1
|
Martelli F, Marrella M, Lazzi C, Neviani E, Bernini V. Microbiological Contamination of Ready-to-Eat Algae and Evaluation of Bacillus cereus Behavior by Microbiological Challenge Test. J Food Prot 2021; 84:1275-1280. [PMID: 33725095 DOI: 10.4315/jfp-20-407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/15/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Consumption of seaweeds (forms of algae), often categorized as a superfood, is becoming popular in western countries. Algae can be marketed fresh, but are usually sold dehydrated to ensure longer shelf life. Their consumption, often as ready-to-eat, opens up possible risks for public health because of foodborne pathogens that can contaminate the raw material during harvesting or manipulation. In this study, 14 ready-to-eat foods based on dehydrated algae, representative of the most consumed species, were considered. The microbial content, with a focus on Listeria monocytogenes and Bacillus cereus, was investigated by plate counts, and B. cereus strains were isolated and identified by 16S rRNA gene sequencing. The microbiological quality was heterogeneous among the samples and, in particular, marine bacteria, Listeria spp., B. cereus, and coliforms were detected. To contribute to related risk assessment, the ability of B. cereus to grow during refrigerated storage was evaluated, to our knowledge for the first time, by a microbiological challenge test on two ready-to-eat foods based on Undaria pinnatifida and Palmaria palmata. Despite this study demonstrating the inability of B. cereus to proliferate in seaweed-based food, its presence in dehydrated foodstuffs cannot rule out replication after rehydration before consumption, making it necessary to elucidate the possible risks for consumers. HIGHLIGHTS
Collapse
Affiliation(s)
- Francesco Martelli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, Parma 43124, Italy
| | - Martina Marrella
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, Parma 43124, Italy
| | - Camilla Lazzi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, Parma 43124, Italy
| | - Erasmo Neviani
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, Parma 43124, Italy
| | - Valentina Bernini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, Parma 43124, Italy
| |
Collapse
|
2
|
Hsu TK, Tsai HC, Hsu BM, Yang YY, Chen JS. Prevalence, enterotoxin-gene profiles, antimicrobial resistance, and genetic diversity of Bacillus cereus group in aquatic environments and shellfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143665. [PMID: 33293090 DOI: 10.1016/j.scitotenv.2020.143665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/16/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Bacterial strains of the Bacillus cereus group produce various toxins that cause diarrheal and emetic food poisoning. In this study, five main oyster farming areas and 15 fishing ports in Taiwan were examined for the status of B. cereus group bacteria inhabiting seawater and shellfish. On average, bacteria of the B. cereus group were detected in 32.6% of the seawater samples (n = 89) and 2.5% of the oysters (n = 81) in the oyster farming areas and in 7.9% of the seawater samples (n = 202) and 0.68% of the shellfish products (n = 292) in fishing ports. To trace the potential source of B. cereus group bacteria in intertidal oyster farming areas, we simultaneously explored their terrestrial river basins. In total, 44 B. cereus group strains were purified and cultured from water and shellfish for the analysis of virulence genes, panC gene typing, antibiotic susceptibility testing, and enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) fingerprinting. The enterotoxin-coding genes nheABC, hblCDA, entFM, cytK-1, and cytK-2 were detected in 70.4%, 84.1%, 97.7%, 72.7%, and 75% of the total isolates, among which 40.9% carried all these genes. According to panC gene analysis, the dominant isolates belonged to the panC group IV. In antibiotic susceptibility tests, most B. cereus group isolates were resistant to ampicillin (97.7%) and sulfamethoxazole/trimethoprim (100%). The percentage of multidrug resistant B. cereus group isolates was 34.6%. Finally, the 44 B. cereus group isolates were classified into 43 types and categorized into five clusters using ERIC-PCR fingerprinting. The B. cereus group isolates from different oyster farming areas were concentrated within the two main clusters; however, those from river basins displayed a wide genetic diversity, indicating the presence of multiple sources of B. cereus group bacteria in river basins.
