1
|
Zhang S, Zhang C, Wu J, Liu S, Zhang R, Handique U. Isolation, characterization and application of noble bacteriophages targeting potato common scab pathogen Streptomyces stelliscabiei. Microbiol Res 2024; 283:127699. [PMID: 38520838 DOI: 10.1016/j.micres.2024.127699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Bacteriophages have emerged as promising alternatives to pesticides for controlling bacterial pathogens in crops. Among these pathogens, Streptomyces stelliscabiei (syn. S. stelliscabiei) is a primary causative agent of potato common scab (PCS), resulting in substantial global economic losses. The traditional management methods for PCS face numerous challenges, highlighting the need for effective and environmentally friendly control strategies. In this study, we successfully isolated three novel bacteriophages, namely Psst1, Psst2, and Psst4, which exhibited a broad host range encompassing seven S. stelliscabiei strains. Morphological analysis revealed their distinct features, including an icosahedral head and a non-contractile tail. These phages demonstrated stability across a broad range of temperatures (20-50°C), pH (pH 3-11), and UV exposure time (80 min). Genome sequencing revealed double-stranded DNA phage with open reading frames encoding genes for phage structure, DNA packaging and replication, host lysis and other essential functions. These phages lacked genes for antibiotic resistance, virulence, and toxicity. Average nucleotide identity, phylogenetic, and comparative genomic analyses classified the three phages as members of the Rimavirus genus, with Psst1 and Psst2 representing novel species. All three phages efficiently lysed S. stelliscabiei in the liquid medium and alleviated scab symptom development and reduced pathogen abundance on potato slices. Furthermore, phage treatments of radish seedlings alleviated the growth inhibition caused by S. stelliscabiei with no disease symptoms. In soil potted experiments, phages significantly reduced disease incidence by 40%. This decrease is attributed to a reduction in pathogen density and the selection of S. stelliscabiei strains with reduced virulence and slower growth rates in natural environments. Our study is the first to report the isolation of three novel phages that infect S. stelliscabiei as a host bacterium. These phages exhibit a broad host range, and demonstrate stability under a variety of environmental conditions. Additionally, they demonstrate biocontrol efficacy against bacterial infections in potato slices, radish seedlings, and potted experiments, underscoring their significant potential as biocontrol agents for the effective management of PCS.
Collapse
Affiliation(s)
- Shihe Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Cheligeer Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Jian Wu
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Simiao Liu
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Ruofang Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Utpal Handique
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
2
|
Jaglan AB, Vashisth M, Sharma P, Verma R, Virmani N, Bera BC, Vaid RK, Singh RK, Anand T. Phage Mediated Biocontrol: A Promising Green Solution for Sustainable Agriculture. Indian J Microbiol 2024; 64:318-327. [PMID: 39011019 PMCID: PMC11246405 DOI: 10.1007/s12088-024-01204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/06/2024] [Indexed: 07/17/2024] Open
Abstract
In the current scenario of growing world population, limited cultivable land resources, plant diseases, and pandemics are some of the major factors responsible for declining global food security. Along with meeting the food demand, the maintenance of food quality is also required to ensure healthy consumption and marketing. In agricultural fields, pest infestations and bacterial diseases are common causes of crop damage, leading to massive yield losses. Conventionally, antibiotics and several pesticides have been used to manage and control these plant pathogens. However, the overuse of antibiotics and pesticides has led to the emergence of resistant strains of pathogenic bacteria. The bacteriophages are the natural predators of bacteria and are host-specific in their action. Therefore, the use of bacteriophages for the biocontrol of pathogenic bacteria is serving as a sustainable and green solution in crop protection and production. In this review, we have discussed the important plant pathogens and their impact on plant health and yield loss. Further, we have abridged the role of bacteriophages in the protection of crops from bacterial disease by discussing various greenhouse and field trials. Finally, we have discussed the impact of bacteriophages on the plant microbiome, phage resistance, and legal challenges in the registration and commercial production of bacteriophage-based biopesticides. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01204-x.
Collapse
Affiliation(s)
- Anu Bala Jaglan
- ICAR - National Research Centre on Equines, Hisar, Haryana 125001 India
- Department of Zoology and Aquaculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004 India
| | - Medhavi Vashisth
- ICAR - National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Priya Sharma
- ICAR - National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Ravikant Verma
- Department of Zoology and Aquaculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004 India
| | - Nitin Virmani
- ICAR - National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Bidhan C Bera
- ICAR - National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Rajesh K Vaid
- ICAR - National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Raj K Singh
- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Taruna Anand
- ICAR - National Research Centre on Equines, Hisar, Haryana 125001 India
| |
Collapse
|
3
|
Motyka-Pomagruk A, Babinska-Wensierska W, Sledz W, Kaczorowska AK, Lojkowska E. Phyloproteomic study by MALDI-TOF MS in view of intraspecies variation in a significant homogenous phytopathogen Dickeya solani. Sci Rep 2023; 13:18863. [PMID: 37914755 PMCID: PMC10620192 DOI: 10.1038/s41598-023-46012-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Dickeya solani is an economically significant pectinolytic phytopathogen belonging to the Pectobacteriaceae family, which causes soft rot and blackleg diseases. Despite its notable impact on global potato production, there are no effective methods to control this pest. Here, we undertook a phyloproteomic study on 20 D. solani strains, of various origin and year of isolation, with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) supported by an in-depth characterization of the strains in terms of the virulence-associated phenotype. In spite of high homogeneity in this species, we herein revealed for the first time intraspecies variation in the MALDI-TOF MS protein profiles among the studied D. solani isolates. Finally, representative mass spectra for the four delineated clades are presented. A majority of the analysed D. solani strains showed high virulence potential, while two strains stood out in their growth dynamics, virulence factors production and ability to macerate plant tissue. Nonetheless, the metabolic profiles of D. solani strains turned out to be uniform, except for gelatinase activity. Given that all D. solani isolates distinctly grouped from the other Dickeya species in the MALDI-TOF MS analysis, there is strong evidence supporting the potential routine use of this method for fast and reliable to-species identification of D. solani isolates of environmental origin.
Collapse
Affiliation(s)
- Agata Motyka-Pomagruk
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307, Gdańsk, Poland
- Research & Development Laboratory, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824, Gdańsk, Poland
| | - Weronika Babinska-Wensierska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307, Gdańsk, Poland
- Research & Development Laboratory, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824, Gdańsk, Poland
| | - Wojciech Sledz
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307, Gdańsk, Poland
- Research & Development Laboratory, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824, Gdańsk, Poland
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms (KPD), Faculty of Biology, University of Gdansk, 59 Wita Stwosza Street, 80-308, Gdańsk, Poland
| | - Ewa Lojkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307, Gdańsk, Poland.
