1
|
Musaazi IG, McLoughlin S, Murphy HM, Rose JB, Hofstra N, Tumwebaze IK, Verbyla ME. A systematic review and meta-analysis of pathogen reduction in onsite sanitation systems. WATER RESEARCH X 2023; 18:100171. [PMID: 37250291 PMCID: PMC10214292 DOI: 10.1016/j.wroa.2023.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 05/31/2023]
Abstract
The safe management of fecal sludge from the 3.4 billion people worldwide that use onsite sanitation systems can greatly reduce the global infectious disease burden. However, there is limited knowledge about the role of design, operational, and environmental factors on pathogen survival in pit latrines, urine diverting desiccation toilets, and other types of onsite toilets. We conducted a systematic literature review and meta-analysis to characterize pathogen reduction rates in fecal sludge, feces, and human excreta with respect to pH, temperature, moisture content, and the use of additives for desiccation, alkalinization, or disinfection. A meta-analysis of 1,382 data points extracted from 243 experiments described in 26 articles revealed significant differences between the decay rates and T99 values of pathogens and indicators from different microbial groups. The overall median T99 values were 4.8 days, 29 days, >341 days, and 429 days for bacteria, viruses, protozoan (oo)cysts, and Ascaris eggs, respectively. As expected, higher pH values, higher temperatures, and the application of lime all significantly predicted greater pathogen reduction rates but the use of lime by itself was more effective for bacteria and viruses than for Ascaris eggs, unless urea was also added. In multiple lab-scale experiments, the application of urea with enough lime or ash to reach a pH of 10 - 12 and a sustained concentration of 2,000 - 6,000 mg/L of non-protonated NH3-N reduced Ascaris eggs more rapidly than without urea. In general, the storage of fecal sludge for 6 months adequately controls hazards from viruses and bacteria, but much longer storage times or alkaline treatment with urea and low moisture or heat is needed to control hazards from protozoa and helminths. More research is needed to demonstrate the efficacy of lime, ash, and urea in the field. More studies of protozoan pathogens are also needed, as very few qualifying experiments were found for this group.
Collapse
Affiliation(s)
- Isaac G. Musaazi
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA 92182, United States
| | - Shane McLoughlin
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States
| | - Heather M. Murphy
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States
| | - Joan B. Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States
| | - Nynke Hofstra
- Water Systems and Global Change Group, Wageningen University, the Netherlands
| | - Innocent K. Tumwebaze
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States
| | - Matthew E. Verbyla
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA 92182, United States
| |
Collapse
|
2
|
Guo Y, Sivakumar M, Jiang G. Decay of four enteric pathogens and implications to wastewater-based epidemiology: Effects of temperature and wastewater dilutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152000. [PMID: 34843787 DOI: 10.1016/j.scitotenv.2021.152000] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Measurement of pathogens in raw wastewater from a population within certain sewer catchments can provide quantitative information on public health status within the sampled urban area. This so-called wastewater-based epidemiology (WBE) approach has the potential of becoming a powerful tool to monitor pathogen circulation and support timely intervention during outbreaks. However, many WBE studies failed to account for the pathogen decay during wastewater transportation in back calculating the disease prevalence. Various sewer process factors, including water temperature and infiltration/inflow, can lead to the variation of pathogen decay rates. This paper firstly reviewed the effects of temperature and types of water, i.e., wastewater, freshwater, and saline water, on the decay of four selected enteric pathogens, i.e., Campylobacter, Salmonella, Norovirus, and Adenovirus. To elucidate the importance of the pathogen decay rates (measured by culture and molecular methods) to WBE, a sensitivity analysis was conducted on the back-calculation equation for infection prevalence with decay rates collected from published literature. It was found that WBE back-calculation is more sensitive to decay rates under the condition of high wastewater temperature (i.e., over 25 °C) or if wastewater is diluted by saline water (i.e., sewer infiltration or use of seawater as an alternative source of freshwater constituting around 1/3 household water demand in some cities). Stormwater dilution of domestic wastewater (i.e., sewer inflow might achieve 10 times volumetric dilution) was shown to play a role in increasing the sensitivity of WBE back-calculation to bacterial pathogens, but not viral pathogens. Hence, WBE back-calculation in real sewers should account for in-sewer decay of specific pathogen species under different wastewater temperatures and dilutions. Overall, this review contributes to a better understanding of pathogen decay in wastewater which can lead to improved accuracy of WBE back-calculation.