Collapse
Affiliation(s)
- Tsui-Kang Hsu
- Department of Ophthalmology, Cheng Hsin General Hospital, Taipei, Taiwan, ROC; School of Medicine, National Yang-Min University, Taiwan, ROC
| | - Hsin-Chi Tsai
- Department of Psychiatry, School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC; Department of Psychiatry, Tzu-Chi General Hospital, Hualien, Taiwan, ROC
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Minhsiung Township, Chiayi County 62102, Taiwan, ROC; Center for Innovative on Aging Society (CIRAS), National Chung Cheng University, 621 Chiayi, Taiwan, ROC.
| | - Yu-Ying Yang
- Department of Laboratory, Show Chwan Memorial Hospital, Changhua, Taiwan, ROC
| | - Jung-Sheng Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Minhsiung Township, Chiayi County 62102, Taiwan, ROC
| |
Collapse
|
3
|
Kalbhenn EM, Bauer T, Stark TD, Knüpfer M, Grass G, Ehling-Schulz M. Detection and Isolation of Emetic Bacillus cereus Toxin Cereulide by Reversed Phase Chromatography. Toxins (Basel) 2021; 13:toxins13020115. [PMID: 33557428 PMCID: PMC7915282 DOI: 10.3390/toxins13020115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
The emetic toxin cereulide is a 1.2 kDa dodecadepsipeptide produced by the food pathogen Bacillus cereus. As cereulide poses a serious health risk to humans, sensitive and specific detection, as well as toxin purification and quantification, methods are of utmost importance. Recently, a stable isotope dilution assay tandem mass spectrometry (SIDA–MS/MS)-based method has been described, and an method for the quantitation of cereulide in foods was established by the International Organization for Standardization (ISO). However, although this SIDA–MS/MS method is highly accurate, the sophisticated high-end MS equipment required for such measurements limits the method’s suitability for microbiological and molecular research. Thus, we aimed to develop a method for cereulide toxin detection and isolation using equipment commonly available in microbiological and biochemical research laboratories. Reproducible detection and relative quantification of cereulide was achieved, employing reversed phase chromatography (RPC). Chromatographic signals were cross validated by ultraperformance liquid chromatography–mass spectrometry (UPLC–MS/MS). The specificity of the RPC method was tested using a test panel of strains that included non-emetic representatives of the B. cereus group, emetic B. cereus strains, and cereulide-deficient isogenic mutants. In summary, the new method represents a robust, economical, and easily accessible research tool that complements existing diagnostics for the detection and quantification of cereulide.
Collapse
Affiliation(s)
- Eva Maria Kalbhenn
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (E.M.K.); (T.B.)
| | - Tobias Bauer
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (E.M.K.); (T.B.)
| | - Timo D. Stark
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany;
| | - Mandy Knüpfer
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937 Munich, Germany; (M.K.); (G.G.)
| | - Gregor Grass
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937 Munich, Germany; (M.K.); (G.G.)
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (E.M.K.); (T.B.)
- Correspondence:
| |
Collapse
|
4
|
Gupta A, Mishra V, Srivastava R. Zinc oxide nanoparticles decorated fluorescent and antibacterial glass fiber pre-filter paper. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab976d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Zinc oxide nanoparticles (ZnO–NPs) were synthesized and decorated simultaneously onto the glass fiber pre-filter paper (GF paper) by the sonochemical method without using any additional reagents (a ‘Green’ synthesis approach). ZnO–NPs decorated GF paper was characterized by electron, confocal laser scanning and atomic force microscopy, fourier transform infrared and atomic emission spectroscopy, X-ray diffraction, and thermogravimetric analysis etc. Due to the massive void volume space, exceptional dimensional stability, large thickness (790 μm) of the GF paper (unlike other paper materials) and ultrasonic irradiation effects, ZnO–NPs were decorated in the enormous amount (96 mg per paper) without causing any adverse effects on the GF paper. Such a huge amount decoration onto GF paper makes it multifunctional, fluorescencet (orange-pink color, 535–624 nm) under ultra-violet light (360 nm) and antibacterial. The antibacterial activity of the ZnO–NPs decorated GF paper was examined against Gram-positive bacteria Bacillus subtilis 168 and Staphylococcus aureus (MCC 2043, pathogenic). The outcomes from the antibacterial experiments revealed ∼99% (2 log) reduction in the survival of the filtered bacteria (B. subtilis) on the ZnO–NPs decorated GF paper due to the toxicity of ZnO–NPs on bacterial cells like cell shrinkage, cytoplasmic leakage, cell burst, etc. Multifunctional, ZnO–NPs decorated GF paper could be used for fluorescencet and antibacterial paper-based applications.
