | | | | | |
Collapse
|
39
|
Farooqui T. Octopamine-mediated neuromodulation of insect senses. Neurochem Res 2007; 32:1511-29. [PMID: 17484052 DOI: 10.1007/s11064-007-9344-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 04/03/2007] [Indexed: 11/28/2022]
Abstract
Octopamine functions as a neuromodulator, neurotransmitter, and neurohormone in insect nervous systems. Octopamine has a prominent role in influencing multiple physiological events: (a) as a neuromodulator, it regulates desensitization of sensory inputs, arousal, initiation, and maintenance of various rhythmic behaviors and complex behaviors such as learning and memory; (b) as a neurotransmitter, it regulates endocrine gland activity; and (c) as a neurohormone, it induces mobilization of lipids and carbohydrates. Octopamine exerts its effects by binding to specific proteins that belong to the superfamily of G protein-coupled receptors and share the structural motif of seven transmembrane domains. The activation of octopamine receptors is coupled with different second messenger pathways depending on species, tissue source, receptor type and cell line used for the expression of cloned receptor. The second messengers include adenosine 3',5'-cyclic monophosphate (cAMP), calcium, diacylglycerol (DAG), and inositol 1,4,5-trisphosphate (IP3). The cAMP activates protein kinase A, calcium and DAG activate protein kinase C, and IP3 mobilizes calcium from intracellular stores. Octopamine-mediated generation of these second messengers is associated with changes in cellular response affecting insect behaviors. The main objective of this review is to discuss significance of octopamine-mediated neuromodulation in insect sensory systems.
Collapse
Affiliation(s)
- Tahira Farooqui
- Department of Entomology, The Ohio State University, 400 Aronoff Laboratory, 318 West 12th Ave., Columbus, OH 43210-1220, USA.
| |
Collapse
|