1
|
Forghani S, Almasi H. Characterization and performance evaluation of colorimetric pH-sensitive indicator based on Ҡ-carrageenan/quince seed mucilage hydrogel as freshness/spoilage monitoring of rainbow trout fillet. Food Chem 2024; 457:140072. [PMID: 38905838 DOI: 10.1016/j.foodchem.2024.140072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
The aim of research was to fabricate a novel indicator by using κ-carrageenan and quince seed mucilage (QSM) hydrogels and red cabbage anthocyanin. The porosity of the hydrogel was controlled using different ratios of κ-carrageenan(C):QSM(Q) (C90:Q10, C70:Q30, and C50:Q50). The hardness of hydrogels decreased from 28.6 ± 0.3 N for C90Q10 to 11.0 ± 1.0 N for C50Q50 sample. However, according to field emission scanning electron microscopy (FE-SEM) analysis, the C50R50 sample had the best morphology with smooth surface and uniform interconnected porous network. Hydrogen bonding interactions among anthocyanins, QSM, and κ-carrageenan were confirmed by Fourier transforms infrared (FT-IR) spectroscopy. The indicator showed a color variation from red to yellow over the pH range of 2-12. Also, the indicator exhibited high sensitivity to ammonia vapors (SRGB = 115%) and good color stability. The C50QRA indicator was used for monitoring rainbow trout fillet spoilage and revealed a visually-detectable color change from red to green upon detecting total volatile basic nitrogen (TVB-N) content produced throughout storage at 4 °C. Generally, the halochromic hydrogel developed in this research can be suggested as a more sensitive and accurate freshness indicator than conventional indicator solid supports.
Collapse
Affiliation(s)
- Samira Forghani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran.
| |
Collapse
|
2
|
Deng S, Li S, Liu D, Deng Q. Multi-residue analysis of four aminoglycoside antibiotic pesticides in plant agricultural products. Food Chem 2024; 464:141677. [PMID: 39437529 DOI: 10.1016/j.foodchem.2024.141677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Simplified and effective pretreatment methods combined with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for the determination of four aminoglycoside antibiotic pesticides kasugamycin, validamycin, streptomycin sulfate and zhongshengmycin in high starchy content matrix (rice), high water and high acidic content matrix (citrus) and high water content matrix (melon) were established. Single-factor and central composite design (CCD) experiments were employed to optimize the pretreatment conditions, resulting in the optimal factor combinations and achieving scientifically accurate outcomes. Validation results proved satisfactory, with all four target compounds exhibiting correlation coefficients (r) exceeding 0.99 within the linear range in three matrices. The recoveries were 81.5-102.2 %, and both inter-day and intra-day relative standard deviations (RSDs) were below 10.7 %. The limits of detection (LODs) were 0.1-4.0 μg/kg, with limits of quantitation (LOQs) consistently at 50 μg/kg. Furthermore, the methods were applied to potato, grape, and cucumber matrices to further validate their applicability.
Collapse
Affiliation(s)
- Sirui Deng
- Department of Applied Chemistry, College of Science, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, China.
| | - Shuhui Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, China.
| | - Dan Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, China.
| | - Qianqian Deng
- Department of Applied Chemistry, College of Science, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, China.
| |
Collapse
|
3
|
Mehta D, Kuksal K, Yadav K, Kumar Yadav S, Zhang Y, Hariram Nile S. Ultrasound-assisted extraction and encapsulation of betalain from prickly pear: Process optimization, in-vitro digestive stability, and development of functional gummies. ULTRASONICS SONOCHEMISTRY 2024; 108:106975. [PMID: 38945052 PMCID: PMC11261438 DOI: 10.1016/j.ultsonch.2024.106975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The study aimed to extract and encapsulate betalain pigment from prickly pear (Opuntia ficus-indica) using ultrasound-assisted extraction and eco-friendly glycerol. Subsequent analysis encompassed assessing its thermal stability, shelf-life, bio-accessibility, and biological properties. The process optimization employed Response Surface Methodology (RSM), focusing on glycerol concentration (20-50 %), sample to solvent ratio (1:10-1:20), temperature (30-60 °C), and time (10-30 min). Optimal conditions were determined as 23.15 % glycerol, 1:10 sample to solvent ratio, 10.43 min treatment time, and 31.15 °C temperature. Under these conditions, betalain content reached 858.28 mg/L with a 93.76 % encapsulation efficiency. Thermal stability tests (80-180 °C; 30 & 60 min) showed degradation of betalain with higher temperatures and longer durations, affecting the visual aspect (ΔE) of the pigment. Encapsulated betalain exhibited favorable shelf stability, with optimal storage life of 404.27 days at 4 °C in amber conditions, compared to 271.99 days at 4 °C without amber, 141.92 days at 25 °C without amber, and 134.22 days at 25 °C with amber. Bio-accessibility of encapsulated betalain was significantly higher (2.05 ± 0.03 %) than conventionally extracted pigment (1.03 ± 0.09 %). The encapsulated pigment displayed strong anti-inflammatory properties in dosages of 2-20 µL, with no cytotoxic effects. Additionally, incorporation into gummies was successful and visually approved by sensory panellists. Glycerol proved to be a green encapsulating agent for betalain, offering high shelf life and bio-accessibility, making it suitable for food industry applications. The encapsulated pigment demonstrated robust thermal stability and shelf life, making it suitable for food industry applications. This study highlights glycerol's potential as a sustainable alternative for natural pigment extraction.
Collapse
Affiliation(s)
- Deepak Mehta
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, Punjab, India
| | - Kritika Kuksal
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, Punjab, India
| | - Kamlendra Yadav
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, Punjab, India
| | - Sudesh Kumar Yadav
- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061
| | - Yuqin Zhang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Shivraj Hariram Nile
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
4
|
Nguyen NT, Chen PR, Ye RH, Chuang KJ, Chang CT, Hong GB. Optimization of Extraction Conditions from Gac Fruit and Utilization of Peel-Derived Biochar for Crystal Violet Dye Removal. Molecules 2024; 29:3435. [PMID: 39065013 PMCID: PMC11279944 DOI: 10.3390/molecules29143435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Gac fruit (Momordica cochinchinensis Spreng.) is a prominent source of carotenoids, renowned for its exceptional concentration of these compounds. This study focuses on optimizing the extraction of active components from the aril of gac fruit by evaluating the effects of extraction temperature, solid-liquid ratio, and extraction time. The primary objective is to maximize the yield of gac oil while assessing its antioxidant capacity. To analyze the kinetics of the solid-liquid extraction process, both first-order and second-order kinetic models were employed, with the second-order model providing the best fit for the experimental data. In addition, the potential of gac fruit peel as a precursor for biochar production was investigated through carbonization. The resultant biochars were evaluated for their efficacy in adsorbing crystal violet (CV) dye from aqueous solutions. The adsorption efficiency of the biochars was found to be dependent on the carbonization temperature, with the highest efficiency observed for BCMC550 (91.72%), followed by BCM450 (81.35%), BCMC350 (78.35%), and BCMC250 (54.43%). The adsorption isotherm data conformed well to the Langmuir isotherm model, indicating monolayer adsorption behavior. Moreover, the adsorption kinetics were best described by the pseudo-second-order model. These findings underscore the potential of gac fruit and its byproducts for diverse industrial and environmental applications, highlighting the dual benefits of optimizing gac oil extraction and utilizing the peel for effective dye removal.
Collapse
Affiliation(s)
- Nhat-Thien Nguyen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 106, Taiwan; (N.-T.N.); (P.-R.C.); (R.-H.Y.)
| | - Pin-Ru Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 106, Taiwan; (N.-T.N.); (P.-R.C.); (R.-H.Y.)
| | - Ru-Hau Ye
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 106, Taiwan; (N.-T.N.); (P.-R.C.); (R.-H.Y.)
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei 110, Taiwan;
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chang-Tang Chang
- Department of Environmental Engineering, National Ilan University, Yilan City 260, Taiwan
| | - Gui-Bing Hong
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 106, Taiwan; (N.-T.N.); (P.-R.C.); (R.-H.Y.)
| |
Collapse
|
5
|
Lai YJ, Chiang YC, Jhan YS, Song TY, Cheng MC. Extraction Effects on Roselle Functionalities: Antioxidant, Antiglycation, and Antibacterial Capacities. Foods 2024; 13:2172. [PMID: 39063256 PMCID: PMC11275289 DOI: 10.3390/foods13142172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated the effects of certain roselle (Hibiscus sabdariffa Linnaeus) extraction methods on various functional properties, including the antioxidant and antiglycation capacities and bacterial growth inhibition. Roselle anthocyanins were extracted using water and ethanol solvents at different temperatures and concentrations. The results revealed that the extraction rate increased with higher temperatures and ethanol concentrations (p < 0.05). Ethanol extracts exhibited higher total organic acid and total anthocyanin contents compared to water extracts, while water extracts showed higher total saccharide, total polyphenol, and total flavonoid contents (p < 0.05). Furthermore, the water extracts demonstrated superior Trolox equivalent antioxidant capacity (TEAC) values, while the ethanol extracts exhibited better 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability, antiglycation capacity, and bacterial growth inhibition. A Pearson correlation analysis revealed strong associations between specific components and functional properties, such as a positive correlation between the total anthocyanin content and antiglycation capacity (R2 = 0.9862). A principal component analysis and agglomerative hierarchical clustering highlighted distinct clusters of water and ethanol extracts, indicating solvent-dependent variations in functional properties. This study assessed roselle extraction models for antioxidant, antiglycation, and antibacterial activities, which could be used for the development of functional alcoholic or non-alcoholic beverages.
