1
|
Ashraf MF, Zubair D, Bashir MN, Alagawany M, Ahmed S, Shah QA, Buzdar JA, Arain MA. Nutraceutical and Health-Promoting Potential of Lactoferrin, an Iron-Binding Protein in Human and Animal: Current Knowledge. Biol Trace Elem Res 2024; 202:56-72. [PMID: 37059920 PMCID: PMC10104436 DOI: 10.1007/s12011-023-03658-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
Lactoferrin is a natural cationic iron-binding glycoprotein of the transferrin family found in bovine milk and other exocrine secretions, including lacrimal fluid, saliva, and bile. Lactoferrin has been investigated for its numerous powerful influences, including anticancer, anti-inflammatory, anti-oxidant, anti-osteoporotic, antifungal, antibacterial, antiviral, immunomodulatory, hepatoprotective, and other beneficial health effects. Lactoferrin demonstrated several nutraceutical and pharmaceutical potentials and have a significant impact on improving the health of humans and animals. Lactoferrin plays a critical role in keeping the normal physiological homeostasis associated with the development of pathological disorders. The current review highlights the medicinal value, nutraceutical role, therapeutic application, and outstanding favorable health sides of lactoferrin, which would benefit from more exploration of this glycoprotein for the design of effective medicines, drugs, and pharmaceuticals for safeguarding different health issues in animals and humans.
Collapse
Affiliation(s)
| | - Dawood Zubair
- Iqraa Medical Complex, Johar Town Lahore, Punjab, Pakistan
| | | | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, 44519, Egypt.
| | - Shabbir Ahmed
- Faculty of Animal Husbandry & Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Qurban Ali Shah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan
| | - Jameel Ahmed Buzdar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan
| | - Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan.
| |
Collapse
|
2
|
Sawale M, Ozadali F, Valentine CJ, Benyathiar P, Drolia R, Mishra DK. Impact of bovine lactoferrin fortification on pathogenic organisms to attenuate the risk of infection for infants. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
3
|
Petkova D, Mihaylova D, Desseva I. Microencapsulation in food industry – an overview. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224502005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the modern health concept, food quality is becoming more and more important. People are increasingly looking for added value to their diet through the presence of bioactive substances. Usually, the latter are sensitive molecules; they are unstable in processing and consumption. In addition, problems with unpleasant organoleptic characteristics clean labelling and high production costs can occur. To overcome these problems, a solution can be sought in microencapsulation techniques. Although these techniques have been known for a long time, nowadays their meaning and significance are gaining new dimensions. In this regard, this review aims to provide up-to-date information on currently used microencapsulation techniques, limitations, and prospects.
Collapse
|
4
|
OSAILI T, AL-NABULSI A, NAZZAL D, AL-HOLY M, OLAIMAT A, OBAID R, HOLLEY R. Effect of water activity and storage of tahini on the viability of stressed Salmonella serovars. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.39219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tareq OSAILI
- The University of Sharjah, United Arab Emirates; Jordan University of Science and Technology, Jordan
| | | | - Dima NAZZAL
- Jordan University of Science and Technology, Jordan
| | | | | | - Reyad OBAID
- The University of Sharjah, United Arab Emirates
| | | |
Collapse
|
5
|
AL-NABULSI A, OSAILI T, OLAIMAT A, ALMASRI W, Al-HOLY M, JARADAT Z, AYYASH M, AWAISHEH S, HOLLEY R. Inhibitory effect of thyme and cinnamon essential oils against E. coli O157:H7 in Tahini. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.21619] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Tareq OSAILI
- ordan University of Science and Technology, Jordan; University of Sharjah, United Arab Emirates
| | | | - Weam ALMASRI
- ordan University of Science and Technology, Jordan
| | | | - Ziad JARADAT
- Jordan University of Science and Technology, Jordan
| | | | | | | |
Collapse
|
6
|
Osaili TM, Hasan F, Dhanasekaran DK, Obaid RS, Al-Nabulsi AA, Ayyash M, Karam L, Savvaidis IN, Holley R. Effect of active essential oils added to chicken tawook on the behaviour of Listeria monocytogenes, Salmonella spp. and Escherichia coli O157:H7 during storage. Int J Food Microbiol 2020; 337:108947. [PMID: 33181419 DOI: 10.1016/j.ijfoodmicro.2020.108947] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/15/2020] [Accepted: 10/24/2020] [Indexed: 11/17/2022]
Abstract
