1
|
Planý M, Sitarčík J, Pavlović J, Budiš J, Koreňová J, Kuchta T, Pangallo D. Evaluation of bacterial consortia associated with dairy fermentation by ribosomal RNA (rrn) operon metabarcoding strategy using MinION device. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Berus SM, Adamczyk-Popławska M, Goździk K, Przedpełska G, Szymborski TR, Stepanenko Y, Kamińska A. SERS-PLSR Analysis of Vaginal Microflora: Towards the Spectral Library of Microorganisms. Int J Mol Sci 2022; 23:ijms232012576. [PMID: 36293436 PMCID: PMC9604117 DOI: 10.3390/ijms232012576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
The accurate identification of microorganisms belonging to vaginal microflora is crucial for establishing which microorganisms are responsible for microbial shifting from beneficial symbiotic to pathogenic bacteria and understanding pathogenesis leading to vaginosis and vaginal infections. In this study, we involved the surface-enhanced Raman spectroscopy (SERS) technique to compile the spectral signatures of the most significant microorganisms being part of the natural vaginal microbiota and some vaginal pathogens. Obtained data will supply our still developing spectral SERS database of microorganisms. The SERS results were assisted by Partial Least Squares Regression (PLSR), which visually discloses some dependencies between spectral images and hence their biochemical compositions of the outer structure. In our work, we focused on the most common and typical of the reproductive system microorganisms (Lactobacillus spp. and Bifidobacterium spp.) and vaginal pathogens: bacteria (e.g., Gardnerella vaginalis, Prevotella bivia, Atopobium vaginae), fungi (e.g., Candida albicans, Candida glabrata), and protozoa (Trichomonas vaginalis). The obtained results proved that each microorganism has its unique spectral fingerprint that differentiates it from the rest. Moreover, the discrimination was obtained at a high level of explained information by subsequent factors, e.g., in the inter-species distinction of Candida spp. the first three factors explain 98% of the variance in block Y with 95% of data within the X matrix, while in differentiation between Lactobacillus spp. and Bifidobacterium spp. (natural flora) and pathogen (e.g., Candida glabrata) the information is explained at the level of 45% of the Y matrix with 94% of original data. PLSR gave us insight into discriminating variables based on which the marker bands representing specific compounds in the outer structure of microorganisms were found: for Lactobacillus spp. 1400 cm−1, for fungi 905 and 1209 cm−1, and for protozoa 805, 890, 1062, 1185, 1300, 1555, and 1610 cm−1. Then, they can be used as significant marker bands in the analysis of clinical subjects, e.g., vaginal swabs.
Collapse
Affiliation(s)
- Sylwia Magdalena Berus
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Correspondence: (S.M.B.); (A.K.)
| | - Monika Adamczyk-Popławska
- Department of Molecular Virology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Goździk
- Department of Parasitology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Grażyna Przedpełska
- Department of Dermatology and Venerology, Infant Jesus Clinical Hospital, Koszykowa 82a, 02-008 Warsaw, Poland
| | - Tomasz R. Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Yuriy Stepanenko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Correspondence: (S.M.B.); (A.K.)
| |
Collapse
|
3
|
Lee SY, Kim JH, Oh SW. Combination of filtration and immunomagnetic separation based on real-time PCR to detect foodborne pathogens in fresh-cut apple. J Microbiol Methods 2022; 201:106577. [PMID: 36103904 DOI: 10.1016/j.mimet.2022.106577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 12/27/2022]
Abstract
Rapid detection methods require pre-enrichment culture in order to detect low levels of foodborne pathogens. To rapidly detect foodborne pathogens, enrichment culture processes could be replaced. Filtration and immunomagnetic separation methods have been identified to effectively concentrate and separate target pathogens from foods. In this study, a combination of filtration and immunomagnetic separation (IMS) has enabled the rapid and sensitive detection of foodborne pathogens. The pretreatment method, including separation and concentration procedures, increased sensitivity 10-100-fold. The sensitivity of a combination method using filtration and IMS to detect Escherichia coli O157:H7 and Salmonella enterica subsp. enterica serovar Typhimurium was 100-101 CFU/10 mL. In fresh-cut apples, IMS combined with filtration effectively improved the detection limit of real-time PCR to 2.70 × 101 CFU/g in E. coli O157:H7 and 1.80 × 102 CFU/g in Salmonella. The filtration simplified processing of large-volumes (250 mL) and effectively concentrated pathogens while decreasing immunomagnetic beads used in IMS. Bacterial concentration by IMS combined with filtration increased sensitivity 10-100-fold compared with control. In addition, the application of IMS effectively removed concentrated residual food material (10-15 mg/mL) after filtration, improving relative sensitivity. In conclusion, this method may detect foodborne pathogen in foods such as fresh-cut fruits in a more rapid and sensitive fashion than traditional culture-based methods.
Collapse
Affiliation(s)
- So-Young Lee
- Department of Food and Nutrition, Kookmin University, Seoul 136-702, Republic of Korea
| | - Jin-Hee Kim
- Department of Food and Nutrition, Mokpo National University, Jeonnam, Republic of Korea; Research Institute of Human Ecology, Mokpo National University, Jeonnam, Republic of Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul 136-702, Republic of Korea.
| |
Collapse
|
4
|
Tao Y, Yue Y, Qiu G, Ji Z, Spillman M, Gai Z, Chen Q, Bielecki M, Huber M, Trkola A, Wang Q, Cao J, Wang J. Comparison of analytical sensitivity and efficiency for SARS-CoV-2 primer sets by TaqMan-based and SYBR Green-based RT-qPCR. Appl Microbiol Biotechnol 2022; 106:2207-2218. [PMID: 35218386 PMCID: PMC8881549 DOI: 10.1007/s00253-022-11822-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022]
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) continues to threaten public health. For developing countries where vaccines are still in shortage, cheaper alternative molecular methods for SARS-CoV-2 identification can be crucial to prevent the next wave. Therefore, 14 primer sets recommended by the World Health Organization (WHO) was evaluated on testing both clinical patient and environmental samples with the gold standard diagnosis method, TaqMan-based RT-qPCR, and a cheaper alternative method, SYBR Green-based RT-qPCR. Using suitable primer sets, such as ORF1ab, 2019_nCoV_N1 and 2019_nCoV_N3, the performance of the SYBR Green approach was comparable or better than the TaqMan approach, even when considering the newly dominating or emerging variants, including Delta, Eta, Kappa, Lambda, Mu, and Omicron. ORF1ab and 2019_nCoV_N3 were the best combination for sensitive and reliable SARS-CoV-2 molecular diagnostics due to their high sensitivity, specificity, and broad accessibility. KEY POINTS: • With suitable primer sets, the SYBR Green method performs better than the TaqMan one. • With suitable primer sets, both methods should still detect the new variants well. • ORF1ab and 2019_nCoV_N3 were the best combination for SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Yile Tao
- Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Yang Yue
- Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Guangyu Qiu
- Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Zheng Ji
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Martin Spillman
- Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Qingfa Chen
- Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University, Liaocheng, 252000, China
| | - Michel Bielecki
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, 8091, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland
| | - Qiyuan Wang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland.
