1
|
Colombini L, Santoro F, Tirziu M, Lazzeri E, Morelli L, Pozzi G, Iannelli F. The mobilome of Lactobacillus crispatus M247 includes two novel genetic elements: Tn 7088 coding for a putative bacteriocin and the siphovirus prophage ΦM247. Microb Genom 2023; 9:001150. [PMID: 38085804 PMCID: PMC10763512 DOI: 10.1099/mgen.0.001150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Lactobacillus crispatus is a member of the vaginal and gastrointestinal human microbiota. Here we determined the complete genome sequence of the probiotic strain M247 combining Nanopore and Illumina technologies. The M247 genome is organized in one circular chromosome of 2 336 109 bp, with a GC content of 37.04 % and 2303 ORFs, of which 1962 could be annotated. Analysis of the M247 mobilome, which accounts for 14 % of the whole genome, revealed the presence of: (i) Tn7088, a novel 14 105 bp long integrative and mobilizable element (IME) containing 16 ORFs; (ii) ΦM247, a novel 42 510 bp long siphovirus prophage containing 52 ORFs; (iii) three clustered regularly interspaced short palindromic repeats (CRISPRs); and (iv) 226 insertion sequences (ISs) belonging to 14 different families. Tn7088 has a modular organization including a mobilization module encoding FtsK homologous proteins and a relaxase, an integration/excision module coding for an integrase and an excisionase, and an adaptation module coding for a class I bacteriocin and homologous to the listeriolysin S (lls) locus of Listeria monocytogenes. Genome-wide homology search analysis showed the presence of Tn7088-like elements in 12 out of 23 L. crispatus complete public genomes. Mobilization and integration/excision modules are essentially conserved, while the adaptation module is variable since it is the target site for the integration of different ISs. Prophage ΦM247 contains genes for phage structural proteins, DNA replication and packaging, lysogenic and lytic cycles. ΦM247-like prophages are present in seven L. crispatus complete genomes, with sequence variability mainly due to the integration of ISs. PCR and sequencing showed that the Tn7088 IME excises from the M247 chromosome producing a circular form at a concentration of 4.32×10-5 copies per chromosome, and reconstitution of the Tn7088 chromosomal target site occurred at 6.65×10-4 copies per chromosome. The ΦM247 prophage produces an excised form and a reconstituted target site at a level of 3.90×10-5 and 2.48×10-5 copies per chromosome, respectively. This study identified two novel genetic elements in L. crispatus. Tn7088 represents the first example of an IME carrying a biosynthetic gene cluster for a class I bacteriocin in L. crispatus.
Collapse
Affiliation(s)
- Lorenzo Colombini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Mariana Tirziu
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Elisa Lazzeri
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Lorenzo Morelli
- Università Cattolica del Sacro Cuore, Department of Food Science and Technologies for a Sustainable Agri-food Supply Chain (DiSTAS), University of Piacenza, 53100 Piacenza, Italy
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| |
Collapse
|
2
|
Carserides C, Smith K, Zinicola M, Kumar A, Swedrowska M, Scala C, Cameron G, Riches Z, Iannelli F, Pozzi G, Hold GL, Forbes B, Kelly C, Hijazi K. Comprehensive Study of Antiretroviral Drug Permeability at the Cervicovaginal Mucosa via an In Vitro Model. Pharmaceutics 2022; 14:pharmaceutics14091938. [PMID: 36145684 PMCID: PMC9504208 DOI: 10.3390/pharmaceutics14091938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Modulation of drug transporter activity at mucosal sites of HIV-1 transmission may be exploited to optimize retention of therapeutic antiretroviral drug concentrations at target submucosal CD4+ T cells. Previously, we showed that darunavir was a substrate for the P-glycoprotein efflux drug transporter in colorectal mucosa. Equivalent studies in the cervicovaginal epithelium have not been reported. Here, we describe the development of a physiologically relevant model to investigate the permeability of antiretroviral drugs across the vaginal epithelium. Barrier properties of the HEC-1A human endometrial epithelial cell line were determined, in a dual chamber model, by measurement of transepithelial electrical resistance, immunofluorescent staining of tight junctions and bi-directional paracellular permeability of mannitol. We then applied this model to investigate the permeability of tenofovir, darunavir and dapivirine. Efflux ratios indicated that the permeability of each drug was transporter-independent in this model. Reduction of pH to physiological levels in the apical compartment increased absorptive transfer of darunavir, an effect that was reversed by inhibition of MRP efflux transport via MK571. Thus, low pH may increase the transfer of darunavir across the epithelial barrier via increased MRP transporter activity. In a previous in vivo study in the macaque model, we demonstrated increased MRP2 expression following intravaginal stimulation with darunavir which may further increase drug uptake. Stimulation with inflammatory modulators had no effect on drug permeability across HEC-1A barrier epithelium but, in the VK2/E6E7 vaginal cell line, increased expression of both efflux and uptake drug transporters which may influence darunavir disposition.
