1
|
Sudhakaran G, Guru A, Haridevamuthu B, Murugan R, Arshad A, Arockiaraj J. Molecular properties of postbiotics and their role in controlling aquaculture diseases. AQUACULTURE RESEARCH 2022; 53:3257-3273. [DOI: 10.1111/are.15846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/13/2022] [Indexed: 10/16/2023]
Affiliation(s)
- Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Ajay Guru
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Port Dickson Malaysia
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
- Foundation for Aquaculture Innovations and Technology Transfer (FAITT) Chennai India
| |
Collapse
|
2
|
Vibrio spp. and Their Vibriocin as a Vibriosis Control Measure in Aquaculture. Appl Biochem Biotechnol 2022; 194:4477-4491. [PMID: 35451794 DOI: 10.1007/s12010-022-03919-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/02/2022]
Abstract
Vibriosis disease is a major threat to the aquaculture industry caused by Vibrio spp. that are often resistant to antibiotics. Alternative controlling measures such as bacteriocins could be effective due to their narrow-spectrum activity. Hence, this systematic literature review (SLR) was carried out to review the feasibility of Vibrio spp. and their vibriocins to be used as a vibriosis control measure in aquaculture. A literature search using the web of science (WOS) and SCOPUS databases resulted in 42 unique articles which were reviewed. The results showed that Vibrio spp. could be used as a probiotic to control vibriosis, but not recommended due to their opportunistic nature and pathogenesis. Vibriocin showed narrow-spectrum activity against Vibrio spp. including highly pathogenic strains such as V. alginolyticus, V. harveyi, and V. parahaemolyticus. This supported this review's hypothesis of using vibriocin as a targeted vibriosis control measure. Vibrio cholerae was the most studied and showed the highest inhibition range, inhibiting 13 different vibrio and non-vibrio species. Various innovations were reported in the field and vibriocins can now be produced on large scales using whole-cell culture. Vibriocins were structurally diverse, large molecular weight, and relatively heat stable. These vibriocins mainly inhibited the cell wall but could have other novel mechanisms. These properties could affect the extraction process as well as applications in aquaculture, hence, should be considered in future research.
Collapse
|
3
|
Dubey S, Diep DB, Evensen Ø, Munang’andu HM. Garvicin KS, a Broad-Spectrum Bacteriocin Protects Zebrafish Larvae against Lactococcus garvieae Infection. Int J Mol Sci 2022; 23:ijms23052833. [PMID: 35269976 PMCID: PMC8910950 DOI: 10.3390/ijms23052833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Bacteriocins are emerging as a viable alternative to antibiotics due to their ability to inhibit growth or kill antibiotic resistant pathogens. Herein, we evaluated the ability of the bacteriocin Garvicin KS (GarKS) produced by Lactococcus garvieae KS1546 isolated from cow milk to inhibit the growth of fish and foodborne bacterial pathogens. We found that GarKS inhibited the growth of five fish L. garvieae strains isolated from infected trout and eels. Among fish pathogens, GarKS inhibited the growth of Streptococcus agalactiae serotypes Ia and Ib, and Aeromonas hydrophila but did not inhibit the growth of Edwardsiella tarda. In addition, it inhibited the growth of A. salmonicida strain 6421 but not A. salmonicida strain 6422 and Yersinia ruckeri. There was no inhibition of three foodborne bacterial species, namely Salmonella enterica, Klebsiella pneumoniae, and Escherichia coli. In vitro cytotoxicity tests using different GarKS concentrations showed that the highest concentration of 33 µg/mL exhibited low cytotoxicity, while concentrations ≤3.3 µg/mL had no cytotoxicity on CHSE-214 and RTG-2 cells. In vivo tests showed that zebrafish larvae treated with 33 µg/mL and 3.3 µg/mL GarKS prior to challenge had 53% and 48% survival, respectively, while concentrations ≤0.33 µg/mL were nonprotective. Altogether, these data show that GarKS has a broad inhibitory spectrum against Gram positive and negative bacteria and that it has potential applications as a therapeutic agent for a wide range of bacterial pathogens. Thus, future studies should include clinical trials to test the efficacy of GarKS against various bacterial pathogens in farmed fish.
Collapse
Affiliation(s)
- Saurabh Dubey
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, 1433 Ås, Norway; (S.D.); (Ø.E.)