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland.
| |
Collapse
|
5
|
Vázquez-Rosas-Landa M, Sánchez-Rangel D, Hernández-Domínguez EE, Pérez-Torres CA, López-Buenfil A, de Jesús García-Ávila C, Carrillo-Hernández ED, Castañeda-Casasola CC, Rodríguez-Haas B, Pérez-Lira J, Villafán E, Alonso-Sánchez A, Ibarra-Laclette E. Design of a diagnostic system based on molecular markers derived from the ascomycetes pan-genome analysis: The case of Fusarium dieback disease. PLoS One 2021; 16:e0246079. [PMID: 33507916 PMCID: PMC7843019 DOI: 10.1371/journal.pone.0246079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
A key factor to take actions against phytosanitary problems is the accurate and rapid detection of the causal agent. Here, we develop a molecular diagnostics system based on comparative genomics to easily identify fusariosis and specific pathogenic species as the Fusarium kuroshium, the symbiont of the ambrosia beetle Euwallaceae kuroshio Gomez and Hulcr which is responsible for Fusarium dieback disease in San Diego CA, USA. We performed a pan-genome analysis using sixty-three ascomycetes fungi species including phytopathogens and fungi associated with the ambrosia beetles. Pan-genome analysis revealed that 2,631 orthologue genes are only shared by Fusarium spp., and on average 3,941 (SD ± 1,418.6) are species-specific genes. These genes were used for PCR primer design and tested on DNA isolated from i) different strains of ascomycete species, ii) artificially infected avocado stems and iii) plant tissue of field-collected samples presumably infected. Our results let us propose a useful set of primers to either identify any species from Fusarium genus or, in a specific manner, species such as F. kuroshium, F. oxysporum, and F. graminearum. The results suggest that the molecular strategy employed in this study can be expanded to design primers against different types of pathogens responsible for provoking critical plant diseases.
Collapse
Affiliation(s)
- Mirna Vázquez-Rosas-Landa
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, México
| | - Diana Sánchez-Rangel
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, México
- Catedrático CONACYT en el INECOL, Xalapa, Veracruz, México
| | - Eric E. Hernández-Domínguez
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, México
- Catedrático CONACYT en el INECOL, Xalapa, Veracruz, México
| | - Claudia-Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, México
- Catedrático CONACYT en el INECOL, Xalapa, Veracruz, México
| | | | - Clemente de Jesús García-Ávila
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA), Centro Nacional de Referencia Fitosanitaria (CNRF), Tecámac, Estado de México, México
| | | | - Cynthia-Coccet Castañeda-Casasola
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA), Centro Nacional de Referencia Fitosanitaria (CNRF), Tecámac, Estado de México, México
| | - Benjamín Rodríguez-Haas
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, México
| | - Josué Pérez-Lira
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, México
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, México
| | - Alexandro Alonso-Sánchez
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, México
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, México
- * E-mail:
| |
Collapse
|
6
|
Detection of spore forming Paenibacillus macerans in raw milk. J Microbiol Methods 2020; 177:106048. [PMID: 32890571 DOI: 10.1016/j.mimet.2020.106048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 11/22/2022]
Abstract
Paenibacillus macerans can cause spoilage of milk during extended storage. However, the natural milk microbiota interferes with the enumeration of Paenibacillus species in raw milk. In this study, a qualitative SYBR Green real-time PCR assay based on the groEL gene was developed for detecting P. macerans (PMassay) in raw milk and compared with one designed for total Paenibacillus detection (TPassay). The specificity of the PMassay was confirmed against a panel of dairy-related spore forming isolates. In the presence of background DNA substituted up to 95%, P. macerans DNA could still be detected by the PMassay although interference occurred as non-target DNA substitution increased. The PMassay was sensitive (detection limit of 2 log CFU/ml in milk) and specific as non-P. macerans isolates gave a Ct > 30. After enrichment of raw milk for 7 days at 37 °C in Reinforced Clostridial Medium with D-cycloserine (RCM-D) under anaerobiosis, Paenibacillus was detected in 10 of the 16 raw milk samples tested. Enrichment in RCM-D yielded about 0.5 to 5.8 log CFU/ml total Paenibacillus and 0.3 to 4.6 log CFU/ml P. macerans in the samples. The assay could be useful in commercial settings, allowing a sensitive detection of P. macerans.
Collapse
|
7
|
Ren X, Yue X, Mwakinyali SE, Zhang W, Zhang Q, Li P. Small Molecular Contaminant and Microorganism Can Be Simultaneously Detected Based on Nanobody-Phage: Using Carcinogen Aflatoxin and Its Main Fungal Aspergillus Section Flavi spp. in Stored Maize for Demonstration. Front Microbiol 2020; 10:3023. [PMID: 32038521 PMCID: PMC6989581 DOI: 10.3389/fmicb.2019.03023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/17/2019] [Indexed: 01/15/2023] Open
Abstract
Simultaneous detection technology has become a hot topic in analytical chemistry; however, very few reports on how to simultaneously detect small molecular contaminants and microorganisms have been in place. Aflatoxins are a group of highly toxic and carcinogenic compounds, which are produced mainly by Aspergillus flavus and Aspergillus parasiticus from section Flavi responsible for aflatoxin accumulation in stored cereals. Both aflatoxins and Aspergillus section Flavi were used to demonstrate the duplex real-time RCR method of simultaneously detecting small molecular contaminants and microorganisms. The detection of aflatoxins and Aspergillus section Flavi was carried out depending on the anti-idiotypic nanobody-phage V2–5 and aflatoxin-synthesis related gene nor-1 (=aflD), respectively. The quantitative standard curves for simultaneous detection of aflatoxins and Aspergillus section Flavi were constructed, with detection limits of 0.02 ng/ml and 8 × 102 spores/g, respectively. Naturally contaminated maize samples (n = 25) were analyzed for a further validation. The results were in good agreement between the new developed method and the referential methods (high-performance liquid chromatography and the conventional plating counts).
Collapse
Affiliation(s)
- Xianfeng Ren
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiaofeng Yue
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, China.,Laboratory of Risk Assessment for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Silivano Edson Mwakinyali
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, China.,Laboratory of Risk Assessment for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Wen Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, China.,Laboratory of Risk Assessment for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, China.,Laboratory of Risk Assessment for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, China.,Laboratory of Risk Assessment for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China.,Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
8
|
Dow CT, Sechi LA. Cows Get Crohn's Disease and They're Giving Us Diabetes. Microorganisms 2019; 7:microorganisms7100466. [PMID: 31627347 PMCID: PMC6843388 DOI: 10.3390/microorganisms7100466] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022] Open
Abstract
Increasingly, Johne's disease of ruminants and human Crohn's disease are regarded as the same infectious disease: paratuberculosis. Mycobacterium avium ss. paratuberculosis (MAP) is the cause of Johne's and is the most commonly linked infectious cause of Crohn's disease. Humans are broadly exposed to MAP in dairy products and in the environment. MAP has been found within granulomas such as Crohn's disease and can stimulate autoantibodies in diseases such as type 1 diabetes (T1D) and Hashimoto's thyroiditis. Moreover, beyond Crohn's and T1D, MAP is increasingly associated with a host of autoimmune diseases. This article suggests near equivalency between paucibacillary Johne's disease of ruminant animals and human Crohn's disease and implicates MAP zoonosis beyond Crohn's disease to include T1D.