Collapse
Affiliation(s)
- Constandinos Carserides
- Centre for Host Microbiome Interactions, King’s College London, London SE1 9NH, UK
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | - Kieron Smith
- School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZR, UK
| | - Marta Zinicola
- Centre for Host Microbiome Interactions, King’s College London, London SE1 9NH, UK
| | - Abhinav Kumar
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | - Magda Swedrowska
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | - Carlo Scala
- Centre for Host Microbiome Interactions, King’s College London, London SE1 9NH, UK
| | - Gary Cameron
- School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZR, UK
| | - Zoe Riches
- School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZR, UK
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Georgina L. Hold
- School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZR, UK
| | - Ben Forbes
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | - Charles Kelly
- Centre for Host Microbiome Interactions, King’s College London, London SE1 9NH, UK
| | - Karolin Hijazi
- School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZR, UK
- Correspondence: ; Tel.: +44-(0)-1224-555153
| |
Collapse
|
3
|
dos Santos CI, Campos CDL, Nunes-Neto WR, do Carmo MS, Nogueira FAB, Ferreira RM, Costa EPS, Gonzaga LF, Araújo JMM, Monteiro JM, Monteiro CRAV, Platner FS, Figueiredo IFS, Holanda RA, Monteiro SG, Fernandes ES, Monteiro AS, Monteiro-Neto V. Genomic Analysis of Limosilactobacillus fermentum ATCC 23271, a Potential Probiotic Strain with Anti- Candida Activity. J Fungi (Basel) 2021; 7:794. [PMID: 34682216 PMCID: PMC8537286 DOI: 10.3390/jof7100794] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 01/20/2023] Open
Abstract
Limosilactobacillus fermentum (ATCC 23271) was originally isolated from the human intestine and has displayed antimicrobial activity, primarily against Candida species. Complete genome sequencing and comparative analyses were performed to elucidate the genetic basis underlying its probiotic potential. The ATCC 23271 genome was found to contain 2,193,335 bp, with 2123 protein-coding sequences. Phylogenetic analysis revealed that the ATCC 23271 strain shares 941 gene clusters with six other probiotic strains of L. fermentum. Putative genes known to confer probiotic properties have been identified in the genome, including genes related to adhesion, tolerance to acidic pH and bile salts, tolerance to oxidative stress, and metabolism and transport of sugars and other compounds. A search for bacteriocin genes revealed a sequence 48% similar to that of enterolysin A, a protein from Enterococcus faecalis. However, in vitro assays confirmed that the strain has inhibitory activity on the growth of Candida species and also interferes with their adhesion to HeLa cells. In silico analyses demonstrated a high probability of the protein with antimicrobial activity. Our data reveal the genome features of L. fermentum ATCC 23271, which may provide insight into its future use given the functional benefits, especially against Candida infections.
Collapse
Affiliation(s)
- Camilla I. dos Santos
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, São Luís 65055-310, MA, Brazil; (C.I.d.S.); (W.R.N.-N.); (E.P.S.C.)
| | - Carmem D. L. Campos
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (C.D.L.C.); (R.M.F.); (L.F.G.); (J.M.M.A.); (J.M.M.); (R.A.H.); (A.S.M.)
| | - Wallace R. Nunes-Neto
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, São Luís 65055-310, MA, Brazil; (C.I.d.S.); (W.R.N.-N.); (E.P.S.C.)
| | - Monique S. do Carmo
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil; (M.S.d.C.); (F.A.B.N.); (C.R.A.V.M.); (S.G.M.)
| | - Flávio A. B. Nogueira
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil; (M.S.d.C.); (F.A.B.N.); (C.R.A.V.M.); (S.G.M.)
| | - Rômulo M. Ferreira
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (C.D.L.C.); (R.M.F.); (L.F.G.); (J.M.M.A.); (J.M.M.); (R.A.H.); (A.S.M.)
| | - Ennio P. S. Costa
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, São Luís 65055-310, MA, Brazil; (C.I.d.S.); (W.R.N.-N.); (E.P.S.C.)
| | - Laoane F. Gonzaga
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (C.D.L.C.); (R.M.F.); (L.F.G.); (J.M.M.A.); (J.M.M.); (R.A.H.); (A.S.M.)
| | - Jéssica M. M. Araújo
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (C.D.L.C.); (R.M.F.); (L.F.G.); (J.M.M.A.); (J.M.M.); (R.A.H.); (A.S.M.)
| | - Joveliane M. Monteiro
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (C.D.L.C.); (R.M.F.); (L.F.G.); (J.M.M.A.); (J.M.M.); (R.A.H.); (A.S.M.)
| | - Cinara Regina A. V. Monteiro
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil; (M.S.d.C.); (F.A.B.N.); (C.R.A.V.M.); (S.G.M.)
| | - Fernanda S. Platner
- Faculdades Pequeno Príncipe, FPP, Curitiba 80230-020, PR, Brazil; (F.S.P.); (I.F.S.F.); (E.S.F.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, IPPPP, Curitiba 80250-060, PR, Brazil
| | - Isabella F. S. Figueiredo
- Faculdades Pequeno Príncipe, FPP, Curitiba 80230-020, PR, Brazil; (F.S.P.); (I.F.S.F.); (E.S.F.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, IPPPP, Curitiba 80250-060, PR, Brazil
| | - Rodrigo A. Holanda
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (C.D.L.C.); (R.M.F.); (L.F.G.); (J.M.M.A.); (J.M.M.); (R.A.H.); (A.S.M.)
| | - Silvio G. Monteiro
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil; (M.S.d.C.); (F.A.B.N.); (C.R.A.V.M.); (S.G.M.)
| | - Elizabeth S. Fernandes
- Faculdades Pequeno Príncipe, FPP, Curitiba 80230-020, PR, Brazil; (F.S.P.); (I.F.S.F.); (E.S.F.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, IPPPP, Curitiba 80250-060, PR, Brazil
| | - Andrea S. Monteiro
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (C.D.L.C.); (R.M.F.); (L.F.G.); (J.M.M.A.); (J.M.M.); (R.A.H.); (A.S.M.)
| | - Valério Monteiro-Neto
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, São Luís 65055-310, MA, Brazil; (C.I.d.S.); (W.R.N.-N.); (E.P.S.C.)