Collapse
Affiliation(s)
- Ying Guo
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Muttucumaru Sivakumar
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
3
|
Oishi W, Kadoya SS, Nishimura O, B Rose J, Sano D. Hierarchical Bayesian modeling for predictive environmental microbiology toward a safe use of human excreta: Systematic review and meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 284:112088. [PMID: 33582482 DOI: 10.1016/j.jenvman.2021.112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/06/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
The pathogen concentration in human excreta needs to be managed appropriately, but a predictive approach has yet to be implemented due to a lack of kinetics models for pathogen inactivation that are available under varied environmental conditions. Our goals were to develop inactivation kinetics models of microorganisms applicable under varied environmental conditions of excreta matrices and to identify the appropriate indicators that can be monitored during disinfection processes. We conducted a systematic review targeting previous studies that presented time-course decay of a microorganism and environmental conditions of matrices. Defined as a function of measurable factors including treatment time, pH, temperature, ammonia concentration and moisture content, the kinetic model parameters were statistically estimated using hierarchical Bayesian modeling. The inactivation kinetics models were constructed for Escherichia coli, Salmonella, Enterococcus, Ascaris eggs, bacteriophage MS2, enterobacteria phage phiX174 and adenovirus. The inactivation rates of a microorganism were predicted using the established model. Ascaris eggs were identified as the most tolerant microorganisms, followed by bacteriophage MS2 and Enterococcus. Ammonia concentration, temperature and moisture content were the critical factors for the Ascaris inactivation. Our model predictions coincided with the current WHO guidelines. The developed inactivation kinetics models enable us to predict microbial concentration in excreta matrices under varied environmental conditions, which is essential for microbiological risk management in emerging resource recovery practices from human excreta.
Collapse
Affiliation(s)
- Wakana Oishi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8597, Japan
| | - Syun-Suke Kadoya
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8597, Japan
| | - Osamu Nishimura
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8597, Japan
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Road, East Lansing, MI, 48824, USA
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8597, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8597, Japan.
| |
Collapse
|
4
|
Lopes IG, Lalander C, Vidotti RM, Vinnerås B. Reduction of Bacteria in Relation to Feeding Regimes When Treating Aquaculture Waste in Fly Larvae Composting. Front Microbiol 2020; 11:1616. [PMID: 32765458 PMCID: PMC7378744 DOI: 10.3389/fmicb.2020.01616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/19/2020] [Indexed: 11/23/2022] Open
Abstract
This study evaluated the impact of feeding regimes on process performance and inactivation of microorganisms during treatment of aquaculture waste with black soldier fly (BSF) larvae. In three treatments (T1–T3), a blend of reclaimed bread and aquaculture waste was used as substrate for BSF larvae. In T1, the substrate was inoculated with four subtypes of Salmonella spp. and Escherichia coli (both at 1% w/w), and offered only once, at the beginning of the 14-day trial. In T2 and T3, the substrate was supplied on three different days, with contaminated substrate provided only the first event in T2 and in all three events in T3. Provision of a lump sum feeding (T1) proved unfavorable for larval growth and process efficiency, but did not affect the microbial reduction effect. The total reduction in Salmonella spp. was approximately 6 log10 in T1 and T2, and 3.3 log10 in T3, while the total reduction in E. coli was approximately 4 log10 in T1 and T2, and 1.9 log10 in T3. After removing the larvae, the treatment residues were re-inoculated with Salmonella spp. and E. coli. It was found that the inactivation in both organisms continued in all treatments that originally contained BSF larvae (T1–T3), suggesting that antimicrobial substances may have been secreted by BSF larvae or by its associated microbiota.