Collapse
Affiliation(s)
- Ying-Jang Lai
- Department of Food Science, National Quemoy University, Kinmen 892, Taiwan
| | - Yi-Chan Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Department of Food and Nutrition, Providence University, Taichung 433, Taiwan
- Department of Food Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
| | - Yi-Syuan Jhan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 515, Taiwan
| | - Tuzz-Ying Song
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| | - Ming-Ching Cheng
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 515, Taiwan
- Department of Food Science and Technology, Hungkuang University, Taichung 433, Taiwan
| |
Collapse
|
6
|
Wójciak M, Mazurek B, Wójciak W, Kostrzewa D, Żuk M, Chmiel M, Kubrak T, Sowa I. Optimizing the Extraction of the Polyphenolic Fraction from Defatted Strawberry Seeds for Tiliroside Isolation Using Accelerated Solvent Extraction Combined with a Box-Behnken Design. Molecules 2024; 29:3051. [PMID: 38999003 PMCID: PMC11243754 DOI: 10.3390/molecules29133051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Tiliroside is a natural polyphenolic compound with a wide range of biological activity, and defatted strawberry seeds are its rich source. The goal of this study was to optimize accelerated solvent extraction (ASE) conditions, including temperature, solvent composition, and the number of extraction cycles, using Box-Behnken design to maximize the yield of tiliroside. UPLC-DAD-MS was applied to investigate the polyphenolic composition of the extracts, and preparative liquid chromatography (pLC) was used for isolation. All obtained mathematical models generally showed an increase in the efficiency of isolating polyphenolic compounds with an increase in temperature, ethanol content, and the number of extraction cycles. The optimal established ASE conditions for tiliroside were as follows: a temperature of 65 °C, 63% ethanol in water, and four extraction cycles. This allowed for the obtainment of a tiliroside-rich fraction, and the recovery of isolated tiliroside from plant material reached 243.2 mg from 100 g. Our study showed that ASE ensures the isolation of a tiliroside-rich fraction with high effectiveness. Furthermore, defatted strawberry seeds proved to be a convenient source of tiliroside because the matrix of accompanying components is relatively poor, which facilitates separation.
Collapse
Affiliation(s)
- Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Barbara Mazurek
- Analytical Department, Łukasiewicz Research Network-New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Weronika Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Dorota Kostrzewa
- Analytical Department, Łukasiewicz Research Network-New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Magdalena Żuk
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Mariusz Chmiel
- Analytical Department, Łukasiewicz Research Network-New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Tomasz Kubrak
- Department of Biochemistry and General Chemistry, Medical College, University of Rzeszów, 2A Kopisto St., 35-959 Rzeszów, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
7
|
Bernini R, Campo M, Cassiani C, Fochetti A, Ieri F, Lombardi A, Urciuoli S, Vignolini P, Villanova N, Vita C. Polyphenol-Rich Extracts from Agroindustrial Waste and Byproducts: Results and Perspectives According to the Green Chemistry and Circular Economy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12871-12895. [PMID: 38829927 DOI: 10.1021/acs.jafc.4c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Polyphenols are natural secondary metabolites found in plants endowed with multiple biological activities (antioxidant, anti-inflammatory, antimicrobial, cardioprotective, and anticancer). In view of these properties, they find many applications and are used as active ingredients in nutraceutical, food, pharmaceutical, and cosmetic formulations. In accordance with green chemistry and circular economy strategies, they can also be recovered from agroindustrial waste and reused in various sectors, promoting sustainable processes. This review described structural characteristics, methods for extraction, biological properties, and applications of polyphenolic extracts obtained from two selected plant materials of the Mediterranean area as olive (Olea europaea L.) and pomegranate (Punica granatum L.) based on recent literature, highlighting future research perspectives.
Collapse
Affiliation(s)
- Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Margherita Campo
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Chiara Cassiani
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Fochetti
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Francesca Ieri
- Institute of Bioscience and BioResources (IBBR), National Research Council of Italy (CNR), 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Lombardi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Silvia Urciuoli
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Pamela Vignolini
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Chiara Vita
- QuMAP - PIN, University Center "Città di Prato" Educational and Scientific Services for the University of Florence, 59100 Prato, Italy
| |
Collapse
|
8
|
El-Shabasy RM, Farag MA. Dissecting dietary alkylresorcinols: a compile of their distribution, biosynthesis, extraction and functional properties. Crit Rev Biotechnol 2024; 44:581-617. [PMID: 37156550 DOI: 10.1080/07388551.2023.2193860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/06/2023] [Indexed: 05/10/2023]
Abstract
Alkylresorcinols (ARs) are natural bioactive ingredients produced by: bacteria, fungi, sponges, and higher plants, possessing a lipophilic polyphenol structure with a myriad of biological properties. Focusing on the importance of ARs, several analogs can be extracted from different natural resources. Interestingly, the composition of ARs is usually reflective of their source, with structural differences to exist among ARs isolated from different natural sources. The identified compounds from marine are distinguished by sulfur atom and disulfide bond, while the alkyl chain of bacterial homologs are recognized for their saturated fatty acid chains. ARs occurrence in fungi is still poorly documented however most of the isolated fungal molecules are characterized by a sugar unit attached to their alkylated side chains. The biosynthetic pathway of ARs is postulated via a type III polyketide synthase in which the fatty-acyl chain is elongated and cyclized to generate ARs. The structure-activity relationship (SAR) has gained an increasing interest to mediate for ARs biological activities as discussed herein for the first time from their different resources. ARs extraction procedures showed much progress compared to classical methods compiling organic solvents with supercritical extraction appearing as a potential technique for producing highly purified food-grade of AR homologs. The current review also presents on the rapid qualitative and quantitative determination of ARs to increase accessibility for screening cereals as potential sources of these bioactives.
Collapse
Affiliation(s)
- Rehan M El-Shabasy
- Department of Chemistry, The American University in Cairo, New Cairo, Egypt
- Department of Chemistry, Menoufia University, Shebin El-Kom, Egypt
| | - Mohamed A Farag
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Shafiq NE, Mahdee AF, Mohammed Hasan ZY. Leaf Extracts of Moringa oleifera Cultivated in Baghdad: Characterization and Antimicrobial Potential against Endodontic Pathogens. ScientificWorldJournal 2024; 2024:6658164. [PMID: 38450244 PMCID: PMC10917486 DOI: 10.1155/2024/6658164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
The use of medicinal plant preparations to clean and disinfect root canal infection is gaining popularity. The aim of this study was to evaluate the bioactive composition of leaf extracts of Moringa oleifera plants cultivated in Iraq (specifically Baghdad) and their antimicrobial activity against selected root canal pathogens for potential application in endodontic treatment. Materials and Methods. Moringa leaf extracts were prepared either through cold maceration or warm digestion techniques to perform an ethanolic or aqueous extraction, respectively. Phytochemical detection was performed before thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) to measure flavonoids and phenolic compounds within both extracts. Then, their antimicrobial activities were investigated against Streptococcus mutans, Enterococcus faecalis, and Candida albicans through minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), and agar well diffusion assay in comparison to NaOCl and Ca(OH)2. Results. Phytochemical screening showed several active ingredients but with higher expression of flavonoids and phenolic compounds. Also, different types of these compounds were detected through TLC and quantified by HPLC. MIC values for ethanolic extract against Streptococcus mutans, Enterococcus faecalis, and Candida albicans were 60, 65, and 55, respectively, while for aqueous extract, MIC values were 70, 80, and 50, respectively. Aqueous extract showed a higher inhibition zone than ethanolic extract for both Streptococcus mutans and Enterococcus faecalis with a statistically significant difference (p ≤ 0.001) for all tested materials except with NaOCl and Ca(OH)2 in Streptococcus mutans and Enterococcus faecalis, respectively. The ethanolic extract showed a higher inhibition zone against Candida albicans, with a statistically significant difference (p ≤ 0.001) for all tested materials. Conclusion. Ethanolic and aqueous extracts of Moringa oleifera leaves cultivated in Baghdad contain considerable quantities of phytochemicals, especially flavonoid and phenolic compounds, and demonstrated antimicrobial activities against selected endodontic pathogens. Therefore, Moringa leaf extracts could be suggested as an alternative antimicrobial material in endodontic treatment.
Collapse
Affiliation(s)
- Nada E. Shafiq
- Restorative and Aesthetic Dentistry Department, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Anas F. Mahdee
- Restorative and Aesthetic Dentistry Department, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | | |
Collapse
|
10
|
Vieira DRR, da Silva VR, Spier MR. Extraction of high methoxyl pectin from unripe waste Ponkan mandarine (Citrus reticulata Blanco cv. Ponkan) with an eco-friendly solvent. Int J Biol Macromol 2024; 258:128663. [PMID: 38092102 DOI: 10.1016/j.ijbiomac.2023.128663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The aqueous batch extraction of pectin from unripe Ponkan mandarin was evaluated for potential application in the food industry. A small central composite design with 4 variables (temperature, volume to mass ratio, pH, and mean particle size) and 3 levels was applied for pectin extraction optimization. Also, the kinetic of the pectin yield extraction was investigated at temperatures 70-90 °C, stirring rate of 100-700 rpm, ultrasound pretreatment system, and modeling using four mathematical models. The pectin extraction process was evaluated by yield of pectin and esterification degree. FTIR, TGA, and DTA were performed to evaluate the quality of pectin obtained. The small central composite design demonstrated that temperature and volume to mass ratio were significant variables, and the highest yield of pectin extraction was 11.62 % obtained at temperature and volume to molar ratio of 81.9 °C and 33.9 v/w %, respectively. Besides, the esterification degree showed higher than 70 % for all extraction conditions, suggesting high methoxyl pectin. The kinetics showed the stirring rate and the ultrasound pretreatment did not cause any significant alteration, while high temperatures proved to be beneficial to the rate and the yield of the pectin extraction. The best fit was provided by Fick's law, suggesting the extraction process is limited by internal mass transfer. FTIR showed the functional groups expected for pectin, and TGA and DTA indicated that the pectin obtained is proper for most food products, as only above 200 °C the pectin should degrade.