- Department of Production Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, 1433 Ås, Norway
| | - Dzung B. Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway;
| | - Øystein Evensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, 1433 Ås, Norway; (S.D.); (Ø.E.)
| | - Hetron M. Munang’andu
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, 1433 Ås, Norway; (S.D.); (Ø.E.)
- Department of Production Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, 1433 Ås, Norway
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
- Correspondence: ; Tel.: +47-98-86-86-83
| |
Collapse
|
4
|
Molecular Identification and Characterization of Probiotic Bacillus Species with the Ability to Control Vibrio spp. in Wild Fish Intestines and Sponges from the Vietnam Sea. Microorganisms 2021; 9:microorganisms9091927. [PMID: 34576821 PMCID: PMC8470590 DOI: 10.3390/microorganisms9091927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/28/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Vibriosis in farmed animals is a serious threat to aquaculture worldwide. Using probiotics and anti-Vibrio antimicrobial substances in aquaculture systems can be a means of preventing Vibrio infections. Therefore, we aimed to characterize and compare 16 potential anti-Vibrio probiotics (Vi+) isolated from marine sponges and fish intestines collected from the Vietnam Sea, as well as an anti-Vibrio bacteriocin to fully explore their application potentials. 16S rRNA sequencing confirmed all Vi+ to be Bacillus species with different strain variants across two sample types. An obvious antimicrobial spectrum toward Gram-negative bacteria was observed from intestinal Vi+ compared to sponge-associated Vi+. The reason was the higher gene frequency of two antimicrobial compounds, non-ribosomal peptides (NRPS) and polyketide type-I (PKS-I) from intestinal Vi+ (66.7%) than sponge-associated Vi+ (14.3% and 0%, respectively). Additionally, a three-step procedure was performed to purify an anti-Vibrio bacteriocin produced by B. methylotrophicus NTBD1, including (i) solvent extraction of bacteriocin from cells, (ii) hydrophobic interaction chromatography, and (iii) reverse-phase HPLC. The bacteriocin had a molecular weight of ~2-5 kDa, was sensitive to proteolysis and thermally stable, and showed a broad antimicrobial spectrum, all of which are essential properties for promising feed additives. This study provides necessary information of the potential of probiotic Bacillus species with anti-Vibrio antimicrobial properties to study their further use in sustainable aquaculture.
Collapse
|
5
|
Chen Y, Zhang Z, Zhang H, Luo H, Li Z. Characteristics of soil bacterial and fungal communities on interval seawater covering Linchang Island, China. Arch Microbiol 2021; 203:2453-2461. [PMID: 33666689 DOI: 10.1007/s00203-021-02268-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/03/2020] [Accepted: 02/26/2021] [Indexed: 11/30/2022]
Abstract
Characterization of microbial communities is important for understanding the soil biodiversity distribution affected by environmental factors. Here, we combined high-throughput sequencing of 16S rDNA and ITS to investigate the composition of bacterial and fungal communities in interval seawater covering Linchang Island, China. We compared the microbial communities in the soil of three sample points from the southern part to the northern part. No difference was observed in microbial abundance, richness and diversity in those three different locations. In addition, weighted and unweighted UniFrac distances revealed that three soil samples could not be separated from each other, even if the LCNS sample had significantly lower organic matter (OM), sodium and sulfate contents than the LCSS and LCMS samples. This result indicated that the microbial community of the soil may be influenced more strongly by interval seawater than by soil chemical characteristics. The bacterial phyla Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes were the four most abundant phyla in all samples, accounting for 83.22% of the microbial community. Escherichia-Shigella and Vibrio were abundant in the samples and accounted for 1.17% and 0.27%, respectively. Fungal structure, phylogenetic diversity, richness, and bacterial structure had a significant negative relationship with Vibrio abundance. In addition, Vibrio showed negative correlations with the genera Simiduia, Microbulbifer and Haliangium. The results reveal that the re-shaped microbiome and introduced typical microbes could be strategies for inhibiting Vibrio in the soil of Linchang Island.