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil; (M.S.d.C.); (F.A.B.N.); (C.R.A.V.M.); (S.G.M.)
| |
Collapse
|
4
|
Xu Z, Lu Z, Soteyome T, Ye Y, Huang T, Liu J, Harro JM, Kjellerup BV, Peters BM. Polymicrobial interaction between Lactobacillus and Saccharomyces cerevisiae: coexistence-relevant mechanisms. Crit Rev Microbiol 2021; 47:386-396. [PMID: 33663335 DOI: 10.1080/1040841x.2021.1893265] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The coordination of single or multiple microorganisms are required for the manufacture of traditional fermented foods, improving the flavour and nutrition of the food materials. However, both the additional economic benefits and safety concerns have been raised by microbiotas in fermented products. Among the fermented products, Lactobacillus and Saccharomyces cerevisiae are one of the stable microbiotas, suggesting their interaction is mediated by coexistence-relevant mechanisms and prevent to be excluded by other microbial species. Thus, aiming to guide the manufacture of fermented foods, this review will focus on interactions of coexistence-relevant mechanisms between Lactobacillus and S. cerevisiae, including metabolites communications, aggregation, and polymicrobial biofilm. Also, the molecular regulatory network of the coexistence-relevant mechanisms is discussed according to omics researches.
Collapse
Affiliation(s)
- Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Zerong Lu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Tengyi Huang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Janette M Harro
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
5
|
Microbiological Assessment of the Quality of Some Commercial Products Marketed as Lactobacillus crispatus-Containing Probiotic Dietary Supplements. Microorganisms 2019; 7:microorganisms7110524. [PMID: 31684185 PMCID: PMC6921017 DOI: 10.3390/microorganisms7110524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 11/17/2022] Open
Abstract
In the last decade, many authors have reported low viability for probiotic products. Investigators commonly find they are not meeting claimed active counts and/or incorrect species and/or strains have been identified. We have therefore decided to verify viability, the real dose and species correspondence in nine probiotic products (seven nutritional supplements and two medical devices) collected from the Italian and French markets claiming to contain at least one strain of L. crispatus among the different species/strain included in the formulation. In fact, the medical relevance of L. crispatus strains has recently grown., as evaluating the possible dominance clusters typical of the vaginal microbiota, the Community State Type I, the one dominated by L. crispatus, appears to be “protective” in terms of infections, fertility and gestational duration of pregnancy. The results obtained demonstrate the generally poor quality of probiotics. Out of nine products, only two definitely contained viable Lactobacillus crispatus cells with a daily dose of at least 1 × 109 CFU/g and with an acceptable correspondence with what is declared on the label. Among these two, only one was found to be formulated with a strain (M247) that has been scientifically documented.
Collapse
|
6
|
The aggregation-promoting factor in Lactobacillus delbrueckii ssp. bulgaricus: confirmation of the presence and expression of the apf gene and in silico analysis of the corresponding protein. World J Microbiol Biotechnol 2018; 34:97. [PMID: 29923077 DOI: 10.1007/s11274-018-2480-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
Abstract
In lactobacilli the aggregation phenotype is linked to their ability to colonize the intestinal and urogenital tracts and to counteract pathogenic bacteria. In all available complete genome sequences of Lactobacillus delbrueckii ssp. bulgaricus there are at least two genes putatively related to aggregation, one of which is annotated as aggregation-promoting factor (apf). Here we report the results from the in silico analysis of this gene and its product. The apf gene was present in the genome of all 70 tested L. delbr. ssp. bulgaricus strains. Its expression was confirmed for a selection of five strains with aggregation phenotype and two aggregation-negative strains. The mature Apf protein had a length of 257-284 amino acids with predicted molecular weight in the range of 28.64-30.36 kDa and isoelectric point of 10.6 ± 0.1, showing some similarity to Apf1 and Apf2 from L. johnsonii NCC533 and Apf1 and Apf2 from L. gasseri which are similar in size (28-35 kDa) and share a similar high isoelectric point (pI > 9). Predictive analyzes have indicated that Apf is a secretory protein. The 30 amino acid signal peptide and the predicted cleavage site in the pre-protein suggested that it was processed by Type I Signal protease. In the mature Apf protein a glutamine-rich N-terminal region was followed by an unusual lysine/alanine-rich region with variable length, supposed to be positively charged under physiological conditions, interacting with bacterial teichoic acids. The alignment of the C-termini of the Apf proteins showed similarity to conserved C-terminal domains in aggregation-related proteins in other lactobacilli such as Apf1 of Lactobacillus johnsonii ATCC 11506 and the secretory protein Sep of L. fermentum BR11, that may be involved in non-covalent binding to carbohydrates. The C-terminal anchor and the cationic domain in Apf may serve as mediators of physical cell-to-cell interaction in L. delbr. ssp. bulgaricus.
Collapse
|
7
|
Lin Y, Krogh-Andersen K, Hammarström L, Marcotte H. Lactobacillus delivery of bioactive interleukin-22. Microb Cell Fact 2017; 16:148. [PMID: 28830549 PMCID: PMC5567760 DOI: 10.1186/s12934-017-0762-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/16/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Interleukin-22 (IL-22) plays a prominent role in epithelial regeneration and dampening of chronic inflammatory responses by protecting intestinal stem cells from immune-mediated tissue damage. IL-22 has a considerable therapeutic potential in graft-versus-host disease (GVHD), which is a frequent and challenging complication following allogeneic stem cell transplantation. The aim of our study was to engineer Lactobacillus for delivery of IL-22 directly to the intestinal mucosa as a new therapeutic strategy for GVHD. RESULTS The secretion and surface anchoring of mouse IL-22 by Lactobacillus paracasei BL23 was demonstrated by Western blot and flow cytometry. Both secreted and anchored mouse IL-22 produced by Lactobacillus was biologically active, as determined by its ability to induce IL-10 secretion in the Colo 205 human colon cancer cell line. CONCLUSIONS We have demonstrated the secretion and surface anchoring of bioactive IL-22 by Lactobacillus. Our results suggest that IL-22 expressing lactobacilli may potentially be a useful mucosal therapeutic agent for the treatment of GVHD, provided that chromosomal integration of the IL-22 expression cassettes can be achieved.