The objective of the study was to assess the antimicrobial effect of active essential oil components (EOs) namely (carvacrol (CA), cinnamaldehyde (CI) and thymol (TH)) on Listeria monocytogenes, Salmonella spp., and Escherichia coli O157:H7 in chicken tawook during storage at 4 and 10 °C. A marinade consisting of ingredients commonly used in the chicken tawook recipe was prepared and mixed with 1% and 2% v/v CA, CI or TH. The marinade with or without EOs was added to fresh chicken breast cubes inoculated with the foodborne pathogens. Afterward, marinated chicken "tawook" was stored at 4 and 10 °C covered with cling wrap to mimic chill and mild abuse storage conditions for up to 7 days. At 10 °C, the marinade decreased L. monocytogenes numbers on day 4 and 7 by about 2.4 log10 CFU/g as compared to unmarinated samples. Adding EOs to chicken tawook did not change L. monocytogenes numbers during storage at 4 and 10 °C. For Salmonella spp., the marinade decreased the numbers during 10 °C storage on day 4 and 7 by about 4.9 log10 CFU/g as compared to unmarinated samples. At 4 °C, EOs at 2% decreased Salmonella spp. on day 7 by 0.5 log10 CFU/g. One percent CI significantly decreased Salmonella by 1.5 log10 CFU/g, at day 4 of storage. At 10 °C, 1% CA, 2% CI, 1% and 2% TH decreased Salmonella spp. in the samples by 0.5 log10 CFU/g on day 7. The marinade decreased E. coli O157:H7 numbers on the chicken samples during 10 °C storage on day 4 and 7 by about 3.3 log10 CFU/g as compared to unmarinated samples. Regardless of storage day at 4 °C, EOs decreased E. coli O157:H7 populations in chicken tawook by ≤2.4 log10 CFU/g compared to samples without EOs, where the decrease was ≤1.4 log10 CFU/g. Moreover, no significant decrease in E. coli O157:H7 populations could be attributed to the addition of EOs in samples which were stored at 10 °C. Increasing the concentration of EOs from 1 to 2% seemed to have no significant effect in reducing the tested foodborne pathogen populations.
Collapse
Affiliation(s)
- Tareq M Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates; Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan.
| | - Fayeza Hasan
- Sharjah Institute for Medical Research, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Dinesh Kumar Dhanasekaran
- Sharjah Institute for Medical Research, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Reyad S Obaid
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Mutamed Ayyash
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Layal Karam
- Department of Nursing & Health Sciences, Faculty of Nursing & Health Sciences, Notre Dame University-Louaize, P.O. Box: 72, Zouk Mikael, Lebanon
| | - Ioannis N Savvaidis
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates; Department of Chemistry, School of Natural Sciences, University of Ioannina, Ioannina 45110, 20 Greece
| | - Richard Holley
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
7
|
Inactivation of Salmonella spp. in tahini using plant essential oil extracts. Food Microbiol 2019; 86:103338. [PMID: 31703867 DOI: 10.1016/j.fm.2019.103338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/01/2019] [Accepted: 09/17/2019] [Indexed: 11/21/2022]
Abstract
Tahini is a popular food product in the Middle East region and is used as a major ingredient in several ready-to-eat food products. Tahini and its products have been linked to foodborne illness outbreaks and product recalls worldwide as a result of Salmonella spp. contamination. The objectives of the current study were to investigate: i) the effectiveness of 10 plant essential oil extracts on the viability of Salmonella spp. using disc diffusion ii) the antimicrobial activity of the most effective oils against Salmonella spp. in commercial or 10% w/v hydrated tahini (tahini-based product model) stored at 37, 25 and 10 °C for 28 d and iii) the effect of the addition of essential oil extracts on the sensory acceptability of tahini and hydrated tahini. Among the tested essential oils, thyme (TO) and cinnamon oil (CO) showed the highest antimicrobial activity against tested Salmonella spp. at 37 and 10 °C using a disc diffusion assay method. In tahini, the addition of 2.0% CO reduced the numbers of Salmonella spp. by 2.87, 2.64 or 2.35 log10 CFU/ml at 37, 25 or 10 °C, respectively, by 28 d. However, the antimicrobial activity of CO was more pronounced at all storage temperatures in hydrated tahini where no viable cells were detected after 3 d storage at 25 and 37 °C, or after 7 d at 10 °C. However, at 25 and 37 °C, the antimicrobial activity of CO was more evident since no viable cells were detected after 14 d when 0.5% was used. The numbers of Salmonella spp. were reduced by 3.29, 3.03 or 2.17 log10 CFU/ml at 37, 25 or 10 °C, respectively, after 28 d when 2.0% TO was added to tahini. Salmonella spp. were not detected in the hydrated tahini treated with 2.0% TO after 28 d at 37 °C or 25 °C, while at 10 °C, the numbers of Salmonella spp. were not significantly reduced after 28 d in hydrated tahini compared to the initial numbers at zero time. Therefore, the addition of TO and CO could be used to preclude the post process contamination of tahini with foodborne pathogens, yet, the addition of TO and CO to tahini reduced its consumer acceptability compared untreated tahini.