Collapse
Affiliation(s)
- Yonggan Chen
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean UniversityMinistry of Education, Sanya, 572022, China.,Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, 572022, China.,College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Zhenhua Zhang
- Key Laboratory of Biosafety, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China.
| | - Haonan Zhang
- Key Laboratory of Biosafety, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Hongwei Luo
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Zhen Li
- College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, China
| |
Collapse
|
6
|
Yao Ang C, Sano M, Dan S, Leelakriangsak M, M Lal T. Postbiotics Applications as Infectious Disease Control Agent in Aquaculture. Biocontrol Sci 2020; 25:1-7. [PMID: 32173662 DOI: 10.4265/bio.25.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Aquaculture is developing so fast that infectious disease outbreak happens regularly. Antibiotic treatment results in development of antibiotic resistance pathogens, thus cause urgent action in searching of other alternative treatment method. Postbiotic was one of the explored strategies among various proposed alternatives. Due to its benefits in agriculture industry, it may be useful in aquaculture industry. Although many reviews were reported on other alternative strategies, the review on postbiotic in aquaculture is limited. This mini review provides an overview of different postbiotics as aquaculture disease control agents. Peptides and exopolysaccharides have antimicrobial properties against bacterial pathogens. Then, short chain fatty acids have both antimicrobial activities against bacterial pathogens and immunostimulating effects to aquatic organism. Vitamins, peptidoglycan and lipopolysaccharide are reported as immunostimulants. Finally, cell surface proteins and teichoic acid can act as vaccine.
Collapse
Affiliation(s)
- Chun Yao Ang
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS
| | - Motohiko Sano
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology
| | - Shigeki Dan
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology
| | - Montira Leelakriangsak
- Faculty of Science and Technology, Prince of Songkla University, Pattani campus, Pattani
| | - Tamrin M Lal
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS
| |
Collapse
|
7
|
Behera BK, Patra B, Chakraborty HJ, Sahu P, Rout AK, Sarkar DJ, Parida PK, Raman RK, Rao AR, Rai A, Das BK, Jena J, Mohapatra T. Metagenome analysis from the sediment of river Ganga and Yamuna: In search of beneficial microbiome. PLoS One 2020; 15:e0239594. [PMID: 33021988 PMCID: PMC7537857 DOI: 10.1371/journal.pone.0239594] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Beneficial microbes are all around us and it remains to be seen, whether all diseases and disorders can be prevented or treated with beneficial microbes. In this study, the presence of various beneficial bacteria were identified from the sediments of Indian major Rivers Ganga and Yamuna from nine different sites using a metagenomic approach. The metagenome sequence analysis using the Kaiju Web server revealed the presence of 69 beneficial bacteria. Phylogenetic analysis among these bacterial species revealed that they were highly diverse. Relative abundance analysis of these bacterial species is highly correlated with different pollution levels among the sampling sites. The PCA analysis revealed that Lactobacillus spp. group of beneficial bacteria are more associated with sediment sampling sites, KAN-2 and ND-3; whereas Bacillus spp. are more associated with sites, FAR-2 and ND-2. This is the first report revealing the richness of beneficial bacteria in the Indian rivers, Ganga and Yamuna. The study might be useful in isolating different important beneficial microorganisms from these river sediments, for possible industrial applications.
Collapse
Affiliation(s)
- Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
- * E-mail: (BKB); (BKD)
| | - Biswanath Patra
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | - Hirak Jyoti Chakraborty
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | - Parameswar Sahu
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | - Ajaya Kumar Rout
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | - Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | - Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | - Rohan Kumar Raman
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | | | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
- * E-mail: (BKB); (BKD)
| | | | | |
Collapse
|
8
|
Le VT, Leelakriangsak M, Lee SW, Panphon S, Utispan K, Koontongkaew S. Characterization and safety evaluation of partially purified bacteriocin produced by Escherichia coli E isolated from fermented pineapple Ananas comosus (L.) Merr. Braz J Microbiol 2019; 50:33-42. [PMID: 30637641 PMCID: PMC6863319 DOI: 10.1007/s42770-018-0014-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 07/30/2018] [Indexed: 11/30/2022] Open
Abstract
Antibacterial activity of cell-free supernatant from Escherichia coli E against selected pathogenic bacteria in food and aquaculture was the highest against Edwardsiella tarda 3, a significant aquaculture pathogen. Biochemical properties of the bacteriocins were studied and bacteriocin was found to be sensitive to proteinase K, demonstrating its proteinaceous nature. In addition, pH and temperature affected bacteriocin activity and stability. The bacteriocins were partially purified by ammonium sulfate precipitation. The antibacterial activity was only detected in 20% ammonium sulfate fraction and direct detection of its activity was performed by overlaying on the indicator strains. The inhibition zone associated with the antibacterial activity was detected in the sample overlaid by E. tarda 3 and Staphylococcus aureus DMST8840 with the relative molecular mass of about 27 kDa and 10 kDa, respectively. Bacteriocin showed no cytotoxic effect on NIH-3T3 cell line; however, two virulence genes, aer and sfa, were detected in the genome of E. coli E by PCR. The characteristics of bacteriocins produced by E. coli E exhibited the antibacterial activity against both Gram-positive and Gram-negative pathogenic bacteria and the safe use determined by cytotoxicity test which may have interesting biotechnological applications.
