1
|
Kaneguchi A, Sakitani N, Umehara T. Histological changes in skeletal muscle induced by heart failure in human patients and animal models: A scoping review. Acta Histochem 2024; 126:152210. [PMID: 39442432 DOI: 10.1016/j.acthis.2024.152210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE This scoping review aimed to characterize the histological changes in skeletal muscle after heart failure (HF) and to identify gaps in knowledge. METHODS On April 03, 2024, systematic searches were performed for papers in which histological analyses were conducted on skeletal muscle sampled from patients with HF or animal models of HF. Screening and data extraction were conducted by two independent authors. RESULTS AND CONCLUSION A total of 118 papers were selected, including 33 human and 85 animal studies. Despite some disagreements among studies, some trends were observed. These trends included a slow-to-fast transition, a decrease in muscle fiber size, capillary to muscle fiber ratio, and mitochondrial activity and content, and an increase in apoptosis. These changes may contribute to the fatigability and decrease in muscle strength observed after HF. Although there were some disagreements between the results of human and animal studies, the results were generally similar. Animal models of HF will therefore be useful in elucidating the histological changes in skeletal muscle that occur in human patients with HF. Because the muscles subjected to histological analysis were mostly thigh muscles in humans and mostly lower leg muscles in animals, it remains uncertain whether changes similar to those seen in lower limb (hindlimb) muscles after HF also occur in upper limb (forelimb) muscles. The results of this review will consolidate the current knowledge on HF-induced histological changes in skeletal muscle and consequently aid in the rehabilitation of patients with HF and future studies.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan.
| | - Naoyoshi Sakitani
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Hayashi-cho 2217-4, Takamatsu, Kagawa, 761-0395, Japan
| | - Takuya Umehara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan
| |
Collapse
|
2
|
Knapp M, Supruniuk E, Górski J. Myostatin and the Heart. Biomolecules 2023; 13:1777. [PMID: 38136649 PMCID: PMC10741510 DOI: 10.3390/biom13121777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Myostatin (growth differentiation factor 8) is a member of the transforming growth factor-β superfamily. It is secreted mostly by skeletal muscles, although small amounts of myostatin are produced by the myocardium and the adipose tissue as well. Myostatin binds to activin IIB membrane receptors to activate the downstream intracellular canonical Smad2/Smad3 pathway, and additionally acts on non-Smad (non-canonical) pathways. Studies on transgenic animals have shown that overexpression of myostatin reduces the heart mass, whereas removal of myostatin has an opposite effect. In this review, we summarize the potential diagnostic and prognostic value of this protein in heart-related conditions. First, in myostatin-null mice the left ventricular internal diameters along with the diastolic and systolic volumes are larger than the respective values in wild-type mice. Myostatin is potentially secreted as part of a negative feedback loop that reduces the effects of the release of growth-promoting factors and energy reprogramming in response to hypertrophic stimuli. On the other hand, both human and animal data indicate that myostatin is involved in the development of the cardiac cachexia and heart fibrosis in the course of chronic heart failure. The understanding of the role of myostatin in such conditions might initiate a development of targeted therapies based on myostatin signaling inhibition.
Collapse
Affiliation(s)
- Małgorzata Knapp
- Department of Cardiology, Medical University of Białystok, 15-276 Białystok, Poland
| | - Elżbieta Supruniuk
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland;
| | - Jan Górski
- Department of Health Sciences, University of Łomża, 18-400 Łomża, Poland;
| |
Collapse
|
3
|
Kubat GB, Bouhamida E, Ulger O, Turkel I, Pedriali G, Ramaccini D, Ekinci O, Ozerklig B, Atalay O, Patergnani S, Nur Sahin B, Morciano G, Tuncer M, Tremoli E, Pinton P. Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies. Mitochondrion 2023; 72:33-58. [PMID: 37451353 DOI: 10.1016/j.mito.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Skeletal muscle, which accounts for approximately 40% of total body weight, is one of the most dynamic and plastic tissues in the human body and plays a vital role in movement, posture and force production. More than just a component of the locomotor system, skeletal muscle functions as an endocrine organ capable of producing and secreting hundreds of bioactive molecules. Therefore, maintaining healthy skeletal muscles is crucial for supporting overall body health. Various pathological conditions, such as prolonged immobilization, cachexia, aging, drug-induced toxicity, and cardiovascular diseases (CVDs), can disrupt the balance between muscle protein synthesis and degradation, leading to skeletal muscle atrophy. Mitochondrial dysfunction is a major contributing mechanism to skeletal muscle atrophy, as it plays crucial roles in various biological processes, including energy production, metabolic flexibility, maintenance of redox homeostasis, and regulation of apoptosis. In this review, we critically examine recent knowledge regarding the causes of muscle atrophy (disuse, cachexia, aging, etc.) and its contribution to CVDs. Additionally, we highlight the mitochondrial signaling pathways involvement to skeletal muscle atrophy, such as the ubiquitin-proteasome system, autophagy and mitophagy, mitochondrial fission-fusion, and mitochondrial biogenesis. Furthermore, we discuss current strategies, including exercise, mitochondria-targeted antioxidants, in vivo transfection of PGC-1α, and the potential use of mitochondrial transplantation as a possible therapeutic approach.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey.
| | - Esmaa Bouhamida
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey
| | - Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Gaia Pedriali
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Daniela Ramaccini
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Ozgur Ekinci
- Department of Pathology, Gazi University, 06500 Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Ozbeyen Atalay
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Simone Patergnani
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Beyza Nur Sahin
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Giampaolo Morciano
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Elena Tremoli
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Paolo Pinton
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
4
|
Abstract
Sarcopenia is common in aging and in patients with heart failure (HF) who may experience worse outcomes. Patients with muscle wasting are more likely to experience falls and can have serious complications when undergoing cardiac procedures. While intensive nutritional support and exercise rehabilitation can help reverse some of these changes, they are often under-prescribed in a timely manner, and we have limited insights into who would benefit. Mechanistic links between gut microbial metabolites (GMM) have been identified and may contribute to adverse clinical outcomes in patients with cardio-renal diseases and aging. This review will examine the emerging evidence for the influence of the gut microbiome-derived metabolites and notable signaling pathways involved in both sarcopenia and HF, especially those linked to dietary intake and mitochondrial metabolism. This provides a unique opportunity to gain mechanistic and clinical insights into developing novel therapeutic strategies that target these GMM pathways or through tailored nutritional modulation to prevent progressive muscle wasting in elderly patients with heart failure.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Center for Microbiome and Human Health, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, OH 44195, USA
| | - W H Wilson Tang
- Center for Microbiome and Human Health, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, OH 44195, USA.,Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
5
|
Oliveira PGS, Schwed JF, Chiuso-Minicucci F, Duarte SRS, Nascimento LM, Dorna MS, Costa NA, Okoshi K, Okoshi MP, Azevedo PS, Polegato BF, Paiva SAR, Zornoff LAM, Minicucci MF. Association Between Serum Myostatin Levels, Hospital Mortality, and Muscle Mass and Strength Following ST-Elevation Myocardial Infarction. Heart Lung Circ 2021; 31:365-371. [PMID: 34598890 DOI: 10.1016/j.hlc.2021.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/14/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
AIM This study aimed to evaluate the association between serum myostatin levels, hospital mortality, and muscle mass and strength following ST-segment elevation myocardial infarction (STEMI). METHODS This was a prospective observational study. Within 48 hours of admission, bioelectrical impedance and handgrip strength were assessed and blood samples collected for myostatin evaluation. Hospital mortality was recorded. A multiple logistic regression model was also constructed, adjusted by parameters that exhibited significant differences in the univariate analysis, to evaluate the association between myostatin levels and hospital mortality. RESULTS One hundred and two (102) patients were included: mean age was 60.5±10.6 years, 67.6% were male, and 6.9% died during hospital stay. Univariate analysis showed that patients with lower myostatin levels had higher mortality rates. Serum myostatin levels positively correlated with handgrip strength (r=0.355; p<0.001) and appendicular skeletal muscle mass index (r=0.268; p=0.007). Receiver operating characteristic (ROC) curve analysis revealed that lower myostatin levels were associated with hospital mortality at the <2.20 ng/mL cut-off. Multiple logistic regression showed that higher serum myostatin levels were associated with reduced hospital mortality when adjusted by β blocker use (OR, 0.228; 95% CI, 0.054-0.974; p=0.046). CONCLUSIONS Serum myostatin concentrations positively correlated with muscle mass and strength in STEMI patients. Further assessment of serum myostatin association with mortality should be conducted using a larger sample and assessing the additive value to the Global Registry of Acute Coronary Events (GRACE) or thrombolysis in myocardial infarction (TIMI) risk scores.