Collapse
Affiliation(s)
- Daniel Ravazzani Ribeiro Vieira
- Federal University of Paraná, Technology Sector, Chemical Engineering Department, Post Graduate Program in Food Engineering, P.O. Box 19011, 81531-980 Curitiba, Paraná, Brazil.
| | - Vitor Renan da Silva
- Federal University of Paraná, Technology Sector, Chemical Engineering Department, Post Graduate Program in Food Engineering, P.O. Box 19011, 81531-980 Curitiba, Paraná, Brazil
| | - Michele Rigon Spier
- Federal University of Paraná, Technology Sector, Chemical Engineering Department, Post Graduate Program in Food Engineering, P.O. Box 19011, 81531-980 Curitiba, Paraná, Brazil
| |
Collapse
|
11
|
Manocchio F, Bravo FI, Helfer G, Muguerza B. Cherries with Different Geographical Origins Regulate Neuroprotection in a Photoperiod-Dependent Manner in F344 Rats. Antioxidants (Basel) 2024; 13:72. [PMID: 38247496 PMCID: PMC10812723 DOI: 10.3390/antiox13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
The photoperiod is the main environmental cue that drives seasonal adaptive responses in reproduction, behavior, and metabolism in seasonal animals. Increasing evidence suggests that (poly)phenols contained in fruits can also modulate seasonal rhythms. (Poly)phenol-rich diets are associated with an improvement in cognitive function and neuroprotection due to their anti-inflammatory and antioxidative properties. However, it is unknown whether cherries affect neuroprotection in a photoperiod-dependent manner. To test this, F344 rats were exposed to L6 (6 h light/day), L12 (12 h light/day) and L18 (18 h light/day) photoperiods and fed a standard chow diet supplemented with either a control, lyophilized cherry 1 or cherry 2 with distinctive phenolic hallmarks. Physiological parameters (body weight, eating pattern index (EPI), testosterone, T4/T3) and hypothalamic key genes (Dio2, Dio3, Raldh1 and Ghrh) were strongly regulated by the photoperiod and/or fruit consumption. Importantly, we show for the first time that neurotrophs (Bdnf, Sod1 and Gpx1) in the hippocampus are also regulated by the photoperiod. Furthermore, the consumption of cherry 2, which was richer in total flavonols, but not cherry 1, which was richer in total anthocyanins and flavanols, enhanced neuroprotection in the hippocampus. Our results show that the seasonal consumption of cherry with a specific phenolic composition plays an important role in the hippocampal activation of neuroprotection in a photoperiod-dependent manner.
Collapse
Affiliation(s)
- Francesca Manocchio
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, C Marcel·lí Domingo s/n, 43007 Tarragona, Spain; (F.M.); (B.M.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, C Marcel·lí Domingo s/n, 43007 Tarragona, Spain; (F.M.); (B.M.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Gisela Helfer
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, C Marcel·lí Domingo s/n, 43007 Tarragona, Spain; (F.M.); (B.M.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
12
|
Ejaz A, Waliat S, Afzaal M, Saeed F, Ahmad A, Din A, Ateeq H, Asghar A, Shah YA, Rafi A, Khan MR. Biological activities, therapeutic potential, and pharmacological aspects of blackcurrants ( Ribes nigrum L): A comprehensive review. Food Sci Nutr 2023; 11:5799-5817. [PMID: 37823094 PMCID: PMC10563683 DOI: 10.1002/fsn3.3592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 10/13/2023] Open
Abstract
Blackcurrant possesses various health-endorsing attributes owing to its polyphenol profile. Recent studies have demonstrated its therapeutic potential against various health disorders. Various bioactives present in blackcurrants have different functional and pharmacological aspects including anti-inflammatory, antioxidant, and antimicrobial properties. The most dominant and important bioactive include anthocyanins, flavonols, phenolic acids, and polyunsaturated fatty acids. Food formats derived from blackcurrants comprise pomace, juice, powder, and extracts. All these food formats have industrial, prebiotic, and pharmacological benefits. In the current article, the nutritional composition, industrial applications, and therapeutic potential are discussed in the recent literature. Moreover, novel extraction techniques for the extraction of bioactive compounds present in blackcurrants and their safety concerns have been elaborated.
Collapse
Affiliation(s)
- Afaf Ejaz
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Sadaf Waliat
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmad
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Ahmad Din
- National Institute of Food Science & TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Huda Ateeq
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Asma Asghar
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Yasir Abbas Shah
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Ahmad Rafi
- National Institute of Food Science & TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Mahbubur Rahman Khan
- Department of Food Processing and PreservationHajee Mohammad Danesh Science & Technology UniversityDinajpurBangladesh
| |
Collapse
|
13
|
Villani V, Di Marco G, Iacovelli F, Pietrucci D, Canini A, Gismondi A. Profile and potential bioactivity of the miRNome and metabolome expressed in Malva sylvestris L. leaf and flower. BMC PLANT BIOLOGY 2023; 23:439. [PMID: 37726667 PMCID: PMC10507896 DOI: 10.1186/s12870-023-04434-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/03/2023] [Indexed: 09/21/2023]
Abstract
Malva sylvestris L. (common mallow) is a plant species widely used in phytotherapy and ethnobotanical practices since time immemorial. Characterizing the components of this herb might promote a better comprehension of its biological effects on the human body but also favour the identification of the molecular processes that occur in the plant tissues. Thus, in the present contribution, the scientific knowledge about the metabolomic profile of the common mallow was expanded. In particular, the phytocomplex of leaves and flowers from this botanical species and the extraction capacity of different concentrations of ethanol (i.e., 95%, 70%, 50%, and 0%; v/v in ddH2O) for it were investigated by spectrophotometric and chromatographic approaches. In detail, 95% ethanol extracts showed the worst capacity in isolating total phenols and flavonoids, while all the hydroalcoholic samples revealed a specific ability in purifying the anthocyanins. HPLC-DAD system detected and quantified 20 phenolic secondary metabolites, whose concentration in the several extracts depended on their own chemical nature and the percentage of ethanol used in the preparation. In addition, the stability of the purified phytochemicals after resuspension in pure ddH2O was also proved, considering a potential employment of them in biological/medical studies which include in vitro and in vivo experiments on mammalian models. Here, for the first time, the expressed miRNome in M. sylvestris was also defined by Next Generation Sequencing, revealing the presence of 33 microRNAs (miRNAs), 10 typical for leaves and 2 for flowers. Then, both plant and human putative mRNA targets for the detected miRNAs were predicted by bioinformatics analyses, with the aim to clarify the possible role of these small nucleic acids in the common mallow plant tissues and to try to understand if they could exert a potential cross-kingdom regulatory activity on the human health. Surprisingly, our investigations revealed that 19 miRNAs out of 33 were putatively able to modulate, in the plant cells, the expression of various chromosome scaffold proteins. In parallel, we found, in the human transcriptome, a total of 383 mRNAs involved in 5 fundamental mammalian cellular processes (i.e., apoptosis, senescence, cell-cycle, oxidative stress, and invasiveness) that theoretically could be bound and regulated by M. sylvestris miRNAs. The evidence collected in this work would suggest that the beneficial properties of the use of M. sylvestris, documented by the folk medicine, are probably linked to their content of miRNAs and not only to the action of phytochemicals (e.g., anthocyanins). This would open new perspectives about the possibility to develop gene therapies based on miRNAs isolated from medicinal plants, including M. sylvestris.
Collapse
Affiliation(s)
- Valentina Villani
- Department of Biology, Laboratory of Botany, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, Rome, 00133, Italy
- Department of Biology, PhD Program in Molecular and Cellular Biology, University of Rome Tor Vergata, Rome, Italy
| | - Gabriele Di Marco
- Department of Biology, Laboratory of Botany, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Federico Iacovelli
- Department of Biology, Laboratory of Bioinformatics, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Daniele Pietrucci
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via S.M. in Gradi N.4, 01100, Viterbo, Italy
| | - Antonella Canini
- Department of Biology, Laboratory of Botany, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Angelo Gismondi
- Department of Biology, Laboratory of Botany, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, Rome, 00133, Italy.
| |
Collapse
|
14
|
Renita AA, Gajaria TK, Sathish S, Kumar JA, Lakshmi DS, Kujawa J, Kujawski W. Progress and Prospective of the Industrial Development and Applications of Eco-Friendly Colorants: An Insight into Environmental Impact and Sustainability Issues. Foods 2023; 12:foods12071521. [PMID: 37048342 PMCID: PMC10093929 DOI: 10.3390/foods12071521] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 04/14/2023] Open
Abstract
Color is the prime feature directly associated with the consumer's attraction and choice of their food. The flavor, safety, and nutritional value of any food product are directly associated with the food color. Natural and synthetic colorants (dyes and pigments) have diversified applications in various sectors such as food, feed, pharmaceutical, textiles, cosmetics, and others. Concerning the food industry, different types of natural and synthetic colorants are available in the market. Synthetic food colorants have gained popularity as they are highly stable and cheaply available. Consumers worldwide prefer delightful foodstuffs but are more concerned about the safety of the food. After its disposal, the colloidal particles present in the synthetic colorants do not allow sunlight to penetrate aquatic bodies. This causes a foul smell and turbidity formation and gives a bad appearance. Furthermore, different studies carried out previously have presented the toxicological, carcinogenic effects, hypersensitivity reactions, and behavioral changes linked to the usage of synthetic colorants. Natural food colorings, however, have nutraceutical qualities that are valuable to human health such as curcumin extracted from turmeric and beta-carotene extracted from carrots. In addition, natural colorants have beneficial properties such as excellent antioxidant properties, antimutagenic, anti-inflammatory, antineoplastic, and antiarthritic effects. This review summarizes the sources of natural and synthetic colorants, their production rate, demand, extraction, and characterization of food colorants, their industrial applications, environmental impact, challenges in the sustainable utilization of natural colorants, and their prospects.