Collapse
Affiliation(s)
- Van Thi Le
- Biology Division, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, 94000, Thailand
| | - Montira Leelakriangsak
- Biology Division, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, 94000, Thailand.
| | - Seong Wei Lee
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan Campus Jeli, Jeli, Kelantan, 17600, Malaysia
| | - Somrak Panphon
- Biology Division, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, 94000, Thailand
| | | | | |
Collapse
|
9
|
Draft Genome Sequence of a New Vibrio Strain with the Potential To Produce Bacteriocin-Like Inhibitory Substances, Isolated from the Gut Microflora of Scallop (Argopecten purpuratus). GENOME ANNOUNCEMENTS 2018; 6:6/20/e00419-18. [PMID: 29773630 PMCID: PMC5958249 DOI: 10.1128/genomea.00419-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A new Vibrio strain, V7A, was isolated from the intestinal tract of the Peruvian scallop (Argopecten purpuratus). Strain V7A clusters within the Mediterranei clade of the genus Vibrio and has the potential to produce bacteriocin-like inhibitory substances (BLIS). Here, we report the draft genome sequence of Vibrio mediterranei strain V7A.
Collapse
|
10
|
Burks DJ, Norris S, Kauffman KM, Joy A, Arevalo P, Azad RK, Wildschutte H. Environmental vibrios represent a source of antagonistic compounds that inhibit pathogenic Vibrio cholerae and Vibrio parahaemolyticus strains. Microbiologyopen 2017; 6:e00504. [PMID: 28857444 PMCID: PMC5635165 DOI: 10.1002/mbo3.504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/05/2017] [Accepted: 05/16/2017] [Indexed: 12/16/2022] Open
Abstract
With the overuse of antibiotics, many pathogens including Vibrio cholerae and Vibrio parahaemolyticus have evolved multidrug resistance making treatment more difficult. While understanding the mechanisms that underlie pathogenesis is crucial, knowledge of bacterial interactions of V. cholerae and V. parahaemolyticus could provide insight to their susceptibility outside of the human host. Based on previous work showing competition among environmental strains, we predict that marine-derived bacteria should inhibit Vibrio pathogens and may be a source of unique antibiotic compounds. We tested a collection of 3,456 environmental Vibrio isolates from diverse habitats against a panel of V. cholerae and V. parahaemolyticus, and identified 102 strains that inhibited the growth of these pathogens. Phylogenetic analysis revealed that 40 pathogen-inhibiting strains were unique at the hsp60 gene sequence while 62 of the isolates were identical suggesting clonal groups. Genomic comparisons of ten strains revealed diversity even between clonal isolates and were identified as being closely related to known Vibrio crassostreae, Vibrio splendidus, and Vibrio tasmaniensis strains. Further analysis revealed multiple biosynthetic gene clusters within all sequenced genomes that encoded secondary metabolites with potential antagonistic activity. Thus, environmental vibrios represent a source of compounds that inhibit Vibrio pathogens.