Collapse
|
8
|
Kim NH, Cho TJ, Rhee MS. Sodium Chloride Does Not Ensure Microbiological Safety of Foods: Cases and Solutions. ADVANCES IN APPLIED MICROBIOLOGY 2017; 101:1-47. [PMID: 29050664 DOI: 10.1016/bs.aambs.2017.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Addition of salt or salt-containing water to food is one of the oldest and most effective preservation methods in history; indeed, salt-cured foods are generally recognized as microbiologically safe due to their high salinity. However, a number of microbiological risks remain. The microbiological hazards and risks associated with salt-cured foods must be addressed more in-depth as they are likely to be underestimated by previous studies. This review examined a number of scientific reports and articles about the microbiological safety of salt-cured foods, which included salted, brined, pickled, and/or marinated vegetables, meat, and seafood. The following subjects are covered in order: (1) clinical cases and outbreaks attributed to salt-cured foods; (2) the prevalence of foodborne pathogens in such foods; (3) the molecular, physiological, and virulent responses of the pathogens to the presence of NaCl in both laboratory media and food matrices; (4) the survival and fate of microorganisms in salt-cured foods (in the presence/absence of additional processes); and (5) the interaction between NaCl and other stressors in food processes (e.g., acidification, antimicrobials, drying, and heating). The review provides a comprehensive overview of potentially hazardous pathogens associated with salt-cured foods and suggests further research into effective intervention techniques that will reduce their levels in the food chain.
Collapse
Affiliation(s)
- Nam Hee Kim
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Tae Jin Cho
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Min Suk Rhee
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Osaili T, Al-Nabulsi A, Nazzal D, Shaker R. Effect of storage temperatures and stresses on the survival ofSalmonellaspp. in halva. Lett Appl Microbiol 2017; 65:403-409. [DOI: 10.1111/lam.12791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 11/29/2022]
Affiliation(s)
- T.M. Osaili
- Department of Clinical Nutrition and Dietetics; College of Health Sciences; University of Sharjah; Sharjah UAE
- Research Institute of Medical and Health Sciences; University of Sharjah; Sharjah UAE
- Department of Nutrition and Food Technology; Faculty of Agriculture; Jordan University of Science and Technology; Irbid 22110 Jordan
- Department of Nutrition and Food Technology; Faculty of Agriculture; Jordan University of Science and Technology; Irbid 22110 Jordan
| | - A.A. Al-Nabulsi
- Department of Nutrition and Food Technology; Faculty of Agriculture; Jordan University of Science and Technology; Irbid 22110 Jordan
| | - D.S. Nazzal
- Department of Nutrition and Food Technology; Faculty of Agriculture; Jordan University of Science and Technology; Irbid 22110 Jordan
| | - R.R. Shaker
- Department of Clinical Nutrition and Dietetics; College of Health Sciences; University of Sharjah; Sharjah UAE
- Research Institute of Medical and Health Sciences; University of Sharjah; Sharjah UAE
| |
Collapse
|
10
|
Rybarczyk J, Kieckens E, Vanrompay D, Cox E. In vitro and in vivo studies on the antimicrobial effect of lactoferrin against Escherichia coli O157:H7. Vet Microbiol 2017; 202:23-28. [DOI: 10.1016/j.vetmic.2016.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 05/11/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
|
11
|
Murdock C, Chikindas ML, Matthews KR. The Pepsin Hydrolysate of Bovine Lactoferrin Causes a Collapse of the Membrane Potential in Escherichia coli O157:H7. Probiotics Antimicrob Proteins 2016; 2:112-9. [PMID: 26781120 DOI: 10.1007/s12602-010-9039-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the present study, the ability of bovine lactoferrin hydrolysate (LfH) to disrupt the cytoplasmic membrane of Escherichia coli O157:H7 was investigated. Lactoferrin and LfH antimicrobial activities were compared against E. coli O157:H7 and E. coli O157:H7 spheroplasts. The effect of LfH on the cytoplasmic membrane of E. coli O157:H7 cells was determined by evaluating potassium efflux (K(+)), dissipation of ATP and membrane potential (ΔΨ). LfH produced a rapid efflux of potassium ions, a decrease in intracellular levels of ATP coupled with a substantial increase in extracellular ATP levels and a complete dissipation of the ΔΨ. The results suggest that LfH causes a collapse of the membrane integrity by pore formation in the inner membrane, leading to the death of the cell. Moreover, the mechanism of action of LfH on E. coli O157:H7 appears to involve an interference with the inner membrane integrity based on experiments using E. coli O157:H7 spheroplasts.