Collapse
Affiliation(s)
- Ivã Guidini Lopes
- Aquaculture Center of Unesp (Caunesp), São Paulo State University (UNESP), São Paulo, Brazil.,Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Cecilia Lalander
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Rose Meire Vidotti
- Aquaculture Center of Unesp (Caunesp), São Paulo State University (UNESP), São Paulo, Brazil.,São Paulo Agency of Agribusiness and Technology (APTA), Polo Regional Centro-Norte, Pindorama, Brazil
| | - Björn Vinnerås
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
5
|
Gros M, Ahrens L, Levén L, Koch A, Dalahmeh S, Ljung E, Lundin G, Jönsson H, Eveborn D, Wiberg K. Pharmaceuticals in source separated sanitation systems: Fecal sludge and blackwater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135530. [PMID: 31767294 DOI: 10.1016/j.scitotenv.2019.135530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
This study investigated, for the first time, the occurrence and fate of 29 multiple-class pharmaceuticals (PhACs) in two source separated sanitation systems based on: (i) batch experiments for the anaerobic digestion (AD) of fecal sludge under mesophilic (37 °C) and thermophilic (52 °C) conditions, and (ii) a full-scale blackwater treatment plant using wet composting and sanitation with urea addition. Results revealed high concentrations of PhACs in raw fecal sludge and blackwater samples, with concentrations up to hundreds of μg L-1 and μg kg-1 dry weight (dw) in liquid and solid fractions, respectively. For mesophilic and thermophilic treatments in the batch experiments, average PhACs removal rates of 31% and 45%, respectively, were observed. The average removal efficiency was slightly better for the full-scale blackwater treatment, with 49% average removal, and few compounds, such as atenolol, valsartan and hydrochlorothiazide, showed almost complete degradation. In the AD treatments, no significant differences were observed between mesophilic and thermophilic conditions. For the full-scale blackwater treatment, the aerobic wet composting step proved to be the most efficient in PhACs reduction, while urea addition had an almost negligible effect for most PhACs, except for citalopram, venlafaxine, oxazepam, valsartan and atorvastatin, for which minor reductions (on average 25%) were observed. Even though both treatment systems reduced initial PhACs loads considerably, significant PhAC concentrations remained in the treated effluents, indicating that fecal sludge and blackwater fertilizations could be a relevant vector for dissemination of PhACs into agricultural fields and thus the environment.
Collapse
Affiliation(s)
- Meritxell Gros
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-75007 Uppsala, Sweden; Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain.
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-75007 Uppsala, Sweden
| | - Lotta Levén
- Agrifood and Bioscience, Research Institutes of Sweden (RISE), Uppsala, Sweden
| | - Alina Koch
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-75007 Uppsala, Sweden
| | - Sahar Dalahmeh
- Department of Energy and Technology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Emelie Ljung
- Agrifood and Bioscience, Research Institutes of Sweden (RISE), Uppsala, Sweden
| | - Göran Lundin
- SP Process Development, Technical Research Institute of Sweden, Södertälje, Sweden
| | - Håkan Jönsson
- Department of Energy and Technology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - David Eveborn
- Agrifood and Bioscience, Research Institutes of Sweden (RISE), Uppsala, Sweden
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-75007 Uppsala, Sweden
| |
Collapse
|
6
|
Odey EA, Li Z, Zhou X, Yan Y. Locally produced lactic acid bacteria for pathogen inactivation and odor control in fecal sludge. JOURNAL OF CLEANER PRODUCTION 2018; 184:798-805. [PMID: 29789757 PMCID: PMC5890381 DOI: 10.1016/j.jclepro.2018.02.276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/05/2018] [Accepted: 02/25/2018] [Indexed: 06/08/2023]
Abstract
Providing safe fecal sludge (FS) sanitation has remained an important goal of global communities because of the high risks imposed on human health of the exposure to un-sanitized FS. This study used lactic acid fermentation as a pre-treatment technology to evaluate the sanitization effect of lactic acid bacteria (LAB) on FS. A combination of fermented rice flour and brown sugar was used as the medium to prepare LAB, and fecal coliforms were used as the indicator organisms. The addition of a LAB suspension grown in fermented rice flour and brown sugar to FS was studied to evaluate the survival of fecal coliforms. The pH decreased during ongoing lactic acid fermentation after the addition of the LAB suspension. The results revealed that fecal coliforms in reactors containing 1:1 and 2:1 w/w of FS and LAB suspension decreased to half of the initial concentration within seven days of the treatment process in comparison with that of the control reactor. Viable plate counts of 0.6 × 108, 0.9 × 108, and 2.4 × 108 CFU/100 mL were recorded from reactors 1:1, 2:1, and the control, respectively. The total elimination of the fecal coliforms below the detection limit (<3 log 10 CFU/100 mL) was observed in both reactors after 15-17 days, whereas the number of fecal coliforms remained at 2.3 × 108 CFU/100 mL in the control reactor. The fecal coliforms were eliminated because of the acidification caused by the LAB during the incubation time. The final pH in the treatment reactors 1:1 and 2:1 was 3.7 and 3.9. While the final pH in the control reactor was 7.91. The results revealed that the bacterial pathogens in FS can be completely eliminated through a low-cost technique and a simple lactic acid fermentation process.