Collapse
Affiliation(s)
- Paula G S Oliveira
- Internal Medicine Department, Botucatu Medical School, Univ Estadual Paulista, UNESP, Botucatu, Brazil
| | - Juliana F Schwed
- Internal Medicine Department, Botucatu Medical School, Univ Estadual Paulista, UNESP, Botucatu, Brazil
| | - Fernanda Chiuso-Minicucci
- Internal Medicine Department, Botucatu Medical School, Univ Estadual Paulista, UNESP, Botucatu, Brazil
| | - Sara R S Duarte
- Internal Medicine Department, Botucatu Medical School, Univ Estadual Paulista, UNESP, Botucatu, Brazil
| | - Lucas M Nascimento
- Internal Medicine Department, Botucatu Medical School, Univ Estadual Paulista, UNESP, Botucatu, Brazil
| | - Mariana S Dorna
- Internal Medicine Department, Botucatu Medical School, Univ Estadual Paulista, UNESP, Botucatu, Brazil
| | - Nara A Costa
- Faculty of Nutrition, Univ Federal de Goias, UFG, Goiania, Brazil
| | - Katashi Okoshi
- Internal Medicine Department, Botucatu Medical School, Univ Estadual Paulista, UNESP, Botucatu, Brazil; University Hospital, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marina P Okoshi
- Internal Medicine Department, Botucatu Medical School, Univ Estadual Paulista, UNESP, Botucatu, Brazil; University Hospital, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Paula S Azevedo
- Internal Medicine Department, Botucatu Medical School, Univ Estadual Paulista, UNESP, Botucatu, Brazil; University Hospital, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Bertha F Polegato
- Internal Medicine Department, Botucatu Medical School, Univ Estadual Paulista, UNESP, Botucatu, Brazil
| | - Sergio A R Paiva
- Internal Medicine Department, Botucatu Medical School, Univ Estadual Paulista, UNESP, Botucatu, Brazil; University Hospital, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Leonardo A M Zornoff
- Internal Medicine Department, Botucatu Medical School, Univ Estadual Paulista, UNESP, Botucatu, Brazil; University Hospital, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marcos F Minicucci
- Internal Medicine Department, Botucatu Medical School, Univ Estadual Paulista, UNESP, Botucatu, Brazil; University Hospital, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| |
Collapse
|
6
|
Rolfe M, Kamel A, Ahmed MM, Kramer J. Pharmacological management of cardiac cachexia: a review of potential therapy options. Heart Fail Rev 2019; 24:617-623. [DOI: 10.1007/s10741-019-09784-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Gomes MJ, Martinez PF, Pagan LU, Damatto RL, Cezar MDM, Lima ARR, Okoshi K, Okoshi MP. Skeletal muscle aging: influence of oxidative stress and physical exercise. Oncotarget 2017; 8:20428-20440. [PMID: 28099900 PMCID: PMC5386774 DOI: 10.18632/oncotarget.14670] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle abnormalities are responsible for significant disability in the elderly. Sarcopenia is the main alteration occurring during senescence and a key public health issue as it predicts frailty, poor quality of life, and mortality. Several factors such as reduced physical activity, hormonal changes, insulin resistance, genetic susceptibility, appetite loss, and nutritional deficiencies are involved in the physiopathology of muscle changes. Sarcopenia is characterized by structural, biochemical, molecular and functional muscle changes. An imbalance between anabolic and catabolic intracellular signaling pathways and an increase in oxidative stress both play important roles in muscle abnormalities. Currently, despite the discovery of new targets and development of new drugs, nonpharmacological therapies such as physical exercise and nutritional support are considered the basis for prevention and treatment of age-associated muscle abnormalities. There has been an increase in information on signaling pathways beneficially modulated by exercise; nonetheless, studies are needed to establish the best type, intensity, and frequency of exercise to prevent or treat age-induced skeletal muscle alterations.
Collapse
Affiliation(s)
- Mariana Janini Gomes
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Paula Felippe Martinez
- School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Luana Urbano Pagan
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Ricardo Luiz Damatto
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | | | - Aline Regina Ruiz Lima
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Katashi Okoshi
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Marina Politi Okoshi
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| |
Collapse
|
8
|
Calegari L, Nunes RB, Mozzaquattro BB, Rossato DD, Dal Lago P. Exercise training improves the IL-10/TNF-α cytokine balance in the gastrocnemius of rats with heart failure. Braz J Phys Ther 2017; 22:154-160. [PMID: 28939262 PMCID: PMC5883991 DOI: 10.1016/j.bjpt.2017.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/21/2017] [Accepted: 05/27/2017] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE This study examined the effects of exercise training (ExT) upon concentration of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-10 (IL-10) in the gastrocnemius of rats with heart failure (HF) induced by left coronary artery ligation. METHODS Adult male Wistar rats submitted to myocardial infarction (MI) or sham surgery were randomly allocated into one of four experimental groups: trained HF (Tr-HF), sedentary HF (Sed-HF), trained sham (Tr-Sham) and sedentary sham (Sed-Sham). ExT protocol was performed on treadmill for a period of 8 weeks (60m/days, 5×/week, 16m/min), which started 6 weeks after MI. Cardiac hemodynamic evaluations of left ventricular end-diastolic pressure (LVEDP) and morphometric cardiac were used to characterize HF. The hemodynamic variables were recorded and gastrocnemius muscle was collected. TNF-α, IL-6 and IL-10 protein levels were determined by multiplex bead array. RESULTS Sed-HF group presented increase of TNF-α level when compared with the Sed-Sham group (mean difference, MD 1.3; 95% confidence interval, CI -0.04 to 2.5). ExT reduced by 59% TNF-α level in Tr-HF group (MD -1.7; 95% CI -2.9 to -0.3) and increased IL-10 (MD 15; 95% CI 11-26) when compared with the Sed-HF group. Thus, the gastrocnemius muscle IL-10/TNF-α ratio was increased in Tr-HF rats (MD 15; 95% CI -8 to 47) when compared with the Sed-HF rats. CONCLUSION These results demonstrate that ExT not only attenuates TNF-α level but also improves the IL-10 cytokine level in skeletal muscle of HF rats.