Collapse
Affiliation(s)
- Christopher Murdock
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901-8520, USA
| | - Michael L Chikindas
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901-8520, USA
| | - Karl R Matthews
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901-8520, USA.
| |
Collapse
|
12
|
Comparison of Proliferative Effect of Human Lactoferrin and Its Proteolytic Peptide on Normal and Transformed Epithelial Cells. Appl Biochem Biotechnol 2015; 178:44-57. [PMID: 26400493 DOI: 10.1007/s12010-015-1857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
Abstract
Human lactoferrin (hLF) is an iron-binding glycoprotein with a variety of functions. hLF undergoes proteolytic cleavage to smaller peptides in the stomach following ingestion. In the present study, we evaluated the effects of hLF and its proteolytic product, human lactoferrin peptide (hLFP), on the proliferation of two epithelial cells, HEK293 normal cells and KATO III gastric carcinoma cells, using an MTT assay and expression of proliferative nuclear cell antigen (PCNA), a notable proliferation marker. When the two epithelial cells were stimulated with hLF and hLFP in the presence of fetal bovine serum (FBS), hLFP stimulated proliferation of both cell types at lower concentrations than hLF by two orders of magnitude. The cancer cells exhibited proliferative responses to both hLF and hLFP at lower concentrations by 2∼3 orders of magnitude than the normal cells. Either hLF or hLFP alone did not support appreciable proliferation of these cell lines in the absence or low concentrations of FBS. Bovine serum albumin or its proteolytic product failed to promote cellular proliferation even in the presence of 10 % FBS, indicating the specificity of the proliferative activity of hLF and hLFP. These data highlight feasibility of hLF and its peptide for adjuvants for tissue culture medium.
Collapse
|
13
|
Al-Nabulsi AA, Olaimat AN, Osaili TM, Shaker RR, Zein Elabedeen N, Jaradat ZW, Abushelaibi A, Holley RA. Use of acetic and citric acids to control Salmonella Typhimurium in tahini (sesame paste). Food Microbiol 2014; 42:102-8. [DOI: 10.1016/j.fm.2014.02.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/21/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
|
14
|
Martins JG, Neto IFF, Pinto ISS, Soares EV, Barros MT, Soares HMVM. Alternative chelating agents: evaluation of the ready biodegradability and complexation properties. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:344-354. [PMID: 24279626 DOI: 10.1080/10934529.2014.846706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The ready biodegradability of four chelating agents, N,N'-(S,S)-bis[1-carboxy-2-(imidazol-4-yl)ethyl]ethylenediamine (BCIEE), N'-ethylenedi-L-cysteine (EC), N,N'-bis (4-imidazolymethyl)ethylenediamine (EMI) and 2,6-pyridine dicarboxylic acid (PDA), was tested according to the OECD guideline for testing of chemicals. PDA proved to be a readily biodegradable substance. However, none of the other three compounds were degraded during the 28 days of the test. Chemical simulations were performed for the four compounds in order to understand their ability to complex with some metal ions (Ca, Cd, Co, Cu, Fe, Mg, Mn, Ni, Pb, Zn) and discuss possible applications of these chelating agents. Two different conditions were simulated: (i) in the presence of the chelating agent and one metal ion, and (ii) in the simultaneous presence of the chelating agent and all metal ions with an excess of Ca. For those compounds that were revealed not to be readily biodegradable (BCIEE, EC and EMI), applications were evaluated where this property was not fundamental or even not required. Chemical simulations pointed out that possible applications for these chelating agents are: food fortification, food process, fertilizers, biocides, soil remediation and treatment of metal poisoning. Additionally, chemical simulations also predicted that PDA is an efficient chelating agent for Ca incrustations removal, detergents and for pulp metal ions removal process.