Collapse
|
7
|
Nordin A, Göttert D, Vinnerås B. Decentralised black water treatment by combined auto-thermal aerobic digestion and ammonia - A pilot study optimising treatment capacity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 207:313-318. [PMID: 29182977 DOI: 10.1016/j.jenvman.2017.10.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 10/09/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Partial heating of black water by auto-thermal aerobic digestion was combined with the addition of 1% w/w urea and monitoring of pathogens and indicator organisms over a 21-day period. After initial mixing, the 160 m3 black water (60 m3 heated and 100 m3 non-heated) was left undisturbed. The urea was confirmed to be fully degraded into ammonia (5.1 g N L-1) first after 14 days, while the pH stabilised at around 9.2 after one week. The initial temperature of 17 °C fell by 6 °C during the study. E. coli and Salmonella spp., which are sensitive to ammonia, were inactivated during the first few days of the study, despite the urea only being partly hydrolysed. At day 14, f-RNA bacteriophages could also no longer be detected. The more persistent somatic coliphages, Enterococcus spp. and Ascaris eggs, showed significant but slow inactivation. The treatment proved to be efficient with regards to salmonella, which is a target pathogen in the Swedish context, but for parasite egg inactivation a higher temperature was required. The treatment would benefit from more frequent stirring to speed up the hydrolysis of urea and thus improve treatment efficiency. The alternative treatment scheme could increase capacity by 2.4 times, albeit with a 40% higher cost per volume due to the increased use of urea.
Collapse
Affiliation(s)
- A Nordin
- Department of Energy and Technology, Swedish University of Agricultural Sciences, P.O. Box 70 32, SE-750 07, Uppsala, Sweden.
| | - D Göttert
- Department of Energy and Technology, Swedish University of Agricultural Sciences, P.O. Box 70 32, SE-750 07, Uppsala, Sweden
| | - B Vinnerås
- Department of Energy and Technology, Swedish University of Agricultural Sciences, P.O. Box 70 32, SE-750 07, Uppsala, Sweden
| |
Collapse
|
8
|
Willén A, Junestedt C, Rodhe L, Pell M, Jönsson H. Sewage sludge as fertiliser - environmental assessment of storage and land application options. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:1034-1050. [PMID: 28272033 DOI: 10.2166/wst.2016.584] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Sewage sludge (SS) contains beneficial plant nutrients and organic matter, and therefore application of SS on agricultural land helps close nutrient loops. However, spreading operations are restricted to certain seasons and hence the SS needs to be stored. Storage and land application of SS are both potential sources of greenhouse gases and ammonia, leading to global warming, acidification and eutrophication. Covering the stored SS, treating it with urea and choosing the correct time for land application all have the potential to reduce emissions from the system. Using life cycle assessment (LCA), this study compares storage and land application options of SS in terms of global warming potential (GWP), acidification potential, eutrophication potential and primary energy use. The system with covered storage has the lowest impact of all categories. Systems with autumn application are preferable to spring application for all impact categories but, when nitrate leaching is considered, spring application is preferable in terms of eutrophication and primary energy use and, for some SS treatments, GWP. Ammonia addition reduces nitrous oxide and ammonia emissions during storage, but increases these emissions after land application. Storage duration has a large impact on GWP, while amount of chemical nitrogen fertiliser substituted has a large impact on primary energy use.