- Research & Development Laboratory, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824, Gdańsk, Poland.
| |
Collapse
|
4
|
Van Cauwenberghe J, Simms EL. How might bacteriophages shape biological invasions? mBio 2023; 14:e0188623. [PMID: 37812005 PMCID: PMC10653932 DOI: 10.1128/mbio.01886-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Invasions by eukaryotes dependent on environmentally acquired bacterial mutualists are often limited by the ability of bacterial partners to survive and establish free-living populations. Focusing on the model legume-rhizobium mutualism, we apply invasion biology hypotheses to explain how bacteriophages can impact the competitiveness of introduced bacterial mutualists. Predicting how phage-bacteria interactions affect invading eukaryotic hosts requires knowing the eco-evolutionary constraints of introduced and native microbial communities, as well as their differences in abundance and diversity. By synthesizing research from invasion biology, as well as bacterial, viral, and community ecology, we create a conceptual framework for understanding and predicting how phages can affect biological invasions through their effects on bacterial mutualists.
Collapse
Affiliation(s)
- Jannick Van Cauwenberghe
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Ellen L. Simms
- Department of Integrative Biology, University of California, Berkeley, California, USA
| |
Collapse
|
5
|
Sokolova D, Smolarska A, Bartnik P, Rabalski L, Kosinski M, Narajczyk M, Krzyżanowska DM, Rajewska M, Mruk I, Czaplewska P, Jafra S, Czajkowski R. Spontaneous mutations in hlyD and tuf genes result in resistance of Dickeya solani IPO 2222 to phage ϕD5 but cause decreased bacterial fitness and virulence in planta. Sci Rep 2023; 13:7534. [PMID: 37160956 PMCID: PMC10169776 DOI: 10.1038/s41598-023-34803-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/07/2023] [Indexed: 05/11/2023] Open
Abstract
Lytic bacteriophages able to infect and kill Dickeya spp. can be readily isolated from virtually all Dickeya spp. containing environments, yet little is known about the selective pressure those viruses exert on their hosts. Two spontaneous D. solani IPO 2222 mutants (0.8% of all obtained mutants), DsR34 and DsR207, resistant to infection caused by lytic phage vB_Dsol_D5 (ΦD5) were identified in this study that expressed a reduced ability to macerate potato tuber tissues compared to the wild-type, phage-susceptible D. solani IPO 2222 strain. Genome sequencing revealed that genes encoding: secretion protein HlyD (in mutant DsR34) and elongation factor Tu (EF-Tu) (in mutant DsR207) were altered in these strains. These mutations impacted the DsR34 and DsR207 proteomes. Features essential for the ecological success of these mutants in a plant environment, including their ability to use various carbon and nitrogen sources, production of plant cell wall degrading enzymes, ability to form biofilms, siderophore production, swimming and swarming motility and virulence in planta were assessed. Compared to the wild-type strain, D. solani IPO 2222, mutants DsR34 and DsR207 had a reduced ability to macerate chicory leaves and to colonize and cause symptoms in growing potato plants.
Collapse
Affiliation(s)
- Daryna Sokolova
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Academika Zabolotnoho St., Kyiv, 03143, Ukraine
| | - Anna Smolarska
- Department of Cancer Biology, Institute of Biology, Warsaw, University of Life Sciences (SGGW), J. Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Przemysław Bartnik
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
| | - Lukasz Rabalski
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
| | - Maciej Kosinski
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Dorota M Krzyżanowska
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
| | - Magdalena Rajewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama, 58, 80-307, Gdansk, Poland
| | - Inez Mruk
- Laboratory of Mass Spectrometry-Core Facility Laboratories, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307, Gdansk, Poland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry-Core Facility Laboratories, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307, Gdansk, Poland
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama, 58, 80-307, Gdansk, Poland
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland.
| |
Collapse
|
6
|
Development of a Bacteriophage Cocktail against Pectobacterium carotovorum Subsp. carotovorum and Its Effects on Pectobacterium Virulence. Appl Environ Microbiol 2022; 88:e0076122. [PMID: 36165651 PMCID: PMC9552609 DOI: 10.1128/aem.00761-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pectobacterium carotovorum subsp. carotovorum is a necrotrophic plant pathogen that secretes plant cell wall-degrading enzymes (PCWDEs) that cause soft rot disease in various crops. Bacteriophages have been under consideration as harmless antibacterial agents to replace antibiotics and copper-based pesticides. However, the emergence of bacteriophage resistance is one of the main concerns that should be resolved for practical phage applications. In this study, we developed a phage cocktail with three lytic phages that recognize colanic acid (phage POP12) or flagella (phages POP15 and POP17) as phage receptors to minimize phage resistance. The phage cocktail effectively suppressed the emergence of phage-resistant P. carotovorum subsp. carotovorum compared with single phages in in vitro challenge assays. The application of the phage cocktail to napa cabbage (Brassica rapa subsp. pekinensis) resulted in significant growth retardation of P. carotovorum subsp. carotovorum (P < 0.05) and prevented the symptoms of soft rot disease. Furthermore, phage cocktail treatments of young napa cabbage leaves in a greenhouse environment indicated effective prevention of soft rot disease compared to that in the nonphage negative control. We isolated 15 phage-resistant mutants after a phage cocktail treatment to assess the virulence-associated phenotypes compared to those of wild-type (WT) strain Pcc27. All mutants showed reduced production of four different PCWDEs, leading to lower levels of tissue softening. Ten of the 15 phage-resistant mutants additionally exhibited decreased swimming motility. Taken together, these results show that the phage cocktail developed here, which targets two different types of phage receptors, provides an effective strategy for controlling P. carotovorum subsp. carotovorum in agricultural products, with a potential ability to attenuate P. carotovorum subsp. carotovorum virulence. IMPORTANCE Pectobacterium carotovorum subsp. carotovorum is a phytopathogen that causes soft rot disease in various crops by producing plant cell wall-degrading enzymes (PCWDEs). Although antibiotics and copper-based pesticides have been extensively applied to inhibit P. carotovorum subsp. carotovorum, the emergence of antibiotic-resistant bacteria and demand for harmless antimicrobial products have emphasized the necessity of finding alternative therapeutic strategies. To address this problem, we developed a phage cocktail consisting of three P. carotovorum subsp. carotovorum-specific phages that recognize colanic acids and flagella of P. carotovorum subsp. carotovorum. The phage cocktail treatments significantly decreased P. carotovorum subsp. carotovorum populations, as well as soft rot symptoms in napa cabbage. Simultaneously, they resulted in virulence attenuation in phage-resistant P. carotovorum subsp. carotovorum, which was represented by decreased PCWDE production and decreased flagellum-mediated swimming motility. These results suggested that preparations of phage cocktails targeting multiple receptors would be an effective approach to biocontrol of P. carotovorum subsp. carotovorum in crops.