Collapse
Affiliation(s)
- Coad Thomas Dow
- McPherson Eye Research Institute, University of Wisconsin, 9431 WIMR, 1111 Highland Avenue, Madison, WI 53705, USA.
| | - Leonardo A Sechi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy.
| |
Collapse
|
9
|
Nong Q, Yang Y, Zhang M, Zhang M, Chen J, Jian S, Lu H, Xia K. RNA-seq-based selection of reference genes for RT-qPCR analysis of pitaya. FEBS Open Bio 2019; 9:1403-1412. [PMID: 31127874 PMCID: PMC6668369 DOI: 10.1002/2211-5463.12678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/08/2019] [Accepted: 05/23/2019] [Indexed: 11/18/2022] Open
Abstract
Reverse‐transcription quantitative real‐time PCR (RT‐qPCR) is a primary tool for measuring gene expression levels, and selection of appropriate reference genes is crucial for accurate and reproducible results of gene expression under various experimental conditions. However, no systematic evaluation of reference genes in pitaya (Hylocereus undatus Britt.) has been performed. Here, we examined the expression of five candidate reference genes, namely elongation factor 1‐alpha (HuEF1‐α), 18S ribosomal RNA (Hu18S rRNA), ubiquitin (HuUBQ), actin (HuACT), and ubiquitin‐conjugating enzyme (HuUQT), under different conditions in pitaya. The expression stabilities of these five genes were evaluated using two computation programs: geNorm and NormFinder. The results were further validated by normalizing the expression of the phosphoglycerate kinase (HuPGK) and ethylene‐responsive transcription factor (HuERF) genes. Our results indicate that combined use of HuUBQ and HuUQT is the most stable reference under all of the experimental conditions examined. HuEF1‐α, HuUBQ, and HuUQT are the top three most stable reference genes under salt stress, drought stress, and heat stress, and across different cultivars. HuEF1‐α, HuACT, and HuUQT exhibited the most stable expression patterns across different tissues. Our results will allow researchers to select the most appropriate reference genes for gene expression studies of pitaya under different conditions.
Collapse
Affiliation(s)
- Quandong Nong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Wenshan Academy of Agricultural Sciences, China
| | | | - Mingyong Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Mei Zhang
- Guangdong Provincial Key laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jiantong Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shuguang Jian
- Guangdong Provincial Key laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hongfang Lu
- Guangdong Provincial Key laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Kuaifei Xia
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
10
|
Chen YC, Lai YS, Shyu DJH, Chang YW, Chen ZR, Liao YK, Pang CT, Chang KT. C-Terminal Part of Glutamate-Ammonia-Ligase Adenyltransferase Gene Identified by RAPD-HRM with 3H Primer for E. Coli Screening. Folia Biol (Praha) 2019; 65:88-100. [PMID: 31464184 DOI: 10.14712/fb2019065020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
A single random oligonucleotide 3H primer has been previously applied in random-amplified- polymorphic-DNA (RAPD)-PCR to distinguish stocked bacteria E. coli within a cocktail mixture also containing Enterococcus faecalis, Bifidobacterium longum and Ruminococcus gnavus. In this study, we demonstrate that a 702 base pair (bp) gene fragment can be amplified as a unique pattern by RAPD-PCR using a 3H primer in human faeces containing E. coli. This unique 702 bp amplicon contained a 687 bp gene fragment identified as the C-terminal region of the glutamate-ammonia-ligase adenyltransferase (glnE) gene of E. coli. By high-resolution melt (HRM) analysis, a mean melt-curve temperature of this 702 bp amplicon was determined to be approximately 88.1 ± 0.22 degrees Celsius (°C). A combination of RAPD with HRM in one single reaction based on this amplicon can achieve semi-quantitative detection of up to 102 CFU/ml of E. coli. To increase the signal intensity of HRM, a primer pair capable of screening E. coli directly from fresh human faeces was re-designed from the 687 bp gene segment, giving a mean peak melt-curve temperature at 88.35 ± 0.11 °C. Finally, single-nucleotide polymorphisms of this 687 bp gene segment were analysed for pathogenic E. coli strains, including UMN026, O83:H1, O104:H4, O157:H7 and O169:H41. We conclude that this 687 bp segment of the glnE gene has a high potential for screening of human faecal E. coli, including pathogenic strains, in contaminated food and water.
Collapse
Affiliation(s)
- Y C Chen
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Y S Lai
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - D J H Shyu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Y W Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Z R Chen
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Y K Liao
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - C T Pang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - K T Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Flow Cytometry Center, Precision Instruments Center, Office of Research and Development, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
11
|
Hahn J, Kim E, You YS, Gunasekaran S, Lim S, Choi YJ. A Switchable Linker-Based Immunoassay for Ultrasensitive Visible Detection ofSalmonellain Tomatoes. J Food Sci 2017; 82:2321-2328. [DOI: 10.1111/1750-3841.13861] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 06/21/2017] [Accepted: 07/31/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Jungwoo Hahn
- Dept. of Agricultural Biotechnology; Seoul National Univ.; 1 Gwanakro Gwanakgu Seoul 151-921 Korea
| | - Eunghee Kim
- Dept. of Agricultural Biotechnology; Seoul National Univ.; 1 Gwanakro Gwanakgu Seoul 151-921 Korea
| | - Young Sang You
- Dept. of Biological System Engineering; Univ. of Wisconsin-Madison; Madison Wis. 53706 U.S.A
| | - Sundaram Gunasekaran
- Dept. of Biological System Engineering; Univ. of Wisconsin-Madison; Madison Wis. 53706 U.S.A
| | - Seokwon Lim
- Dept. of Food Science & Technology and Center for Natural Sciences; Hoseo Univ.; 79-20 Hoseoro Asan Chungnam 336-795 Korea
| | - Young Jin Choi
- Dept. of Agricultural Biotechnology; Seoul National Univ.; 1 Gwanakro Gwanakgu Seoul 151-921 Korea
- Center for Food and Bioconvergence; Seoul National Univ.; 1 Gwanakro Gwanakgu Seoul 151-921 Korea
- Research Inst. of Agriculture and Life Sciences; Seoul National Univ.; 1 Gwanakro Gwanakgu Seoul 151-921 Korea
| |
Collapse
|
12
|
Yoo K, Lee TK, Choi EJ, Yang J, Shukla SK, Hwang SI, Park J. Molecular approaches for the detection and monitoring of microbial communities in bioaerosols: A review. J Environ Sci (China) 2017; 51:234-247. [PMID: 28115135 DOI: 10.1016/j.jes.2016.07.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/04/2016] [Accepted: 07/08/2016] [Indexed: 05/21/2023]
Abstract
Bioaerosols significantly affect atmospheric processes while they undergo long-range vertical and horizontal transport and influence atmospheric chemistry and physics and climate change. Accumulating evidence suggests that exposure to bioaerosols may cause adverse health effects, including severe disease. Studies of bioaerosols have primarily focused on their chemical composition and largely neglected their biological composition and the negative effects of biological composition on ecosystems and human health. Here, current molecular methods for the identification, quantification, and distribution of bioaerosol agents are reviewed. Modern developments in environmental microbiology technology would be favorable in elucidation of microbial temporal and spatial distribution in the atmosphere at high resolution. In addition, these provide additional supports for growing evidence that microbial diversity or composition in the bioaerosol is an indispensable environmental aspect linking with public health.