Collapse
Affiliation(s)
- A Willén
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, SE-750 07 Uppsala, Sweden E-mail: ; Swedish Institute of Agricultural and Environmental Engineering, Box 7033, SE-750 07 Uppsala, Sweden
| | - C Junestedt
- Swedish Environmental Research Institute, Box 210 60, SE-100 31 Stockholm, Sweden
| | - L Rodhe
- Swedish Institute of Agricultural and Environmental Engineering, Box 7033, SE-750 07 Uppsala, Sweden
| | - M Pell
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-750 07 Uppsala, Sweden
| | - H Jönsson
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, SE-750 07 Uppsala, Sweden E-mail:
| |
Collapse
|
9
|
Hijikata N, Tezuka R, Kazama S, Otaki M, Ushijima K, Ito R, Okabe S, Sano D, Funamizu N. Bactericidal and virucidal mechanisms in the alkaline disinfection of compost using calcium lime and ash. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 181:721-727. [PMID: 27562698 DOI: 10.1016/j.jenvman.2016.08.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/21/2016] [Accepted: 08/10/2016] [Indexed: 06/06/2023]
Abstract
In the present study, the bactericidal and virucidal mechanisms in the alkaline disinfection of compost with calcium lime and ash were investigated. Two indicator microorganisms, Escherichia coli and MS2 coliphage, were used as surrogates for enteric pathogens. The alkaline-treated compost with calcium oxide (CaO) or ash resulted primarily in damage to the outer membrane and enzyme activities of E. coli. The alkaline treatment of compost also led to the infectivity loss of the coliphage because of the partial capsid damage and RNA exteriorization due to a raised pH, which is proportional to the amount of alkaline agents added. These results indicate that the alkaline treatment of compost using calcium oxide and ash is effective and can contribute to the safe usage of compost from a mixing type dry toilet.
Collapse
Affiliation(s)
- Nowaki Hijikata
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Rui Tezuka
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Shinobu Kazama
- New Industry Creation Hatchery Center, Tohoku University, Japan
| | - Masahiro Otaki
- Department of Human Environmental Science, Ochanomizu University, Japan
| | - Ken Ushijima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Ryusei Ito
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Daisuke Sano
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Naoyuki Funamizu
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
10
|
Magri ME, Fidjeland J, Jönsson H, Albihn A, Vinnerås B. Inactivation of adenovirus, reovirus and bacteriophages in fecal sludge by pH and ammonia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 520:213-21. [PMID: 25817758 DOI: 10.1016/j.scitotenv.2015.03.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 05/22/2023]
Abstract
The aim of this study was to evaluate the inactivation of adenovirus, reovirus and bacteriophages (MS2, ΦX174, 28B) in a fecal sludge. We conducted two experiments. In the first, we tested different compositions of the fecal sludge by mixing different amounts of water, feces and urine, totaling nine combinations which were kept at temperatures between 10 and 28°C. In the second study, urea was added to the mixtures, which were kept at temperatures from 5 to 33°C. The inactivation was based on a combination of temperature, pH and uncharged ammonia concentration. The increase in pH and ammonia was provided mainly by urine content (Experiment 1) and by urine and added urea (Experiment 2). The inactivation of bacteriophages was slower than the AdV and ReV. At 23°C and 28°, reasonable treatment times were obtained when pH was higher than 8.9 and NH3 concentrations were higher than 35 and 55 mM respectively. With those conditions, the maximum time for a 3 log reduction in viruses, according to this study, would be 35 days (23°C) and 21 days (28°C). However, in most applications where helminth eggs are present, the treatment time and NH3 for sanitization will be the scaling criteria, as they are more persistent. Concerning the sanitization of effluents from latrines, vacuum toilets or dry toilets in developing countries with tropical and sub-tropical climates, the use of intrinsic ammonia combined with high pH can be effective in producing a safe and highly valuable liquid that can be used as a fertilizer. In the case of the fecal sludge with very intrinsic ammonia concentration (<20 mM), sanitization could still be achieved by the addition of urea.