Collapse
|
7
|
Debray R, De Luna N, Koskella B. Historical contingency drives compensatory evolution and rare reversal of phage resistance. Mol Biol Evol 2022; 39:6673247. [PMID: 35994371 PMCID: PMC9447851 DOI: 10.1093/molbev/msac182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacteria and lytic viruses (phages) engage in highly dynamic coevolutionary interactions over time, yet we have little idea of how transient selection by phages might shape the future evolutionary trajectories of their host populations. To explore this question, we generated genetically diverse phage-resistant mutants of the bacterium Pseudomonas syringae. We subjected the panel of mutants to prolonged experimental evolution in the absence of phages. Some populations re-evolved phage sensitivity, whereas others acquired compensatory mutations that reduced the costs of resistance without altering resistance levels. To ask whether these outcomes were driven by the initial genetic mechanisms of resistance, we next evolved independent replicates of each individual mutant in the absence of phages. We found a strong signature of historical contingency: some mutations were highly reversible across replicate populations, whereas others were highly entrenched. Through whole-genome sequencing of bacteria over time, we also found that populations with the same resistance gene acquired more parallel sets of mutations than populations with different resistance genes, suggesting that compensatory adaptation is also contingent on how resistance initially evolved. Our study identifies an evolutionary ratchet in bacteria–phage coevolution and may explain previous observations that resistance persists over time in some bacterial populations but is lost in others. We add to a growing body of work describing the key role of phages in the ecological and evolutionary dynamics of their host communities. Beyond this specific trait, our study provides a new insight into the genetic architecture of historical contingency, a crucial component of interpreting and predicting evolution.
Collapse
Affiliation(s)
- Reena Debray
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Nina De Luna
- Department of Immunology, Pennsylvania State University, State College, PA, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA.,Chan Zuckerberg BioHub, San Francisco, CA, USA
| |
Collapse
|
8
|
Liu M, Tian Y, Zaki HEM, Ahmed T, Yao R, Yan C, Leptihn S, Loh B, Shahid MS, Wang F, Chen J, Li B. Phage Resistance Reduced the Pathogenicity of Xanthomonas oryzae pv. oryzae on Rice. Viruses 2022; 14:v14081770. [PMID: 36016392 PMCID: PMC9416502 DOI: 10.3390/v14081770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Plants grow together with microbes that have both negative and positive impacts on the host, while prokaryotes are in turn also hosts for viruses, co-evolving together in a complex interrelationship. Most research focuses on the interaction of either bacterial pathogens interacting with the plant host, or the impact on viruses on their pathogenic bacterial hosts. Few studies have investigated the co-evolution of bacterial pathogens with their host plants as well as with their bacterial viruses. In this work, we aimed to identify the genes that were associated with both phage sensitivity and host pathogenicity of the bacterium Xanthomonas oryzae pv. oryzae (Xoo), which is the most important bacterial rice pathogen. Using the Tn5 transposon mutation technology, we created a library of Xoo strain C2 comprising 4524 mutants, which were subsequently tested for phage infectability. The phage infection tests showed that less than 1% of the mutants (n = 36) were resistant to phage infection, which was attributed to the Tn5 insertion in 19 genes. Interestingly, three out of 19 genes that conveyed resistance to the phage resulted in reduced pathogenicity to rice seedlings compared to the wild type. We identified three genes involved in both phage infection and bacterial virulence, which were studied by knockout mutants and complementation experiments. All of the three knockout mutants were resistant to infection by phage X2, while the complemented strains restored the susceptibility to the bacterial virus. Surprisingly, the genes are also essential for pathogenicity, which we confirmed by single knockout mutants corresponding to the Tn5 mutants. All three genes are involved in lipopolysaccharide synthesis, thus changing the cell envelope surface molecule composition. Our work shows a possible balance in terms of the connection between bacterial virulence and phage resistance, supporting the deployment of phages for the biocontrol of plant pathogens.
Collapse
Affiliation(s)
- Mengju Liu
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ye Tian
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Haitham E. M. Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia 61517, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur 411, Oman
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Rong Yao
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Sebastian Leptihn
- University of Edinburgh Institute, Zhejiang University, Hangzhou 314400, China
| | - Belinda Loh
- Fraunhofer Institute for Cell Therapy & Immunology (IZI), Department of Vaccines and Infection Models, Perlickstr. 1, 04103 Leipzig, Germany
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-khod 123, Oman
| | - Fang Wang
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
- Correspondence: (F.W.); (J.C.); (B.L.) Tel.: +86-0571-88982412 (B.L.)
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Correspondence: (F.W.); (J.C.); (B.L.) Tel.: +86-0571-88982412 (B.L.)
| | - Bin Li
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Correspondence: (F.W.); (J.C.); (B.L.) Tel.: +86-0571-88982412 (B.L.)
| |
Collapse
|
9
|
Resistance of Dickeya solani strain IPO 2222 to lytic bacteriophage ΦD5 results in fitness tradeoffs for the bacterium during infection. Sci Rep 2022; 12:10725. [PMID: 35750797 PMCID: PMC9232599 DOI: 10.1038/s41598-022-14956-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Resistance to bacteriophage infections protects bacteria in phage-replete environments, enabling them to survive and multiply in the presence of their viral predators. However, such resistance may confer costs for strains, reducing their ecological fitness as expressed as competitiveness for resources or virulence or both. There is limited knowledge about such costs paid by phage-resistant plant pathogenic bacteria in their natural habitats. This study analyzed the costs of phage resistance paid by the phytopathogenic pectinolytic bacterium Dickeya solani both in vitro and in potato (Solanum tuberosum L.) plants. Thirteen Tn5 mutants of D. solani IPO 2222 were identified that exhibited resistance to infection by lytic bacteriophage vB_Dsol_D5 (ΦD5). The genes disrupted in these mutants encoded proteins involved in the synthesis of bacterial envelope components (viz. LPS, EPS and capsule). Although phage resistance did not affect most of the phenotypes of ΦD5-resistant D. solani such as growth rate, production of effectors, swimming and swarming motility, use of various carbon and nitrogen sources and biofilm formation evaluated in vitro, all phage resistant mutants were significantly compromised in their ability to survive on leaf surfaces as well as to grow within and cause disease symptoms in potato plants.