Collapse
|
5
|
Efficacy of a novel bacteriocin isolated from Lysinibacillus sp. against Bacillus pumilus. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Kora AJ. Bacillus cereus, selenite-reducing bacterium from contaminated lake of an industrial area: a renewable nanofactory for the synthesis of selenium nanoparticles. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0217-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
7
|
Bartoszewicz M, Czyżewska U. Spores and vegetative cells of phenotypically and genetically diverse Bacillus cereus sensu lato are common bacteria in fresh water of northeastern Poland. Can J Microbiol 2017; 63:939-950. [PMID: 28930645 DOI: 10.1139/cjm-2017-0337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gram-positive rods Bacillus cereus sensu lato (sl) are common in natural habitats and food products. It is believed that they are restricted to spores; however, their ecology in aquatic habitats is still poorly investigated. Thus, the aim of the study was to assess the rain-dependent fluctuations in the concentration of B. cereus sl vegetative cells and spores, with evaluation of their phylogenetic and population structure in relation to the toxicity and psychrotolerance. We proved that vegetative cells of B. cereus sl are widely distributed in fresh water of rivers and lakes, being as common as spores. Moreover, heavy rain has a huge impact on their concentration in undisturbed environments. The diversity of B. cereus sl reflects the multiple sources of bacteria and the differences between their distinct environments. Next, their diverse genetic structure and phenotypes better fit their ecological properties than their taxonomic affiliation.
Collapse
Affiliation(s)
- Marek Bartoszewicz
- a Department of Microbiology, Institute of Biology, Faculty of Biology and Chemistry, University of Bialystok, 1J Ciolkowski Street, Bialystok 15-245, Poland
| | - Urszula Czyżewska
- b Department of Cytobiochemistry, Institute of Biology, Faculty of Biology and Chemistry, University of Bialystok, 1J Ciolkowski Street, Bialystok 15-245, Poland
| |
Collapse
|
8
|
Chen JN, Wei CW, Liu HC, Chen SY, Chen C, Juang YM, Lai CC, Yiang GT. Extracts containing CLPs of Bacillus amyloliquefaciens JN68 isolated from chicken intestines exert antimicrobial effects, particularly on methicillin-resistant Staphylococcus aureus and Listeria monocytogenes. Mol Med Rep 2016; 14:5155-5163. [PMID: 27840979 PMCID: PMC5355721 DOI: 10.3892/mmr.2016.5900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 10/11/2016] [Indexed: 11/06/2022] Open
Abstract
Bacillus amyloliquefaciens JN68, which has been discussed with regards to its antimicrobial activities, was successfully isolated from healthy chicken intestines in the present study. Using the spot-on-the-lawn antagonism method, the preliminary study indicated that a suspension culture of the B. amyloliquefaciens JN68 strain can inhibit the growth of Aspergillus niger and Penicillium pinophilum. Furthermore, the cyclic lipopeptides (CLPs) produced by the B. amyloliquefaciens JN68 strain were further purified through acid precipitation and Bond Elut®C18 chromatography, and their structures were identified using the liquid chromatography‑electrospray ionization‑mass spectrometry (MS)/MS method. Purified CLPs exerted broad spectrum antimicrobial activities on various pathogenic and foodborne bacteria and fungi, as determined using the agar well diffusion method. Listeria monocytogenes can induce listeriosis, which is associated with a high mortality rate. Methicillin‑resistant Staphylococcus aureus (MRSA) is a major pathogenic bacteria that causes nosocomial infections. Therefore, L. monocytogenes and MRSA are currently of great concern. The present study aimed to determine whether B. amyloliquefaciens JN68 extracts could inhibit L. monocytogenes and MRSA. The results indicated that extracts of B. amyloliquefaciens JN68 have CLP components, and can successfully inhibit the growth of L. monocytogenes and MRSA.