Collapse
Affiliation(s)
- A Annam Renita
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Tejal K Gajaria
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India
| | - S Sathish
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - J Aravind Kumar
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai 600119, India
| | | | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| |
Collapse
|
15
|
Vidana Gamage GC, Choo WS. Effect of hot water, ultrasound, microwave, and pectinase-assisted extraction of anthocyanins from black goji berry for food application. Heliyon 2023; 9:e14426. [PMID: 36942215 PMCID: PMC10024101 DOI: 10.1016/j.heliyon.2023.e14426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Lycium ruthenicum, commonly known as black goji berry, is a rich anthocyanin source containing a high amount of monoacylated anthocyanins. This study investigates the effect of different extraction methods to extract anthocyanins from black goji berry for food application. Different hot water extraction conditions were applied to investigate the effect of specific substrate: solvent ratio (1:15 and 1:20 (w/v)), extraction time (30 and 60 min) and extraction temperature (40, 50 and 60 °C) on the extraction yield, total anthocyanin content (TAC) and the total phenolic content (TPC) of the anthocyanin extracts. Best hot water extraction conditions for obtaining an anthocyanin extract with high TAC (13.8 ± 1.14 mg CGE/g), TPC (69.7 ± 2.50 mg of GAE/g), and extraction yield (48.3 ± 3.25%) consuming less solvent, time and heat were substrate: solvent ratio of 1: 15 (w/v), extraction temperature of 50 °C, and extraction time of 30 min. The effect of pectinase, ultrasound, and microwave on hot water extraction of anthocyanins from black goji berry was investigated using the best conditions for hot water extraction. Pectinase-assisted extraction [1.5% (w/v) pectinase, substrate: solvent ratio of 1:15 (w/v) at 50 °C for 30 min] was the best extraction method to extract black goji berry anthocyanins demonstrating higher extraction yield, TAC, TPC, and the highest percentage of petunidin-3-O-(trans-p-coumaroyl)-rutinoside-5-O-glucoside.
Collapse
|
16
|
Cruz-Carrión Á, Ruiz de Azua MJ, Muguerza B, Mulero M, Bravo FI, Arola-Arnal A, Suarez M. Organic vs. Non-Organic Plant-Based Foods-A Comparative Study on Phenolic Content and Antioxidant Capacity. PLANTS (BASEL, SWITZERLAND) 2023; 12:183. [PMID: 36616310 PMCID: PMC9824154 DOI: 10.3390/plants12010183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
A plant's stress response involves the production of phytochemicals, including phenolic compounds. Their synthesis can be modulated by organic (ORG) or non-organic (NORG) farming systems in which they are grown. To examine this issue, thirteen plant-based foods cultivated in ORG and NORG systems were compared in terms of antioxidant capacity, total content of phenolics, anthocyanins, flavan-3-ols and flavonols. The results showed that NORG fruits tended to have higher phenolic compounds content, whereas ORG fruits had more antioxidant capacity. NORG legume stood out for having higher values from all the parameters analyzed in comparison to its ORG equivalent. ORG nuts showed more flavan-3-ols and flavonols than their NORG counterparts, nonetheless, tended to be less antioxidant. ORG vegetables displayed higher phenolics and anthocyanins, which reflected in higher antioxidant capacity than NORG ones. These findings suggest that farming systems differentially modulate phenolic compound composition and antioxidant capacity based on the plant species studied.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Arola-Arnal
- Correspondence: (A.A.-A.); (M.S.); Tel.: +34-977-55-86-30 (A.A.-A. & M.S.)
| | - Manuel Suarez
- Correspondence: (A.A.-A.); (M.S.); Tel.: +34-977-55-86-30 (A.A.-A. & M.S.)
| |
Collapse
|
17
|
Selim S, Albqmi M, Al-Sanea MM, Alnusaire TS, Almuhayawi MS, AbdElgawad H, Al Jaouni SK, Elkelish A, Hussein S, Warrad M, El-Saadony MT. Valorizing the usage of olive leaves, bioactive compounds, biological activities, and food applications: A comprehensive review. Front Nutr 2022; 9:1008349. [PMID: 36424930 PMCID: PMC9678927 DOI: 10.3389/fnut.2022.1008349] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
Olive oil production is a significant source of economic profit for Mediterranean nations, accounting for around 98 percent of global output. Olive oil usage has increased dramatically in recent years, owing to its organoleptic characteristics and rising knowledge of its health advantages. The culture of olive trees and the manufacture of industrial and table olive oil produces enormous volumes of solid waste and dark liquid effluents, involving olive leaves, pomace, and olive oil mill wastewaters. These by-products cause an economic issue for manufacturers and pose major environmental concerns. As a result, partial reuse, like other agronomical production wastes, is a goal to be achieved. Because these by-products are high in bioactive chemicals, which, if isolated, might denote components with significant added value for the food, cosmetic, and nutraceutical sectors, indeed, they include significant amounts of beneficial organic acids, carbohydrates, proteins, fibers, and phenolic materials, which are distributed differently between the various wastes depending on the olive oil production method and table olive agronomical techniques. However, the extraction and recovery of bioactive materials from chosen by-products is a significant problem of their reasonable value, and rigorous detection and quantification are required. The primary aims of this review in this context are to outline the vital bioactive chemicals in olive by-products, evaluate the main developments in extraction, purification, and identification, and study their uses in food packaging systems and safety problems.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Olive Research Center, Jouf University, Sakaka, Saudi Arabia
- *Correspondence: Samy Selim,
| | - Mha Albqmi
- Olive Research Center, Jouf University, Sakaka, Saudi Arabia
- Department of Chemistry, College of Science and Arts, Jouf University, Al Qurayyat, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | | | - Mohammed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Soad K. Al Jaouni
- Department of Hematology and Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amr Elkelish
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Shaimaa Hussein
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mona Warrad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Quriat, Jouf University, Al Qurayyat, Saudi Arabia
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Mohamed T. El-Saadony,
| |
Collapse
|
18
|
Shahabi Mohammadabadi S, Goli M, Naji Tabasi S. Optimization of Bioactive Compound Extraction from Eggplant Peel by Response Surface Methodology: Ultrasound-Assisted Solvent Qualitative and Quantitative Effect. Foods 2022; 11:3263. [PMID: 37431011 PMCID: PMC9601998 DOI: 10.3390/foods11203263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/01/2022] [Accepted: 10/11/2022] [Indexed: 09/12/2024] Open
Abstract
Anthocyanin pigments, which the peel of eggplant is rich in, contribute to food quality because of their function in color, appearance, and nutritional advantages. For the first time, this study aimed to optimize the composition of the extracting solvent as three factors: factor A (ratio of ethanol to methanol 0-100% v/v), factor B (ratio of water to alcohol 0-100% v/v), and factor C (citric acid in the final solvent 0-1% w/v) using response surface methodology (RSM), central composite design (CCD) with α 2, and two repeats in axial and factorial points and four central points, for maximum total phenolic content, total anthocyanin content, extraction yield, antioxidant activity in terms of DPPH radical scavenging activity and ferric reducing antioxidant power (FRAP) assay of the eggplant peel dry extract assisted by ultrasound (200 watts power, frequency of 28 kHz) in 60 °C for 45 min has been investigated. The best optimal formulas determined using RSM for the final solvent comprised optimal formula 1 (i.e., ethanol-to-methanol ratio 59% and water-to-alcohol ratio 0%, and citric acid in final solvent 0.47%), and optimal formula 2 (i.e., ethanol-to-methanol ratio 67% and water-to-alcohol ratio 0%, and citric acid in final solvent 0.56%). In general, an alcoholic-acidic extract of eggplant peel made with an ethanol-methanol solvent including citric acid can be used in the food industry as a natural source of antioxidants and pigment.
Collapse
Affiliation(s)
- Shiva Shahabi Mohammadabadi
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| | - Mohammad Goli
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
- Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| | - Sara Naji Tabasi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad 139-91735, Iran
| |
Collapse
|
19
|
Gościniak A, Bazan-Woźniak A, Pietrzak R, Cielecka-Piontek J. Pomegranate Flower Extract-The Health-Promoting Properties Optimized by Application of the Box-Behnken Design. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196616. [PMID: 36235153 PMCID: PMC9573694 DOI: 10.3390/molecules27196616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/22/2022]
Abstract
Herbal raw materials with antidiabetic activity can be a valuable support to therapy. An optimized extraction process allows for the best possible health-promoting effect. Box-Behnken design was employed to optimize the content of methanol used in the extraction mixture, its time, and temperature. The aim of this study was to enhance the efficiency of the pomegranate flowers extraction process in order to obtain extracts with the highest enzyme inhibition power (α-amylase and α-glucosidase), which is important for the antidiabetic effect and the highest antioxidant activity (DPPH assay). In the Box-Behnken design model, the content of pelargonidin-3,5-glucoside-anthocyanin compound that is associated with antidiabetic activity was also optimized as a variable associated with the action profile of pomegranate flower extracts. The process optimization carried out in this study provides a basis for further research using the pomegranate flower extract with the most potent desired properties, essential for supporting diabetes treatment based on pomegranate flowers.
Collapse
Affiliation(s)
- Anna Gościniak
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Aleksandra Bazan-Woźniak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| | - Robert Pietrzak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Correspondence:
| |
Collapse
|
20
|
Meerasri J, Chollakup R, Sothornvit R. Factors affecting sericin hydrolysis and application of sericin hydrolysate in sericin films. RSC Adv 2022; 12:28441-28450. [PMID: 36320550 PMCID: PMC9533480 DOI: 10.1039/d2ra05220b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022] Open
Abstract
Sericin is a natural protein and a by-product obtained from silk processing. To enhance the antioxidant properties of sericin, sericin hydrolysis was studied. The solvent effects (distilled water, citric acid and hydrochloric acid) and hydrolysis methods (heat treatment (water bath) and mild ultrasonic treatment at 20%, 40% or 60% amplitude) were investigated on the properties of sericin hydrolysate (SH). Furthermore, solvent effects (distilled water and 15% ethanol) were examined for the properties of the sericin films incorporated with selected SH. The SH samples from acid hydrolysis and the ultrasonic method had a darkened visual appearance. However, the degree of hydrolysis and antioxidant activity of SH increased with ultrasonic-assisted acid hydrolysis. The molecular weight (MW) of sericin was notably reduced. As expected, hydrochloric acid hydrolysis resulted in a lower MW for the SH than from citric acid. Thus, SH from hydrochloric acid and 20% amplitude in the ultrasonic method were selected to produce a sericin film. As revealed, using distilled water as a general solvent provided films with lower solubility and water vapor permeability but higher tensile strength. Furthermore, the addition of SH enhanced the antioxidant properties of its hydrolysate as a novel protein packaging film material for various applications.