Collapse
|
10
|
Zhou J, Hu M, Hu A, Li C, Ren X, Tao M, Xue Y, Chen S, Tang C, Xu Y, Zhang L, Zhou X. Isolation and Genome Analysis of Pectobacterium colocasium sp. nov. and Pectobacterium aroidearum, Two New Pathogens of Taro. FRONTIERS IN PLANT SCIENCE 2022; 13:852750. [PMID: 35557713 PMCID: PMC9088014 DOI: 10.3389/fpls.2022.852750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Bacterial soft rot is one of the most destructive diseases of taro (Colocasia esculenta) worldwide. In recent years, frequent outbreaks of soft rot disease have seriously affected taro production and became a major constraint to the development of taro planting in China. However, little is known about the causal agents of this disease, and the only reported pathogens are two Dickeya species and P. carotovorum. In this study, we report taro soft rot caused by two novel Pectobacterium strains, LJ1 and LJ2, isolated from taro corms in Ruyuan County, Shaoguan City, Guangdong Province, China. We showed that LJ1 and LJ2 fulfill Koch's postulates for taro soft rot. The two pathogens can infect taro both individually and simultaneously, and neither synergistic nor antagonistic interaction was observed between the two pathogens. Genome sequencing of the two strains indicated that LJ1 represents a novel species of the genus Pectobacterium, for which the name "Pectobacterium colocasium sp. nov." is proposed, while LJ2 belongs to Pectobacterium aroidearum. Pan-genome analysis revealed multiple pathogenicity-related differences between LJ1, LJ2, and other Pectobacterium species, including unique virulence factors, variation in the copy number and organization of Type III, IV, and VI secretion systems, and differential production of plant cell wall degrading enzymes. This study identifies two new soft rot Pectobacteriaceae (SRP) pathogens causing taro soft rot in China, reports a new case of co-infection of plant pathogens, and provides valuable resources for further investigation of the pathogenic mechanisms of SRP.
Collapse
Affiliation(s)
- Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Ming Hu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Anqun Hu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Chuhao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xinyue Ren
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Min Tao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yang Xue
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Shanshan Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Chongzhi Tang
- Guangdong Tianhe Agricultural Means of Production Co., Ltd., Guangzhou, China
| | - Yiwu Xu
- Guangdong Tianhe Agricultural Means of Production Co., Ltd., Guangzhou, China
- Qingyuan Agricultural Science and Technology Service Co., Ltd., Qingyuan, China
| | - Lianhui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Ossowska K, Motyka-Pomagruk A, Kaczyńska N, Kowalczyk A, Sledz W, Lojkowska E, Kaczyński Z. Heterogenicity within the LPS Structure in Relation to the Chosen Genomic and Physiological Features of the Plant Pathogen Pectobacterium parmentieri. Int J Mol Sci 2022; 23:ijms23042077. [PMID: 35216191 PMCID: PMC8879369 DOI: 10.3390/ijms23042077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022] Open
Abstract
Pectobacterium parmentieri is a pectinolytic plant pathogenic bacterium causing high economic losses of cultivated plants. The highly devastating potential of this phytopathogen results from the efficient production of plant cell wall-degrading enzymes, i.e., pectinases, cellulases and proteases, in addition to the impact of accessory virulence factors such as motility, siderophores, biofilm and lipopolysaccharide (LPS). LPS belongs to pathogen-associated molecular patterns (PAMPs) and plays an important role in plant colonization and interaction with the defense systems of the host. Therefore, we decided to investigate the heterogeneity of O-polysaccharides (OPS) of LPS of different strains of P. parmentieri, in search of an association between the selected genomic and phenotypic features of the strains that share an identical structure of the OPS molecule. In the current study, OPS were isolated from the LPS of two P. parmentieri strains obtained either in Finland in the 1980s (SCC3193) or in Poland in 2013 (IFB5432). The purified polysaccharides were analyzed by utilizing 1D and 2D NMR spectroscopy (1H, DQF-COSY, TOCSY, ROESY, HSQC, HSQC-TOCSY and HMBC) in addition to chemical methods. Sugar and methylation analyses of native polysaccharides, absolute configuration assignment of constituent monosaccharides and NMR spectroscopy data revealed that these two P. parmentieri strains isolated in different countries possess the same structure of OPS with a very rare residue of 5,7-diamino-3,5,7,9-tetradeoxy-l-glycero-l-manno-non-2-ulosonic acid (pseudaminic acid) substituted in the position C-8: →3)-β-d-Galf-(1→3)-α-d-Galp-(1→8)-β-Pse4Ac5Ac7Ac-(2→6)-α-d-Glcp-(1→6)-β-d-Glcp-(1→. The previous study indicated that three other P. parmentieri strains, namely IFB5427, IFB5408 and IFB5443, exhibit a different OPS molecule than SCC3193 and IFB5432. The conducted biodiversity-oriented assays revealed that the P. parmentieri IFB5427 and IFB5408 strains possessing the same OPS structure yielded the highest genome-wide similarity, according to average nucleotide identity analyses, in addition to the greatest ability to macerate chicory tissue among the studied P. parmentieri strains. The current research demonstrated a novel OPS structure, characteristic of at least two P. parmentieri strains (SCC3193 and IFB5432), and discussed the observed heterogenicity in the OPS of P. parmentieri in a broad genomic and phenotype-related context.
Collapse
Affiliation(s)
- Karolina Ossowska
- Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza, 80-308 Gdansk, Poland; (K.O.); (A.K.)
| | - Agata Motyka-Pomagruk
- Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (A.M.-P.); (N.K.); (W.S.); (E.L.)
| | - Natalia Kaczyńska
- Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (A.M.-P.); (N.K.); (W.S.); (E.L.)
| | - Agnieszka Kowalczyk
- Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza, 80-308 Gdansk, Poland; (K.O.); (A.K.)
| | - Wojciech Sledz
- Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (A.M.-P.); (N.K.); (W.S.); (E.L.)
| | - Ewa Lojkowska
- Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (A.M.-P.); (N.K.); (W.S.); (E.L.)
| | - Zbigniew Kaczyński
- Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza, 80-308 Gdansk, Poland; (K.O.); (A.K.)