Collapse
Affiliation(s)
- João G Martins
- a REQUIMTE - Departament of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
| | | | | | | | | | | |
Collapse
|
15
|
Yin X, Zhou H, Gong J. Effects of culture conditions and tomato, spinach and lettuce lysates on adherence to intestinal epithelial cells of Salmonella Typhimurium PT 193. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Davidson PM, Critzer FJ, Taylor TM. Naturally Occurring Antimicrobials for Minimally Processed Foods. Annu Rev Food Sci Technol 2013; 4:163-90. [DOI: 10.1146/annurev-food-030212-182535] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- P. Michael Davidson
- Department of Food Science & Technology, University of Tennessee, Knoxville, Tennessee 37996-4591; ,
| | - Faith J. Critzer
- Department of Food Science & Technology, University of Tennessee, Knoxville, Tennessee 37996-4591; ,
| | - T. Matthew Taylor
- Department of Animal Science, Texas A&M University, College Station, Texas 77843;
| |
Collapse
|
17
|
Ramos OL, Fernandes JC, Silva SI, Pintado ME, Malcata FX. Edible films and coatings from whey proteins: a review on formulation, and on mechanical and bioactive properties. Crit Rev Food Sci Nutr 2012; 52:533-52. [PMID: 22452733 DOI: 10.1080/10408398.2010.500528] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The latest decade has witnessed joint efforts by the packaging and the food industries to reduce the amount of residues and wastes associated with food consumption. The recent increase in environmental awareness has also contributed toward development of edible packaging materials. Viable edible films and coatings have been successfully produced from whey proteins; their ability to serve other functions, viz. carrier of antimicrobials, antioxidants, or other nutraceuticals, without significantly compromising the desirable primary barrier and mechanical properties as packaging films, will add value for eventual commercial applications. These points are tackled in this review, in a critical manner. The supply of whey protein-based films and coatings, formulated to specifically address end-user needs, is also considered.
Collapse
Affiliation(s)
- Oscar L Ramos
- CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa, R. Dr. António Bernardino de Almeida, Porto, Portugal
| | | | | | | | | |
Collapse
|
18
|
He S, Wang B, Chen H, Tang C, Feng Y. Preparation and antimicrobial properties of gemini surfactant-supported triiodide complex system. ACS APPLIED MATERIALS & INTERFACES 2012; 4:2116-2123. [PMID: 22404136 DOI: 10.1021/am300094f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Iodine is an effective, simple, and inexpensive bactericide in disinfection. However, the poor solubility and stability of iodine in water limit its applications. In addition, the active iodine content in the commercial iodophors is quite low, and the reported triiodide complex is unstable. In this work, a long-term stable triiodide complex antimicrobial system was prepared by mixing iodine and a cationic gemini surfactant into lauryldimethylamine oxide (LDAO) aqueous solution, and its stability was examined by means of UV-vis spectrophotometry. It was found that the content of LDAO, cationic gemini surfactant and H(2)SO(4) played crucial roles in stabilizing antimicrobial system, and the active iodine (i.e., triiodide complex) content of the optimum formulation can remain stable for 150 days, as iodine is encapsulated by the mixed vesicles assembled by the protonated LDAO and the added gemini surfactant. However, the active iodine reduced rapidly when NaCl was added or the pH was increased in the environment. Furthermore, the antimicrobial efficacy of the optimized formulation was studied against Candida albicans, and more than 4 log reduction in viable cell after 5 min of contact was obtained.
Collapse
Affiliation(s)
- Shuai He
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, People's Republic of China
| | | | | | | | | |
Collapse
|
19
|
Imran M, Revol-Junelles AM, Martyn A, Tehrany EA, Jacquot M, Linder M, Desobry S. Active food packaging evolution: transformation from micro- to nanotechnology. Crit Rev Food Sci Nutr 2010; 50:799-821. [PMID: 20924864 DOI: 10.1080/10408398.2010.503694] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Predicting which attributes consumers are willing to pay extra for has become straightforward in recent years. The demands for the prime necessity of food of natural quality, elevated safety, minimally processed, ready-to-eat, and longer shelf-life have turned out to be matters of paramount importance. The increased awareness of environmental conservation and the escalating rate of foodborne illnesses have driven the food industry to implement a more innovative solution, i.e. bioactive packaging. Owing to nanotechnology application in eco-favorable coatings and encapsulation systems, the probabilities of enhancing food quality, safety, stability, and efficiency have been augmented. In this review article, the collective results highlight the food nanotechnology potentials with special focus on its application in active packaging, novel nano- and microencapsulation techniques, regulatory issues, and socio-ethical scepticism between nano-technophiles and nano-technophobes. No one has yet indicated the comparison of data concerning food nano- versus micro-technology; therefore noteworthy results of recent investigations are interpreted in the context of bioactive packaging. The next technological revolution in the domain of food science and nutrition would be the 3-BIOS concept enabling a controlled release of active agents through bioactive, biodegradable, and bionanocomposite combined strategy.