Collapse
Affiliation(s)
- Keunje Yoo
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea; Division of Natural Resources Conservation, Korea Environment Institute, Sejong-si 30147, South Korea
| | - Tae Kwon Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, South Korea
| | - Eun Joo Choi
- Department of Systems Biology, Yonsei University, Seoul 03722, South Korea
| | - Jihoon Yang
- Division of Natural Resources Conservation, Korea Environment Institute, Sejong-si 30147, South Korea
| | - Sudheer Kumar Shukla
- Department of Built and Natural Environment, Caledonian College of Engineering, Sultanate of Oman
| | - Sang-Il Hwang
- Division of Natural Resources Conservation, Korea Environment Institute, Sejong-si 30147, South Korea
| | - Joonhong Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea.
| |
Collapse
|
13
|
Abstract
Design of primers and probes is one of the most crucial factors affecting the success and quality of quantitative real-time PCR (qPCR) analyses, since an accurate and reliable quantification depends on using efficient primers and probes. Design of primers and probes should meet several criteria to find potential primers and probes for specific qPCR assays. The formation of primer-dimers and other non-specific products should be avoided or reduced. This factor is especially important when designing primers for SYBR(®) Green protocols but also in designing probes to ensure specificity of the developed qPCR protocol. To design primers and probes for qPCR, multiple software programs and websites are available being numerous of them free. These tools often consider the default requirements for primers and probes, although new research advances in primer and probe design should be progressively added to different algorithm programs. After a proper design, a precise validation of the primers and probes is necessary. Specific consideration should be taken into account when designing primers and probes for multiplex qPCR and reverse transcription qPCR (RT-qPCR). This chapter provides guidelines for the design of suitable primers and probes and their subsequent validation through the development of singlex qPCR, multiplex qPCR, and RT-qPCR protocols.
Collapse
|
14
|
Foddai AC, Grant IR. An optimised milk testing protocol to ensure accurate enumeration of viable Mycobacterium avium subsp. paratuberculosis by the PMS-phage assay. Int Dairy J 2015. [DOI: 10.1016/j.idairyj.2015.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Emulsion PCR to improve sensitivity of PCR-based E. coli O157:H7 ATCC 35150 detection. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0201-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Gómez-Rojo EM, Romero-Santacreu L, Jaime I, Rovira J. A novel real-time PCR assay for the specific identification and quantification of Weissella viridescens in blood sausages. Int J Food Microbiol 2015; 215:16-24. [PMID: 26318409 DOI: 10.1016/j.ijfoodmicro.2015.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/04/2015] [Accepted: 08/07/2015] [Indexed: 12/23/2022]
Abstract
Weissella viridescens has been identified as one of the lactic acid bacteria (LAB) responsible for the spoilage of "morcilla de Burgos". In order to identify and quantify this bacterium in "morcilla de Burgos", a new specific PCR procedure has been developed. The primers and Taqman probe were designed on the basis of a sequence from the gene recN. To confirm the specificity of the primers, 77 strains from the genera Carnobacterium, Enterococcus, Lactobacillus, Leuconostoc, Pediococcus, Streptococcus, Vagococcus and Weissella were tested by conventional PCR. The specificity of the primers and the correct functioning of the probe was confirmed by performing real-time PCR (qPCR) with 21 W. viridescens strains and 27 strains from other LAB genera. The levels of detection and quantification for the qPCR procedure proposed herein were determined for a pure culture of W. viridescens CECT 283(T) and for "morcilla de Burgos" artificially inoculated with this species. The primers were specific for W. viridescens, with only one product of 91 bp being observed for this species. Similarly, the qPCR reactions were found to be specific, amplifying at a mean CT of 15.0±0.4 only for W. viridescens strains. The limit of detection (LOD) and quantification (LOQ) for this procedure was established in 0.082 pg for genomic DNA from W. viridescens. With regard to the artificially inoculated "morcilla", the limit of quantification was established in 80 CFU/reaction and the limit of detection in 8 CFU/reaction. Consequently, the qPCR developed herein can be considered to be a good, fast, simple and accurate tool for the specific detection and quantification of W. viridescens in meat samples.
Collapse
Affiliation(s)
- Erica M Gómez-Rojo
- Department of Biotechnology and Food Science, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - L Romero-Santacreu
- Department of Advanced Materials, Nuclear Technology and Applied Nano/Biotechnology, University of Burgos, Parque Científico, Edificio I+D+I, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - I Jaime
- Department of Biotechnology and Food Science, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - J Rovira
- Department of Biotechnology and Food Science, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain.
| |
Collapse
|
17
|
Species Authentication of Common Meat Based on PCR Analysis of the Mitochondrial COI Gene. Appl Biochem Biotechnol 2015; 176:1770-80. [PMID: 26082039 DOI: 10.1007/s12010-015-1715-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/24/2015] [Indexed: 10/23/2022]
Abstract
Adulteration of meat products and costly animal-derived commodities with their inferior/cheaper counterparts is a grievous global problem. Species authentication is still technical challenging, especially to those deep processed products. The present study described the design of seven sets of species-specific primer based on a high heterozygous region of mitochondrial cytochrome c oxidase subunit I (COI) gene. These primers were proven to have high species specificity and no cross-reactions and unexpected products to different DNA source. Multiplex PCR assay was achieved for rapid and economical identification of four commonly consumed meats (pork, beef, chicken, and mutton). The conventional PCR assay was sensitive down to 0.001 ng of DNA template in the reactant. The developed method was also powerful in detecting as low as 0.1-mg adulterated pork (0.05 % in wt/wt) in an artificial counterfeited mutton. Validation test showed that the assay is specific, reproducible, and robust in commercial deep processed meats, leatherware, and feather commodities. This proposed method will be greatly beneficial to the consumers, food industry, leather, and feather commodity manufacture.