Collapse
Affiliation(s)
- Leonardo Calegari
- Laboratory of Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Faculty of Physical Education and Physical Therapy, Universidade de Passo Fundo, Passo Fundo, RS, Brazil
| | - Ramiro B Nunes
- Laboratory of Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Bruna B Mozzaquattro
- Laboratory of Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Douglas D Rossato
- Laboratory of Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Pedro Dal Lago
- Laboratory of Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Department of Physical Therapy, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Lima ARR, Pagan LU, Damatto RL, Cezar MDM, Bonomo C, Gomes MJ, Martinez PF, Guizoni DM, Campos DHS, Damatto FC, Okoshi K, Okoshi MP. Effects of growth hormone on cardiac remodeling and soleus muscle in rats with aortic stenosis-induced heart failure. Oncotarget 2017; 8:83009-83021. [PMID: 29137319 PMCID: PMC5669945 DOI: 10.18632/oncotarget.20583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/29/2017] [Indexed: 12/18/2022] Open
Abstract
Background Skeletal muscle wasting is often observed in heart failure (HF). The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis is impaired in HF. In this study, we evaluated the effects of GH on soleus muscle and cardiac remodeling in rats with aortic stenosis (AS)-induced HF. Methods AS was created by placing a stainless-steel clip on the ascending aorta. After clinically detecting HF, GH (2 mg/kg/day) was subcutaneously injected for 14 days (AS-GH group). Results were compared with those from Sham and non-treated AS groups. Transthoracic echocardiogram was performed before and after treatment. Protein expression was evaluated by Western blot and satellite cells activation by immunofluorescence. Statistical analyzes: ANOVA and Tukey or Kruskal-Wallis and Student-Newman-Keuls. Results Before treatment both AS groups presented a similar degree of cardiac injury. GH prevented body weight loss and attenuated systolic dysfunction. Soleus cross-sectional fiber areas were lower in both AS groups than Sham (Sham 3,556±447; AS 2,882±422; AS-GH 2,868±591 μm2; p=0.016). GH increased IGF-1 serum concentration (Sham 938±83; AS 866±116; AS-GH 1167±166 ng/mL; p<0.0001) and IGF-1 muscle protein expression and activated PI3K protein. Neural cell adhesion molecule (NCAM) immunofluorescence was increased in both AS groups. Catabolism-related intracellular pathways did not differ between groups. Conclusion Short-term growth hormone attenuates left ventricular systolic dysfunction in rats with aortic stenosis-induced HF. Despite preserving body weight, increasing serum and muscular IGF-1 levels, and stimulating PI3K muscle expression, GH does not modulate soleus muscle trophism, satellite cells activation or intracellular pathways associated with muscle catabolism.
Collapse
Affiliation(s)
- Aline R R Lima
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Luana U Pagan
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Ricardo L Damatto
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marcelo D M Cezar
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Camila Bonomo
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Mariana J Gomes
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Paula F Martinez
- School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Daniele M Guizoni
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Dijon H S Campos
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Felipe C Damatto
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Katashi Okoshi
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marina P Okoshi
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| |
Collapse
|
10
|
Okoshi MP, Capalbo RV, Romeiro FG, Okoshi K. Cardiac Cachexia: Perspectives for Prevention and Treatment. Arq Bras Cardiol 2016; 108:74-80. [PMID: 27812676 PMCID: PMC5245851 DOI: 10.5935/abc.20160142] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/23/2016] [Indexed: 12/27/2022] Open
Abstract
Cachexia is a prevalent pathological condition associated with chronic heart failure. Its occurrence predicts increased morbidity and mortality independent of important clinical variables such as age, ventricular function, or heart failure functional class. The clinical consequences of cachexia are dependent on both weight loss and systemic inflammation, which accompany cachexia development. Skeletal muscle wasting is an important component of cachexia; it often precedes cachexia development and predicts poor outcome in heart failure. Cachexia clinically affects several organs and systems. It is a multifactorial condition where underlying pathophysiological mechanisms are not completely understood making it difficult to develop specific prevention and treatment therapies. Preventive strategies have largely focused on muscle mass preservation. Different treatment options have been described, mostly in small clinical studies or experimental settings. These include nutritional support, neurohormonal blockade, reducing intestinal bacterial translocation, anemia and iron deficiency treatment, appetite stimulants, immunomodulatory agents, anabolic hormones, and physical exercise regimens. Currently, nonpharmacological therapy such as nutritional support and physical exercise are considered central to cachexia prevention and treatment.
Collapse
Affiliation(s)
- Marina Politi Okoshi
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, São Paulo, SP, Brazil
| | - Rafael Verardino Capalbo
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, São Paulo, SP, Brazil
| | - Fernando G Romeiro
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, São Paulo, SP, Brazil
| | - Katashi Okoshi
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Wei Q, Liu H, Liu M, Yang C, Yang J, Liu Z, Yang P. Ramipril attenuates left ventricular remodeling by regulating the expression of activin A-follistatin in a rat model of heart failure. Sci Rep 2016; 6:33677. [PMID: 27642098 PMCID: PMC5027547 DOI: 10.1038/srep33677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023] Open
Abstract
Prior studies have shown that overexpression of ACT A can lead to ventricular remodeling in rat models of heart failure. Furthermore, recently work studying demonstrated that stimulation of activin An expression in rat aortic smooth muscle (RASM) cells by angiotensin II (Ang II). Ramipril is a recently developed angiotensin converting enzyme (ACE) inhibitor. To investigate the effects of Ramipril on expression of ACT A-FS, we established the rat model of heart failure after myocardial infarction (MI), and divided into either a sham operation (SO), MI, or MI-Ramipril group. We found that Ramipril significantly attenuates collagen-I and III deposition (col-I and III). Notably, we determined that expression of ACT A and II activin receptor (ActRII) were significantly down-regulated in the non-infarcted area of the left ventricle in the Ramipril group, whereas the mRNA and protein levels of FS were markedly up-regulated. Our data suggested that Ramipril benefited left ventricular remodeling by reducing fibrosis and collagen accumulation in the left ventricle of rats after myocardial infarction. This observation was also associated with down-regulation of ACT A expression. This study elucidated a new protective mechanism of Ramipril and suggests a novel strategy for treatment of post-infarct remodeling and subsequent heart failure.
Collapse
Affiliation(s)
- Qun Wei
- Department of cardiology, China-Japan Union Hospital, Jilin University, Changchun, China.,Department of Cardiology, Tianjin Fourth Central Hospital, Tianjin, China
| | - Haiyan Liu
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Miao Liu
- Department of cardiology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Chunyan Yang
- Department of cardiology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Jie Yang
- Department of cardiology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Zhonghui Liu
- Department of cardiology, China-Japan Union Hospital, Jilin University, Changchun, China.,Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ping Yang
- Department of cardiology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
12
|
FSTL1 as a Potential Mediator of Exercise-Induced Cardioprotection in Post-Myocardial Infarction Rats. Sci Rep 2016; 6:32424. [PMID: 27561749 PMCID: PMC5000295 DOI: 10.1038/srep32424] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/05/2016] [Indexed: 12/26/2022] Open
Abstract
Exercise training has been reported to ameliorate heart dysfunction in both humans and animals after myocardial infarction (MI), but the underlying mechanisms are poorly understood. Follistatin-like1 (FSTL1) is a cardioprotective factor against ischemic injury and is induced in cardiomyocytes and skeletal muscle in ischemic and hypoxic conditions. To test the hypothesis that FSTL1 may be a molecular link between exercise and improved heart function post MI, we subjected MI-rats, induced by left coronary artery ligation, to two modes of exercise: intermittent aerobic exercise (IAE) or mechanical vibration training (MVT), for four weeks and examined the relevance of FSTL1 to exercise-mediated cardiac effects. Exercise improved the functional performance, reduced fibrosis of MI-hearts and induced FSTL1 expression, the TGFβ-Smad2/3 signaling and angiogenesis in myocardium. In gastrocnemius, exercise increased the cross-sectional area of myocytes and FSTL1 expression. Importantly, exercise increased circulating FSTL1 levels, which were positively correlated with the skeletal muscle FSTL1 expression and negatively correlated with heart fibrosis. Overall, the IAE was more effective than that of MVT in cardioprotection. Finally, exogenous FSTL1 administration directly improved angiogenesis as well as functionality of post-MI hearts. Taken together, we have demonstrated that FSTL1 is a potential mediator of exercise-induced cardioprotection in post-MI rats.