Collapse
Affiliation(s)
- Yin Lin
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Kasper Krogh-Andersen
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Harold Marcotte
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| |
Collapse
|
8
|
do Carmo MS, Noronha FMF, Arruda MO, Costa ÊPDS, Bomfim MRQ, Monteiro AS, Ferro TAF, Fernandes ES, Girón JA, Monteiro-Neto V. Lactobacillus fermentum ATCC 23271 Displays In vitro Inhibitory Activities against Candida spp. Front Microbiol 2016; 7:1722. [PMID: 27833605 PMCID: PMC5082230 DOI: 10.3389/fmicb.2016.01722] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/13/2016] [Indexed: 11/13/2022] Open
Abstract
Lactobacilli are involved in the microbial homeostasis in the female genital tract. Due to the high prevalence of many bacterial diseases of the female genital tract and the resistance of microorganisms to various antimicrobial agents, alternative means to control these infections are necessary. Thus, this study aimed to evaluate the probiotic properties of well-characterized Lactobacillus species, including L. acidophilus (ATCC 4356), L. brevis (ATCC 367), L. delbrueckii ssp. delbrueckii (ATCC 9645), L. fermentum (ATCC 23271), L. paracasei (ATCC 335), L. plantarum (ATCC 8014), and L. rhamnosus (ATCC 9595), against Candida albicans (ATCC 18804), Neisseria gonorrhoeae (ATCC 9826), and Streptococcus agalactiae (ATCC 13813). The probiotic potential was investigated by using the following criteria: (i) adhesion to host epithelial cells and mucus, (ii) biofilm formation, (iii) co-aggregation with bacterial pathogens, (iv) inhibition of pathogen adhesion to mucus and HeLa cells, and (v) antimicrobial activity. Tested lactobacilli adhered to mucin, co-aggregated with all genital microorganisms, and displayed antimicrobial activity. With the exception of L. acidophilus and L. paracasei, they adhered to HeLa cells. However, only L. fermentum produced a moderate biofilm and a higher level of co-aggregation and mucin binding. The displacement assay demonstrated that all Lactobacillus strains inhibit C. albicans binding to mucin (p < 0.001), likely due to the production of substances with antimicrobial activity. Clinical isolates belonging to the most common Candida species associated to vaginal candidiasis were inhibited by L. fermentum. Collectively, our data suggest that L. fermentum ATCC 23271 is a potential probiotic candidate, particularly to complement candidiasis treatment, since presented with the best probiotic profile in comparison with the other tested lactobacilli strains.
Collapse
Affiliation(s)
- Monique S do Carmo
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão São Luís, Brazil
| | | | - Mariana O Arruda
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão São Luís, Brazil
| | | | - Maria R Q Bomfim
- Centro de Ciências da Saúde, Universidade CEUMA São Luís, Brazil
| | | | - Thiago A F Ferro
- Centro de Ciências da Saúde, Universidade CEUMA São Luís, Brazil
| | - Elizabeth S Fernandes
- Centro de Ciências da Saúde, Universidade CEUMASão Luís, Brazil; Vascular Biology and Inflammation Section, Cardiovascular Division, King's College LondonLondon, UK
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla Puebla, Mexico
| | - Valério Monteiro-Neto
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do MaranhãoSão Luís, Brazil; Centro de Ciências da Saúde, Universidade CEUMASão Luís, Brazil
| |
Collapse
|
9
|
Landete JM. A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application. Crit Rev Biotechnol 2016; 37:296-308. [PMID: 26918754 DOI: 10.3109/07388551.2016.1144044] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lactic acid bacteria (LAB) have a long history of use in fermented foods and as probiotics. Genetic manipulation of these microorganisms has great potential for new applications in food safety, as well as in the development of improved food products and in health. While genetic engineering of LAB could have a major positive impact on the food and pharmaceutical industries, progress could be prevented by legal issues related to the controversy surrounding this technology. The safe use of genetically modified LAB requires the development of food-grade cloning systems containing only the DNA from homologous hosts or generally considered as safe organisms, and not dependent antibiotic markers. The rationale for the development of cloning vectors derived from cryptic LAB plasmids is the need for new genetic engineering tools, therefore a vision from cryptic plasmids to applications in food-grade vectors for LAB plasmids is shown in this review. Replicative and integrative vectors for the construction of food-grade vectors, and the relationship between resistance mechanism and expression systems, will be treated in depth in this paper. Finally, we will discuss the limited use of these vectors, and the problems arising from their use.