Collapse
|
18
|
Colvin ME, Peterson JT, Kent ML, Schreck CB. Occupancy modeling for improved accuracy and understanding of pathogen prevalence and dynamics. PLoS One 2015; 10:e0116605. [PMID: 25738709 PMCID: PMC4349882 DOI: 10.1371/journal.pone.0116605] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 12/11/2014] [Indexed: 11/19/2022] Open
Abstract
Most pathogen detection tests are imperfect, with a sensitivity < 100%, thereby resulting in the potential for a false negative, where a pathogen is present but not detected. False negatives in a sample inflate the number of non-detections, negatively biasing estimates of pathogen prevalence. Histological examination of tissues as a diagnostic test can be advantageous as multiple pathogens can be examined and providing important information on associated pathological changes to the host. However, it is usually less sensitive than molecular or microbiological tests for specific pathogens. Our study objectives were to 1) develop a hierarchical occupancy model to examine pathogen prevalence in spring Chinook salmon Oncorhynchus tshawytscha and their distribution among host tissues 2) use the model to estimate pathogen-specific test sensitivities and infection rates, and 3) illustrate the effect of using replicate within host sampling on sample sizes required to detect a pathogen. We examined histological sections of replicate tissue samples from spring Chinook salmon O. tshawytscha collected after spawning for common pathogens seen in this population: Apophallus/echinostome metacercariae, Parvicapsula minibicornis, Nanophyetus salmincola/ metacercariae, and Renibacterium salmoninarum. A hierarchical occupancy model was developed to estimate pathogen and tissue-specific test sensitivities and unbiased estimation of host- and organ-level infection rates. Model estimated sensitivities and host- and organ-level infections rates varied among pathogens and model estimated infection rate was higher than prevalence unadjusted for test sensitivity, confirming that prevalence unadjusted for test sensitivity was negatively biased. The modeling approach provided an analytical approach for using hierarchically structured pathogen detection data from lower sensitivity diagnostic tests, such as histology, to obtain unbiased pathogen prevalence estimates with associated uncertainties. Accounting for test sensitivity using within host replicate samples also required fewer individual fish to be sampled. This approach is useful for evaluating pathogen or microbe community dynamics when test sensitivity is <100%.
Collapse
Affiliation(s)
- Michael E. Colvin
- Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, Oregon, 97331, United States of America
| | - James T. Peterson
- Oregon Cooperative Fish and Wildlife Research Unit, U.S. Geological Survey-Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, Oregon, 97331, United States of America
| | - Michael L. Kent
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, Oregon, 97331, United States of America
| | - Carl B. Schreck
- Oregon Cooperative Fish and Wildlife Research Unit, U.S. Geological Survey-Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, Oregon, 97331, United States of America
| |
Collapse
|
19
|
Fate and effects of veterinary antibiotics in soil. Trends Microbiol 2014; 22:536-45. [DOI: 10.1016/j.tim.2014.05.005] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 12/15/2022]
|
20
|
Achilleos C, Berthier F. Quantitative PCR for the specific quantification of Lactococcus lactis and Lactobacillus paracasei and its interest for Lactococcus lactis in cheese samples. Food Microbiol 2013; 36:286-95. [PMID: 24010609 DOI: 10.1016/j.fm.2013.06.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/01/2013] [Accepted: 06/29/2013] [Indexed: 02/04/2023]
Abstract
The first objective of this work was to develop real-time quantitative PCR (qPCR) assays to quantify two species of mesophilic lactic acid bacteria technologically active in food fermentation, including cheese making: Lactococcus lactis and Lactobacillus paracasei. The second objective was to compare qPCR and plate counts of these two species in cheese samples. Newly designed primers efficiently amplified a region of the tuf gene from the target species. Sixty-three DNA samples from twenty different bacterial species, phylogenetically related or commonly found in raw milk and dairy products, were selected as positive and negative controls. Target DNA was successfully amplified showing a single peak on the amplicon melting curve; non-target DNA was not amplified. Quantification was linear over 5 log units (R(2) > 0.990), down to 22 gene copies/μL per well for Lc. lactis and 73 gene copies/μL per well for Lb. paracasei. qPCR efficiency ranged from 82.9% to 93.7% for Lc. lactis and from 81.1% to 99.5% for Lb. paracasei. At two stages of growth, Lc. lactis was quantified in 12 soft cheeses and Lb. paracasei in 24 hard cooked cheeses. qPCR proved to be useful for quantifying Lc. lactis, but not Lb. paracasei.
Collapse
Affiliation(s)
- Christine Achilleos
- INRA, UR342 Technologie et Analyses Laitières, BP 20089, F-39800 Poligny, France.
| | | |
Collapse
|
21
|
Stewart L, Foddai A, Elliott C, Grant I. Development of a novel phage-mediated immunoassay for the rapid detection of viable Mycobacterium avium
subsp. paratuberculosis. J Appl Microbiol 2013; 115:808-17. [DOI: 10.1111/jam.12275] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 04/09/2013] [Accepted: 06/03/2013] [Indexed: 11/30/2022]
Affiliation(s)
- L.D. Stewart
- Institute for Global Food Security; School of Biological Sciences; Queen's University Belfast; Belfast Northern Ireland UK
| | - A. Foddai
- Institute for Global Food Security; School of Biological Sciences; Queen's University Belfast; Belfast Northern Ireland UK
| | - C.T. Elliott
- Institute for Global Food Security; School of Biological Sciences; Queen's University Belfast; Belfast Northern Ireland UK
| | - I.R. Grant
- Institute for Global Food Security; School of Biological Sciences; Queen's University Belfast; Belfast Northern Ireland UK
| |
Collapse
|
22
|
Maks N, Fu TJ. Evaluation of PCR detection of Salmonella in alfalfa sprouts and spent irrigation water collected during sprouting of naturally contaminated seed. J Food Prot 2013; 76:314-7. [PMID: 23433380 DOI: 10.4315/0362-028x.jfp-12-155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study evaluated the efficacy of a PCR-based system (DuPont Qualicon BAX) for detection of Salmonella in sprouts and spent irrigation water collected during sprouting of seeds naturally contaminated with Salmonella. Alfalfa seeds were grown in Mason jars at 20 and 30°C for 3 days. Levels of Salmonella present in the water and sprouts were determined by most-probable-number (MPN) analysis. Background microflora levels were also determined. Samples of spent irrigation water and sprouts were enriched overnight individually in tetrathionate broth and in buffered peptone water with novobiocin at 42°C and then run in the BAX system. Samples were also enriched according to the U.S. Food and Drug Administration's Bacteriological Analytical Manual (FDA BAM) method for Salmonella as a comparison. Salmonella levels were lower at 20°C compared with 30°C for some trials, and background microflora levels ranged from 10(7) to 10(8) CFU/g or ml at 20°C and 10(8) to 10(9) CFU/g or ml at 30°C. In trials with a Salmonella level >1.1 MPN/g or ml, both the BAX and FDA BAM methods were able to detect Salmonella in all samples. In trials with lower levels (0.21 MPN/g or ml or lower) of Salmonella, BAX was able to detect more positive samples than FDA BAM. For one trial with <0.003 MPN/g or ml of Salmonella, the presence of the pathogen was not indicated by either the BAX or the FDA BAM method. The results suggest that PCR detected low levels of Salmonella in sprouts or spent irrigation water collected from sprouting of naturally contaminated seeds.