Collapse
Affiliation(s)
- Jen-Ni Chen
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Chyou-Wei Wei
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Hsiao-Chun Liu
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Shu-Ying Chen
- Department of Nursing, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Chinshuh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Yu-Min Juang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Giou-Teng Yiang
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan, R.O.C
| |
Collapse
|
9
|
Brillard J, Dupont CMS, Berge O, Dargaignaratz C, Oriol-Gagnier S, Doussan C, Broussolle V, Gillon M, Clavel T, Bérard A. The Water Cycle, a Potential Source of the Bacterial Pathogen Bacillus cereus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:356928. [PMID: 25918712 PMCID: PMC4395999 DOI: 10.1155/2015/356928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/07/2014] [Indexed: 01/31/2023]
Abstract
The behaviour of the sporulating soil-dwelling Bacillus cereus sensu lato (B. cereus sl) which includes foodborne pathogenic strains has been extensively studied in relation to its various animal hosts. The aim of this environmental study was to investigate the water compartments (rain and soil water, as well as groundwater) closely linked to the primary B. cereus sl reservoir, for which available data are limited. B. cereus sl was present, primarily as spores, in all of the tested compartments of an agricultural site, including water from rain to groundwater through soil. During rain events, leachates collected after transfer through the soil eventually reached the groundwater and were loaded with B. cereus sl. In groundwater samples, newly introduced spores of a B. cereus model strain were able to germinate, and vegetative cells arising from this event were detected for up to 50 days. This first B. cereus sl investigation in the various types of interrelated environments suggests that the consideration of the aquatic compartment linked to soil and to climatic events should provide a better understanding of B. cereus sl ecology and thus be relevant for a more accurate risk assessment of food poisoning caused by B. cereus sl pathogenic strains.
Collapse
Affiliation(s)
- Julien Brillard
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- INRA-Université Montpellier II, UMR 1333 DGIMI, 34095 Montpellier, France
| | - Christian M. S. Dupont
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- CNRS, Université Montpellier II, UMR 5235 DIMNP, 34095 Montpellier, France
- EPIM EA 3647, Université de Versailles St-Quentin-en-Yvelines, 78035 Versailles, France
| | - Odile Berge
- INRA, UR 407 Pathologie Végétale, 84140 Montfavet, France
- CNRS, CEA, Université Aix-Marseille, UMR 7265, 13108 Saint-Paul-lez-Durance, France
| | - Claire Dargaignaratz
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Stéphanie Oriol-Gagnier
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Claude Doussan
- INRA, UMR 1114 EMMAH, 84914 Avignon, France
- Université d'Avignon, UMR 1114 EMMAH, 84914 Avignon, France
| | - Véronique Broussolle
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Marina Gillon
- INRA, UMR 1114 EMMAH, 84914 Avignon, France
- Université d'Avignon, UMR 1114 EMMAH, 84914 Avignon, France
| | - Thierry Clavel
- INRA, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
- Université d'Avignon, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Annette Bérard
- INRA, UMR 1114 EMMAH, 84914 Avignon, France
- Université d'Avignon, UMR 1114 EMMAH, 84914 Avignon, France
| |
Collapse
|
10
|
Fykse EM, Aarskaug T, Thrane I, Blatny JM. Legionellaand non-Legionellabacteria in a biological treatment plant. Can J Microbiol 2013; 59:102-9. [DOI: 10.1139/cjm-2012-0166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Legionella pneumophila were previously identified in the aeration ponds (up to 1010CFU/L) of a biological wastewater treatment plant at Borregaard Ind. Ltd., Sarpsborg, Norway, and in air samples (up to 3300 CFU/m3) collected above the aeration ponds. After 3 outbreaks of Legionnaires’ disease reported in this area in 2005 and 2008, the aeration ponds of the plant were shut down by the Norwegian authorities in September 2008. The aim of the present work was to analyze the Legionella and non-Legionella bacterial communities in the aeration ponds before and during the shutdown process and to identify potential human pathogens. The non-Legionella bacterial community was investigated in selected samples during the shutdown process by 16S rDNA sequencing of clone libraries (400 clones) and growth analysis. The concentration of L. pneumophila and Pseudomonas spp. DNA were monitored by quantitative PCR. Results showed a decrease in the concentration of L. pneumophila and Pseudomonas spp. during the shutdown. This was accompanied by a significant change in the composition of the bacterial community in the aeration ponds. This study demonstrated that several advanced analytical methods are necessary to characterize the bacterial population in complex environments, such as the industrial aeration ponds.