Collapse
Affiliation(s)
- Jitrawadee Meerasri
- Department of Food Engineering, Faculty of Engineering at Kamphaengsaen, Kasetsart University Kamphaengsaen Campus Nakhonpathom 73140 Thailand
| | - Rungsima Chollakup
- Kasetsart Agricultural and Agro-Industry Product Improvement Institute, Kasetsart University Bangkok 10900 Thailand
| | - Rungsinee Sothornvit
- Department of Food Engineering, Faculty of Engineering at Kamphaengsaen, Kasetsart University Kamphaengsaen Campus Nakhonpathom 73140 Thailand
| |
Collapse
|
21
|
Optimization of ethanol based extraction of phenolics from Ocimum sanctum flowers by response surface methodology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Mehta D, Shivhare US, Yadav SK. A statistical and neural network-assisted sustainable integrated process-based on ‘zero solid waste’ for the extraction of polyphenols, dietary fiber and xylooligosaccharide from de-oiled rice and corn bran. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Ultrasonic Processing of Food Waste to Generate Value-Added Products. Foods 2022; 11:foods11142035. [PMID: 35885279 PMCID: PMC9319240 DOI: 10.3390/foods11142035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Ultrasonic processing has a great potential to transform waste from the food and agriculture industry into value-added products. In this review article, we discuss the use of ultrasound for the valorisation of food and agricultural waste. Ultrasonic processing is considered a green technology as compared to the conventional chemical extraction/processing methods. The influence of ultrasound pre-treatment on the soluble chemical oxygen demand (SCOD), particle size, and cell wall content of food waste is first discussed. The use of ultrasonic processing to produce/extract bioactives such as oil, polyphenolic, polysaccharides, fatty acids, organic acids, protein, lipids, and enzymes is highlighted. Moreover, ultrasonic processing in bioenergy production from food waste such as green methane, hydrogen, biodiesel, and ethanol through anaerobic digestion is also reviewed. The conversion of waste oils into biofuels with the use of ultrasound is presented. The latest developments and future prospective on the use of ultrasound in developing energy-efficient methods to convert food and agricultural waste into value-added products are summarised.
Collapse
|
24
|
Kumar A, Rout RK, Rao PS, Prabhakar P. Optimization of pulsed mode sonication and in silico molecular docking study for antioxidant properties of mandarin (
Citrus reticulata
Blanco) peels. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ankit Kumar
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur India
| | - Rahul Kumar Rout
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur India
| | - Pavuluri Srinivasa Rao
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur India
| | - Pawan Prabhakar
- Rajendra Mishra School of Engineering Entrepreneurship Indian Institute of Technology Kharagpur Kharagpur India
| |
Collapse
|
25
|
Alhallaf W, Bishop K, Perkins LB. Optimization of Accelerated Solvent Extraction of Phenolic Compounds from Chaga Using Response Surface Methodology. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02319-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Lee H, Lee G, Kim Y, Ahn H, Lee K. Analysis of volatile compounds and antioxidant activity in rice extracts (
Oryza sativa
L.) extracted by various conditions. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hana Lee
- Department of Food Science and Biotechnology Dongguk University‐Seoul 32, Dongguk‐ro, Ilsandong‐gu Goyang‐si Gyeonggi‐do 10326 Korea
| | - Gaeun Lee
- Department of Food Science and Biotechnology Dongguk University‐Seoul 32, Dongguk‐ro, Ilsandong‐gu Goyang‐si Gyeonggi‐do 10326 Korea
| | - Yuri Kim
- Department of Food Science and Biotechnology Dongguk University‐Seoul 32, Dongguk‐ro, Ilsandong‐gu Goyang‐si Gyeonggi‐do 10326 Korea
- Food Certification Support Centre Korea Food Research Institute 245, Nongsaengmyeong‐ro, Iseo‐myeon Wanju‐gun Jeollabuk‐do 55365 Korea
| | - Hyunwoo Ahn
- Department of Food Science and Biotechnology Dongguk University‐Seoul 32, Dongguk‐ro, Ilsandong‐gu Goyang‐si Gyeonggi‐do 10326 Korea
| | - Kwang‐Geun Lee
- Department of Food Science and Biotechnology Dongguk University‐Seoul 32, Dongguk‐ro, Ilsandong‐gu Goyang‐si Gyeonggi‐do 10326 Korea
| |
Collapse
|
27
|
Phan K, Den Broeck EV, Raes K, De Clerck K, Speybroeck VV, De Meester S. A comparative theoretical study on the solvent dependency of anthocyanin extraction profiles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Recovery of polyphenols from distillery stillage by microwave-assisted, ultrasound-assisted and conventional solid-liquid extraction. Sci Rep 2022; 12:3232. [PMID: 35217709 PMCID: PMC8881464 DOI: 10.1038/s41598-022-07322-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/09/2022] [Indexed: 12/22/2022] Open
Abstract
Recovery of bioactive compounds from distillery waste could be an option for valorizing this waste. This study investigated how the extraction of polyphenols (which have antioxidant activity) from distillery stillage was affected by solvent type and concentration, extraction time, and method of extraction (conventional solid–liquid extraction, CSLE; ultrasound-assisted extraction, UAE; microwave-assisted extraction, MAE). Although recovery was similar with UAE and MAE, 3 min MAE with 80% ethanol and 80% methanol produced the highest yields of total phenolic content (TPC), total flavonoid content (TFC) and phenolic acids. With CSLE, TPC was 2.1–1.8-times lower than with MAE and 1.7–1.4-times lower than with UAE. Increasing the solvent concentration to 100% significantly decreased recovery. Six phenolic acids were recovered (ferulic and p-coumaric acid predominated), which were present mainly in the free form. There was a significant positive correlation between antioxidant activity, as measured with three methods (one based on the hydrogen atom transfer and two based on single electron transfer mechanisms), and phenolic acid content. With MAE and UAE, polyphenols were recovered more efficiently, with 2.1 times and 1.5 times higher antioxidant activity, and with 15 times and 9 times shorter extraction times, respectively, than with CSLE; thus, they can be considered "green" alternatives to CSLE.
Collapse
|
29
|
Abstract
Background: Polyphenols are a set of bioactive compounds commonly found in plants. These compounds are of great interest, as they have shown high antioxidant power and are correlated to many health benefits. Hence, traditional methods of extraction such as solvent extraction, Soxhlet extraction and novel extraction technologies such as ultrasound-assisted extraction and subcritical water extraction (SWE) have been investigated for the extraction of polyphenols. Scope and Approach: Generally, for traditional extractions, the total phenolic content (TPC) is highest at an extraction temperature of 60–80 °C. For this reason, polyphenols are regularly regarded as heat-labile compounds. However, in many studies that investigated the optimal temperature for subcritical water extraction (SWE), temperatures as high as 100–200 °C have been reported. These SWE extractions showed extremely high yields and antioxidant capacities at these temperatures. This paper aimed to examine the relevant literature to identify and understand the mechanisms behind this discrepancy. Results: Thermal degradation is the most common explanation for the degradation of polyphenols. This may be the case for specific or sub-groups of phenolic acids. The different extraction temperatures may have also impacted the types of polyphenols extracted. At high extraction temperatures, the formation of new compounds known as Maillard reaction products may also influence the extracted polyphenols. The selection of source material for extraction, i.e., the plant matrix, and the effect of extraction conditions, i.e., oxidation and light exposure, are also discussed. The overestimation of total phenolic content by the Folin–Ciocâlteu assay is also discussed. There is also a lack of consensus in TPC’s correlation to antioxidant activity.
Collapse
|
30
|
Nunes AN, Borges A, Matias AA, Bronze MR, Oliveira J. Alternative Extraction and Downstream Purification Processes for Anthocyanins. Molecules 2022; 27:368. [PMID: 35056685 PMCID: PMC8779312 DOI: 10.3390/molecules27020368] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Anthocyanins are natural pigments displaying different attractive colors ranging from red, violet, to blue. These pigments present health benefits that increased their use in food, nutraceuticals, and the cosmetic industry. However, anthocyanins are mainly extracted through conventional methods that are time-consuming and involve the use of organic solvents. Moreover, the chemical diversity of the obtained complex extracts make the downstream purification step challenging. Therefore, the growing demand of these high-value pigments has stimulated the interest in designing new, safe, cost-effective, and tunable strategies for their extraction and purification. The current review focuses on the potential application of compressed fluid-based (such as subcritical and supercritical fluid extraction and pressurized liquid extraction) and deep eutectic solvents-based extraction methods for the recovery of anthocyanins. In addition, an updated review of the application of counter-current chromatography for anthocyanins purification is provided as a faster and cost-effective alternative to preparative-scale HPLC.
Collapse
Affiliation(s)
- Ana N. Nunes
- iBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal; (A.N.N.); (A.A.M.); (M.R.B.)
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Alexandra Borges
- Laboratório Associado para a Química Verde—REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal;
| | - Ana A. Matias
- iBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal; (A.N.N.); (A.A.M.); (M.R.B.)
| | - Maria Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal; (A.N.N.); (A.A.M.); (M.R.B.)