Collapse
Affiliation(s)
- Maria Elisa Magri
- Swedish University of Agricultural Sciences, Department of Energy & Technology, Box 7032, SE-750 07 Uppsala, Sweden.
| | - Jørgen Fidjeland
- Swedish University of Agricultural Sciences, Department of Energy & Technology, Box 7032, SE-750 07 Uppsala, Sweden
| | - Håkan Jönsson
- Swedish University of Agricultural Sciences, Department of Energy & Technology, Box 7032, SE-750 07 Uppsala, Sweden
| | - Ann Albihn
- National Veterinary Institute, Chemistry, Environment and Food Security Department, SE-751 89 Uppsala, Sweden
| | - Björn Vinnerås
- Swedish University of Agricultural Sciences, Department of Energy & Technology, Box 7032, SE-750 07 Uppsala, Sweden
| |
Collapse
|
11
|
Decrey L, Kazama S, Udert KM, Kohn T. Ammonia as an in situ sanitizer: inactivation kinetics and mechanisms of the ssRNA virus MS2 by NH3. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1060-7. [PMID: 25496714 DOI: 10.1021/es5044529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sanitizing human and animal waste (e.g., urine, fecal sludge, or grey water) is a critical step in reducing the spread of disease and ensuring microbially safe reuse of waste materials. Viruses are particularly persistent pathogens and can be transmitted through inadequately sanitized waste. However, adequate storage or digestion of waste can strongly reduce the number of viruses due to increases in pH and uncharged aqueous ammonia (NH3), a known biocide. In this study we investigated the kinetics and mechanisms of inactivation of the single-stranded RNA virus MS2 under temperature, pH and NH3 conditions representative of waste storage. MS2 inactivation was mainly controlled by the activity of NH3 over a pH range of 7.0–9.5 and temperatures lower than 40 °C. Other bases (e.g., hydroxide, carbonate) additionally contributed to the observed reduction of infective MS2. The loss in MS2 infectivity could be rationalized by a loss in genome integrity, which was attributed to genome cleavage via alkaline transesterification. The contribution of each base to genome transesterification, and hence inactivation, could be related to the base pKa by means of a Bronsted relationship. The Bronsted relationship in conjunction with the activity of bases in solution enabled an accurate prediction of MS2 inactivation rates.
Collapse
|
12
|
Fidjeland J, Svensson SE, Vinnerås B. Ammonia sanitization of blackwater for safe use as fertilizer. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 71:795-800. [PMID: 25768229 DOI: 10.2166/wst.2015.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Source-separated blackwater from low-flush toilets contains plant-available nutrients and can be used as a fertilizer. The aim of the study was to evaluate the impact on pathogen inactivation when treating blackwater with urea and/or lime. Blackwater was spiked with Salmonella typhimurium, Escherichia coli O157, Enterococcus faecalis, and Ascaris suum eggs, and treated with urea and/or lime in concentrations up to 0.1% w/w. The bottles were kept in a storage facility (manure slurry tank) for 102 days while monitoring the pathogen concentrations. The treatment time needed to meet the requirement for Salmonella and E. coli reduction could be reduced at least six-fold. The enterococci were more persistent, and only the highest treatment doses had a significantly higher inactivation than the controls. The Ascaris egg viability was only reduced by around 50%, so higher urea/lime doses and/or longer treatment times are required to fulfill the treatment requirements of 3 log10 reductions of parasite eggs.
Collapse
Affiliation(s)
- Jörgen Fidjeland
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, Uppsala SE-750 07, Sweden E-mail:
| | - Sven-Erik Svensson
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Box 103, Alnarp SE-230 53, Sweden
| | - Björn Vinnerås
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, Uppsala SE-750 07, Sweden E-mail:
| |
Collapse
|
13
|
Nordin AC, Vinnerås B. Sanitising black water by auto-thermal aerobic digestion (ATAD) combined with ammonia treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:2112-2121. [PMID: 26675998 DOI: 10.2166/wst.2015.432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The effect of a two-step process on the concentration of pathogens and indicator microorganisms in black water (0.9-1% total solids) was studied. The treatment combined auto-thermal aerobic digestion (ATAD) and ammonia sanitisation. First, the temperature of the black water was increased through ATAD and when a targeted temperature was reached (33, 41 and 45.5 °C studied), urea was added to a 0.5% concentration (total ammonia nitrogen >2.9 g L⁻¹). Escherichia coli and Salmonella spp. were reduced to non-detectable levels within 3 days following urea addition at temperatures above 40 °C, whereas when urea was added at 33 °C E. coli was still present after 8 days. By adding urea at temperatures of 40 °C and above, a 5 log10 reduction in Enterococcus spp. and a 3 log10 reduction in Ascaris suum eggs was achieved 1 week after the addition. With combined ATAD and ammonia treatment using 0.5% ww urea added at an aerobic digestion temperature >40 °C, black water was sanitised regarding the pathogens studied in 2 weeks of total treatment time.