Collapse
Affiliation(s)
- David J. Burks
- Department of Biological SciencesUniversity of North TexasDentonTexas
| | - Stephen Norris
- Department of Biological SciencesBowling Green State UniversityBowling GreenOhio
| | - Kathryn M. Kauffman
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Abigail Joy
- Department of Biological SciencesBowling Green State UniversityBowling GreenOhio
| | - Philip Arevalo
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Rajeev K. Azad
- Department of Biological SciencesUniversity of North TexasDentonTexas
- Department of MathematicsUniversity of North TexasDentonTexas
| | - Hans Wildschutte
- Department of Biological SciencesBowling Green State UniversityBowling GreenOhio
| |
Collapse
|
11
|
Banerjee G, Ray AK. The advancement of probiotics research and its application in fish farming industries. Res Vet Sci 2017; 115:66-77. [PMID: 28157611 DOI: 10.1016/j.rvsc.2017.01.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 01/16/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022]
Abstract
Fish are always susceptible to a variety of lethal diseases caused by different types of bacterial, fungal, viral and parasitic agents. The unscientific management practises such as, over feeding, high stock densities and destructive fishing techniques increase the probability of disease symptoms in aquaculture industries. According to Food and Agriculture Association (FAO), each and every year several countries such as China, India, Norway, Indonesia, etc. face a huge loss in aquaculture production due to mainly bacterial and viral diseases. The use of antibiotics is a common practise in fish farming sectors to control the disease outbreak. However, the antibiotics are not long term friend because it creates selective pressure for emergence of drug resistant bacteria. Probiotics are live microorganisms that confer several beneficial effects to host (enhances immunity, helps in digestion, protects from pathogens, improves water quality, promotes growth and reproduction) and can be used as an alternative of antibiotics. In recent year, a wide range of bacteria have reported as potential probiotics candidates in fish farming sectors, however, Lactobacillus sp. and Bacillus sp. gain special attention due to their high antagonistic activities, extracellular enzyme production and availability. In this present review, we have summarized the recent advancement in aquaculture probiotics research and its impact on fish health, nutrition, immunity, reproduction and water quality.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal 731235, India; Center for Nature Conservation and Biosafety (CNCB Pvt. Ltd.; cncb.co.in), Cuttack, Odisha 754132, India.
| | - Arun Kumar Ray
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal 731235, India
| |
Collapse
|
12
|
|
13
|
Hjerde E, Karlsen C, Sørum H, Parkhill J, Willassen NP, Thomson NR. Co-cultivation and transcriptome sequencing of two co-existing fish pathogens Moritella viscosa and Aliivibrio wodanis. BMC Genomics 2015; 16:447. [PMID: 26059548 PMCID: PMC4462113 DOI: 10.1186/s12864-015-1669-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 05/29/2015] [Indexed: 11/10/2022] Open
Abstract
Background Aliivibrio wodanis and Moritella viscosa have often been isolated concurrently from fish with winter-ulcer disease. Little is known about the interaction between the two bacterial species and how the presence of one bacterial species affects the behaviour of the other. Results The impact on bacterial growth in co-culture was investigated in vitro, and the presence of A. wodanis has an inhibitorial effect on M. viscosa. Further, we have sequenced the complete genomes of these two marine Gram-negative species, and have performed transcriptome analysis of the bacterial gene expression levels from in vivo samples. Using bacterial implants in the fish abdomen, we demonstrate that the presence of A. wodanis is altering the gene expression levels of M. viscosa compared to when the bacteria are implanted separately. Conclusions From expression profiling of the transcriptomes, it is evident that the presence of A. wodanis is altering the global gene expression of M. viscosa. Co-cultivation studies showed that A. wodanis is impeding the growth of M. viscosa, and that the inhibitorial effect is not contact-dependent. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1669-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erik Hjerde
- Department of Chemistry, Faculty of Science and Technology, University of Tromsø, N-9037, Tromsø, Norway.
| | - Christian Karlsen
- Section of Microbiology, Immunology and Parasitology, Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Ullevålsveien 72, Oslo, Norway.
| | - Henning Sørum
- Section of Microbiology, Immunology and Parasitology, Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Ullevålsveien 72, Oslo, Norway.
| | - Julian Parkhill
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Nils Peder Willassen
- Department of Chemistry, Faculty of Science and Technology, University of Tromsø, N-9037, Tromsø, Norway. .,The Norwegian Structural Biology Centre, University of Tromsø, N-9037, Tromsø, Norway.