Collapse
Affiliation(s)
- José Maria Landete
- a Departamento De Tecnología De Alimentos , Instituto Nacional De Investigación Y Tecnología Agraria Y Alimentaria (INIA) , Madrid , Spain
| |
Collapse
|
10
|
Nishiyama K, Nakazato A, Ueno S, Seto Y, Kakuda T, Takai S, Yamamoto Y, Mukai T. Cell surface-associated aggregation-promoting factor fromLactobacillus gasseri SBT2055 facilitates host colonization and competitive exclusion ofCampylobacter jejuni. Mol Microbiol 2015; 98:712-26. [DOI: 10.1111/mmi.13153] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Keita Nishiyama
- Department of Animal Science; School of Veterinary Medicine; Kitasato University; Towada Aomori 034-8628 Japan
| | - Akiko Nakazato
- Department of Animal Science; School of Veterinary Medicine; Kitasato University; Towada Aomori 034-8628 Japan
| | - Shintaro Ueno
- Department of Animal Science; School of Veterinary Medicine; Kitasato University; Towada Aomori 034-8628 Japan
| | - Yasuyuki Seto
- Milk Science Research Institute; Megmilk Snow Brand Co. Ltd.; Kawagoe Saitama 350-1165 Japan
| | - Tsutomu Kakuda
- Faculty of Veterinary Medicine; School of Veterinary Medicine; Kitasato University; Towada Aomori 034-8628 Japan
| | - Shinji Takai
- Faculty of Veterinary Medicine; School of Veterinary Medicine; Kitasato University; Towada Aomori 034-8628 Japan
| | - Yuji Yamamoto
- Department of Animal Science; School of Veterinary Medicine; Kitasato University; Towada Aomori 034-8628 Japan
| | - Takao Mukai
- Department of Animal Science; School of Veterinary Medicine; Kitasato University; Towada Aomori 034-8628 Japan
| |
Collapse
|
11
|
Generation of food-grade recombinant Lactobacillus casei delivering Myxococcus xanthus prolyl endopeptidase. Appl Microbiol Biotechnol 2014; 98:6689-700. [PMID: 24752841 DOI: 10.1007/s00253-014-5730-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/24/2014] [Accepted: 03/26/2014] [Indexed: 12/29/2022]
Abstract
Prolyl endopeptidases (PEP) (EC 3.4.21.26), a family of serine proteases with the ability to hydrolyze the peptide bond on the carboxyl side of an internal proline residue, are able to degrade immunotoxic peptides responsible for celiac disease (CD), such as a 33-residue gluten peptide (33-mer). Oral administration of PEP has been suggested as a potential therapeutic approach for CD, although delivery of the enzyme to the small intestine requires intrinsic gastric stability or advanced formulation technologies. We have engineered two food-grade Lactobacillus casei strains to deliver PEP in an in vitro model of small intestine environment. One strain secretes PEP into the extracellular medium, whereas the other retains PEP in the intracellular environment. The strain that secretes PEP into the extracellular medium is the most effective to degrade the 33-mer and is resistant to simulated gastrointestinal stress. Our results suggest that in the future, after more studies and clinical trials, an engineered food-grade Lactobacillus strain may be useful as a vector for in situ production of PEP in the upper small intestine of CD patients.
Collapse
|
12
|
Al Kassaa I, Hamze M, Hober D, Chihib NE, Drider D. Identification of vaginal lactobacilli with potential probiotic properties isolated from women in North Lebanon. MICROBIAL ECOLOGY 2014; 67:722-734. [PMID: 24549747 DOI: 10.1007/s00248-014-0384-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 01/30/2014] [Indexed: 06/03/2023]
Abstract
The aim of this work was to study the diversity of vaginal lactobacilli in Lebanese women and to evaluate the antagonism, hydrophobicity, and safety characteristics of these strains. This study was performed on samples from 135 women who visited a gynecology clinic in the north of Lebanon, between September 2012 and January 2013. From these samples, 53 different isolates of vaginal lactobacilli were collected from vaginal swabs and identified using biochemical and molecular methods. The use of genotypic Rep-PCR fingerprinting allowed for the organization of these isolates into 23 different groups. Seven of the isolated lactobacilli were antagonistic against the following vaginal pathogens: Gardnerella vaginalis CIP7074T, Staphylococcus aureus ATCC33862, Escherichia coli CIP103982, and Candida albicans ATCC10231. The antagonistic lactobacilli strains were then identified using 16S rDNA sequence. The data of this study show that the antagonistic lactobacilli were non-hemolytic, sensitive to most antibiotic tests, free of plasmid DNA, and exhibited interesting hydrophobicity and autoaggregation properties positioning them as potential candidates for probiotic design.
Collapse
Affiliation(s)
- Imad Al Kassaa
- Laboratoire des Procédés Biologiques, Génie Enzymatique et Microbien (ProBioGEM), Cité Scientifique, avenue Paul Langevin. Bâtiment-Polytech Lille, 59655, Villeneuve d'Ascq Cedex, France
| | | | | | | | | |
Collapse
|
13
|
García-Cayuela T, Korany AM, Bustos I, P. Gómez de Cadiñanos L, Requena T, Peláez C, Martínez-Cuesta MC. Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.01.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
An extracellular Serine/Threonine-rich protein from Lactobacillus plantarum NCIMB 8826 is a novel aggregation-promoting factor with affinity to mucin. Appl Environ Microbiol 2013; 79:6059-66. [PMID: 23892754 DOI: 10.1128/aem.01657-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autoaggregation in lactic acid bacteria is directly related to the production of certain extracellular proteins, notably, aggregation-promoting factors (APFs). Production of aggregation-promoting factors confers beneficial traits to probiotic-producing strains, contributing to their fitness for the intestinal environment. Furthermore, coaggregation with pathogens has been proposed to be a beneficial mechanism in probiotic lactic acid bacteria. This mechanism would limit attachment of the pathogen to the gut mucosa, favoring its removal by the human immune system. In the present paper, we have characterized a novel aggregation-promoting factor in Lactobacillus plantarum. A mutant with a knockout of the D1 gene showed loss of its autoaggregative phenotype and a decreased ability to bind to mucin, indicating an adhesion role of this protein. In addition, heterologous production of the D1 protein or an internal fragment of the protein, characterized by its abundance in serine/threonine, strongly induced autoaggregation in Lactococcus lactis. This result strongly suggested that this internal fragment is responsible for the bioactivity of D1 as an APF. To our knowledge, this is the first report on a gene coding for an aggregation-promoting factor in Lb. plantarum.