Collapse
|
13
|
Okoshi MP, Cezar MDM, Iyomasa RM, Silva MB, Costa LCO, Martinez PF, Campos DHS, Damatto RL, Minicucci MF, Cicogna AC, Okoshi K. Effects of early aldosterone antagonism on cardiac remodeling in rats with aortic stenosis-induced pressure overload. Int J Cardiol 2016; 222:569-575. [PMID: 27513653 DOI: 10.1016/j.ijcard.2016.07.266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/29/2016] [Accepted: 07/30/2016] [Indexed: 11/17/2022]
Abstract
UNLABELLED Aldosterone plays a pivotal role in the pathophysiology of systolic heart failure. However, whether early aldosterone antagonism improves cardiac remodeling during persistent pressure overload is unsettled. We evaluated the effects of aldosterone antagonist spironolactone on cardiac remodeling in rats with ascending aortic stenosis (AS). METHODS Three days after inducing AS, weaning rats were randomized to receive spironolactone (AS-SPR, 20mg/kg/day) or no drug (AS) for 18weeks, and compared with sham-operated rats. Myocardial function was studied in isolated left ventricular (LV) papillary muscles. STATISTICAL ANALYSES ANOVA or Kruskal-Wallis tests. RESULTS Echocardiogram showed that LV diastolic (Sham 8.73±0.57; AS 8.30±1.10; AS-SPR 9.19±1.15mm) and systolic (Sham 4.57±0.67; AS 3.61±1.49; AS-SPR 4.62±1.48mm) diameters, left atrial diameter (Sham 5.80±0.44; AS 7.15±1.22; AS-SPR 8.02±1.17mm), and LV mass were higher in AS-SPR than AS. Posterior wall shortening velocity (Sham 38.5±3.8; AS 35.6±5.6; AS-SPR 31.1±3.8mm/s) was lower in AS-SPR than Sham and AS; E/A ratio was higher in AS-SPR than Sham. Developed tension was lower in AS and AS-SPR than Sham. Time to peak tension was higher in AS-SPR than Sham and AS after post-rest contraction. Right ventricle weight was higher in AS-SPR than AS, suggesting more severe heart failure in AS-SPR than AS. Interstitial collagen fractional area and myocardial hydroxyproline concentration were higher in AS than Sham. Metalloproteinase-2 and -9 activity, evaluated by zymography, did not differ between groups. CONCLUSION Early spironolactone administration causes further hypertrophy in cardiac chambers, and left ventricular dilation and dysfunction in rats with AS-induced chronic pressure overload.
Collapse
Affiliation(s)
- M P Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil.
| | - M D M Cezar
- Itapeva Social and Agrarian Sciences College, FAIT, Itapeva, SP, Brazil
| | - R M Iyomasa
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - M B Silva
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - L C O Costa
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - P F Martinez
- Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - D H S Campos
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - R L Damatto
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil; Itapeva Social and Agrarian Sciences College, FAIT, Itapeva, SP, Brazil
| | - M F Minicucci
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - A C Cicogna
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - K Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| |
Collapse
|
14
|
Guizoni DM, Oliveira-Junior SA, Noor SLR, Pagan LU, Martinez PF, Lima ARR, Gomes MJ, Damatto RL, Cezar MDM, Bonomo C, Zornoff LAM, Okoshi K, Okoshi MP. Effects of late exercise on cardiac remodeling and myocardial calcium handling proteins in rats with moderate and large size myocardial infarction. Int J Cardiol 2016; 221:406-12. [PMID: 27404715 DOI: 10.1016/j.ijcard.2016.07.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/04/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Physical exercise attenuates myocardial infarction (MI)-induced cardiac remodeling. However, it is unsettled whether late exercise modulates post-infarction cardiac remodeling differentially according to infarct size. We investigated the effects of exercise started at late stage heart failure on cardiac remodeling in rats with moderate and large sized MI. METHODS Three months after MI, rats were assigned into sedentary and exercise groups. Exercise rats underwent treadmill for three months. After assessing infarct size by histological analysis, rats were subdivided into four groups: moderate MI sedentary (Mod MI-Sed; n=7), Mod MI exercised (Mod MI-Ex; n=7), Large MI-Sed (n=11), and Large MI-Ex (n=10). RESULTS Before exercise, MI-induced cardiac changes were demonstrated by comparing results to a Sham group; alterations were more intense in rats with large than moderate MI size. Systolic function, evaluated by echocardiogram using the variation in LV fractional area change between after and before exercise, was improved in exercise than sedentary groups. Calsequestrin expression increased in exercised compared to sedentary groups. L-type calcium channel was higher in Mod MI-Ex than Mod MI-Sed. SERCA2a, phospholamban, and Na(+)/Ca(2+) exchanger expression did not differ between groups. CONCLUSION Late exercise improves systolic function and modulates intracellular calcium signaling proteins in rats with moderate and large MI.
Collapse
Affiliation(s)
- Daniele M Guizoni
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | | | - Sefora L R Noor
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Luana U Pagan
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Paula F Martinez
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil; School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Aline R R Lima
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Mariana J Gomes
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Ricardo L Damatto
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marcelo D M Cezar
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Camila Bonomo
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Leonardo A M Zornoff
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Katashi Okoshi
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marina P Okoshi
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| |
Collapse
|
15
|
Namwanje M, Brown CW. Activins and Inhibins: Roles in Development, Physiology, and Disease. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021881. [PMID: 27328872 DOI: 10.1101/cshperspect.a021881] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since their original discovery as regulators of follicle-stimulating hormone (FSH) secretion and erythropoiesis, the TGF-β family members activin and inhibin have been shown to participate in a variety of biological processes, from the earliest stages of embryonic development to highly specialized functions in terminally differentiated cells and tissues. Herein, we present the history, structures, signaling mechanisms, regulation, and biological processes in which activins and inhibins participate, including several recently discovered biological activities and functional antagonists. The potential therapeutic relevance of these advances is also discussed.
Collapse
Affiliation(s)
- Maria Namwanje
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Chester W Brown
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030 Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
16
|
Hughes BL, Gyamfi-Bannerman C. Diagnosis and antenatal management of congenital cytomegalovirus infection. Am J Obstet Gynecol 2016; 214:B5-B11. [PMID: 26902990 DOI: 10.1016/j.ajog.2016.02.042] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/18/2016] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
Abstract
Congenital cytomegalovirus (CMV) is the most common viral infection, affecting nearly 40,000 infants each year in the United States. Of seronegative women, 1-4% will acquire a primary infection during pregnancy, and the majority of these women will be asymptomatic. Prior maternal exposure to CMV does not preclude neonatal infection. The purpose of this document is to review diagnosis of primary maternal CMV infection, diagnosis of fetal CMV infection, and whether antenatal therapy is warranted. We recommend the following: (1) that women with a diagnosis of primary CMV infection in pregnancy be advised that the risk of congenital infection is 30-50%, on average, and that the severity of infection varies widely (Best Practice); (2) for women suspected of having primary CMV infection in pregnancy, we recommend that diagnosis should be either by IgG seroconversion or with positive CMV IgM, positive IgG, and low IgG avidity (grade 1B); (3) amniocentesis is the best option as a prenatal diagnostic tool to detect fetal congenital CMV infection, performed >21 weeks of gestation and >6 weeks from maternal infection (grade 1C); (4) we do not recommend routine screening of all pregnant women for evidence of primary CMV infection at this time (grade 1B); and (5) we do not recommend antenatal treatment with ganciclovir or valacyclovir; and we recommend that any antenatal therapy, either with antivirals or CMV hyperimmune globulin, should only be offered as part of a research protocol (Best Practice).