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- iMed.Ulisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia da Universidade de Lisboa, Avenida das Forças Armadas, 1649-019 Lisboa, Portugal
| | - Joana Oliveira
- Laboratório Associado para a Química Verde—REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal;
| |
Collapse
|
31
|
Lim JW, Jo YH, Choi JS, Lee MK, Lee KY, Kang SY. Antibacterial Activities of Prenylated Isoflavones from Maclura tricuspidata against Fish Pathogenic Streptococcus: Their Structure-Activity Relationships and Extraction Optimization. Molecules 2021; 26:molecules26247451. [PMID: 34946533 PMCID: PMC8704674 DOI: 10.3390/molecules26247451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022] Open
Abstract
Streptococcus zoonotic bacteria cause serious problems in aquaculture with clinical effects on humans. A structure-antibacterial activity relationships analysis of 22 isoflavones isolated from M. tricuspidata (leaves, ripe fruits, and unripe fruits) against S. iniae revealed that prenylation of the isoflavone skeleton was an important key for their antibacterial activities (minimum inhibitory concentrations: 1.95–500 μg/mL). Through principal component analysis, characteristic prenylated isoflavones such as 6,8-diprenlygenistein (4) were identified as pivotal compounds that largely determine each part’s antibacterial activities. M. tiricuspidata ripe fruits (MTF), which showed the highest antibacterial activity among the parts tested, were optimized for high antibacterial activity and low cytotoxicity on fathead minnow cells using Box–Behnken design. Optimized extraction conditions were deduced to be 50%/80 °C/7.5 h for ethanol concentration/extraction temperature/time, and OE-MTF showed contents of 6,8-diprenlygenistein (4), 2.09% with a MIC of 40 µg/mL. These results suggest that OE-MTF and its active isoflavones have promising potential as eco-friendly antibacterial agents against streptococcosis in aquaculture.
Collapse
Affiliation(s)
- Jae-Woong Lim
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Korea; (J.-W.L.); (J.-S.C.)
| | - Yang Hee Jo
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea; (Y.H.J.); (M.K.L.)
| | - Ji-Seok Choi
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Korea; (J.-W.L.); (J.-S.C.)
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea; (Y.H.J.); (M.K.L.)
| | - Ki Yong Lee
- College of Pharmacy, Korea University, Sejong 30019, Korea;
| | - So Young Kang
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Korea; (J.-W.L.); (J.-S.C.)
- Correspondence: ; Tel./Fax: +82-61-659-7176
| |
Collapse
|
32
|
Akomeng N, Adusei S. Organic solvent extraction and spectrophotometric quantification of total phenolic content of soil. Heliyon 2021; 7:e08388. [PMID: 34841107 PMCID: PMC8605349 DOI: 10.1016/j.heliyon.2021.e08388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/27/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
Phenolic compounds are regarded as the most abundant plant metabolites that are known to decompose progressively into soils, likened to other soil organic materials. Once assimilated into soils, they can control soil processes, including organic matter decomposition and nutrient cycling. Established that phenolic compounds can influence nutrients availability and soil quality, it becomes crucial to investigate into soil phenolics through the application of appropriate extraction technique and quantification of total phenolic content in soils. This study therefore aimed at utilizing ethanol, hexane and diethyl ether organic solvents to extract and quantify total phenolic content of soil, sampled from a vegetable growing area. Conventional organic solvent extraction method was employed to extract phenolics, while spectrophotometric technique was utilized to quantify total phenolic content. The highest extraction yield of 34.52% was achieved with ethanol followed by diethyl ether (28.23%) and hexane (25.47%). Interestingly, hexane, which had the least extraction yield, rather recorded the highest phenolics concentration of 5.50 ± 0.02 mgGAE/g, with ethanol producing a concentration of 2.04 ± 0.05 mgGAE/g and 3.82 ± 0.01 mgGAE/g for diethyl ether. The percent recovery, limit of detection (LOD) and limit of quantification (LOQ) of phenolic compounds were found to be 102%, 0.8 mg/g and 1.5 mg/g for ethanol; 96%, 0.6 mg/g and 1.2 mg/g for diethyl ether and 94%, 0.4 mg/g and 1.0 mg/g for hexane respectively. These results indicate that for an extraction efficiency and greater yield, the use of ethanol as solvent is preferred whereas extraction using hexane is suitable for total phenolics quantification. The findings of this study have provided a vital insight regarding the influence of organic solvents on the extractability and quantification of total phenolic content of soil.
Collapse
Affiliation(s)
- Nicholas Akomeng
- Department of Laboratory Technology, University of Cape Coast, Cape Coast, Ghana
| | - Stephen Adusei
- Value Addition Division, CSIR- Oil Palm Research Institute, Kade, Ghana
| |
Collapse
|
33
|
Aliyu A, Shaari MR, Ahmad Sayuti NS, Reduan FH, Sithambaram S, Mohamed Mustapha N, Shaari K, Hamzah HB. Moringa oleifera hydorethanolic leaf extract induced acute and sub-acute hepato-nephrotoxicity in female ICR-mice. Sci Prog 2021; 104:368504211004272. [PMID: 34886737 PMCID: PMC10450773 DOI: 10.1177/00368504211004272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Moringa oleifera (M. oleifera) Lam belongs to the family Moringaceae. It is an important multipurpose tree that is largely distributed globally and has been used almost in every aspect of traditional medicine for the treatment of various illnesses including cancers, diabetes mellitus, asthma, arthritis, etc. This study investigated the effects of oral acute and sub-acute administration of M. oleifera hydroethanolic leaf extract (MOHE) in ICR-mice. Its major phenolic compounds were also determined. Ten (10) female, 8-week old mice were grouped into control and treatment groups for acute toxicity study. A dose of 2000 mg/kg MOHE was given once to the treatment group via oral gavage. However, for the sub-acute toxicity study, 25 mice were grouped into groups A (control), B (125 mg/kg), C (250 mg/kg), D (500 mg/kg) and E (1000 mg/kg). MOHE was given via oral gavage to groups B, C, D and E daily for 28 days. Group A received only distilled water. The mice were sacrificed at the end of the experiments and samples were collected for evaluation. The results of the chemical profiling of MOHE revealed the presence of glucomoringin, niaziminine, quercetin and kaempferol as the major compounds. The treated mice in the acute toxicity study were slightly anaemic and showed evidence of stress leukogram. Moreover, a slight increase in creatinine, significant increases in AST and CK, hepatic degeneration and necrosis, none-obstructive sinusoidal dilatation, renal tubular necrosis, interstitial nephritis and renal interstitial oedema were observed. It is concluded that the LD50 of MOHE is higher than 2000 mg/kg. However, oral administration of MOHE causes acute mild anaemia and moderate hepato-nephrotoxicity in ICR-mice. Its major phenolic compounds are glucomoringin, niaziminine, quercetin and kaempferol.
Collapse
Affiliation(s)
- Abdullahi Aliyu
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Veterinary Pathology, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Mohd Rosly Shaari
- Animal Science Research Centre, Malaysian Agricultural Research and Development Institute Headquarter, Serdang, Selangor, Malaysia
| | - Nurul Syahirah Ahmad Sayuti
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Farhan Hanif Reduan
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Shanmugavelu Sithambaram
- Animal Science Research Centre, Malaysian Agricultural Research and Development Institute Headquarter, Serdang, Selangor, Malaysia
| | - Noordin Mohamed Mustapha
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Department of Chemistry, Faculty of Science and Environmental Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hazilawati Binti Hamzah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
34
|
Oancea S. A Review of the Current Knowledge of Thermal Stability of Anthocyanins and Approaches to Their Stabilization to Heat. Antioxidants (Basel) 2021; 10:1337. [PMID: 34572968 PMCID: PMC8468304 DOI: 10.3390/antiox10091337] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 01/10/2023] Open
Abstract
Anthocyanins are colored valuable biocompounds, of which extraction increases globally, although functional applications are restrained by their limited environmental stability. Temperature is a critical parameter of food industrial processing that impacts on the food matrix, particularly affecting heat-sensitive compounds such as anthocyanins. Due to the notable scientific progress in the field of thermal stability of anthocyanins, an analytical and synthetic integration of published data is required. This review focuses on the molecular mechanisms and the kinetic parameters of anthocyanin degradation during heating, both in extracts and real food matrices. Several kinetic models (Arrhenius, Eyring, Ball) of anthocyanin degradation were studied. Crude extracts deliver more thermally stable anthocyanins than purified ones. A different anthocyanin behavior pattern within real food products subjected to thermal processing has been observed due to interactions with some nutrients (proteins, polysaccharides). The most recent studies on the stabilization of anthocyanins by linkages to other molecules using classical and innovative methods are summarized. Ensuring appropriate thermal conditions for processing anthocyanin-rich food will allow a rational design for the future development of stable functional products, which retain these bioactive molecules and their functionalities to a great extent.
Collapse
Affiliation(s)
- Simona Oancea
- Department of Agricultural Sciences and Food Engineering, "Lucian Blaga" University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550024 Sibiu, Romania
| |
Collapse
|
35
|
Cruz-Carrión Á, Ruiz de Azua MJ, Bravo FI, Aragonès G, Muguerza B, Suárez M, Arola-Arnal A. Tomatoes consumed in-season prevent oxidative stress in Fischer 344 rats: impact of geographical origin. Food Funct 2021; 12:8340-8350. [PMID: 34328156 DOI: 10.1039/d1fo00955a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tomatoes (Lycopersicon esculentum Mill.) constitute an important source of health-promoting compounds including bioactive antioxidants, such as flavonoids, that can differ in terms of composition and quantity depending on the conditions that tomatoes are cultivated. Otherwise, biological rhythms modulate oxidative stress. Therefore, the aim of this study was to evaluate the antioxidant properties of seasonally consumed tomatoes from two different geographical origins (local LT or non-local NLT) in Fischer 344 rats. The results show that LT and NLT have a specific phenolic signature and that each tomato gives a particular response toward biomarkers evaluated, which in turn showed a photoperiod-dependent effect. Remarkably, when tomatoes were administered in-season they improved or sustained antioxidant biomarkers, thus reducing oxidative stress values. It is noteworthy that the protective effect of tomatoes against oxidative stress depends on the geographical origin of the crop. Therefore, tomatoes consumed in-season may improve health by preventing oxidative stress.