Collapse
Affiliation(s)
- Else Marie Fykse
- Norwegian Defence Research Establishment, P.O. Box 25, N-2027 Kjeller, Norway
| | - Tone Aarskaug
- Norwegian Defence Research Establishment, P.O. Box 25, N-2027 Kjeller, Norway
| | - Ingjerd Thrane
- Norwegian Defence Research Establishment, P.O. Box 25, N-2027 Kjeller, Norway
| | - Janet Martha Blatny
- Norwegian Defence Research Establishment, P.O. Box 25, N-2027 Kjeller, Norway
| |
Collapse
|
11
|
Yassin NA, Ahmad AM. Incidence and Resistotyping Profiles of Bacillus subtilis Isolated from Azadi Teaching Hospital in Duhok City, Iraq. Mater Sociomed 2012; 24:194-7. [PMID: 23678324 PMCID: PMC3633405 DOI: 10.5455/msm.2012.24.194-197] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/15/2012] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Bacillus subtilis are opportunistic, spore forming bacteria, common soil inhabitants. A resistant spore allows bacteria to endure extreme conditions of heat and desiccation in the environments promotes their survival in many instances, even in environments like hospitals. OBJECTIVES This paper purposes to find out the incidence of Bacillus subtilis from various sources at Azadi Teaching Hospital in Duhok city, Iraq. The susceptibility test and resistotyping (antibiotypes) profile of isolates were also studied. METHODS During a period of eight months between Januarys to April, 2011, a total of 128 samples were collected from various sources and locations at Azadi Teaching Hospital in Duhok city. A sterile cotton swabs were used to collect the samples and analyzed by plating on Blood agar, Chocolate agar and MacConkey agar followed by the identification of the isolates based on their cultural characteristics and their reactions in standard biochemical tests. All the isolates were tested for antimicrobial susceptibility by the disk diffusion technique according to the Clinical and Laboratory Standards Institute guidelines on Muller Hinton Agar. RESULTS Out of the 128 collected samples, 84 samples yielded bacterial growth, of them 31(24.2%) were Bacillus subtilis . Moreover, other bacterial groups were also isolated and identified. The results showed that the occurrence of Bacillus subtilis was higher than the other groups of bacteria. The susceptibility test of Bacillus subtilis isolates; the organism exhibited high susceptibility rate to gentamicin (96.7%) and ciprofloxacin (93.5%) While, cefotaxime (19.3%) and ampicillin (16.2%) demonstrated the lowest percentage of susceptibility rate. Resistotyping (antibiotypes) profiles of Bacillus subtilis isolates were determined. Out of 31 isolates, 22 of them were multiple resistant and belonged to 3 resistotype patterns; resistotype 1 was predominant among isolates. CONCLUSION This study shows that there is an increased rate of incidence of Bacillus subtilis in hospital environments in study area and some of these isolates were multi-drug resistant and showed different resistotyping profiles.
Collapse
|
12
|
Abee T, Wels M, de Been M, den Besten H. From transcriptional landscapes to the identification of biomarkers for robustness. Microb Cell Fact 2011; 10 Suppl 1:S9. [PMID: 21995521 PMCID: PMC3231935 DOI: 10.1186/1475-2859-10-s1-s9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ability of microorganisms to adapt to changing environments and gain cell robustness, challenges the prediction of their history-dependent behaviour. Using our model organism Bacillus cereus, a notorious Gram-positive food spoilage and pathogenic spore-forming bacterium, a strategy will be described that allows for identification of biomarkers for robustness. First an overview will be presented of its two-component systems that generally include a transmembrane sensor histidine kinase and its cognate response regulator, allowing rapid and robust responses to fluctuations in the environment. The role of the multisensor hybrid kinase RsbK and the PP2C-type phosphatase RsbY system in activation of the general stress sigma factor σB is highlighted. An extensive comparative analysis of transcriptional landscapes derived from B. cereus exposed to mild stress conditions such as heat, acid, salt and oxidative stress, revealed that, amongst others σB regulated genes were induced in most conditions tested. The information derived from the transcriptome data was subsequently implemented in a framework for identifying and selecting cellular biomarkers at their mRNA, protein and/or activity level, for mild stressinduced microbial robustness towards lethal stresses. Exposure of unstressed and mild stress-adapted cells to subsequent lethal stress conditions (heat, acid and oxidative stress) allowed for quantification of the robustness advantage provided by mild stress pretreatment using the plate-count method. The induction levels of the selected candidate-biomarkers, σB protein, catalase activity and transcripts of certain proteases upon mild stress treatment, were significantly correlated to mild stress-induced enhanced robustness towards lethal thermal, oxidative and acid stresses, and were therefore suitable to predict these adaptive traits. Cellular biomarkers that are quantitatively correlated to adaptive behavior will facilitate our ability to predict the impact of adaptive behavior on cell robustness and will allow to control and/or exploit these adaptive traits. Extrapolation to other species and genera is discussed such as avenues towards mechanism-based design of microbial fitness and robustness.