Collapse
|
17
|
Gallagher IJ, Jacobi C, Tardif N, Rooyackers O, Fearon K. Omics/systems biology and cancer cachexia. Semin Cell Dev Biol 2016; 54:92-103. [DOI: 10.1016/j.semcdb.2015.12.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
|
18
|
Damatto RL, Lima ARR, Martinez PF, Cezar MDM, Okoshi K, Okoshi MP. Myocardial myostatin in spontaneously hypertensive rats with heart failure. Int J Cardiol 2016; 215:384-7. [PMID: 27128567 DOI: 10.1016/j.ijcard.2016.04.101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Myostatin has been shown to regulate skeletal and cardiac muscle growth. However, its status on long-term hypertrophied myocardium has not been addressed. The purpose of this study was to evaluate the expression of myocardial myostatin and its antagonist follistatin in spontaneously hypertensive rats (SHR) with heart failure. METHODS Eighteen-month-old SHR were evaluated to identify clinical features of heart failure such as tachypnea/labored respiration and weight loss. After heart failure was detected, rats were subjected to echocardiogram and euthanized. Age-matched normotensive Wistar-Kyoto (WKY) rats were used as controls. Myostatin and follistatin protein expression was assessed by Western blotting. Statistical analysis was performed by Student's t test. RESULTS All SHR (n=8) presented right ventricular hypertrophy and five had lung congestion. SHR had left chambers hypertrophy and dilation (left atrial diameter: WKY 5.73±0.59; SHR 7.28±1.17mm; p=0.004; left ventricular (LV) diastolic diameter/body weight ratio: WKY 19.6±3.1; SHR 27.7±4.7mm/kg; p=0.001), and LV systolic dysfunction (midwall fractional shortening: WKY 34.9±3.31; SHR 24.8±3.20%; p=0.003). Myocyte diameter (WKY 23.1±1.50, SHR 25.5±1.33μm; p=0.004) and myocardial interstitial collagen fraction (WKY 4.86±0.01; SHR 8.36±0.02%; p<0.001) were increased in the SHR. Myostatin (WKY 1.00±0.16; SHR 0.77±0.23 arbitrary units; p=0.035) and follistatin (WKY 1.00±0.35; SHR 0.49±0.18 arbitrary units; p=0.002) expression was lower in SHR. Myostatin and follistatin expression negatively correlated with LV diastolic diameter-to-body weight ratio and LV systolic diameter, and positively correlated with midwall fractional shortening. CONCLUSION Myostatin and follistatin protein expression is reduced in the long-term hypertrophied myocardium from spontaneously hypertensive rats with heart failure.
Collapse
Affiliation(s)
- R L Damatto
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - A R R Lima
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - P F Martinez
- Federal University of Mato Grosso do Sul, UFMS, Brazil
| | - M D M Cezar
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - K Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - M P Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil.
| |
Collapse
|
19
|
Polegato BF, Minicucci MF, Azevedo PS, Gonçalves AF, Lima AF, Martinez PF, Okoshi MP, Okoshi K, Paiva SAR, Zornoff LAM. Association between Functional Variables and Heart Failure after Myocardial Infarction in Rats. Arq Bras Cardiol 2016; 106:105-12. [PMID: 26815462 PMCID: PMC4765008 DOI: 10.5935/abc.20160015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/06/2015] [Indexed: 11/20/2022] Open
Abstract
Background Heart failure prediction after acute myocardial infarction may have important
clinical implications. Objective To analyze the functional echocardiographic variables associated with heart
failure in an infarction model in rats. Methods The animals were divided into two groups: control and infarction.
Subsequently, the infarcted animals were divided into groups: with and
without heart failure. The predictive values were assessed by logistic
regression. The cutoff values predictive of heart failure were determined
using ROC curves. Results Six months after surgery, 88 infarcted animals and 43 control animals were
included in the study. Myocardial infarction increased left cavity diameters
and the mass and wall thickness of the left ventricle. Additionally,
myocardial infarction resulted in systolic and diastolic dysfunction,
characterized by lower area variation fraction values, posterior wall
shortening velocity, E-wave deceleration time, associated with higher values
of E / A ratio and isovolumic relaxation time adjusted by heart rate. Among
the infarcted animals, 54 (61%) developed heart failure. Rats with heart
failure have higher left cavity mass index and diameter, associated with
worsening of functional variables. The area variation fraction, the E/A
ratio, E-wave deceleration time and isovolumic relaxation time adjusted by
heart rate were functional variables predictors of heart failure. The cutoff
values of functional variables associated with heart failure were: area
variation fraction < 31.18%; E / A > 3.077; E-wave deceleration time
< 42.11 and isovolumic relaxation time adjusted by heart rate <
69.08. Conclusion In rats followed for 6 months after myocardial infarction, the area variation
fraction, E/A ratio, E-wave deceleration time and isovolumic relaxation time
adjusted by heart rate are predictors of heart failure onset.
Collapse
Affiliation(s)
- Bertha F Polegato
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Marcos F Minicucci
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Paula S Azevedo
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Andréa F Gonçalves
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Aline F Lima
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Paula F Martinez
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Marina P Okoshi
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Katashi Okoshi
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Sergio A R Paiva
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Leonardo A M Zornoff
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| |
Collapse
|
20
|
Beneficial Effects of Physical Exercise on Functional Capacity and Skeletal Muscle Oxidative Stress in Rats with Aortic Stenosis-Induced Heart Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8695716. [PMID: 26904168 PMCID: PMC4745811 DOI: 10.1155/2016/8695716] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/21/2015] [Accepted: 12/24/2015] [Indexed: 02/07/2023]
Abstract
Objective. We evaluated the influence of exercise on functional capacity, cardiac remodeling, and skeletal muscle oxidative stress, MAPK, and NF-κB pathway in rats with aortic stenosis- (AS-) induced heart failure (HF). Methods and Results. Eighteen weeks after AS induction, rats were assigned into sedentary control (C-Sed), exercised control (C-Ex), sedentary AS (AS-Sed), and exercised AS (AS-Ex) groups. Exercise was performed on treadmill for eight weeks. Statistical analyses were performed with Goodman and ANOVA or Mann-Whitney. HF features frequency and mortality did not differ between AS groups. Exercise improved functional capacity, assessed by maximal exercise test on treadmill, without changing echocardiographic parameters. Soleus cross-sectional areas did not differ between groups. Lipid hydroperoxide concentration was higher in AS-Sed than C-Sed and AS-Ex. Activity of antioxidant enzymes superoxide dismutase and glutathione peroxidase was changed in AS-Sed and restored in AS-Ex. NADPH oxidase activity and gene expression of its subunits did not differ between AS groups. Total ROS generation was lower in AS-Ex than C-Ex. Exercise modulated MAPK in AS-Ex and did not change NF-κB pathway proteins. Conclusion. Exercise improves functional capacity in rats with AS-induced HF regardless of echocardiographic parameter changes. In soleus, exercise reduces oxidative stress, preserves antioxidant enzyme activity, and modulates MAPK expression.