Collapse
Affiliation(s)
- Muhammad Imran
- Laboratoire d'Ingénierie des Biomolécules, ENSAIA-INPL, Nancy Université, 2 avenue de la Forêt de Haye, 54505 Vandoeuvre-lès-Nancy Cedex, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Al-Nabulsi AA, Osaili TM, Shaker RR, Olaimat AN, Ayyash MM, Holley RA. Survival of Cronobacter species in reconstituted herbal infant teas and their sensitivity to bovine lactoferrin. J Food Sci 2010; 74:M479-84. [PMID: 20492118 DOI: 10.1111/j.1750-3841.2009.01371.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cronobacter is a new genus containing 5 species previously known as Enterobacter sakazakii. The popularity of "natural" substances and alternative medicine has extended the use of natural antimicrobials and herbs to foods, and some herbs are claimed to relieve gastric disturbances in infants. The present study investigated the antimicrobial activity of bovine lactoferrin (LF) and Cronobacter survival in commercial herbal infant teas (HITs) reconstituted with water at different temperatures. Cronobacter cells were able to grow in all reconstituted HITs at 37 or 21 degrees C after 6 h. A 4-log reduction in Cronobacter was achieved by reconstituting herbal infant tea at > or = 60 degrees C. LF was able to reduce Cronobacter species viability in herbal infant tea. No viable cells were recovered after 4 h at 37 degrees C in the presence of > or = 5 mg LF/mL. The bactericidal activity of LF was reduced at lower concentrations and lower temperatures. This study demonstrates that if present in reconstituted herbal infant tea, Cronobacter can grow and this may compromise the safety of these products. Therefore, addition of LF to reconstituted HIT may be a promising approach for the effective control of this organism. Practical Application: Cronobacter species can be isolated from herbal teas, and these products are claimed to relieve gastric disturbances in infants. This study demonstrates that Cronobacter cells present in reconstituted herbal infant teas (HITs) can grow if not held at acceptable temperatures. It was shown that reconstitution of these tea formulas with > or = 60 degrees C water reduced the potential risk from Cronobacter. Furthermore, use of lactoferrin (LF) may be a promising approach for effective control of these organisms in HIT held at nonrefrigeration temperatures (10 to 37 degrees C) for short periods.
Collapse
Affiliation(s)
- Anas A Al-Nabulsi
- Dept. of Nutrition and Food Technology, Faculty of Agriculture, Jordan Univ. of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan.
| | | | | | | | | | | |
Collapse
|
21
|
De Lucca AJ, Boue S, Sien T, Cleveland TE, Walsh TJ. Silver enhances the in vitro antifungal activity of the saponin, CAY-1. Mycoses 2009; 54:e1-9. [PMID: 20002309 DOI: 10.1111/j.1439-0507.2009.01811.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The fungicidal properties of purified CAY-1, dissolved silver ion and ethylenediamine tetraacetic acid (EDTA) separately were studied in vitro as were the abilities of silver and EDTA to enhance CAY-1 fungicidal properties. Non-germinated and germinating conidia of Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Fusarium verticillioides (Fusarium moniliforme), Fusarium oxysporum and Fusarium solani were incubated separately with CAY-1 (0-24.8 μg ml(-1)), silver (0-111.1 μg ml(-1)), and EDTA (0-2400 μg ml(-1)). Controls consisted of non-germinated or germinated conidia in test medium. To assess combined activity, compounds, based on the sub-lethal doses of each as defined in the initial experiments, were combined and tested in bioassays. Controls for the mixed sets consisted of non-germinated or germinated conidia only or with the sub-lethal CAY-1 test concentrations. The minimum inhibitory concentrations (MICs) for CAY-1 and silver, both separate and combined, were determined. Viability assays showed CAY-1 activity only against the germinating conidia of A. flavus, A. niger and F. solani. Silver was active against the germinating conidia of all fungi and the non-germinated conidia of F. oxysporum and F. solani. Combined silver and CAY-1 produced significant viability loss at concentrations not effective separately. EDTA was not fungicidal separately and did not enhance CAY-1 fungicidal properties. MIC data showed that CAY-1 plus silver had an additive effect. Results indicate that dissolved silver was fungicidal in vitro and enhanced the fungicidal properties of CAY-1 at concentrations ineffective when tested separately.