Collapse
Affiliation(s)
- Tjakko Abee
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
| | - Michiel Wels
- TI Food and Nutrition, Wageningen, The Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), NCMLS, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- NIZO food research, Ede, The Netherlands
| | - Mark de Been
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), NCMLS, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Heidy den Besten
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
| |
Collapse
|
13
|
Abbass A, Sharifuzzaman SM, Austin B. Cellular components of probiotics control Yersinia ruckeri infection in rainbow trout, Oncorhynchus mykiss (Walbaum). JOURNAL OF FISH DISEASES 2010; 33:31-37. [PMID: 19912460 DOI: 10.1111/j.1365-2761.2009.01086.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Subcellular components of the probiotics Aeromonas sobria GC2 and Bacillus subtilis JB-1, when administered to rainbow trout, Oncorhynchus mykiss, conferred protection against a new biogroup of Yersinia ruckeri. Thus, intraperitoneal or intramuscular injection of rainbow trout with cell wall proteins (CWPs), outer membrane proteins (OMPs), lipopolysaccharides (LPS), whole cell proteins (WCPs) and live cells followed by challenge on day 8 with Y. ruckeri led to 80-100% survival compared with 10% survival in the controls. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) profiles of WCPs and OMPs from GC2 had 10 and 5 variable protein bands in comparison to 11 and 5 bands in the WCPs and CWPs from JB-1. Proteomic analyses were employed following SDS-PAGE to categorize one dominant protein of 104.7 kDa from the CWPs of JB-1 and equated it with 'Bacillus spp. endoglucanase' with a Mascot score >69. These results point to the potential of using cellular components of probiotics for protection of fish against bacterial diseases.
Collapse
Affiliation(s)
- A Abbass
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Banha University, Egypt
| | | | | |
Collapse
|
14
|
Apetroaie-Constantin C, Mikkola R, Andersson M, Teplova V, Suominen I, Johansson T, Salkinoja-Salonen M. Bacillus subtilisandB. mojavensisstrains connected to food poisoning produce the heat stable toxin amylosin. J Appl Microbiol 2009; 106:1976-85. [DOI: 10.1111/j.1365-2672.2009.04167.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Stenfors Arnesen LP, Fagerlund A, Granum PE. From soil to gut:Bacillus cereusand its food poisoning toxins. FEMS Microbiol Rev 2008; 32:579-606. [DOI: 10.1111/j.1574-6976.2008.00112.x] [Citation(s) in RCA: 792] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
From C, Hormazabal V, Granum PE. Food poisoning associated with pumilacidin-producing Bacillus pumilus in rice. Int J Food Microbiol 2007; 115:319-24. [PMID: 17275116 DOI: 10.1016/j.ijfoodmicro.2006.11.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 11/03/2006] [Accepted: 11/03/2006] [Indexed: 11/19/2022]
Abstract
Food poisoning caused by other Bacillus species than B. cereus has been described, but the toxins involved have rarely been isolated. Endospores will survive heat treatment and will germinate and multiply in cooked foods producing toxins under appropriate conditions. We describe a small food poisoning outbreak where three people became ill after a dinner in a Chinese restaurant. Acute symptoms including dizziness, headache, chills and back pain developed during the meal, and a few hours later they got stomach cramps and diarrhoea which lasted for several days. Cooked, reheated rice was the prime suspect of the food poisoning, and from the rice large numbers of Bacillus pumilus were isolated. The isolated B. pumilus strain was found to produce a complex of lipopeptides known as pumilacidins with the highest amounts produced at 15 degrees C. This is the first report on isolation of a pumilacidin-producing B. pumilus strain from food implicated in food poisoning and characterization of the organism and the toxin complex involved.