Collapse
Affiliation(s)
- Nicole Maks
- Illinois Institute of Technology, Institute for Food Safety and Health, Bedford Park, IL 60501, USA.
| | | |
Collapse
|
23
|
Guarddon M, Miranda JM, Vázquez BI, Cepeda A, Franco CM. Direct quantification and distribution of tetracycline-resistant genes in meat samples by real-time polymerase chain reaction. J Food Sci 2012; 77:M372-6. [PMID: 22757711 DOI: 10.1111/j.1750-3841.2012.02777.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The evolution of antimicrobial-resistant bacteria has become a threat to food safety and methods to control them are necessary. Counts of tetracycline-resistant (TR) bacteria by microbiological methods were compared with those obtained by quantitative PCR (qPCR) in 80 meat samples. TR Enterobacteriaceae counts were similar between the count plate method and qPCR (P= 0.24), whereas TR aerobic mesophilic bacteria counts were significantly higher by the microbiological method (P < 0.001). The distribution of tetA and tetB genes was investigated in different types of meat. tetA was detected in chicken meat (40%), turkey meat (100%), pork (20%), and beef (40%) samples, whereas tetB was detected in chicken meat (45%), turkey meat (70%), pork (30%), and beef (35%) samples. The presence of tetracycline residues was also investigated by a receptor assay. This study offers an alternative and rapid method for monitoring the presence of TR bacteria in meat and furthers the understanding of the distribution of tetA and tetB genes.
Collapse
Affiliation(s)
- Mónica Guarddon
- Laboratorio de Higiene, Inspección y Control de Alimentos, Dept. de Química Analítica, Nutrición y Bromatología, Facultad de Veterinaria, Univ de Santiago de Compostela, 27002 Lugo, Spain
| | | | | | | | | |
Collapse
|
24
|
Effect of Amplicon Length in Propidium Monoazide Quantitative PCR for the Enumeration of Viable Cells of Salmonella in Cooked Ham. FOOD ANAL METHOD 2012. [DOI: 10.1007/s12161-012-9460-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Nakyinsige K, Man YBC, Sazili AQ. Halal authenticity issues in meat and meat products. Meat Sci 2012; 91:207-14. [DOI: 10.1016/j.meatsci.2012.02.015] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 01/26/2012] [Accepted: 02/14/2012] [Indexed: 11/25/2022]
|
26
|
López-Campos G, Martínez-Suárez JV, Aguado-Urda M, López-Alonso V. Detection, Identification, and Analysis of Foodborne Pathogens. SPRINGERBRIEFS IN FOOD, HEALTH, AND NUTRITION 2012. [DOI: 10.1007/978-1-4614-3250-0_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
27
|
González I, García T, Fernández S, Martín R. Current Status on Arcobacter Research: An Update on DNA-Based Identification and Typing Methodologies. FOOD ANAL METHOD 2011. [DOI: 10.1007/s12161-011-9343-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Herrero B, Vieites JM, Espiñeira M. Duplex real-time PCR for authentication of anglerfish species. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1578-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Detection and identification of microorganisms in wine: a review of molecular techniques. J Ind Microbiol Biotechnol 2011; 38:1619-34. [DOI: 10.1007/s10295-011-1020-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
|
30
|
Herrero B, Vieites JM, Espiñeira M. Authentication of Atlantic salmon (Salmo salar) using real-time PCR. Food Chem 2011; 127:1268-72. [DOI: 10.1016/j.foodchem.2011.01.070] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/09/2010] [Accepted: 01/19/2011] [Indexed: 11/16/2022]
|
31
|
qPCR as a powerful tool for microbial food spoilage quantification: Significance for food quality. Trends Food Sci Technol 2011. [DOI: 10.1016/j.tifs.2011.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
|
33
|
Liang N, Dong J, Luo L, Li Y. Detection of viable Salmonella in lettuce by propidium monoazide real-time PCR. J Food Sci 2011; 76:M234-7. [PMID: 22417362 DOI: 10.1111/j.1750-3841.2011.02123.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Contamination of lettuce by Salmonella has caused serious public health problems. Polymerase chain reaction (PCR) allows rapid detection of pathogenic bacteria in food, but it is inaccurate as it might amplify DNA from dead target cells as well. This study aimed to investigate the stability of DNA of dead Salmonella cells in lettuce and to develop an approach to detecting viable Salmonella in lettuce. Salmonella-free lettuce was inoculated with heat-killed Salmonella Typhimurium cells and stored at 4 °C. Bacterial DNA extracted from the sample was amplified by real-time PCR targeting the invA gene. Our results indicate that DNA from the dead cells remained stable in lettuce for at least 8 d. To overcome this limitation, propidium monoazide (PMA), a dye that can selectively penetrate dead bacterial cells and cross-link their DNA upon light exposure, was combined with real-time PCR. Lettuce samples inoculated with different levels of dead or viable S. Typhimurium cells were treated or untreated with PMA before DNA extraction. Real-time PCR suggests that PMA treatment effectively prevented PCR amplification from as high as 10(8) CFU/g dead S. Typhimurium cells in lettuce. The PMA real-time PCR assay could detect viable Salmonella at as low as 10(2) CFU/mL in pure culture and 10(3) CFU/g in lettuce. With 12-h enrichment, S. Typhimurium of 10(1) CFU/g in lettuce was detectable. In conclusion, the PMA real-time PCR assay provides an alternative to real-time PCR assay for accurate detection of Salmonella in food.
Collapse
Affiliation(s)
- Ningjian Liang
- Dept. of Human Nutrition, Food, and Animal Sciences, Univ. of Hawaii at Manoa, 1955 East-West Rd., Agricultural Science 216, Honolulu, HI 96822, USA
| | | | | | | |
Collapse
|
34
|
Jasson V, Jacxsens L, Luning P, Rajkovic A, Uyttendaele M. Alternative microbial methods: An overview and selection criteria. Food Microbiol 2010; 27:710-30. [DOI: 10.1016/j.fm.2010.04.008] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 04/12/2010] [Accepted: 04/20/2010] [Indexed: 11/25/2022]
|
35
|
Fajardo V, González I, Rojas M, García T, Martín R. A review of current PCR-based methodologies for the authentication of meats from game animal species. Trends Food Sci Technol 2010. [DOI: 10.1016/j.tifs.2010.06.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Muthaiyan A, Ricke SC. Current perspectives on detection of microbial contamination in bioethanol fermentors. BIORESOURCE TECHNOLOGY 2010; 101:5033-5042. [PMID: 19951838 DOI: 10.1016/j.biortech.2009.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/31/2009] [Accepted: 11/02/2009] [Indexed: 05/28/2023]
Abstract
In recent years bioethanol has encompassed worldwide interest as a non-conventional bioenergy source. This fact has driven several bioethanol industries to produce more ethanol on a large scale via cost effective methods. However in the process of scaling up ethanol production bacterial contamination is becoming one of the more challenging problems facing the bioethanol industry. There are several traditional microbiological methods available to detect and subsequently limit these bacterial contaminants. These methods are time consuming, laborious and can be less sensitive. Consequently, it is necessary to find novel sensitive and economic detection methods to eradicate the contaminants long before they disrupt ethanol production. Molecular methods that can detect the contaminants even at very low numbers at any given stage would help in the design of more cost effective eradication strategies and better targeted antimicrobial treatments. Application of rapid molecular detection approaches have the potential to provide much more sensitive and rapid means to not only detect but quantitate microbial contaminants long before they become problematic to overall bioethanol formation.