| | - Nicholas R Thomson
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
14
|
Bacteria isolated from shellfish digestive gland with antipathogenic activity as candidates to increase the efficiency of shellfish depuration process. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.05.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Shayesteh F, Ahmad A, Usup G. Bacteriocin Production by a Marine Strain of Bacills sp. Sh10: Isolation, Screening and Optimization of Culture Condition. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/biotech.2014.273.281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Multilocus sequence analysis of putative Vibrio mediterranei strains and description of Vibrio thalassae sp. nov. Syst Appl Microbiol 2014; 37:320-8. [DOI: 10.1016/j.syapm.2014.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/02/2014] [Accepted: 05/02/2014] [Indexed: 11/21/2022]
|
17
|
C De B, Meena DK, Behera BK, Das P, Das Mohapatra PK, Sharma AP. Probiotics in fish and shellfish culture: immunomodulatory and ecophysiological responses. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:921-971. [PMID: 24419543 DOI: 10.1007/s10695-013-9897-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 12/06/2013] [Indexed: 06/03/2023]
Abstract
Aquaculture is emerging as one of the most viable and promising enterprises for keeping pace with the surging need for animal protein, providing nutritional and food security to humans, particularly those residing in regions where livestock is relatively scarce. With every step toward intensification of aquaculture practices, there is an increase in the stress level in the animal as well as the environment. Hence, disease outbreak is being increasingly recognized as one of the most important constraints to aquaculture production in many countries, including India. Conventionally, the disease control in aquaculture has relied on the use of chemical compounds and antibiotics. The development of non-antibiotic and environmentally friendly agents is one of the key factors for health management in aquaculture. Consequently, with the emerging need for environmentally friendly aquaculture, the use of alternatives to antibiotic growth promoters in fish nutrition is now widely accepted. In recent years, probiotics have taken center stage and are being used as an unconventional approach that has numerous beneficial effects in fish and shellfish culture: improved activity of gastrointestinal microbiota and enhanced immune status, disease resistance, survival, feed utilization and growth performance. As natural products, probiotics have much potential to increase the efficiency and sustainability of aquaculture production. Therefore, comprehensive research to fully characterize the intestinal microbiota of prominent fish species, mechanisms of action of probiotics and their effects on the intestinal ecosystem, immunity, fish health and performance is reasonable. This review highlights the classifications and applications of probiotics in aquaculture. The review also summarizes the advancement and research highlights of the probiotic status and mode of action, which are of great significance from an ecofriendly, sustainable, intensive aquaculture point of view.
Collapse
Affiliation(s)
- Bidhan C De
- Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | | | | | | | | | | |
Collapse
|
18
|
Balakrishnan B, Ranishree JK, Thadikamala S, Panchatcharam P. Purification, characterization and production optimization of a vibriocin produced by mangrove associated Vibrio parahaemolyticus. Asian Pac J Trop Biomed 2014; 4:253-61. [PMID: 25182547 PMCID: PMC3929786 DOI: 10.12980/apjtb.4.2014c947] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 02/20/2014] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To identify a potential bacterium which produces antimicrobial peptide (vibriocin), and its purification, characterization and production optimization. The bacteria subjected in the study were isolated from a highly competitive ecological niche of mangrove ecosystem. METHODS The bacterium was characterized by phenotype besides 16S rRNA gene sequence analysis. The antibacterial activity was recognised by using agar well diffusion method. The vibriocin was purified using ammonium sulphate precipitation, butanol extraction, gel filtration chromatography, ion-exchange chromatography and subsequently, by HPLC. Molecular weight of the substance identified in SDS-PAGE. Production optimization performed according to Taguchi's mathematical model using 6 different nutritional parameters as variables. RESULTS The objective bacterium was identified as Vibrio parahaemolyticus. The vibriocin showed 18 KDa of molecular mass with mono peptide in nature and highest activity against pathogenic Vibrio harveyi. The peptide act stable in a wide range of pH, temperature, UV radiation, solvents and chemicals utilized. An overall ∼20% of vibriocin production was improved, and was noticed that NaCl and agitation speed played a vital role in secretion of vibriocin. CONCLUSION The vibriocin identified here would be an effective alternative for chemically synthesized drugs for the management of Vibrio infections in mariculture industry.