Collapse
|
22
|
Al-Nabulsi AA, Osaili TM, Al-Holy MA, Shaker RR, Ayyash MM, Olaimat AN, Holley RA. Influence of desiccation on the sensitivity of Cronobacter spp. to lactoferrin or nisin in broth and powdered infant formula. Int J Food Microbiol 2009; 136:221-6. [PMID: 19720412 DOI: 10.1016/j.ijfoodmicro.2009.08.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Revised: 04/29/2009] [Accepted: 08/04/2009] [Indexed: 11/15/2022]
Abstract
Although outbreaks caused by Cronobacter spp. (Enterobacter sakazakii) are rare, infections by this organism have a case-fatality rate which may reach 80%. Powdered infant milk formula (PIMF) is considered a major source for human infection with Cronobacter spp. The organism has the capability to survive in dry environments for long periods (approximately 2 years). Current interest in the use of natural antimicrobials including lactoferrin (LF) and nisin has developed because of the desire for preservative-free food products. The objective of the present study was to evaluate the antimicrobial activity of bovine LF or nisin against undesiccated and desiccated Cronobacter spp. cells in 0.2% peptone water (PW) and reconstituted PIMF at different temperatures. In 0.2% PW, 2.5 mg/ml LF was able to inactivate 4 log(10) CFU/ml of undesiccated cells of Cronobacter spp. in 4 h at 37 degrees C but at lower temperatures, higher concentrations of LF as well as longer exposure were needed to achieve the same effect as at 37 degrees C. Similarly, the effect of nisin against undesiccated cells of Cronobacter spp. was concentration and temperature dependent in 0.2% PW. It was found that 1500 IU/ml caused a 4 log(10) CFU/ml reduction of undesiccated cells of Cronobacter spp. at 21 degrees C and 37 degrees C. Desiccated Cronobacter spp. cells in 0.2% PW were more sensitive to LF action than were undesiccated cells. A 4 log(10) CFU/ml reduction was obtained with 2.5 mg/ml LF after 1 h at 21 and 37 degrees C or 8 h at 10 degrees C. In contrast, desiccated cells of Cronobacter spp. were more resistant to nisin. Furthermore, neither LF nor nisin had detectable antimicrobial activity against desiccated or undesiccated Cronobacter spp. in reconstituted PIFM. Heating at 55 degrees C for 5 min with nisin in reconstituted PIFM did not enhance the antimicrobial activity of nisin. Unexpectedly, nisin appeared to protect Cronobacter spp. from the damaging effects of heat treatment. The reduced antimicrobial activity of LF and nisin in reconstituted PIMF was potentially explained by the higher concentration of Ca(2+), Mg(2+) and Fe(3+) in the latter.
Collapse
Affiliation(s)
- Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box (3030) Irbid, 22110, Jordan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Rodrigues L, Teixeira J, Schmitt F, Paulsson M, Månsson HL. Lactoferrin and cancer disease prevention. Crit Rev Food Sci Nutr 2009; 49:203-17. [PMID: 19093266 DOI: 10.1080/10408390701856157] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lactoferrin (LF) is an iron-binding glycoprotein that is composed of the transferrin family and is predominantly found in the products of the exocrine glands located in the gateways of the digestive, respiratory, and reproductive systems, suggesting a role in the non-specific defence against invading pathogens. Additionally, several physiological roles have been attributed to LF, namely regulation of iron homeostasis, host defence against infection and inflammation, regulation of cellular growth, and differentiation and protection against cancer development and metastasis. These findings have suggested LF's great potential therapeutic use in cancer disease prevention and/or treatment, namely as a chemopreventive agent. This review looks at the recent advances in understanding the mechanisms underlying the multifunctional roles of LF and future perspectives on its potential therapeutic applications.
Collapse
Affiliation(s)
- Lígia Rodrigues
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | |
Collapse
|
24
|
Lee BD, Koo JH, Jahncke ML, Kim DW, Chung DO, Eun JB. Antimicrobial Effect of Acidified Sodium Chlorite (ASC) on Whole Croaker. Prev Nutr Food Sci 2008. [DOI: 10.3746/jfn.2008.13.4.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
25
|
Ko KY, Mendonca AF, Ahn DU. Effect of ethylenediaminetetraacetate and lysozyme on the antimicrobial activity of ovotransferrin against Listeria monocytogenes. Poult Sci 2008; 87:1649-58. [PMID: 18648062 DOI: 10.3382/ps.2007-00521] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study evaluated the effect of EDTA and lysozyme on the antibacterial activities of activated ovotransferrin against 5 strains of Listeria monocytogenes. First, a disc test was performed to screen the concentrations of EDTA or lysozyme that showed antibacterial activities in ovotransferrin (O) or ovotransferrin in 100 mM NaHCO3 (OS) solution. Turbidity and viability tests were conducted using O or OS solution combined with either lysozyme (OL and OSL) or EDTA (OE and OSE). Also, OS combined with 2 mg/mL of lysozyme (OSL) or 1 mg/mL of EDTA (OSLE), or both, was applied on commercial hams to determine if the solutions show antibacterial activities on meat products. The effect of initial cell population on the antibacterial activities of ovotransferrin combined with either EDTA or lysozyme was also determined. The L. monocytogenes started to grow after 1 d of incubation in the presence of >2.0 mg/mL of lysozyme. The OL groups showed weak antibacterial activities against L. monocytogenes in brain heart infusion broth culture, and their activities were bacteriostatic. The OSL groups were bactericidal against L. monocytogenes, resulting in 1 log reduction from initial cell population. Even though OSL showed stronger antibacterial activity than OS, lysozyme had no significant effect on antibacterial activity of OS against L. monocytogenes. Also, EDTA itself at 1.0 and 2.0 mg/mL was bacteriostatic against 5 strains of L. monocytogenes. They were more susceptible to EDTA than lysozyme, and OSE1 and OSE2 had bactericidal activity against L. monocytogenes. There was a significant difference in the survivor cell populations between OS and OSE groups (P < 0.05). Therefore, EDTA enhanced the antibacterial activity of OS against L. monocytogenes. However, ovotransferrin plus either lysozyme or EDTA, or both, did not show any antibacterial effect in commercial hams during storage at 10 degrees C. In addition, the initial population of L. monocytogenes cells influenced the antibacterial activity of OSL or OSE.