Collapse
|
21
|
Guimaraes JFC, Muzio BP, Rosa CM, Nascimento AF, Sugizaki MM, Fernandes AAH, Cicogna AC, Padovani CR, Okoshi MP, Okoshi K. Rutin administration attenuates myocardial dysfunction in diabetic rats. Cardiovasc Diabetol 2015; 14:90. [PMID: 26185015 PMCID: PMC4504040 DOI: 10.1186/s12933-015-0255-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/03/2015] [Indexed: 01/08/2023] Open
Abstract
Background Oxidative stress plays a major role in diabetic cardiomyopathy pathogenesis. Anti-oxidant therapy has been investigated in preventing or treating several diabetic complications. However, anti-oxidant action on diabetic-induced cardiac remodeling is not completely clear. This study evaluated the effects of rutin, a flavonoid, on cardiac and myocardial function in diabetic rats. Methods Wistar rats were assigned into control (C, n = 14); control-rutin (C-R, n = 14); diabetes mellitus (DM, n = 16); and DM-rutin (DM-R, n = 16) groups. Seven days after inducing diabetes (streptozotocin, 60 mg/kg, i.p.), rutin was injected intraperitoneally once a week (50 mg/kg) for 7 weeks. Echocardiogram was performed and myocardial function assessed in left ventricular (LV) papillary muscles. Serum insulin concentration was measured by ELISA. Statistics: One-way ANOVA and Tukey’s post hoc test. Results Glycemia was higher in DM than DM-R and C and in DM-R than C-R. Insulin concentration was lower in diabetic groups than controls (C 2.45 ± 0.67; C-R 2.09 ± 0.52; DM 0.59 ± 0.18; DM-R 0.82 ± 0.21 ng/mL). Echocardiogram showed no differences between C-R and C. DM had increased LV systolic diameter compared to C, and increased left atrium diameter/body weight (BW) ratio and LV mass/BW ratio compared to C and DM-R. Septal wall thickness, LV diastolic diameter/BW ratio, and relative wall thickness were lower in DM-R than DM. Fractional shortening and posterior wall shortening velocity were lower in DM than C and DM-R. In papillary muscle preparation, DM and DM-R presented higher time to peak tension and time from peak tension to 50% relaxation than controls; time to peak tension was lower in DM-R than DM. Under 0.625 and 1.25 mM extracellular calcium concentrations, DM had higher developed tension than C. Conclusion Rutin attenuates cardiac remodeling and left ventricular and myocardial dysfunction caused by streptozotocin-induced diabetes mellitus.
Collapse
Affiliation(s)
- Julliano F C Guimaraes
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Bruno P Muzio
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Camila M Rosa
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Andre F Nascimento
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Mario M Sugizaki
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Ana A H Fernandes
- Department of Chemistry and Biochemistry, Institute of Biosciences, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Antonio C Cicogna
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Carlos R Padovani
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Marina P Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil. .,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, UNESP Rubiao Junior, S/N 18618-970, Botucatu, SP, Brazil.
| |
Collapse
|
22
|
Gimenes C, Gimenes R, Rosa CM, Xavier NP, Campos DHS, Fernandes AAH, Cezar MDM, Guirado GN, Cicogna AC, Takamoto AHR, Okoshi MP, Okoshi K. Low Intensity Physical Exercise Attenuates Cardiac Remodeling and Myocardial Oxidative Stress and Dysfunction in Diabetic Rats. J Diabetes Res 2015; 2015:457848. [PMID: 26509175 PMCID: PMC4609864 DOI: 10.1155/2015/457848] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/04/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED We evaluated the effects of a low intensity aerobic exercise protocol on cardiac remodeling and myocardial function in diabetic rats. Wistar rats were assigned into four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary diabetes (DM-Sed), and exercised diabetes (DM-Ex). Diabetes was induced by intraperitoneal injection of streptozotocin. Rats exercised for 9 weeks in treadmill at 11 m/min, 18 min/day. Myocardial function was evaluated in left ventricular (LV) papillary muscles and oxidative stress in LV tissue. Statistical analysis was given by ANOVA or Kruskal-Wallis. Echocardiogram showed diabetic groups with higher LV diastolic diameter-to-body weight ratio and lower posterior wall shortening velocity than controls. Left atrium diameter was lower in DM-Ex than DM-Sed (C-Sed: 5.73 ± 0.49; C-Ex: 5.67 ± 0.53; DM-Sed: 6.41 ± 0.54; DM-Ex: 5.81 ± 0.50 mm; P < 0.05 DM-Sed vs C-Sed and DM-Ex). Papillary muscle function was depressed in DM-Sed compared to C-Sed. Exercise attenuated this change in DM-Ex. Lipid hydroperoxide concentration was higher in DM-Sed than C-Sed and DM-Ex. Catalase and superoxide dismutase activities were lower in diabetics than controls and higher in DM-Ex than DM-Sed. Glutathione peroxidase activity was lower in DM-Sed than C-Sed and DM-Ex. CONCLUSION Low intensity exercise attenuates left atrium dilation and myocardial oxidative stress and dysfunction in type 1 diabetic rats.
Collapse
Affiliation(s)
- C. Gimenes
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
- Sagrado Coração University, Bauru, SP, Brazil
| | - R. Gimenes
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - C. M. Rosa
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - N. P. Xavier
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - D. H. S. Campos
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - A. A. H. Fernandes
- Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University (UNESP), Brazil
| | - M. D. M. Cezar
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - G. N. Guirado
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - A. C. Cicogna
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - A. H. R. Takamoto
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - M. P. Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - K. Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
- *K. Okoshi:
| |
Collapse
|
23
|
Castillero E, Akashi H, Wang C, Najjar M, Ji R, Kennel PJ, Sweeney HL, Schulze PC, George I. Cardiac myostatin upregulation occurs immediately after myocardial ischemia and is involved in skeletal muscle activation of atrophy. Biochem Biophys Res Commun 2014; 457:106-11. [PMID: 25528587 DOI: 10.1016/j.bbrc.2014.12.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/11/2014] [Indexed: 01/04/2023]
Abstract
UNLABELLED Myostatin (MSTN), a negative regulator of muscle growth and size, is increased after acute myocardial infarction (AMI) but timing of upregulation after injury is not known. In this study, we investigated the timing of the MSTN/AKT/p38 pathway activation in heart and skeletal muscle after AMI, as well as the potential effect of cardiac injury-related MSTN endocrine signaling on skeletal muscle and other circulating growth factors. METHODS Coronary artery ligation was performed in C57BL/6 mice at age 8 weeks to induce AMI. Mice were sacrificed at different time points (10 m, 1 h, 2 h, 6 h, 12 h, 24 h, 1 week, 2 weeks, 1 months and 2 months) after surgery (n=3 per time point, n=18 total). RESULTS Cardiac and circulating MSTN upregulation occurred as early as 10 min after AMI. Two months after AMI, increased cardiac MSTN/SMAD2,3 and p38 together with decreased IGF-1/AKT signaling suggest an anti-hypertrophic profile. In skeletal muscle, an absence of local MSTN increase was accompanied by increased MSTN-dependent SMAD2,3 signaling, suggestive of paracrine effects due to cardiac-derived MSTN. Protein degradation by the ubiquitin-proteasome system in the skeletal muscle was also evident. Serum from 24h post-MI mice effectively induced a MSTN-dependent increase in atrogin1 and MuRF1. CONCLUSION Our study shows that cardiac MTSN activation occurs rapidly after cardiac ischemia and may be involved in peripheral protein degradation in the skeletal muscle by activating atrogin1 and MuRF1.