Collapse
Affiliation(s)
- Baskar Balakrishnan
- Center for Bioenergy, Cooperative research, Lincoln University, Jefferson City, Missouri 65101, USA
- Marine Biotechnology, Andaman and Nicobar Centre for Ocean Science and Technology, National Institute of Ocean Technology, PortBlair, Andaman and Nicobar Islands 744103, India
- Department of Microbiology, PRIST University, Thanjavur, Tamil Nadu 614904, India
| | - Jayappriyan Kothilmozhian Ranishree
- Marine Biotechnology, Andaman and Nicobar Centre for Ocean Science and Technology, National Institute of Ocean Technology, PortBlair, Andaman and Nicobar Islands 744103, India
| | - Sathish Thadikamala
- Marine Biotechnology, Andaman and Nicobar Centre for Ocean Science and Technology, National Institute of Ocean Technology, PortBlair, Andaman and Nicobar Islands 744103, India
| | | |
Collapse
|
19
|
Mohapatra S, Chakraborty T, Kumar V, DeBoeck G, Mohanta KN. Aquaculture and stress management: a review of probiotic intervention. J Anim Physiol Anim Nutr (Berl) 2012; 97:405-30. [PMID: 22512693 DOI: 10.1111/j.1439-0396.2012.01301.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
To meet the ever-increasing demand for animal protein, aquaculture continuously requires new techniques to increase the production yield. However, with every step towards intensification of aquaculture practices, there is an increase in stress level on the animal as well as on the environment. Feeding practices in aqua farming usually plays an important role, and the addition of various additives to a balanced feed formula to achieve better growth is a common practice among the fish and shrimp culturists. Probiotics, also known as 'bio-friendly agents', such as LAB (Lactobacillus), yeasts and Bacillus sp., can be introduced into the culture environment to control and compete with pathogenic bacteria as well as to promote the growth of the cultured organisms. In addition, probiotics are non-pathogenic and non-toxic micro-organisms, having no undesirable side effects when administered to aquatic organisms. Probiotics are also known to play an important role in developing innate immunity among the fishes, and hence help them to fight against any pathogenic bacterias as well as against environmental stressors. The present review is a brief but informative compilation of the different essential and desirable traits of probiotics, their mode of action and their useful effects on fishes. The review also highlights the role of probiotics in helping the fishes to combat against the different physical, chemical and biological stress.
Collapse
Affiliation(s)
- S Mohapatra
- Laboratory of Freshwater Fish Reproduction and Development, School of Life Science, Southwest University, Chongqing, China.
| | | | | | | | | |
Collapse
|
20
|
Hazen TH, Pan L, Gu JD, Sobecky PA. The contribution of mobile genetic elements to the evolution and ecology of Vibrios. FEMS Microbiol Ecol 2011; 74:485-99. [PMID: 20662928 DOI: 10.1111/j.1574-6941.2010.00937.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
An increase in the frequency of seafood-borne gastroenteritis in humans and Vibrio-related disease of fish and invertebrates has generated interest in the ecology of disease-causing Vibrios and the mechanisms driving their evolution. Genome sequencing studies have indicated a substantial contribution of horizontal gene transfer (HGT) to the evolution of Vibrios. Of particular interest is the contribution of HGT to the evolution of Vibrios pathogens and the adaptation of disease-causing Vibrios for survival in diverse environments. In this review, we discuss the diversity and distribution of mobile genetic elements (MGEs) isolated from Vibrios and the contribution of these elements to the expansion of the ecological and pathogenic niches of the host strain. Much of the research on Vibrio MGEs has focused on understanding phages and plasmids and we will primarily discuss the evolution of these elements and also briefly highlight the other diverse elements characterized from Vibrios, which includes genomic islands and conjugative elements.
Collapse
Affiliation(s)
- Tracy H Hazen
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | |
Collapse
|
21
|
Desriac F, Defer D, Bourgougnon N, Brillet B, Le Chevalier P, Fleury Y. Bacteriocin as weapons in the marine animal-associated bacteria warfare: inventory and potential applications as an aquaculture probiotic. Mar Drugs 2010; 8:1153-77. [PMID: 20479972 PMCID: PMC2866480 DOI: 10.3390/md8041153] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 03/28/2010] [Accepted: 04/01/2010] [Indexed: 11/16/2022] Open
Abstract
As the association of marine animals with bacteria has become more commonly recognized, researchers have increasingly questioned whether these animals actually produce many of the bioactive compounds originally isolated from them. Bacteriocins, ribosomally synthesized antibiotic peptides, constitute one of the most potent weapons to fight against pathogen infections. Indeed, bacteriocinogenic bacteria may prevent pathogen dissemination by occupying the same ecological niche. Bacteriocinogenic strains associated with marine animals are a relevant source for isolation of probiotics. This review draws up an inventory of the marine bacteriocinogenic strains isolated from animal-associated microbial communities, known to date. Bacteriocin-like inhibitory substances (BLIS) and fully-characterized bacteriocins are described. Finally, their applications as probiotics in aquaculture are discussed.