Collapse
|
15
|
Hynönen U, Palva A. Lactobacillus surface layer proteins: structure, function and applications. Appl Microbiol Biotechnol 2013; 97:5225-43. [PMID: 23677442 PMCID: PMC3666127 DOI: 10.1007/s00253-013-4962-2] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 12/26/2022]
Abstract
Bacterial surface (S) layers are the outermost proteinaceous cell envelope structures found on members of nearly all taxonomic groups of bacteria and Archaea. They are composed of numerous identical subunits forming a symmetric, porous, lattice-like layer that completely covers the cell surface. The subunits are held together and attached to cell wall carbohydrates by non-covalent interactions, and they spontaneously reassemble in vitro by an entropy-driven process. Due to the low amino acid sequence similarity among S-layer proteins in general, verification of the presence of an S-layer on the bacterial cell surface usually requires electron microscopy. In lactobacilli, S-layer proteins have been detected on many but not all species. Lactobacillus S-layer proteins differ from those of other bacteria in their smaller size and high predicted pI. The positive charge in Lactobacillus S-layer proteins is concentrated in the more conserved cell wall binding domain, which can be either N- or C-terminal depending on the species. The more variable domain is responsible for the self-assembly of the monomers to a periodic structure. The biological functions of Lactobacillus S-layer proteins are poorly understood, but in some species S-layer proteins mediate bacterial adherence to host cells or extracellular matrix proteins or have protective or enzymatic functions. Lactobacillus S-layer proteins show potential for use as antigen carriers in live oral vaccine design because of their adhesive and immunomodulatory properties and the general non-pathogenicity of the species.
Collapse
Affiliation(s)
- Ulla Hynönen
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| |
Collapse
|
16
|
Tareb R, Bernardeau M, Gueguen M, Vernoux JP. In vitro characterization of aggregation and adhesion properties of viable and heat-killed forms of two probiotic Lactobacillus strains and interaction with foodborne zoonotic bacteria, especially Campylobacter jejuni. J Med Microbiol 2013; 62:637-649. [PMID: 23329323 DOI: 10.1099/jmm.0.049965-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Bacterial aggregation and/or adhesion are key factors for colonization of the digestive ecosystem and the ability of probiotic strains to exclude pathogens. In the present study, two probiotic strains, Lactobacillus rhamnosus CNCM-I-3698 and Lactobacillus farciminis CNCM-I-3699, were evaluated as viable or heat-killed forms and compared with probiotic reference Lactobacillus strains (Lb. rhamnosus GG and Lb. farciminis CIP 103136). The autoaggregation potential of both forms was higher than that of reference strains and twice that of pathogenic strains. The coaggregation potential of these two beneficial micro-organisms was evaluated against several pathogenic agents that threaten the global safety of the feed/food chain: Escherichia coli, Salmonella spp., Campylobacter spp. and Listeria monocytogenes. The strongest coaggregative interactions were demonstrated with Campylobacter spp. by a coaggregation test, confirmed by electron microscopic examination for the two forms. Viable forms were investigated for the nature of the bacterial cell-surface molecules involved, by sugar reversal tests and chemical and enzymic pretreatments. The results suggest that the coaggregation between both probiotic strains and C. jejuni CIP 70.2(T) is mediated by a carbohydrate-lectin interaction. The autoaggregation potential of the two probiotics decreased upon exposure to proteinase, SDS or LiCl, showing that proteinaceous components on the surface of the two lactobacilli play an important role in this interaction. Adhesion abilities of both Lactobacillus strains were also demonstrated at significant levels on Caco-2 cells, mucin and extracellular matrix material. Both viable and heat-killed forms of the two probiotic lactobacilli inhibited the attachment of C. jejuni CIP 70.2(T) to mucin. In conclusion, in vitro assays showed that Lb. rhamnosus CNCM-I-3698 and Lb. farciminis CNCM-I-3699, as viable or heat-killed forms, are adherent to different intestinal matrix models and are highly aggregative in vitro with pathogens, especially Campylobacter spp., the most commonly reported zoonotic agent in the European Union. This study supports the need for further in vivo investigations to demonstrate the potential food safety benefits of Lb. rhamnosus CNCM-I-3698 and Lb. farciminis CNCM-I-3699, live or heat-killed, in the global feed/food chain.