Collapse
Affiliation(s)
- Arunachalam Muthaiyan
- Center for Food Safety, IFSE and Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA
| | | |
Collapse
|
37
|
Herrero B, Madriñán M, Vieites JM, Espiñeira M. Authentication of Atlantic cod (Gadus morhua) using real time PCR. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:4794-4799. [PMID: 20355721 DOI: 10.1021/jf904018h] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This work describes the development of a real-time polymerase chain reaction (RT-PCR) system for the detection and identification of Atlantic cod (Gadus morhua). Among the advantages of this technique, it is worth highlighting that this is reliable in terms of specificity and sensitivity. The TaqMan real-time PCR is the simplest, fastest testing process and has the highest potential for automation, therefore representing the currently most suitable method for screening, allowing the detection of fraudulent or unintentional mislabeling of this species. The method can be applied to all kinds of products, fresh, frozen, and processed products, including those undergoing intensive processes of transformation. The developed methodology using specific primer-probe set was validated and further applied to 40 commercial samples labeled as cod in order to determinate if the species used for their manufacturing corresponded to G. morhua, detecting 20% that were incorrectly labeled. A C(t) value of about 19 was obtained when G. morhua was present. In samples with a species mixture, all samples that had a fluorescence signal were positive (C(t) < 30) for the presence of G. morhua by conventional end-point RT-PCR, and the estimated limit of detection for these type of samples was of 20 pg of DNA. The methodology herein developed is useful to check the fulfilment of labeling regulations for seafood products and verify the correct traceability in commercial trade and for fisheries control.
Collapse
Affiliation(s)
- Beatriz Herrero
- Area of Molecular Biology and Biotechnology, ANFACO-CECOPESCA, Vigo, 36310 Pontevedra, Spain
| | | | | | | |
Collapse
|
38
|
Pennacchia C, Ercolini D, Villani F. Development of a Real-Time PCR assay for the specific detection of Brochothrix thermosphacta in fresh and spoiled raw meat. Int J Food Microbiol 2009; 134:230-6. [DOI: 10.1016/j.ijfoodmicro.2009.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/01/2009] [Accepted: 07/04/2009] [Indexed: 11/16/2022]
|
39
|
Gil-Serna J, González-Salgado A, González-Jaén MT, Vázquez C, Patiño B. ITS-based detection and quantification of Aspergillus ochraceus and Aspergillus westerdijkiae in grapes and green coffee beans by real-time quantitative PCR. Int J Food Microbiol 2009; 131:162-7. [DOI: 10.1016/j.ijfoodmicro.2009.02.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 01/12/2009] [Accepted: 02/09/2009] [Indexed: 11/27/2022]
|
40
|
Yang H, Wang Y. Application of Atomic Force Microscopy on Rapid Determination of Microorganisms for Food Safety. J Food Sci 2008; 73:N44-50. [DOI: 10.1111/j.1750-3841.2008.00918.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Krascsenicsová K, Piknová L, Kaclíková E, Kuchta T. Detection of Salmonella enterica in food using two-step enrichment and real-time polymerase chain reaction. Lett Appl Microbiol 2008; 46:483-7. [PMID: 18346136 DOI: 10.1111/j.1472-765x.2008.02342.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS A new real-time polymerase chain reaction-based method was developed for the detection of Salmonella enterica in food. METHODS AND RESULTS The method consisted of a novel two-step enrichment involving overnight incubation in buffered peptone water and a 5-h subculture in Rappaport-Vassiliadis medium, lysis of bacterial cells and a Salmonella-specific 5'-nuclease real-time PCR with an exogenous internal amplification control. Because a two-step enrichment was used, the detection limit for dead S. enterica cells in artificially contaminated ice cream and salami samples was high at 10(7 )CFU (25 g)(-1), eliminating potential false-positive results. When the method was evaluated with a range of 100 naturally contaminated food samples, three positive samples were detected by both the real-time PCR-based method and by the standard microbiological method, according to EN ISO 6579. When the real-time PCR-based method was evaluated alongside the standard microbiological method according to EN ISO 6579 with 36 food samples artificially contaminated at a level of 10(0 )CFU (25 g)(-1), identical results were obtained from both methods. CONCLUSIONS The real-time PCR-based method involving a two-step enrichment produced equivalent results to EN ISO 6579 on the day after sample receipt. SIGNIFICANCE AND IMPACT OF THE STUDY The developed method is suitable for rapid detection of S. enterica in food.
Collapse
Affiliation(s)
- K Krascsenicsová
- Department of Microbiology and Molecular Biology, Food Research Institute, Bratislava, Slovakia
| | | | | | | |
Collapse
|
42
|
FUJIKAWA H, SHIMOJIMA Y. Estimation of Viable Salmonella Cell Numbers in Meat and Meat Product Using Real-Time PCR. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2008; 49:261-5. [DOI: 10.3358/shokueishi.49.261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Huang Q, Hu Q, Li Q. Identification of 8 Foodborne Pathogens by Multicolor Combinational Probe Coding Technology in a Single Real-Time PCR. Clin Chem 2007; 53:1741-8. [PMID: 17693526 DOI: 10.1373/clinchem.2007.087502] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Real-time PCR assays have been widely used for detecting foodborne pathogens but have been much less frequently applied in species identification, mainly because of the low number of species they can distinguish in 1 reaction. The present study used a new probe coding/labeling strategy, termed multicolor combinational probe coding (MCPC), to increase the number of targets that can be distinguished in a single real-time PCR for rapid and reliable species identification.
Methods: With MCPC, 8 pairs of species-specific tagged primers, 1 pair of universal primers, and 8 unilabeled or mix-labeled molecular beacon probes were included in a single reaction tube. Real-time PCR was performed, and the identity of each of the 8 pathogens was determined by amplification profile comparison. The method was validated via blind assessment of 118 bacterial strains, including clinical isolates and isolates from food products.
Results: The blind test with 118 samples gave no false-positive or -negative results for the target genes. The template DNA suitable for MCPC analysis was simply prepared by heating lysis, and the total PCR analysis was finished within 2.5 h, excluding template preparation.
Conclusions: MCPC is suitable for rapid and reliable identification of foodborne pathogens at the species level.