Collapse
Affiliation(s)
- Estibaliz Castillero
- Division of Cardiothoracic Surgery, College of Physicians and Surgeons of Columbia University, New York, NY, United States
| | - Hirokazu Akashi
- Department of Cardiovascular Surgery, Juntendo University, Tokyo, Japan
| | - Catherine Wang
- Division of Cardiothoracic Surgery, College of Physicians and Surgeons of Columbia University, New York, NY, United States
| | - Marc Najjar
- Division of Cardiothoracic Surgery, College of Physicians and Surgeons of Columbia University, New York, NY, United States
| | - Ruiping Ji
- Division of Cardiology, College of Physicians and Surgeons of Columbia University, New York, NY, United States
| | - Peter J Kennel
- Division of Cardiology, College of Physicians and Surgeons of Columbia University, New York, NY, United States
| | - H Lee Sweeney
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Paul C Schulze
- Division of Cardiology, College of Physicians and Surgeons of Columbia University, New York, NY, United States
| | - Isaac George
- Division of Cardiothoracic Surgery, College of Physicians and Surgeons of Columbia University, New York, NY, United States.
| |
Collapse
|
24
|
Makanji Y, Zhu J, Mishra R, Holmquist C, Wong WPS, Schwartz NB, Mayo KE, Woodruff TK. Inhibin at 90: from discovery to clinical application, a historical review. Endocr Rev 2014; 35:747-94. [PMID: 25051334 PMCID: PMC4167436 DOI: 10.1210/er.2014-1003] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
When it was initially discovered in 1923, inhibin was characterized as a hypophysiotropic hormone that acts on pituitary cells to regulate pituitary hormone secretion. Ninety years later, what we know about inhibin stretches far beyond its well-established capacity to inhibit activin signaling and suppress pituitary FSH production. Inhibin is one of the major reproductive hormones involved in the regulation of folliculogenesis and steroidogenesis. Although the physiological role of inhibin as an activin antagonist in other organ systems is not as well defined as it is in the pituitary-gonadal axis, inhibin also modulates biological processes in other organs through paracrine, autocrine, and/or endocrine mechanisms. Inhibin and components of its signaling pathway are expressed in many organs. Diagnostically, inhibin is used for prenatal screening of Down syndrome as part of the quadruple test and as a biochemical marker in the assessment of ovarian reserve. In this review, we provide a comprehensive summary of our current understanding of the biological role of inhibin, its relationship with activin, its signaling mechanisms, and its potential value as a diagnostic marker for reproductive function and pregnancy-associated conditions.
Collapse
Affiliation(s)
- Yogeshwar Makanji
- Department of Obstetrics and Gynecology (Y.M., J.Z., C.H., W.P.S.W., T.K.W.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60610; Center for Molecular Innovation and Drug Discovery (R.M., C.H.), Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208; and Department of Molecular Biosciences (N.B.S., K.E.M., T.K.W.), Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Rosa CM, Xavier NP, Henrique Campos D, Fernandes AAH, Cezar MDM, Martinez PF, Cicogna AC, Gimenes C, Gimenes R, Okoshi MP, Okoshi K. Diabetes mellitus activates fetal gene program and intensifies cardiac remodeling and oxidative stress in aged spontaneously hypertensive rats. Cardiovasc Diabetol 2013; 12:152. [PMID: 24134628 PMCID: PMC4015448 DOI: 10.1186/1475-2840-12-152] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/07/2013] [Indexed: 12/25/2022] Open
Abstract
Background The combination of systemic arterial hypertension and diabetes mellitus (DM) induces greater cardiac remodeling than either condition alone. However, this association has been poorly addressed in senescent rats. Therefore, this study aimed to analyze the influence of streptozotocin-induced DM on ventricular remodeling and oxidative stress in aged spontaneously hypertensive rats (SHR). Methods Fifty 18 month old male SHR were divided into two groups: control (SHR, n = 25) and diabetic (SHR-DM, n = 25). DM was induced by streptozotocin (40 mg/kg, i.p.). After nine weeks, the rats underwent echocardiography and myocardial functional study in left ventricular (LV) isolated papillary muscle preparations. LV samples were obtained to measure myocyte diameters, interstitial collagen fraction, and hydroxyproline concentration. Gene expression of atrial natriuretic peptide (ANP) and α- and β-myosin heavy chain (MyHC) isoforms was evaluated by RT-PCR. Serum oxidative stress was assessed by measuring lipid hydroperoxide concentration and superoxide dismutase and glutathione peroxidase activities. Statistics: Student’s t test or Mann-Whitney test, p < 0.05. Results SHR-DM presented higher blood glucose (487 ± 29 vs. 89.1 ± 21.1 mg/dL) and lower body weight (277 ± 26 vs. 339 ± 38 g). Systolic blood pressure did not differ between groups. Echocardiography showed LV and left atrial dilation, LV diastolic and relative wall thickness decrease, and LV systolic and diastolic function impairment in SHR-DM. Papillary muscle study showed decreased myocardial contractility and contractile reserve in SHR-DM. Myocyte diameters and myocardial interstitial collagen fraction and hydroxyproline concentration did not differ between groups. Increased serum pro-oxidant activity and gene expression of ANP and β/α-MyHC ratio were observed in DM. Conclusion Diabetes mellitus induces cardiac dilation and functional impairment, increases oxidative stress and activates fetal gene program in aged spontaneously hypertensive rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| |
Collapse
|
26
|
Damatto R, Martinez P, Lima A, Cezar M, Campos D, Oliveira Junior S, Guizoni D, Bonomo C, Nakatani B, Dal Pai Silva M, Carvalho R, Okoshi K, Okoshi M. Heart failure-induced skeletal myopathy in spontaneously hypertensive rats. Int J Cardiol 2013; 167:698-703. [DOI: 10.1016/j.ijcard.2012.03.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/02/2012] [Accepted: 03/03/2012] [Indexed: 12/31/2022]
|
27
|
Metabolism and the heart: An overview of muscle, fat, and bone metabolism in heart failure. Int J Cardiol 2013; 162:77-85. [DOI: 10.1016/j.ijcard.2011.09.079] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 09/14/2011] [Accepted: 09/17/2011] [Indexed: 12/20/2022]
|
28
|
De Souza RWA, Aguiar AF, Carani FR, Campos GER, Padovani CR, Silva MDP. High-intensity resistance training with insufficient recovery time between bouts induce atrophy and alterations in myosin heavy chain content in rat skeletal muscle. Anat Rec (Hoboken) 2011; 294:1393-400. [PMID: 21714108 DOI: 10.1002/ar.21428] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/03/2010] [Accepted: 12/21/2010] [Indexed: 11/06/2022]
Abstract
The aim of this study was to test whether high-intensity resistance training with insufficient recovery time between bouts, could result in a decrease of muscle fiber cross-sectional area (CSA), alter fiber-type frequencies and myosin heavy chain (MHC) isoform content in rat skeletal muscle. Wistar rats were divided into two groups: trained (Tr) and control (Co). Tr group were subjected to a high-intensity resistance training program (5 days/week) for 12 weeks, involving jump bouts into water, carrying progressive overloads based on percentage body weight. At the end of experiment, animals were sacrificed, superficial white (SW) and deep red (DR) portions of the plantaris muscle were removed and submitted to mATPase histochemical reaction and SDS-PAGE analysis. Throughout the experiment, both groups increased body weight, but Tr was lower than Co. There was a significant reduction in IIA and IID muscle fiber CSA in the DR portion of Tr compared to Co. Muscle fiber-type frequencies showed a reduction in Types I and IIA in the DR portion and IID in the SW portion of Tr compared to Co; there was an increase in Types IIBD frequency in the DR portion. Change in muscle fiber-type frequency was supported by a significant decrease in MHCI and MHCIIa isoforms accompanied by a significant increase in MHCIIb isoform content. MHCIId showed no significant differences between groups. These data show that high-intensity resistance training with insufficient recovery time between bouts promoted muscle atrophy and a transition from slow-to-fast contractile activity in rat plantaris muscle.