Collapse
Affiliation(s)
- Álvaro Cruz-Carrión
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Ma Josefina Ruiz de Azua
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Francisca Isabel Bravo
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Gerard Aragonès
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Begoña Muguerza
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Manuel Suárez
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007 Tarragona, Spain.
| |
Collapse
|
36
|
Nazir R, Pandey DK, Pandey B, Kumar V, Dwivedi P, Khampariya A, Dey A, Malik T. Optimization of diosgenin extraction from Dioscorea deltoidea tubers using response surface methodology and artificial neural network modelling. PLoS One 2021; 16:e0253617. [PMID: 34288904 PMCID: PMC8294507 DOI: 10.1371/journal.pone.0253617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/08/2021] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Dioscorea deltoidea var. deltoidea (Dioscoreaceae) is a valuable endangered plant of great medicinal and economic importance due to the presence of the bioactive compound diosgenin. In the present study, response surface methodology (RSM) and artificial neural network (ANN) modelling have been implemented to evaluate the diosgenin content from D. deltoidea. In addition, different extraction parameters have been also optimized and developed. MATERIALS AND METHODS Firstly, Plackett-Burman design (PBD) was applied for screening the significant variables among the selected extraction parameters i.e. solvent composition, solid: solvent ratio, particle size, time, temperature, pH and extraction cycles on diosgenin yield. Among seven tested parameters only four parameters (particle size, solid: solvent ratio, time and temperature) were found to exert significant effect on the diosgenin extraction. Moreover, Box-Behnken design (BBD) was employed to optimize the significant extraction parameters for maximum diosgenin yield. RESULTS The most suitable condition for diosgenin extraction was found to be solid: solvent ratio (1:45), particle size (1.25 mm), time (45 min) and temperature (45°C). The maximum experimental yield of diosgenin (1.204% dry weight) was observed close to the predicted value (1.202% dry weight) on the basis of the chosen optimal extraction factors. The developed mathematical model fitted well with experimental data for diosgenin extraction. CONCLUSIONS Experimental validation revealed that a well trained ANN model has superior performance compared to a RSM model.
Collapse
Affiliation(s)
- Romaan Nazir
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Babita Pandey
- Department of Computer Science and Information Technology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Vijay Kumar
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Aditya Khampariya
- School of Computer Science and Engineering, Lovely Professional University, Phagwara, Punjab, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Tabarak Malik
- Department of Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
37
|
Xue H, Tan J, Li Q, Cai X, Tang J. Optimization ultrasound‐assisted extraction of anthocyanins from cranberry using response surface methodology coupled with genetic algorithm and identification anthocyanins with HPLC‐MS
2. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Hongkun Xue
- Key Laboratory of Particle & Radiation Imaging Ministry of Education Department of Engineering Physics Tsinghua University Beijing China
| | - Jiaqi Tan
- Academy for Advanced Interdisciplinary Studies Peking University Beijing China
| | - Qian Li
- Key Laboratory of Particle & Radiation Imaging Ministry of Education Department of Engineering Physics Tsinghua University Beijing China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging Ministry of Education Department of Engineering Physics Tsinghua University Beijing China
| | - Jintian Tang
- Key Laboratory of Particle & Radiation Imaging Ministry of Education Department of Engineering Physics Tsinghua University Beijing China
| |
Collapse
|
38
|
Kalra R, Conlan XA, Areche C, Dilawari R, Goel M. Metabolite Profiling of the Indian Food Spice Lichen, Pseudevernia furfuracea Combined With Optimised Extraction Methodology to Obtain Bioactive Phenolic Compounds. Front Pharmacol 2021; 12:629695. [PMID: 34040518 PMCID: PMC8141859 DOI: 10.3389/fphar.2021.629695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudevernia furfuracea (L.) Zopf (Parmeliaceae) is a well-known epiphytic lichen commonly used in Indian spice mixtures and food preparations such as curries. This study is an attempt to find the best extraction methodology with respect to extractive yield, total polyphenolic content (TPC), total flavonoid content and antioxidant activities of lichen P. furfuracea. Two phenolic compounds, atraric acid and olivetoric acid were isolated and quantified in their respective extracts with the aid of reverse phase high performance liquid chromatography (RP-HPLC). The highest concentration of both the compounds, atraric acid (4.89 mg/g DW) and olivetoric acid (11.46 mg/g DW) were found in 70% methanol extract. A direct correlation was also observed between the concentrations of these compounds with the free radical scavenging potential of the extracts which might contribute towards the antioxidant potential of the extract. Moreover, scanning electron microscopy and HPLC analysis which was used to study the effect of pre-processing on extraction process highlighted the capacity of a mixer grinder technique for improved separation of surface localized metabolites and enrichment of the fraction. An investigation of the chemical profile of the bioactive extract 70% methanol extract using UHPLC-DAD-MS lead to tentative identification of forty nine compounds. This extract was also assessed towards HEK 293 T cell line for cytotoxicity analysis. Concentration range of 0.156 to 100 µg/ml of PF70M extract exhibited no significant cell death as compared to control. Further, the active extract showed protective effect against hydroxyl radical's destructive effects on DNA when assessed using DNA nicking assay. Based upon this, it can be concluded that optimization of extraction solvent, sample pre-proceesing and extraction techniques can be useful in extraction of specific antioxidant metabolites.
Collapse
Affiliation(s)
- Rishu Kalra
- TERI-Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, Gurugram, India.,Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Xavier A Conlan
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Nuñoa, Chile
| | - Rahul Dilawari
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mayurika Goel
- TERI-Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, Gurugram, India
| |
Collapse
|
39
|
Optimization of pressurized liquid extraction and ultrasound methods for recovery of anthocyanins present in jambolan fruit (Syzygium cumini L.). FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Almusallam IA, Mohamed Ahmed IA, Babiker EE, Al Juhaimi FY, Fadimu GJ, Osman MA, Al Maiman SA, Ghafoor K, Alqah HA. Optimization of ultrasound-assisted extraction of bioactive properties from date palm (Phoenix dactylifera L.) spikelets using response surface methodology. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Xue H, Tan J, Fan L, Li Q, Cai X. Optimization microwave‐assisted extraction of anthocyanins from cranberry using response surface methodology coupled with genetic algorithm and kinetics model analysis. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hongkun Xue
- Key Laboratory of Particle & Radiation Imaging, Department of Engineering Physics Ministry of Education, Tsinghua University Beijing China
| | - Jiaqi Tan
- Academy for Advanced Interdisciplinary Studies Peking University Beijing China
| | - Linlin Fan
- Graduate College Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Qian Li
- Key Laboratory of Particle & Radiation Imaging, Department of Engineering Physics Ministry of Education, Tsinghua University Beijing China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging, Department of Engineering Physics Ministry of Education, Tsinghua University Beijing China
| |
Collapse
|
42
|
Ultrasound-Assisted Enzymatic Extraction of Anthocyanins from Raspberry Wine Residues: Process Optimization, Isolation, Purification, and Bioactivity Determination. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01976-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
43
|
Selective Extraction of Sinapic Acid Derivatives from Mustard Seed Meal by Acting on pH: Toward a High Antioxidant Activity Rich Extract. Molecules 2021; 26:molecules26010212. [PMID: 33401641 PMCID: PMC7795640 DOI: 10.3390/molecules26010212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/29/2022] Open
Abstract
The aim of this paper is to study the effect of the pH on the extraction of sinapic acid and its derivatives from mustard seed meal. Solutions of acidic pH (pH 2), basic pH (pH 12) and distilled water (uncontrolled pH ~ 4.5) were tested at different percentages of ethanol. The maximum extraction yield for sinapic acid (13.22 µmol/g of dry matter (DM)) was obtained with a buffered aqueous solution at pH 12. For ethyl sinapate, the maximum extraction yield reached 9.81 µmol/g DM with 70% ethanol/buffered aqueous solution at pH 12. The maximum extraction yield of sinapine (15.73 µmol/g DM) was achieved with 70% ethanol/buffered aqueous solution at pH 2. The antioxidant activity of each extract was assessed by DPPH assay; the results indicated that the extracts obtained at pH 12 and at low ethanol percentages (<50%) exhibit a higher antioxidant activity than extracts obtained at acidic conditions. Maximum antioxidant activity was reached at pH 12 with buffer solution (11.37 mg of Trolox Equivalent/g DM), which confirms that sinapic acid-rich fractions exhibit a higher antioxidant activity. Thus, to obtain rich antioxidant extracts, it is suggested to promote the presence of sinapic acid in the extracts.
Collapse
|
44
|
Extraction of Vanillin Following Bioconversion of Rice Straw and Its Optimization by Response Surface Methodology. Molecules 2020; 25:molecules25246031. [PMID: 33352794 PMCID: PMC7767248 DOI: 10.3390/molecules25246031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
Value-added chemicals, including phenolic compounds, can be generated through lignocellulosic biomass conversion via either biological or chemical pretreatment. Currently vanillin is one of the most valuable of these products that has been shown to be extractable on an industrial scale. This study demonstrates the potential of using rice straw inoculated with Serpula lacrymans, which produced a mixture of high value bio-based compounds including vanillin. Key extraction conditions were identified to be the volume of solvent used and extraction time, which were optimized using response surface methodology (RSM). The vanillin compounds extracted from rice straw solid state fermentation (SSF) was confirmed through LC-ESI MS/MS in selective ion mode. The optimum concentration and yield differed depending on the solvent, which was predicted using 60 mL ethyl acetate for 160 min were 0.408% and 3.957 μg g−1 respectively. In comparison, when ethanol was used, the highest concentration and yields of vanillin were 0.165% and 2.596 μg g−1. These were achieved using 40 mL of solvent, and extraction time increased to 248 min. The results confirm that fungal conversion of rice straw to vanillin could consequently offer a cost-effect alternative to other modes of production.