Collapse
Affiliation(s)
- Qiuying Huang
- Molecular Diagnostics Laboratory, Department of Biomedical Sciences, Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | | | | |
Collapse
|
44
|
Carey CM, Kirk JL, Ojha S, Kostrzynska M. Current and future uses of real-time polymerase chain reaction and microarrays in the study of intestinal microbiota, and probiotic use and effectiveness. Can J Microbiol 2007; 53:537-50. [PMID: 17668012 DOI: 10.1139/w07-039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Probiotics are defined as live microorganisms that confer a health benefit to the host when administered in adequate amounts. In addition to human health benefits, probiotics can improve various aspects of growth and performance in livestock and poultry, as well as control undesirable microorganisms in food animals. Studies indicate that probiotics can prevent or treat certain conditions, including atopic disease in infants, food allergy, infection after surgery, acute diarrhea, and symptoms associated with irritable bowel syndrome. Understanding the complete mechanism, effectiveness, and potential use of probiotics is limited by the availability and sensitivity of current methods (i.e., culturing techniques). In recent years, real-time polymerase chain reaction (PCR) and microarrays have become prominent and promising methods to examine quantitative changes of specific members of the microbial community and the influence of probiotics on the structure and function of human and animal intestinal ecosystems. Culture-independent studies have established that only a fraction of organisms present in feces are cultivable, therefore, results obtained by cultivation are limited. Conversely, in-depth knowledge of microbial genomes has enabled real-time PCR and microarrays to be more sensitive and has resulted in precise methods for comprehensive analysis of the complex gut microbiota. Additionally, these technologies can assess the influence of intestinal microorganisms on host metabolism, nutrient status, and disease. This paper reviews method technologies and applications of real-time PCR and microarray assays as they relate to the effect and use of probiotics on the intestinal microbiota and gastrointestinal disease.
Collapse
Affiliation(s)
- Christine M Carey
- Agriculture and AgriFood Canada, Food Research Program, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | | | | | | |
Collapse
|
45
|
Volkmann H, Schwartz T, Kirchen S, Stofer C, Obst U. Evaluation of inhibition and cross-reaction effects on real-time PCR applied to the total DNA of wastewater samples for the quantification of bacterial antibiotic resistance genes and taxon-specific targets. Mol Cell Probes 2006; 21:125-33. [PMID: 17056226 DOI: 10.1016/j.mcp.2006.08.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 08/31/2006] [Indexed: 11/30/2022]
Abstract
In order to evaluate the applicability of six primer and probe sets for TaqMan real-time RCR on DNA of wastewater samples, effects of the sample matrix and DNA background on target quantification were studied with respect to differences between functional genes and taxonomically used rDNA targets. Primer/probe assays for real-time PCR (TaqMan) designed to quantitatively detect the antibiotic resistance genes bla(VIM), vanA, ampC, mecA, and taxon-specific 23S rDNA sequences for Pseudomonas aeruginosa and Enterococcus faecium/faecalis were tested for their sensitivity and amplification robustness. The amplification of their gene targets in DNA extracts of wastewater ("wastewater DNA") and reference strains ("reference DNA") was compared with their amplification in "model DNA" which was composed of wastewater DNA and reference DNA. Target detection was quantifiable along up to seven decimal orders of magnitude. For the detection of the resistance genes bla(VIM), vanA, ampC, and mecA as well as the enterococci directed PCR only weak or no inhibition due to the impurities or wastewater DNA matrix were demonstrated for the applied target concentrations. The taxonomically applied detection system for the quantification of P. aeruginosa showed a limited performance. For the analysis of the amplification dynamics of possibly similar nucleotide sequences of organisms related to P. aeruginosa a SYBR Green assay was employed. Competitive amplification of similar sequences was identified to be a major mechanism of reduced sensitivity. Hence, the primers were modified for an optimised detection. With the resulting reduction of cross reactions an increased sensitivity was achieved for the detection and quantification of P. aeruginosa in wastewater DNA.
Collapse
Affiliation(s)
- Holger Volkmann
- Forschungszentrum Karlsruhe GmbH, Institute for Technical Chemistry, Water Technology and Geotechnology Division, Department of Environmental Microbiology, PO Box 3640, D-76021 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
46
|
Kostrzynska M, Bachand A. Application of DNA microarray technology for detection, identification, and characterization of food-borne pathogens. Can J Microbiol 2006; 52:1-8. [PMID: 16541153 DOI: 10.1139/w05-105] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA microarrays represent the latest advance in molecular technology. In combination with bioinformatics, they provide unparalleled opportunities for simultaneous detection of thousands of genes or target DNA sequences and offer tremendous potential for studying food-borne microorganisms. This review provides an up-to-date look at the application of DNA microarray technology to detect food-borne pathogenic bacteria, viruses, and parasites. In addition, it covers the advantages of using microarray technology to further characterize microorganisms by providing information for specific identification of isolates, to understand the pathogenesis based on the presence of virulence genes, and to indicate how new pathogenic strains evolved epidemiologically and phylogenetically.
Collapse
Affiliation(s)
- M Kostrzynska
- Agriculture and Agri-Food Canada, Food Research Program, Guelph, Canada.
| | | |
Collapse
|
47
|
Wan K, Yousef AE, Schwartz SJ, Wang HH. Rapid, specific, and sensitive detection of spoilage molds in orange juice using a real-time Taqman PCR assay. J Food Prot 2006; 69:385-90. [PMID: 16496580 DOI: 10.4315/0362-028x-69.2.385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The outgrowth of spoilage organisms, including molds and yeasts, results in significant financial loss to the food industry and wastes natural resources. The objective of this study was to develop a rapid, specific, and sensitive real-time PCR method for detecting spoilage molds during screening of raw materials and final product quality control analysis. The 18S rRNA gene was used to develop PCR primers and probe. With this set of primers and probe, less than 1,000 mold cells per milliliter of orange juice (10 cells per reaction) were detected with the real-time PCR system within 6 to 7 h. No cross-reactivity was found with other common foodborne bacteria, yeasts, or food ingredients. This technique is significantly faster than current detection and identification procedures, which take from days to weeks.
Collapse
Affiliation(s)
- Kai Wan
- Department of Food Science and Technology, Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
48
|
Fujikawa H, Shimojima Y, Yano K. A Novel Method for Estimating Viable Salmonella Cell Counts Using Real-Time PCR. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2006; 47:151-6. [PMID: 16984034 DOI: 10.3358/shokueishi.47.151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel method for estimating viable Salmonella Enteritidis cell counts with 5'-nuclease real-time PCR was developed in this study. Our method was based on the increase kinetics of the target DNA region (invA) of the microorganism growing in a food/clinical sample in a culture medium during incubation. The index of increase in the target DNA region studied here was threshold cycle, CT. A test Salmonella strain was grown in buffered peptone water at the optimal temperature (39 degrees C). As Salmonella cells were grown, the value of CT decreased with time, generating a downward sigmoidal curve. The slope of the curve was constant at various initial cell concentrations. With higher initial cell concentration, the CT value evaluated from the slope at a given time was lower. With this relationship, a novel method for estimating the initial viable cell concentration of a sample was developed. Dead Salmonella cells or bacteria other than the target cell caused deviation in the CT curve. Incubation in a selective media suppressed the deviation caused by other bacterial cells. We think that this method could be applied to many other microorganisms cultivable in a suitable medium.
Collapse
Affiliation(s)
- Hiroshi Fujikawa
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health: 3-24-1, Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan
| | | | | |
Collapse
|