Collapse
Affiliation(s)
- Raouf Tareb
- Danisco Animal Nutrition, Marlborough, UK.,Unité de Recherche Aliments Bioprocédés Toxicologie Environnements (UR ABTE) EA 4651, Université de Caen Basse-Normandie, Bd Maréchal Juin, F 14032 Caen, France
| | | | - Marielle Gueguen
- Université Paris-Est, Institut Français de Sciences et Technologies des Transports, de l'Aménagements et des Réseaux, 58 boulevard Lefebvre, 75732 Paris cedex 15, France.,Unité de Recherche Aliments Bioprocédés Toxicologie Environnements (UR ABTE) EA 4651, Université de Caen Basse-Normandie, Bd Maréchal Juin, F 14032 Caen, France
| | - Jean-Paul Vernoux
- Unité de Recherche Aliments Bioprocédés Toxicologie Environnements (UR ABTE) EA 4651, Université de Caen Basse-Normandie, Bd Maréchal Juin, F 14032 Caen, France
| |
Collapse
|
17
|
Martín R, Sánchez B, Suárez JE, Urdaci MC. Characterization of the adherence properties of human Lactobacilli strains to be used as vaginal probiotics. FEMS Microbiol Lett 2012; 328:166-73. [PMID: 22224921 DOI: 10.1111/j.1574-6968.2011.02495.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/21/2011] [Accepted: 12/21/2011] [Indexed: 12/29/2022] Open
Abstract
In the present work, the adhesion of 43 human lactobacilli isolates to mucin has been studied. The most adherent strains were selected, and their capacities to adhere to three epithelial cell lines were studied. All intestinal strains and one vaginal isolate adhered to HT-29 cells. The latter was the most adherent to Caco-2 cells, although two of the intestinal isolates were also highly adherent. Moreover, five of the eight strains strongly adhered to HeLa cells. The binding of an Actinomyces neuii clinical isolate to HeLa cells was enhanced by two of the lactobacilli and by their secreted proteins, while those of another two strains almost abolished it. None of the strains were able to interfere with the adhesion of Candida albicans to HeLa cells. The components of the extracellular proteome of all strains were identified by MALDI-TOF/MS. Among them, a collagen-binding A precursor and aggregation-promoting factor-like proteins are suggested to participate on adhesion to Caco-2 and HeLa cells, respectively. In this way, several proteins with LysM domains might explain the ability of some bacterial supernatants to block A. neuii adhesion to HeLa cell cultures. Finally, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) could explain the good adhesion of some strains to mucin.
Collapse
Affiliation(s)
- Rebeca Martín
- Laboratory of Microbiology, University Institute of Biotechnology, University of Oviedo, Oviedo, Spain.
| | | | | | | |
Collapse
|
18
|
In situ gastrointestinal protection against anthrax edema toxin by single-chain antibody fragment producing lactobacilli. BMC Biotechnol 2011; 11:126. [PMID: 22185669 PMCID: PMC3295704 DOI: 10.1186/1472-6750-11-126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 12/20/2011] [Indexed: 11/10/2022] Open
|
19
|
Grimm A, Cho GS, Hanak A, Dorn A, Huch M, Franz CMAP. Characterization of Putative Adhesion Genes in the Potentially Probiotic Strain Lactobacillus plantarum BFE 5092. Probiotics Antimicrob Proteins 2011; 3:204-13. [DOI: 10.1007/s12602-011-9082-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Integrative expression system for delivery of antibody fragments by lactobacilli. Appl Environ Microbiol 2011; 77:2174-9. [PMID: 21257814 DOI: 10.1128/aem.02690-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of expression cassettes which mediate secretion or surface display of antibody fragments was stably integrated in the chromosome of Lactobacillus paracasei. L. paracasei producing surface-anchored variable domain of llama heavy chain (VHH) (ARP1) directed against rotavirus showed efficient binding to rotavirus and protection in the mouse model of rotavirus infection.
Collapse
|
21
|
Zhou M, Theunissen D, Wels M, Siezen RJ. LAB-Secretome: a genome-scale comparative analysis of the predicted extracellular and surface-associated proteins of Lactic Acid Bacteria. BMC Genomics 2010; 11:651. [PMID: 21092245 PMCID: PMC3017865 DOI: 10.1186/1471-2164-11-651] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background In Lactic Acid Bacteria (LAB), the extracellular and surface-associated proteins can be involved in processes such as cell wall metabolism, degradation and uptake of nutrients, communication and binding to substrates or hosts. A genome-scale comparative study of these proteins (secretomes) can provide vast information towards the understanding of the molecular evolution, diversity, function and adaptation of LAB to their specific environmental niches. Results We have performed an extensive prediction and comparison of the secretomes from 26 sequenced LAB genomes. A new approach to detect homolog clusters of secretome proteins (LaCOGs) was designed by integrating protein subcellular location prediction and homology clustering methods. The initial clusters were further adjusted semi-manually based on multiple sequence alignments, domain compositions, pseudogene analysis and biological function of the proteins. Ubiquitous protein families were identified, as well as species-specific, strain-specific, and niche-specific LaCOGs. Comparative analysis of protein subfamilies has shown that the distribution and functional specificity of LaCOGs could be used to explain many niche-specific phenotypes. A comprehensive and user-friendly database LAB-Secretome was constructed to store, visualize and update the extracellular proteins and LaCOGs http://www.cmbi.ru.nl/lab_secretome/. This database will be updated regularly when new bacterial genomes become available. Conclusions The LAB-Secretome database could be used to understand the evolution and adaptation of lactic acid bacteria to their environmental niches, to improve protein functional annotation and to serve as basis for targeted experimental studies.