Collapse
Affiliation(s)
- K Y Ko
- Department of Animal Science, Iowa State University, Ames 50011, USA
| | | | | |
Collapse
|
26
|
COLAK HILAL, HAMPIKYAN HAMPARSUN, BINGOL ENVERBARIS, AKSU HARUN. THE EFFECT OF NISIN AND BOVINE LACTOFERRIN ON THE MICROBIOLOGICAL QUALITY OF TURKISH-STYLE MEATBALL (TEKIRDAĞ KÖFTE). J Food Saf 2008. [DOI: 10.1111/j.1745-4565.2008.00105.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Al-Nabulsi AA, Holley RA. Effects on Escherichia coli O157:H7 and meat starter cultures of bovine lactoferrin in broth and microencapsulated lactoferrin in dry sausage batters. Int J Food Microbiol 2007; 113:84-91. [PMID: 16996159 DOI: 10.1016/j.ijfoodmicro.2006.07.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 06/01/2006] [Accepted: 07/31/2006] [Indexed: 11/20/2022]
Abstract
The effects of lactoferrin (LF) alone or with various chelating agents on the growth of 5 strains of Escherichia coli O157:H7 and 7 meat starter cultures were evaluated. E.coli O157:H7 and starter cultures were grown at 13 or 26 degrees C in Lauria (LB) or All Purpose Tween (APT) broths, respectively, with both broths being supplemented with 2.9% NaCl. LF alone prevented the growth of E. coli O157:H7 strains 0627 and 0628 but other strains grew. The antimicrobial effectiveness of LF was enhanced by EDTA but LF alone did not affect the growth of meat starter cultures in broth. However, when LF plus EDTA and sodium bicarbonate (SB) were used the growth of all meat starter cultures except Lactobacillus curvatus was reduced. During dry sausage manufacture with L. curvatus and Staphylococcus carnosus starter cultures the effects of LF, unencapsulated or microencapsulated in paste-like and dried powder forms, in sausage batters with or without EDTA and SB, on the viability of E. coli O157:H7 were examined. The reduction of E. coli O157:H7 during sausage manufacture was significantly enhanced (p<0.05) by all LF treatments. The largest reduction (4.2 log units) was obtained with unencapsulated LF. However, some of the apparent reduction in E.coli O157:H7 numbers with all treatments was due to cell injury rather than lethality, since significantly greater numbers were recovered on APT agar overlaid with the selective medium cefixime-tellurite Sorbitol McConkey agar (ct-SMAC) than on ct-SMAC alone. The narrow spectrum of LF activity and induction of injury rather than inactivation of E. coli O157:H7 limit the effectiveness of this agent against the pathogen in fermented meats.
Collapse
Affiliation(s)
- Anas A Al-Nabulsi
- Department of Food Science, Faculty of Agricultural and Food Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
28
|
Product Quality of Low-fat/salt Sausages Containing Lactoferrin and Antimicrobial Activity Against Escherichia coli O157:H7. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2006. [DOI: 10.5187/jast.2006.48.4.575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Al-Nabulsi AA, Han JH, Liu Z, Rodrigues-Vieira ET, Holley RA. Temperature-Sensitive Microcapsules Containing Lactoferrin and Their Action Against Carnobacterium viridans on Bologna. J Food Sci 2006. [DOI: 10.1111/j.1750-3841.2006.00103.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|