- Correspondence:
| |
Collapse
|
12
|
Farooq T, Hussain MD, Shakeel MT, Tariqjaveed M, Aslam MN, Naqvi SAH, Amjad R, Tang Y, She X, He Z. Deploying Viruses against Phytobacteria: Potential Use of Phage Cocktails as a Multifaceted Approach to Combat Resistant Bacterial Plant Pathogens. Viruses 2022; 14:171. [PMID: 35215763 PMCID: PMC8879233 DOI: 10.3390/v14020171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/05/2023] Open
Abstract
Plants in nature are under the persistent intimidation of severe microbial diseases, threatening a sustainable food production system. Plant-bacterial pathogens are a major concern in the contemporary era, resulting in reduced plant growth and productivity. Plant antibiotics and chemical-based bactericides have been extensively used to evade plant bacterial diseases. To counteract this pressure, bacteria have evolved an array of resistance mechanisms, including innate and adaptive immune systems. The emergence of resistant bacteria and detrimental consequences of antimicrobial compounds on the environment and human health, accentuates the development of an alternative disease evacuation strategy. The phage cocktail therapy is a multidimensional approach effectively employed for the biocontrol of diverse resistant bacterial infections without affecting the fauna and flora. Phages engage a diverse set of counter defense strategies to undermine wide-ranging anti-phage defense mechanisms of bacterial pathogens. Microbial ecology, evolution, and dynamics of the interactions between phage and plant-bacterial pathogens lead to the engineering of robust phage cocktail therapeutics for the mitigation of devastating phytobacterial diseases. In this review, we highlight the concrete and fundamental determinants in the development and application of phage cocktails and their underlying mechanism, combating resistant plant-bacterial pathogens. Additionally, we provide recent advances in the use of phage cocktail therapy against phytobacteria for the biocontrol of devastating plant diseases.
Collapse
Affiliation(s)
- Tahir Farooq
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| | - Muhammad Dilshad Hussain
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing 100193, China;
| | - Muhammad Taimoor Shakeel
- Department of Plant Pathology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.T.S.); (M.N.A.)
| | - Muhammad Tariqjaveed
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Muhammad Naveed Aslam
- Department of Plant Pathology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.T.S.); (M.N.A.)
| | - Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agriculture Science and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Rizwa Amjad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Yafei Tang
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| | - Xiaoman She
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| | - Zifu He
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| |
Collapse
|
13
|
Bartnik P, Jafra S, Narajczyk M, Czaplewska P, Czajkowski R. Pectobacterium parmentieri SCC 3193 Mutants with Altered Synthesis of Cell Surface Polysaccharides Are Resistant to N4-Like Lytic Bacteriophage ϕA38 (vB_Ppp_A38) but Express Decreased Virulence in Potato ( Solanum tuberosum L.) Plants. Int J Mol Sci 2021; 22:7346. [PMID: 34298965 PMCID: PMC8304393 DOI: 10.3390/ijms22147346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/15/2023] Open
Abstract
Pectobacterium parmentieri is a Gram-negative plant-pathogenic bacterium able to infect potato (Solanum tuberosum L.). Little is known about lytic bacteriophages infecting P. parmentieri and how phage-resistance influences the environmental fitness and virulence of this species. A lytic phage vB_Ppp_A38 (ϕA38) has been previously isolated and characterized as a potential biological control agent for the management of P. parmentieri. In this study, seven P. parmentieri SCC 3193 Tn5 mutants were identified that exhibited resistance to infection caused by vB_Ppp_A38 (ϕA38). The genes disrupted in these seven mutants encoded proteins involved in the assembly of O-antigen, sugar metabolism, and the production of bacterial capsule exopolysaccharides. The potential of A38-resistant P. parmentieri mutants for plant colonization and pathogenicity as well as other phenotypes expected to contribute to the ecological fitness of P. parmentieri, including growth rate, use of carbon and nitrogen sources, production of pectinolytic enzymes, proteases, cellulases, and siderophores, swimming and swarming motility, presence of capsule and flagella as well as the ability to form biofilm were assessed. Compared to the wild-type P. parmentieri strain, all phage-resistant mutants exhibited a reduced ability to colonize and to cause symptoms in growing potato (S. tuberosum L.) plants. The implications of bacteriophage resistance on the ecological fitness of P. parmentieri are discussed.
Collapse
Affiliation(s)
- Przemyslaw Bartnik
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307 Gdansk, Poland;
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307 Gdansk, Poland;
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry-Core Facility Laboratories, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307 Gdansk, Poland;
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307 Gdansk, Poland;
| |
Collapse
|
14
|
Van Cauwenberghe J, Santamaría RI, Bustos P, Juárez S, Ducci MA, Figueroa Fleming T, Etcheverry AV, González V. Spatial patterns in phage-Rhizobium coevolutionary interactions across regions of common bean domestication. THE ISME JOURNAL 2021; 15:2092-2106. [PMID: 33558688 PMCID: PMC8245606 DOI: 10.1038/s41396-021-00907-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 01/30/2023]
Abstract
Bacteriophages play significant roles in the composition, diversity, and evolution of bacterial communities. Despite their importance, it remains unclear how phage diversity and phage-host interactions are spatially structured. Local adaptation may play a key role. Nitrogen-fixing symbiotic bacteria, known as rhizobia, have been shown to locally adapt to domesticated common bean at its Mesoamerican and Andean sites of origin. This may affect phage-rhizobium interactions. However, knowledge about the diversity and coevolution of phages with their respective Rhizobium populations is lacking. Here, through the study of four phage-Rhizobium communities in Mexico and Argentina, we show that both phage and host diversity is spatially structured. Cross-infection experiments demonstrated that phage infection rates were higher overall in sympatric rhizobia than in allopatric rhizobia except for one Argentinean community, indicating phage local adaptation and host maladaptation. Phage-host interactions were shaped by the genetic identity and geographic origin of both the phage and the host. The phages ranged from specialists to generalists, revealing a nested network of interactions. Our results suggest a key role of local adaptation to resident host bacterial communities in shaping the phage genetic and phenotypic composition, following a similar spatial pattern of diversity and coevolution to that in the host.
Collapse
Affiliation(s)
- Jannick Van Cauwenberghe
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Mexico, Mexico.
- Department of Integrative Biology, University of California, Berkeley, CA, USA.
| | - Rosa I Santamaría
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Mexico, Mexico
| | - Patricia Bustos
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Mexico, Mexico
| | - Soledad Juárez
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Mexico, Mexico
| | - Maria Antonella Ducci
- Instituto Nacional de Tecnología Agropecuaria, Universidad Nacional de Salta, Salta, Argentina
| | | | | | - Víctor González
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Mexico, Mexico.