Collapse
Affiliation(s)
- Miaomiao Zhou
- Centre for Molecular and Biomolecular Informatics, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
22
|
Functional roles of aggregation-promoting-like factor in stress tolerance and adherence of Lactobacillus acidophilus NCFM. Appl Environ Microbiol 2010; 76:5005-12. [PMID: 20562289 DOI: 10.1128/aem.00030-10] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aggregation-promoting factors (Apf) are secreted proteins that have been associated with a diverse number of functional roles in lactobacilli, including self-aggregation, the bridging of conjugal pairs, coaggregation with other commensal or pathogenic bacteria, and maintenance of cell shape. In silico genome analysis of Lactobacillus acidophilus NCFM identified LBA0493 as a 696-bp apf gene that encodes a putative 21-kDa Apf protein. Transcriptional studies of NCFM during growth in milk showed apf to be one of the most highly upregulated genes in the genome. In the present study, reverse transcriptase-quantitative PCR (RT-QPCR) analysis revealed that the apf gene was highly induced during the stationary phase compared to that during the logarithmic phase. To investigate the functional role of Apf in NCFM, an Delta apf deletion mutant was constructed. The resulting Delta apf mutant, NCK2033, did not show a significant difference in cell morphology or growth compared to that of the NCFMDelta upp reference strain, NCK1909. The autoaggregation phenotype of NCK2033 in planktonic culture was unaffected. Additional phenotypic assays revealed that NCK2033 was more susceptible to treatments with oxgall bile and sodium dodecyl sulfate (SDS). Survival rates of NCK2033 decreased when stationary-phase cells were exposed to simulated small-intestinal and gastric juices. Furthermore, NCK2033 in the stationary phase showed a reduction of in vitro adherence to Caco-2 intestinal epithelial cells, mucin glycoproteins, and fibronectin. The data suggest that the Apf-like proteins may contribute to the survival of L. acidophilus during transit through the digestive tract and, potentially, participate in the interactions with the host intestinal mucosa.
Collapse
|
23
|
Azcarate-Peril MA, Tallon R, Klaenhammer TR. Temporal gene expression and probiotic attributes of Lactobacillus acidophilus during growth in milk. J Dairy Sci 2009; 92:870-86. [PMID: 19233780 DOI: 10.3168/jds.2008-1457] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lactic acid bacteria have been used as starter strains in the production of fermented dairy products for centuries. Lactobacillus acidophilus is a widely recognized probiotic bacteria commonly added to yogurt and used in dietary supplements. In this study, a whole genome microarray was employed to monitor gene expression of L. acidophilus NCFM cells propagated in 11% skim milk during early, mid and late logarithmic phase, and stationary phase. Approximately 21% of 1,864 open reading frames were differentially expressed at least in one time point. Genes differentially expressed in skim milk included several members of the proteolytic enzyme system. Expression of prtP (proteinase precursor) and prtM (maturase) increased over time as well as several peptidases and transport systems. Expression of Opp1 (oligopeptide transport system 1) was highest at 4 h, whereas gene expression of Opp2 increased over time reaching its highest level at 12 h, suggesting that the 2 systems have different specificities. Expression of a 2-component regulatory system, previously shown to regulate acid tolerance and proteolytic activity, also increased during the early log and early stationary phases of growth. Expression of the genes involved in lactose utilization increased immediately (5 min) upon exposure to milk. The acidification activity, survival under storage conditions, and adhesion to mucin and Caco-2 tissue culture cells of selected mutants containing insertionally inactivated genes differentially expressed in the wild-type strain during growth in milk were examined for any potential links between probiotic properties and bacterial growth and survival in milk. Some of the most interesting genes found to be expressed in milk were correlated with signaling (autoinducer-2) and adherence to mucin and intestinal epithelial cells, in vitro.
Collapse
Affiliation(s)
- M A Azcarate-Peril
- Department of Food, Bioprocessing, and Nutrition Sciences, and Southeast Dairy Foods Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
24
|
Jankovic D, Collett MA, Lubbers MW, Rakonjac J. Direct selection and phage display of a Gram-positive secretome. Genome Biol 2008; 8:R266. [PMID: 18078523 PMCID: PMC2246268 DOI: 10.1186/gb-2007-8-12-r266] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Revised: 11/01/2007] [Accepted: 12/13/2007] [Indexed: 12/23/2022] Open
Abstract
A phage display system for direct selection, identification, expression and purification of bacterial secretome proteins has been developed. Surface, secreted and transmembrane protein-encoding open reading frames, collectively the secretome, can be identified in bacterial genome sequences using bioinformatics. However, functional analysis of translated secretomes is possible only if many secretome proteins are expressed and purified individually. We have now developed and applied a phage display system for direct selection, identification, expression and purification of bacterial secretome proteins.
Collapse
Affiliation(s)
- Dragana Jankovic
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
25
|
Siciliano RA, Cacace G, Mazzeo MF, Morelli L, Elli M, Rossi M, Malorni A. Proteomic investigation of the aggregation phenomenon in Lactobacillus crispatus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:335-42. [PMID: 18078834 DOI: 10.1016/j.bbapap.2007.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/29/2007] [Accepted: 11/05/2007] [Indexed: 11/18/2022]
Abstract
Aggregation process affects the ability of Lactobacillus crispatus, a probiotic, to survive into the gastro-intestinal environment and to adhere to the intestinal mucosa. To elucidate mechanisms underlying this process, a comparative proteomic study was carried out on a wild type strain M247 and its spontaneous isogenic mutant Mu5, which had lost the aggregative phenotype. Results highlighted an overall lower amount of enzymes involved in carbohydrate transport and metabolism in strain M247 compared to strain Mu5, suggesting a reduction in the general growth rate, probably caused by nutrient limitation in cell aggregates, coherently with the phenotypic traits of the strains. Moreover, the up-regulation of a putative elongation factor Tu in the wild type M247 strain could suggest a role of this particular protein in the adhesion mechanism of L. crispatus.
Collapse
Affiliation(s)
- Rosa A Siciliano
- Centro di Spettrometria di Massa Proteomica e Biomolecolare, Istituto di Scienze dell'Alimentazione del CNR, Avellino, Italy.
| | | | | | | | | | | | | |
Collapse
|