Collapse
|
29
|
Martinez PF, Okoshi K, Zornoff LAM, Oliveira SA, Campos DHS, Lima ARR, Damatto RL, Cezar MDM, Bonomo C, Guizoni DM, Padovani CR, Cicogna AC, Okoshi MP. Echocardiographic detection of congestive heart failure in postinfarction rats. J Appl Physiol (1985) 2011; 111:543-51. [PMID: 21617080 DOI: 10.1152/japplphysiol.01154.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In studies of congestive heart failure (CHF) treatment, it is essential to select animals with a similar degree of cardiac dysfunction. However, this is difficult to establish without hemodynamic evaluation in rat postinfarction-induced CHF. This study aimed to diagnose CHF in long-term follow-up postinfarction rats using only echocardiographic criteria through a J-tree cluster analysis and Fisher's linear discriminant function. Two sets of sham and infarcted rats were studied. The first was used to perform cluster analysis and the second to prospectively validate the results. Six months after inducing myocardial infarction (MI), rats were subjected to transthoracic echocardiography. Infarct size was measured by histological analysis. Six echocardiographic variables were used in the cluster analysis: left ventricular (LV) systolic dimension, LV diastolic dimension-to-body weight ratio, left atrial diameter-to-body weight ratio, LV posterior wall shortening velocity, E wave, and isovolumetric relaxation time. Cluster analysis joined the rats into one sham and two MI groups. One MI cluster had more severe anatomical and echocardiographic changes and was called MI with heart failure (MI/HF+, n = 24, infarct size: 42.7 ± 5.8%). The other had less severe changes and was called MI without heart failure (MI/HF-, n = 11, infarct size: 32.3 ± 9.9%; P < 0.001 vs. MI/HF+). Three rats with small infarct size (21.6 ± 2.2%) presenting mild cardiac alterations were misallocated in the sham group. Fisher's linear discriminant function was built using these groups and used to prospectively classify additional groups of sham-operated (n = 20) and infarcted rats (n = 57) using the same echocardiographic parameters. The discriminant function therefore detected CHF with 100% specificity and 80% sensitivity considering allocation in MI/HF+ and sham group, and 100% specificity and 58.8% sensitivity considering MI/HF+ and MI/HF- groups, taking into account pathological criteria of CHF diagnosis. Echocardiographic analysis can be used to accurately predict congestive heart failure in postinfarction rats.
Collapse
Affiliation(s)
- Paula F Martinez
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista, Botucatu, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Breitbart A, Auger-Messier M, Molkentin JD, Heineke J. Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting. Am J Physiol Heart Circ Physiol 2011; 300:H1973-82. [PMID: 21421824 DOI: 10.1152/ajpheart.00200.2011] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A significant proportion of heart failure patients develop skeletal muscle wasting and cardiac cachexia, which is associated with a very poor prognosis. Recently, myostatin, a cytokine from the transforming growth factor-β (TGF-β) family and a known strong inhibitor of skeletal muscle growth, has been identified as a direct mediator of skeletal muscle atrophy in mice with heart failure. Myostatin is mainly expressed in skeletal muscle, although basal expression is also detectable in heart and adipose tissue. During pathological loading of the heart, the myocardium produces and secretes myostatin into the circulation where it inhibits skeletal muscle growth. Thus, genetic elimination of myostatin from the heart reduces skeletal muscle atrophy in mice with heart failure, whereas transgenic overexpression of myostatin in the heart is capable of inducing muscle wasting. In addition to its endocrine action on skeletal muscle, cardiac myostatin production also modestly inhibits cardiomyocyte growth under certain circumstances, as well as induces cardiac fibrosis and alterations in ventricular function. Interestingly, heart failure patients show elevated myostatin levels in their serum. To therapeutically influence skeletal muscle wasting, direct inhibition of myostatin was shown to positively impact skeletal muscle mass in heart failure, suggesting a promising strategy for the treatment of cardiac cachexia in the future.
Collapse
Affiliation(s)
- Astrid Breitbart
- Medizinische Hochschule Hannover, Klinik für Kardiologie und Angiologie, Rebirth-Cluster of Excellence, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | | | | | | |
Collapse
|
31
|
Current World Literature. Curr Opin Support Palliat Care 2010; 4:293-304. [DOI: 10.1097/spc.0b013e328340e983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Santos DPD, Okoshi K, Moreira VO, Seiva FRF, Almeida FLAD, Padovani CR, Carvalho RF, Okoshi MP, Cicogna AC, Castro AVB, Pai-Silva MD. Growth hormone attenuates skeletal muscle changes in experimental chronic heart failure. Growth Horm IGF Res 2010; 20:149-155. [PMID: 20060348 DOI: 10.1016/j.ghir.2009.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/20/2009] [Accepted: 11/30/2009] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This study evaluated the effects of growth hormone (GH) on morphology and myogenic regulatory factors (MRF) gene expression in skeletal muscle of rats with ascending aortic stenosis (AAS) induced chronic heart failure. DESIGN Male 90-100g Wistar rats were subjected to thoracotomy. AAS was created by placing a stainless-steel clip on the ascending aorta. Twenty five weeks after surgery, rats were treated with daily subcutaneous injections of recombinant human GH (2mg/kg/day; AAS-GH group) or saline (AAS group) for 14 days. Sham-operated animals served as controls. Left ventricular (LV) function was assessed before and after treatment. IGF-1 serum levels were measured by ELISA. After anesthesia, soleus muscle was frozen in liquid nitrogen. Histological sections were stained with HE and picrosirius red to calculate muscle fiber cross-sectional area and collagen fractional area, respectively. MRF myogenin and MyoD expression was analyzed by reverse transcription PCR. RESULTS Body weight was similar between groups. AAS and AAS-GH groups presented dilated left atrium, left ventricular (LV) hypertrophy (LV mass index: Control 1.90+/-0.15; AAS 3.11+/-0.44; AAS-GH 2.94+/-0.47 g/kg; p<0.05 AAS and AAS-GH vs. Control), and reduced LV posterior wall shortening velocity. Soleus muscle fiber area was significantly lower in AAS than in Control and AAS-GH groups; there was no difference between AAS-GH and Control groups. Collagen fractional area was significantly higher in AAS than Control; AAS-GH did not differ from both Control and AAS groups. Serum IGF-1 levels decreased in AAS compared to Control. MyoD mRNA was significantly higher in AAS-GH than AAS; there was no difference between AAS-GH and Control groups. Myogenin mRNA levels were similar between groups. CONCLUSION In rats with aortic stenosis-induced heart failure, growth hormone administration increases MyoD gene expression above non-treated animal levels, preserves muscular trophism and attenuates interstitial fibrosis. These results suggest that growth hormone may have a potential role as an adjuvant therapy for chronic heart failure.
Collapse
Affiliation(s)
- Denis Pioli dos Santos
- Department of Morphology, Bioscience Institute, São Paulo State University, Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|