| |
Collapse
|
15
|
Cavaco AR, Matos AR, Figueiredo A. Speaking the language of lipids: the cross-talk between plants and pathogens in defence and disease. Cell Mol Life Sci 2021; 78:4399-4415. [PMID: 33638652 PMCID: PMC11073031 DOI: 10.1007/s00018-021-03791-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 02/12/2021] [Indexed: 12/26/2022]
Abstract
Lipids and fatty acids play crucial roles in plant immunity, which have been highlighted over the past few decades. An increasing number of studies have shown that these molecules are pivotal in the interactions between plants and their diverse pathogens. The roles played by plant lipids fit in a wide spectrum ranging from the first physical barrier encountered by the pathogens, the cuticle, to the signalling pathways that trigger different immune responses and expression of defence-related genes, mediated by several lipid molecules. Moreover, lipids have been arising as candidate biomarkers of resistance or susceptibility to different pathogens. Studies on the apoplast and extracellular vesicles have been highlighting the possible role of lipids in the intercellular communication and the establishment of systemic acquired resistance during plant-pathogen interactions. From the pathogen perspective, lipid metabolism and specific lipid molecules play pivotal roles in the pathogen's life cycle completion, being crucial during recognition by the plant and evasion from the host immune system, therefore potentiating infection. Studies conducted in the last years have contributed to a better understanding of the language of lipids during the cross-talk between plants and pathogens. However, it is essential to continue exploring the knowledge brought up to light by transcriptomics and proteomics studies towards the elucidation of lipid signalling processes during defence and disease. In this review, we present an updated overview on lipids associated to plant-pathogen interactions, exploiting their roles from the two sides of this battle.
Collapse
Affiliation(s)
- Ana Rita Cavaco
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisbon, Portugal
| | - Ana Rita Matos
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisbon, Portugal
| | - Andreia Figueiredo
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
16
|
Sieiro C, Areal-Hermida L, Pichardo-Gallardo Á, Almuiña-González R, de Miguel T, Sánchez S, Sánchez-Pérez Á, Villa TG. A Hundred Years of Bacteriophages: Can Phages Replace Antibiotics in Agriculture and Aquaculture? Antibiotics (Basel) 2020; 9:E493. [PMID: 32784768 PMCID: PMC7460141 DOI: 10.3390/antibiotics9080493] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
Agriculture, together with aquaculture, supplies most of the foodstuffs required by the world human population to survive. Hence, bacterial diseases affecting either agricultural crops, fish, or shellfish not only cause large economic losses to producers but can even create food shortages, resulting in malnutrition, or even famine, in vulnerable populations. Years of antibiotic use in the prevention and the treatment of these infections have greatly contributed to the emergence and the proliferation of multidrug-resistant bacteria. This review addresses the urgent need for alternative strategies for the use of antibiotics, focusing on the use of bacteriophages (phages) as biocontrol agents. Phages are viruses that specifically infect bacteria; they are highly host-specific and represent an environmentally-friendly alternative to antibiotics to control and kill pathogenic bacteria. The information evaluated here highlights the effectiveness of phages in the control of numerous major pathogens that affect both agriculture and aquaculture, with special emphasis on scientific and technological aspects still requiring further development to establish phagotherapy as a real universal alternative to antibiotic treatment.
Collapse
Affiliation(s)
- Carmen Sieiro
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas-Marcosende, 36310 Vigo, Spain; (L.A.-H.); (Á.P.-G.); (R.A.-G.)
| | - Lara Areal-Hermida
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas-Marcosende, 36310 Vigo, Spain; (L.A.-H.); (Á.P.-G.); (R.A.-G.)
| | - Ángeles Pichardo-Gallardo
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas-Marcosende, 36310 Vigo, Spain; (L.A.-H.); (Á.P.-G.); (R.A.-G.)
| | - Raquel Almuiña-González
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas-Marcosende, 36310 Vigo, Spain; (L.A.-H.); (Á.P.-G.); (R.A.-G.)
| | - Trinidad de Miguel
- Department of Microbiology and Parasitology, University of Santiago de Compostela, 5706 Santiago de Compostela, Spain; (T.d.M.); (S.S.)
| | - Sandra Sánchez
- Department of Microbiology and Parasitology, University of Santiago de Compostela, 5706 Santiago de Compostela, Spain; (T.d.M.); (S.S.)
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydnay NSN 2006, Australia;
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, University of Santiago de Compostela, 5706 Santiago de Compostela, Spain; (T.d.M.); (S.S.)
| |
Collapse
|
17
|
Comparative genomics and pangenome-oriented studies reveal high homogeneity of the agronomically relevant enterobacterial plant pathogen Dickeya solani. BMC Genomics 2020; 21:449. [PMID: 32600255 PMCID: PMC7325237 DOI: 10.1186/s12864-020-06863-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/22/2020] [Indexed: 11/11/2022] Open
Abstract
Background Dickeya solani is an important plant pathogenic bacterium causing severe losses in European potato production. This species draws a lot of attention due to its remarkable virulence, great devastating potential and easier spread in contrast to other Dickeya spp. In view of a high need for extensive studies on economically important soft rot Pectobacteriaceae, we performed a comparative genomics analysis on D. solani strains to search for genetic foundations that would explain the differences in the observed virulence levels within the D. solani population. Results High quality assemblies of 8 de novo sequenced D. solani genomes have been obtained. Whole-sequence comparison, ANIb, ANIm, Tetra and pangenome-oriented analyses performed on these genomes and the sequences of 14 additional strains revealed an exceptionally high level of homogeneity among the studied genetic material of D. solani strains. With the use of 22 genomes, the pangenome of D. solani, comprising 84.7% core, 7.2% accessory and 8.1% unique genes, has been almost completely determined, suggesting the presence of a nearly closed pangenome structure. Attribution of the genes included in the D. solani pangenome fractions to functional COG categories showed that higher percentages of accessory and unique pangenome parts in contrast to the core section are encountered in phage/mobile elements- and transcription- associated groups with the genome of RNS 05.1.2A strain having the most significant impact. Also, the first D. solani large-scale genome-wide phylogeny computed on concatenated core gene alignments is herein reported. Conclusions The almost closed status of D. solani pangenome achieved in this work points to the fact that the unique gene pool of this species should no longer expand. Such a feature is characteristic of taxa whose representatives either occupy isolated ecological niches or lack efficient mechanisms for gene exchange and recombination, which seems rational concerning a strictly pathogenic species with clonal population structure. Finally, no obvious correlations between the geographical origin of D. solani strains and their phylogeny were found, which might reflect the specificity of the international seed potato market.