Collapse
Affiliation(s)
- Annika C Nordin
- Department of Energy and Technology, Swedish University of Agricultural Sciences, P.O. Box 7032, 750 07 Uppsala, Sweden E-mail:
| | - Björn Vinnerås
- Department of Energy and Technology, Swedish University of Agricultural Sciences, P.O. Box 7032, 750 07 Uppsala, Sweden E-mail:
| |
Collapse
|
14
|
Scaglia B, D'Imporzano G, Garuti G, Negri M, Adani F. Sanitation ability of anaerobic digestion performed at different temperature on sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 466-467:888-897. [PMID: 23973551 DOI: 10.1016/j.scitotenv.2013.07.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 07/25/2013] [Accepted: 07/28/2013] [Indexed: 06/02/2023]
Abstract
A small amount of ammonia is used in full-scale plants to partially sanitize sewage sludge, thereby allowing successive biological processes to enable the high biological stability of the organic matter. Nevertheless, ammonia and methane are both produced during the anaerobic digestion (AD) of sludge. This paper describes the evaluation of a lab-scale study on the ability of anaerobic process to sanitize sewage sludge and produce biogas, thus avoiding the addition of ammonia to sanitize sludge. According to both previous work and a state of the art full-scale plant, ammonia was added to a mixture of sewage sludge at a rate so that the pH values after stirring were 8.5, 9 and 9.5. This procedure determined an ammonia addition lower than that generally indicated in the literature. The same sludge was also subjected to an AD process for 60 days under psychrophilic, mesophilic and thermophilic conditions. The levels of fecal coliform, Salmonella spp. helmints ova, pH, total N, ammonia fractions and biogas production were measured at different times during each process. The results obtained suggested that sludge sanitation can be achieved using an AD process; however, the addition of a small amount of ammonia was not effective in sludge sanitation because the buffer ability of the sludge reduced the pH and thus caused ammonia toxicity. Mesophilic and thermophilic AD sanitized better than psychrophilic AD did, but the total free ammonia concentration under the thermophilic condition inhibited biogas production. The mesophilic condition, however, allowed for both sludge sanitation and significant biogas production.
Collapse
Affiliation(s)
- Barbara Scaglia
- GRUPPO RICICLA, Dipartimento di Science Agrarie e Ambientali: Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| | | | | | | | | |
Collapse
|
15
|
Fidjeland J, Magri ME, Jönsson H, Albihn A, Vinnerås B. The potential for self-sanitisation of faecal sludge by intrinsic ammonia. WATER RESEARCH 2013; 47:6014-6023. [PMID: 23941983 DOI: 10.1016/j.watres.2013.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/28/2013] [Accepted: 07/16/2013] [Indexed: 06/02/2023]
Abstract
Faecal sludge has the potential to be used as a sustainable fertiliser in agriculture, but the sludge must be sanitised due to its content of pathogenic microorganisms. The intrinsic ammonia from the urine may be sufficient for sanitisation of the sludge if it is not too diluted by flush water or lost by ventilation. To evaluate the potential for this sanitisation method, inactivation of Enterococcus faecalis, Salmonella typhimurium and Ascaris suum eggs during treatment were assessed. The inactivation was studied at different storage temperatures (10-28 °C) and in several sludge mixes with different contents of urine, faeces and flush water, and with ammonia concentrations from 40 to 400 mM. All pathogens were inactivated by the ammonia, and ascaris eggs were the most persistent. Lower flush water volume and higher urine content favoured inactivation, mainly due to increased uncharged ammonia (NH3) concentration. The lag phase in ascaris inactivation was shortened by increasing temperature and NH3 concentration, while post-lag phase inactivation was not influenced by NH3 concentration. Faecal sludge can be sanitised by airtight storage without the use of additives when flush water volumes are sufficiently low. For temperatures of 23-28 °C, a 3 log reduction of ascaris egg viability can be achieved within 1-6 months depending on ammonia concentration and temperature.