Collapse
Affiliation(s)
- Florie Desriac
- Université Européenne de Bretagne, Université de Brest, Institut Universitaire de Technologie, Laboratoire, Universitaire de Biodiversité et d’Ecologie Microbienne EA3882, 6 Rue de l’Université, 29334 Quimper Cedex, France; E-Mails:
(F.D.);
(B.B.);
(P.L.C.)
| | - Diane Defer
- Université Européenne de Bretagne, Université de Bretagne Sud, Centre de Recherche Saint Maudé, Laboratoire de Biotechnologie et Chimie Marines EA3884, 56321 Lorient Cedex, France; E-Mails:
(D.D.);
(N.B.)
| | - Nathalie Bourgougnon
- Université Européenne de Bretagne, Université de Bretagne Sud, Centre de Recherche Saint Maudé, Laboratoire de Biotechnologie et Chimie Marines EA3884, 56321 Lorient Cedex, France; E-Mails:
(D.D.);
(N.B.)
| | - Benjamin Brillet
- Université Européenne de Bretagne, Université de Brest, Institut Universitaire de Technologie, Laboratoire, Universitaire de Biodiversité et d’Ecologie Microbienne EA3882, 6 Rue de l’Université, 29334 Quimper Cedex, France; E-Mails:
(F.D.);
(B.B.);
(P.L.C.)
| | - Patrick Le Chevalier
- Université Européenne de Bretagne, Université de Brest, Institut Universitaire de Technologie, Laboratoire, Universitaire de Biodiversité et d’Ecologie Microbienne EA3882, 6 Rue de l’Université, 29334 Quimper Cedex, France; E-Mails:
(F.D.);
(B.B.);
(P.L.C.)
| | - Yannick Fleury
- Université Européenne de Bretagne, Université de Brest, Institut Universitaire de Technologie, Laboratoire, Universitaire de Biodiversité et d’Ecologie Microbienne EA3882, 6 Rue de l’Université, 29334 Quimper Cedex, France; E-Mails:
(F.D.);
(B.B.);
(P.L.C.)
| |
Collapse
|
22
|
Balcázar JL, Loureiro S, Da Silva YJ, Pintado J, Planas M. Identification and characterization of bacteria with antibacterial activities isolated from seahorses (Hippocampus guttulatus). J Antibiot (Tokyo) 2010; 63:271-4. [DOI: 10.1038/ja.2010.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Anthony T, Rajesh T, Kayalvizhi N, Gunasekaran P. Influence of medium components and fermentation conditions on the production of bacteriocin(s) by Bacillus licheniformis AnBa9. BIORESOURCE TECHNOLOGY 2009; 100:872-877. [PMID: 18762415 DOI: 10.1016/j.biortech.2008.07.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/03/2008] [Accepted: 07/12/2008] [Indexed: 05/26/2023]
Abstract
Recently, antibacterial peptides are gaining more attention as an alternative therapeutics and food and other products from spoilage and deterioration. Antibacterial peptide producing strains were isolated from sediments of slaughterhouse sewage wastes. One among them, identified as Bacillus licheniformis inhibited the growth of several gram positive bacteria. Response surface methodology with central composite rotary design was used for optimization of fermentation medium and conditions for antibacterial peptide production. Lactose, NH(4)NO(3), yeast extract and NaCl and environmental factors such as pH, temperature and incubation period were selected as variables. Among ingredients, high concentration of yeast extract and NaCl had a positive effect on antibacterial peptide production and specific activity, respectively. Alkaline pH and high temperature favoured the production of antibacterial peptide by B. licheniformis AnBa9. Under optimized condition, B. licheniformis AnBa9 produced 25-fold higher production of antibacterial peptide than the un-optimized condition. Biochemical characteristics of the antibacterial peptides of B. licheniformis AnBa9 revealed that they are of bacteriocin type.
Collapse
Affiliation(s)
- Thangamani Anthony
- School of Biological Sciences, Centre for Excellence in Genomic Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625 021, India
| | | | | | | |
Collapse
|