Collapse
|
18
|
Buttimer C, Lynch C, Hendrix H, Neve H, Noben JP, Lavigne R, Coffey A. Isolation and Characterization of Pectobacterium Phage vB_PatM_CB7: New Insights into the Genus Certrevirus. Antibiotics (Basel) 2020; 9:E352. [PMID: 32575906 PMCID: PMC7344957 DOI: 10.3390/antibiotics9060352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
To date, Certrevirus is one of two genera of bacteriophage (phage), with phages infecting Pectobacterium atrosepticum, an economically important phytopathogen that causes potato blackleg and soft rot disease. This study provides a detailed description of Pectobacterium phage CB7 (vB_PatM_CB7), which specifically infects P. atrosepticum. Host range, morphology, latent period, burst size and stability at different conditions of temperature and pH were examined. Analysis of its genome (142.8 kbp) shows that the phage forms a new species of Certrevirus, sharing sequence similarity with other members, highlighting conservation within the genus. Conserved elements include a putative early promoter like that of the Escherichia coli sigma70 promoter, which was found to be shared with other genus members. A number of dissimilarities were observed, relating to DNA methylation and nucleotide metabolism. Some members do not have homologues of a cytosine methylase and anaerobic nucleotide reductase subunits NrdD and NrdG, respectively. Furthermore, the genome of CB7 contains one of the largest numbers of homing endonucleases described in a single phage genome in the literature to date, with a total of 23 belonging to the HNH and LAGLIDADG families. Analysis by RT-PCR of the HNH homing endonuclease residing within introns of genes for the large terminase, DNA polymerase, ribonucleotide reductase subunits NrdA and NrdB show that they are splicing competent. Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) was also performed on the virion of CB7, allowing the identification of 26 structural proteins-20 of which were found to be shared with the type phages of the genera of Vequintavirus and Seunavirus. The results of this study provide greater insights into the phages of the Certrevirus genus as well as the subfamily Vequintavirinae.
Collapse
Affiliation(s)
- Colin Buttimer
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland; (C.B.); (C.L.)
- APC Microbiome Institute, University College, T12 YT20 Cork, Ireland
| | - Caoimhe Lynch
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland; (C.B.); (C.L.)
| | - Hanne Hendrix
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium; (H.H.); (R.L.)
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany;
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, Hasselt University, 3590 Hasselt, Belgium;
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium; (H.H.); (R.L.)
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland; (C.B.); (C.L.)
- APC Microbiome Institute, University College, T12 YT20 Cork, Ireland
| |
Collapse
|
19
|
Autographivirinae Bacteriophage Arno 160 Infects Pectobacterium carotovorum via Depolymerization of the Bacterial O-Polysaccharide. Int J Mol Sci 2020; 21:ijms21093170. [PMID: 32365879 PMCID: PMC7246868 DOI: 10.3390/ijms21093170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/17/2022] Open
Abstract
Phytopathogenic bacteria belonging to the Pectobacterium and Dickeya genera (soft-rot Pectobacteriaceae) are in the focus of agriculture-related microbiology because of their diversity, their substantial negative impact on the production of potatoes and vegetables, and the prospects of bacteriophage applications for disease control. Because of numerous amendments in the taxonomy of P. carotovorum, there are still a few studied sequenced strains among this species. The present work reports on the isolation and characterization of the phage infectious to the type strain of P. carotovorum. The phage Arno 160 is a lytic Podovirus representing a potential new genus of the subfamily Autographivirinae. It recognizes O-polysaccahride of the host strain and depolymerizes it in the process of infection using a rhamnosidase hydrolytic mechanism. Despite the narrow host range of this phage, it is suitable for phage control application.
Collapse
|
20
|
Lukianova AA, Shneider MM, Evseev PV, Shpirt AM, Bugaeva EN, Kabanova AP, Obraztsova EA, Miroshnikov KK, Senchenkova SN, Shashkov AS, Toschakov SV, Knirel YA, Ignatov AN, Miroshnikov KA. Morphologically Different Pectobacterium brasiliense Bacteriophages PP99 and PP101: Deacetylation of O-Polysaccharide by the Tail Spike Protein of Phage PP99 Accompanies the Infection. Front Microbiol 2020; 10:3147. [PMID: 32038580 PMCID: PMC6989608 DOI: 10.3389/fmicb.2019.03147] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/29/2019] [Indexed: 01/31/2023] Open
Abstract
Soft rot caused by numerous species of Pectobacterium and Dickeya is a serious threat to the world production of potatoes. The application of bacteriophages to combat bacterial infections in medicine, agriculture, and the food industry requires the selection of comprehensively studied lytic phages and the knowledge of their infection mechanism for more rational composition of therapeutic cocktails. We present the study of two bacteriophages, infective for the Pectobacterium brasiliense strain F152. Podoviridae PP99 is a representative of the genus Zindervirus, and Myoviridae PP101 belongs to the still unclassified genomic group. The structure of O-polysaccharide of F152 was established by sugar analysis and 1D and 2D NMR spectroscopy: → 4)-α-D-Manp6Ac-(1→ 2)-α-D-Manp-(1→ 3)-β-D-Galp-(1→
3↑1α-l-6dTalpAc0−2 The recombinant tail spike protein of phage PP99, gp55, was shown to deacetylate the side chain talose residue of bacterial O-polysaccharide, thus providing the selective attachment of the phage to the cell surface. Both phages demonstrate lytic behavior, thus being prospective for therapeutic purposes.
Collapse
Affiliation(s)
- Anna A Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail M Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Peter V Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna M Shpirt
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Anastasia P Kabanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Research Center "PhytoEngineering" Ltd., Rogachevo, Moscow, Russia
| | - Ekaterina A Obraztsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Kirill K Miroshnikov
- Winogradsky Institute of Microbiology, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, Russia
| | - Sofiya N Senchenkova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Shashkov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Stepan V Toschakov
- Winogradsky Institute of Microbiology, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, Russia
| | - Yuriy A Knirel
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Konstantin A Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
21
|
Genome-Wide Analyses Revealed Remarkable Heterogeneity in Pathogenicity Determinants, Antimicrobial Compounds, and CRISPR-Cas Systems of Complex Phytopathogenic Genus Pectobacterium. Pathogens 2019; 8:pathogens8040247. [PMID: 31756888 PMCID: PMC6963963 DOI: 10.3390/pathogens8040247] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
The Pectobacterium genus comprises pectolytic enterobacteria defined as the causal agents of soft rot, blackleg, and aerial stem rot diseases of potato and economically important crops. In this study, we undertook extensive genome-wide comparative analyses of twelve species that conform the Pectobacterium genus. Bioinformatics approaches outlined a low nucleotide identity of P. parmentieri and P. wasabiae with other species, while P. carotovorum subsp. odoriferum was shown to harbor numerous pseudogenes, which suggests low coding capacity and genomic degradation. The genome atlases allowed for distinguishing distinct DNA structures and highlighted suspicious high transcription zones. The analyses unveiled a noteworthy heterogeneity in the pathogenicity determinants. Specifically, phytotoxins, polysaccharides, iron uptake systems, and the type secretion systems III-V were observed in just some species. Likewise, a comparison of gene clusters encoding antimicrobial compounds put in evidence for high conservation of carotovoricin, whereas a few species possessed the phenazine, carbapenem, and carocins. Moreover, three clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) systems: I-E, I-F, and III-A were identified. Surrounding some CRISPR-Cas regions, different toxin and antitoxin systems were found, which suggests bacterial suicide in the case of an immune system failure. Multiple whole-genome alignments shed light on to the presence of a novel cellobiose phosphotransferase system (PTS) exclusive to P. parmenteri, and an unreported T5SS conserved in almost all species. Several regions that were associated with virulence, microbe antagonism, and adaptive immune systems were predicted within genomic islands, which underscored the essential role that horizontal gene transfer has imparted in the dynamic evolution and speciation of Pectobacterium species. Overall, the results decipher the different strategies that each species has developed to infect their hosts, outcompete for food resources, and defend against bacteriophages. Our investigation provides novel genetic insights that will assist in understanding the pathogenic lifestyle of Pectobacterium, a genus that jeopardizes the agriculture sustainability of important crops worldwide.