Collapse
|
45
|
Ultrasound-Assisted Extraction of Polyphenolic Contents and Acid Hydrolysis of Flavonoid Glycosides from Oil Palm (Elaeis guineensis Jacq.) Leaf: Optimization and Correlation with Free Radical Scavenging Activity. Processes (Basel) 2020. [DOI: 10.3390/pr8121540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Malaysia is ranked as the second largest oil palm producer in the world after Indonesia. This leads to the generation of large quantities of oil palm (Elaeis guineensis Jacq.) leaves (OPLs) annually, considered an underutilized oil palm biomass with low economical value. The present study aimed to study the effects of several parameters of ultrasound-assisted extraction (UAE) and the acid hydrolysis of phenolic compounds from OPLs using the single factor experimental approach. The effects of different solvents (hexane, ethyl acetate, 1:1 methanol–ethyl acetate, absolute methanol, and 4:1 methanol–water), solid–liquid ratios (1:20, 1:40, 1:50, 1:60, and 1:70), times (0.5, 1, 2, 3, and 5 h), and temperatures (25, 30, 40, 60, and 70 °C) were investigated for UAE. Moreover, the effects of acid concentration (0.2, 1, 2, 4, 6, and 12 M), incubation time (10, 30, 45, 60, and 90 min), and incubation temperature (65, 75, 85, 90, and 95 °C) on the acid hydrolysis of flavonoid glycosides were also determined. The results revealed that some of the tested parameters had prominent effects on the total phenolic (TPC) and total flavonoid (TFC) contents, as well as the DPPH free radical scavenging activity recovered from the OPLs. The optimal UAE conditions were determined to be 0.5 h at 25 °C using 4:1 methanol–water and 1:50 solid–liquid ratio, producing OPL extracts with TPC and TFC at 335.30 and 60.67 milligrams quercetin equivalents per gram of extract (mg QCE/g extract), respectively, and DPPH free radical scavenging activity at 94.06%. The phenolics present in OPLs were optimally hydrolysed using 6 M hydrochloric acid with an incubation period of 45 min at 95 °C with TPC, TFC, and DPPH free radical scavenging activity at 126.33 milligrams gallic acid equivalents per gram of extract (mg GAE/g extract), 36.08 mg QCE/g, and 54.88%, respectively. Moreover, acid hydrolysis managed to optimally recover the total apigenin content (TAC), total luteolin content (TLC), and total flavonoid C-glycoside content (TFCGC) with values of 79.12 micrograms vitexin equivalents per milligram of extract (µg VE/mg extract), 20.97 micrograms orientin equivalents per milligram of extract (µg OE/mg extract), and 100.09 µg/mg, respectively. Additionally, there were significant correlations between the polyphenolic compounds, flavonoid C-glycosides, and antioxidant activity for all parameters based on the Pearson correlation analysis. This indicates that OPLs have potential as a natural source of phenolic compounds, especially flavonoid C-glycosides, with beneficial free radical scavenging activity that can be incorporated in food and pharmaceutical products.
Collapse
|
46
|
Ultrasound-Assisted Deep Eutectic Solvent Extraction of Anthocyanins from Blueberry Wine Residues: Optimization, Identification, and HepG2 Antitumor Activity. Molecules 2020; 25:molecules25225456. [PMID: 33233829 PMCID: PMC7699922 DOI: 10.3390/molecules25225456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
Blueberry wine residues produced during the wine-brewing process contain abundant anthocyanins and other bioactive compounds. To extract anthocyanins from blueberry wine residues more efficiently, a novel procedure of ultrasound-assisted deep eutectic solvent extraction (UADESE) was proposed in this work. The extraction process was optimized by response surface methodology coupled with genetic algorithm. The optimum extraction parameters to achieve the highest yield of anthocyanins (9.32 ± 0.08 mg/g) from blueberry wine residues by UADESE were obtained at water content of 29%, ultrasonic power of 380 W, extraction temperature of 55 °C, and extraction time of 40 min. The AB-8 macroporous resin combined with Sephadex LH-20 techniques was used to purify the crude extract (CE) obtained under optimum extraction conditions and analyze the anthocyanins composition by HPLC-ESI-MS/MS. The cyanidin-3-rutinoside with purity of 92.81% was obtained. The HepG2 antitumor activity of CE was better than that of the purified anthocyanins component. Moreover, CE could increase the intracellular reactive oxygen species levels and the apoptosis, and arrest HepG2 cells in the S phases. These findings provided an effective and feasible method for anthocyanins extraction, and reduced the environmental burden of this waste.
Collapse
|
47
|
Echegaray N, Munekata PES, Gullón P, Dzuvor CKO, Gullón B, Kubi F, Lorenzo JM. Recent advances in food products fortification with anthocyanins. Crit Rev Food Sci Nutr 2020; 62:1553-1567. [PMID: 33198501 DOI: 10.1080/10408398.2020.1844141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Anthocyanins are polyphenolic compounds belonging to the group of flavonoids in charge of providing red, purple, and blue colourations to different parts of trees and plants, such as leaves, flowers, fruits, roots, and stems. These substances have potential health benefits due to characteristics such as antioxidant and anti-inflammatory properties, which could be leveraged in the food industry. However, the use and handling of anthocyanins are conditioned due to the low stability of these molecules. For this reason, the application of adequate extraction, purification and stabilization techniques is required for its subsequent management. In this regards, green extraction methods and novel stabilization techniques are of particular interest in the utilization of these biocompounds. This review provides in-depth information about the extraction, purification, and stabilization of anthocyanins from different plant sources. Additionally, this work highlights the potential use of anthocyanins in the food industry for the formulation of different fortified foods and beverages, which could have beneficial health effects. Green technologies, are a promising tool to recover extracts rich in anthocyanins from different vegetable matrices, including by-products. The extracts obtained can be easily used in the fortification of baked foods, dairy products, and different beverages.
Collapse
Affiliation(s)
- Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Patricia Gullón
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Christian K O Dzuvor
- Bioengineering Laboratory, Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), Ourense, Spain
| | - Francis Kubi
- Department of Chemical Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| |
Collapse
|
48
|
Tan J, Li Q, Xue H, Tang J. Ultrasound-assisted enzymatic extraction of anthocyanins from grape skins: optimization, identification, and antitumor activity. J Food Sci 2020; 85:3731-3744. [PMID: 33078395 DOI: 10.1111/1750-3841.15497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Grape skins produced during the grape juice production and processing contain abundant anthocyanins and other active compounds. Consequently, this study optimized the extraction conditions for ultrasound-assisted enzymatic extraction (UAEE) of anthocyanins from grape skins via response surface methodology coupled with genetic algorithm. The optimum extraction parameters to achieve the highest anthocyanins yield (3.01 ± 0.04) mg/g from grape skins by UAEE were obtained under an extraction temperature of 50 °C, ultrasonic power of 400 W, pectinase dosage of 0.16%, and extraction time of 28 min. The AB-8 macroporous resin combined Sephadex LH-20 techniques were further employed to purify the anthocyanins extracts obtained under optimum extraction conditions (AEOEC), and the main anthocyanins were identified using high-performance liquid chromatography tandem mass spectrometry. The purified anthocyanins contained two anthocyanins in terms of delphinidin-3,5-O-diglucoside and cyanidin-3-O-rutinoside with purity of 91.35% and 92.64%, respectively. Ultimately, we further evaluated the antitumor activity of AEOEC and two purified anthocyanins on breast cancer. The results indicated that the antitumor effect of AEOEC on breast cancer MCF-7 cells was better than that of two purified anthocyanins. In addition, AEOEC could memorably increase intracellular reactive oxygen species levels and apoptosis of MCF-7 cells, and arrest MCF-7 cells in the G2/M phases. The findings provide an effective and feasible method for anthocyanins extraction and reduce the environmental burden of this waste.
Collapse
Affiliation(s)
- Jiaqi Tan
- Academy for Advanced Interdisciplinary Studies, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Qian Li
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Hongkun Xue
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Jintian Tang
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing, 100084, China
| |
Collapse
|
49
|
Abd Ghafar SZ, Mediani A, Maulidiani M, Rudiyanto R, Mohd Ghazali H, Ramli NS, Abas F. Complementary NMR- and MS-based metabolomics approaches reveal the correlations of phytochemicals and biological activities in Phyllanthus acidus leaf extracts. Food Res Int 2020; 136:109312. [DOI: 10.1016/j.foodres.2020.109312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/26/2020] [Accepted: 05/11/2020] [Indexed: 02/08/2023]
|
50
|
Abarca-Vargas R, Petricevich VL. Comparison of Different Extraction Methods for the Phenolic Compounds Recovery with the Antioxidant Activity of Bougainvillea x buttiana. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411015666190409110207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Bougainvillea x buttiana has long been used as a Mexican conventional medicinal
drug to cure different sicknesses.
Objective:
In this work, the consequences of ethanol combination and temperature extraction for
phenolic compound recovery with the biological activity in Bougainvillea x buttiana extracts were
investigated.
Materials and Methods:
The phenolic recovery from Bougainvillea x buttiana was determined by
comparing the effects of ethanol 0%, 50-100% (v/v) and extraction temperature (26, 45 and 64°C).
The total phenolic content was investigated using spectrophotometric methods. Antioxidant activity
from different Bougainvillea x buttiana extracts was evaluated by determining their potential to scavenge
the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical. The chemical compositions and cytotoxic
effect of extracts were determined using GC-MS techniques and the crystal violet technique,
respectively.
Results:
Our results confirmed that all extractions with different concentrations and temperatures had
significant effects over the total phenolic contents and antioxidant activity (DPPH) of the extracts.
The best recuperation of the total phenol content was observed in extracts with 60% ethanol at 26°C
(201.08 mgEGA/g dry extract). Extracts with 100% ethanol at 26°C showed the highest antioxidant
activity (IC50 was 286.75 μg/mL). GC-MS revealed the presence of various phytochemical contents
with polar and non-polar properties. The phenolic compounds were investigated as to the structure,
quantity and position of the hydroxyl groups on the benzene ring.
Conclusion:
The ethanolic extract of Bougainvillea x buttiana was confirmed to have high phenolic
content and contain pharmacologically active compounds, with potent antioxidant effects and low cytotoxic
effects.
Collapse
Affiliation(s)
- Rodolfo Abarca-Vargas
- Facultad de Medicina de la Universidad Autonoma del Estado de Morelos (UAEM), Calle: Leneros, Esquina Iztaccíhuatl s/n. Col. Volcanes. Cuernavaca, Mor., C.P. 62350., Morelos, Mexico
| | - Vera L. Petricevich
- Facultad de Medicina de la Universidad Autonoma del Estado de Morelos (UAEM), Calle: Leneros, Esquina Iztaccíhuatl s/n. Col. Volcanes. Cuernavaca, Mor., C.P. 62350., Morelos, Mexico
| |
Collapse
|