Collapse
Affiliation(s)
- Cecilie From
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, P.O. Box 8146 Dep., N-0033 Oslo, Norway.
| | | | | |
Collapse
|
17
|
Determination of Toxigenic Potentials of Bacillus Strains Isolated from Okpehe, a Nigerian Fermented Condiment. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9193-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Gray KM, Banada PP, O'Neal E, Bhunia AK. Rapid Ped-2E9 cell-based cytotoxicity analysis and genotyping of Bacillus species. J Clin Microbiol 2005; 43:5865-72. [PMID: 16333068 PMCID: PMC1317164 DOI: 10.1128/jcm.43.12.5865-5872.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/22/2005] [Accepted: 09/25/2005] [Indexed: 11/20/2022] Open
Abstract
Bacillus species causing food-borne disease produce multiple toxins eliciting gastroenteritis. Toxin assays with mammalian cell cultures are reliable but may take 24 to 72 h to complete and also lack sensitivity. Here, a sensitive and rapid assay was developed using a murine hybridoma Ped-2E9 cell model. Bacillus culture supernatants containing toxins were added to a Ped-2E9 cell line and analyzed for cytotoxicity with an alkaline phosphatase release assay. Most Bacillus cereus strains produced positive cytotoxicity results within 1 h, and data were comparable to those obtained with the standard Chinese hamster ovary (CHO)-based cytotoxicity assay, which took about 72 h to complete. Moreover, the Ped-2E9 cell assay had 25- to 58-fold-higher sensitivity than the CHO assay. Enterotoxin-producing Bacillus thuringiensis also gave positive results with Ped-2E9 cells, while several other Bacillus species were negative. Eight isolates from food suspected of Bacillus contamination were also tested, and only one strain, which was later confirmed as B. cereus, gave a positive result. In comparison with two commercial diarrheal toxin assay kits (BDE-VIA and BCET-RPLA), the Ped-2E9 assay performed more reliably. Toxin fractions of >30 kDa showed the highest degree of cytotoxicity effects, and heat treatment significantly reduced the toxin activity, indicating the involvement of a heat-labile high-molecular-weight component in Ped-2E9 cytotoxicity. PCR results, in most cases, were in agreement with the cytotoxic potential of each strain. Ribotyping was used to identify cultures and indicated differences for several previously reported isolates. This Ped-2E9 cell assay could be used as a rapid (approximately 1-h) alternative to current methods for sensitive detection of enterotoxins from Bacillus species.
Collapse
Affiliation(s)
- Kristen M Gray
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
19
|
Perez A, Hohn C, Higgins J. Filtration methods for recovery of Bacillus anthracis spores spiked into source and finished water. WATER RESEARCH 2005; 39:5199-211. [PMID: 16290183 DOI: 10.1016/j.watres.2005.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 10/03/2005] [Accepted: 10/04/2005] [Indexed: 05/05/2023]
Abstract
Spores of Bacillus anthracis Sterne strain were recovered from 100ml and 1L volumes of tap and source waters using filtration through a 0.45um filter, followed by overnight culture on agar plates. In a set of experiments comparing sheep red blood cell (SRBC) plates with a chromogenic agar formulation designed by R & F Laboratories, with a spiking dose of 47 plate-enumerated spores in 100 ml tap water, the mean spore recoveries were 34.0 and 30.8 spores, respectively. When a spiking dose of 100 fluorescence activated cell sorter(FACS)-enumerated spores was used in 100 ml potable water, the average recovery with SRBC plates was 48 spores. Detection efforts with spiking doses of 35 and 10 spores in 1 L tap water were successful, but recovery efforts from spiked 1 L volumes of source water were problematic due to the concomitant growth of normal spore-forming flora. Recoveries were also attempted on 10 L volumes of tap water. For a spiking dose of 100 spores, mean recovery from six replicates was 11 spores (+/- 6.8, range 2-20), and for a spiking dose of 10 spores, mean recovery from six replicates was 2.3 spores (+/- 3.5, range 0-9). Efforts were also made to "direct detect" spores via polymerase chain reaction (PCR) on washes from filters. When spiking 534 spores in 100 ml, 9/9 replicates of spiked tap water, 6/6 source water replicates, and 0/3 unspiked controls were positive by lef PCR. When 534 spores were spiked into 1 L tap water, the lef PCR was unsuccessful; however, using the nested vrrA PCR resulted in 4/9 spiked samples, and 0/3 unspiked controls, testing positive. Our results indicate that an inexpensive and user-friendly method, utilizing filtration apparatus commonly present in many water quality testing labs, can readily be adapted for use in detecting this potential threat agent.
Collapse
Affiliation(s)
- Abril Perez
- City of Phoenix Water Services Laboratory, 2474 South 22nd Avenue, Phoenix, AZ 85009, USA
| | | | | |
Collapse
|