Collapse
Affiliation(s)
- Jørgen Fidjeland
- Swedish University of Agricultural Sciences, Department of Energy & Technology, Box 7032, SE-750 07 Uppsala, Sweden; National Veterinary Institute, Department of Chemistry, Environment and Food Security, SE-751 89 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
16
|
Hill GB, Baldwin SA, Vinnerås B. Composting toilets a misnomer: excessive ammonia from urine inhibits microbial activity yet is insufficient in sanitizing the end-product. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 119:29-35. [PMID: 23435183 DOI: 10.1016/j.jenvman.2012.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 10/21/2012] [Accepted: 12/28/2012] [Indexed: 06/01/2023]
Abstract
End-product from 16 public mixed latrine style composting toilets (CTs) at 12 sites between 50 and 2100 m.a.s.l. in Western North America was tested in order to evaluate the effect of composting variables (TS%, NH3-N, temperature, and material age) on compost quality and hygiene (VS%, Escherichia coli, [Formula: see text] -N, and pH). Principal component analysis indicated that TS%, temperature, and material age equally contributed to reduction in VS%. NH3-N had the greatest effect on [Formula: see text] -N, E. coli, and pH. Nitrification was significantly inhibited above 386 mg/kg NH3-N, but no such limit was found for E. coli, despite a significant (p = 0.016) but weak (r(2) = 0.11) negative relationship. It may be possible to amplify the sanitizing effect of ammonia and overcome pathogen resistance due to low temperatures and re-contamination (caused by poor design) with generous dosing of urea and ash. However, even sanitized, the fertilization effect of discharged material on the natural environment may not be desired or permitted in parks or protected areas where many CTs were found. To this end, operators of CTs need to evaluate their primary management objectives and ensure congruency with proven system capabilities.
Collapse
Affiliation(s)
- Geoffrey B Hill
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, BC, Canada V6T 1Z2.
| | | | | |
Collapse
|
17
|
Inactivation of pathogens in feces by desiccation and urea treatment for application in urine-diverting dry toilets. Appl Environ Microbiol 2013; 79:2156-63. [PMID: 23335764 DOI: 10.1128/aem.03920-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ecological sanitation technologies can be effective in providing health and environmental pollution control if they can efficiently reduce the pathogenicity of microorganisms carried in fecal material to safe levels. This study evaluated the sanitizing effects of different additives for dry treatment of feces from urine-diverting dry toilets, based on inactivation of Enterococcus faecalis, Salmonella enterica serovar Typhimurium, bacteriophages MS2 and ΦX, and Ascaris suum. The additives, ash (A) and oyster shell (O) in different amounts and urea (U) to optimize the process, were compared with no additive, solely urea, and sawdust as controls (C) and were covered ([x%O:A]) or uncovered (x%O:A). The main inactivation factors found were desiccation, ammonia content, and pH. S. Typhimurium and E. faecalis were more affected by the ammonia content. A combination of neutral to high pH and desiccation was most effective for inactivation of MS2, and desiccation was most effective for inactivation of ΦX and A. suum. The inactivation rate was modeled for all combinations studied. The most promising treatments were [150%O:A+U], 150%O:A+U, and 150%O:A. According to the models, these could inactivate, for example, 7 log(10) units of all bacteria and bacteriophages within 83, 125, and 183 days, respectively. The inactivation of A. suum was modeled, albeit the measured decay in egg viability was low.
Collapse
|
18
|
Nyberg K, Vinnerås B, Lewerin S, Kjellberg E, Albihn A. Treatment with Ca(OH)2 for inactivation of Salmonella Typhimurium and Enterococcus faecalis in soil contaminated with infected horse manure. J Appl Microbiol 2011; 110:1515-23. [DOI: 10.1111/j.1365-2672.2011.05006.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|