Collapse
|
22
|
Li L, Yuan L, Shi Y, Xie X, Chai A, Wang Q, Li B. Comparative genomic analysis of Pectobacterium carotovorum subsp. brasiliense SX309 provides novel insights into its genetic and phenotypic features. BMC Genomics 2019; 20:486. [PMID: 31195968 PMCID: PMC6567464 DOI: 10.1186/s12864-019-5831-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Background Pectobacterium carotovorum subsp. brasiliense is a broad host range bacterial pathogen, which causes blackleg of potatoes and bacterial soft rot of vegetables worldwide. Production of plant cell wall degrading enzymes is usually critical for Pectobacterium infection. However, other virulence factors and the mechanisms of genetic adaptation still need to be studied in detail. Results In this study, the complete genome of P. carotovorum subsp. brasiliense strain SX309 isolated from cucumber was compared with eight other pathogenic bacteria belonging to the Pectobacterium genus, which were isolated from various host plants. Genome comparison revealed that most virulence genes are highly conserved in the Pectobacterium strains, especially for the key virulence determinants involved in the biosynthesis of extracellular enzymes and others including the type II and III secretion systems, quorum sensing system, flagellar and chemotactic genes. Nevertheless, some variable regions of the T6SS and the CRISP-Cas immune system are unique for P. carotovorum subsp. brasiliense. Conclusions The extensive comparative genomics analysis revealed highly conserved virulence genes in the Pectobacterium strains. However, several variable regions of type VI secretion system and two subtype Cas mechanism-Cas immune systems possibly contribute to the process of Pectobacterium infection and adaptive immunity. Electronic supplementary material The online version of this article (10.1186/s12864-019-5831-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lifang Yuan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuewen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ali Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
23
|
Koskella B, Taylor TB. Multifaceted Impacts of Bacteriophages in the Plant Microbiome. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:361-380. [PMID: 29958076 DOI: 10.1146/annurev-phyto-080417-045858] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant-associated bacteria face multiple selection pressures within their environments and have evolved countless adaptations that both depend on and shape bacterial phenotype and their interaction with plant hosts. Explaining bacterial adaptation and evolution therefore requires considering each of these forces independently as well as their interactions. In this review, we examine how bacteriophage viruses (phages) can alter the ecology and evolution of plant-associated bacterial populations and communities. This includes influencing a bacterial population's response to both abiotic and biotic selection pressures and altering ecological interactions within the microbiome and between the bacteria and host plant. We outline specific ways in which phages can alter bacterial phenotype and discuss when and how this might impact plant-microbe interactions, including for plant pathogens. Finally, we highlight key open questions in phage-bacteria-plant research and offer suggestions for future study.
Collapse
Affiliation(s)
- Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, California 94720, USA;
| | - Tiffany B Taylor
- The Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom;
| |
Collapse
|
24
|
Motyka A, Zoledowska S, Sledz W, Lojkowska E. Molecular methods as tools to control plant diseases caused by Dickeya and Pectobacterium spp: A minireview. N Biotechnol 2017; 39:181-189. [PMID: 28847714 DOI: 10.1016/j.nbt.2017.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
Dickeya spp. and Pectobacterium spp. are etiological agents of soft rot on crops, vegetables, and ornamentals. They also cause blackleg on potato. These pectinolytic phytopathogens are responsible for significant economic losses, mostly within the potato production sector. Importantly, there are no methods to eradicate these microorganisms once they have infected plant material. Solely preventive measures remain, including early detection and identification of the pathogens, monitoring of their spread in addition to planting certified seed material tested for latent infections. As proper identification of the causative agent allows for efficient limitation of disease spread, numerous detection and differentiation methods have been developed. Most commonly followed procedures involve: isolation of viable bacterial cells (alternatively post-enrichment) on semi-selective media, identification to species level by PCR (single, multiplex, Real time), serology or fatty acids profiling. Differentiation of the isolates is often accomplished by sequencing the housekeeping genes or molecular fingerprinting. In view of lowering total costs of next-generation sequencing (NGS), a huge amount of generated data reveals subtle differences between strains that have proven to be potentially useful for the establishment of specific novel detection pipelines. Successful implementation of molecular diagnostic methods is exemplified by 20-year studies on the populations of pectinolytic bacteria on potatoes in Poland. The presented work aims to gather the characteristics of Dickeya spp. and Pectobacterium spp. important for the identification process in addition to providing an overview of modern and newly developed specific, rapid, high-throughput and cost-effective screening methods for the detection and identification of these phytopathogens.
Collapse
Affiliation(s)
- Agata Motyka
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Sabina Zoledowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Wojciech Sledz
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Ewa Lojkowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
25
|
Mesarich CH, Rees-George J, Gardner PP, Ghomi FA, Gerth ML, Andersen MT, Rikkerink EHA, Fineran PC, Templeton MD. Transposon insertion libraries for the characterization of mutants from the kiwifruit pathogen Pseudomonas syringae pv. actinidiae. PLoS One 2017; 12:e0172790. [PMID: 28249011 PMCID: PMC5332098 DOI: 10.1371/journal.pone.0172790] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/09/2017] [Indexed: 01/15/2023] Open
Abstract
Pseudomonas syringae pv. actinidiae (Psa), the causal agent of kiwifruit canker, is one of the most devastating plant diseases of recent times. We have generated two mini-Tn5-based random insertion libraries of Psa ICMP 18884. The first, a 'phenotype of interest' (POI) library, consists of 10,368 independent mutants gridded into 96-well plates. By replica plating onto selective media, the POI library was successfully screened for auxotrophic and motility mutants. Lipopolysaccharide (LPS) biosynthesis mutants with 'Fuzzy-Spreader'-like morphologies were also identified through a visual screen. The second, a 'mutant of interest' (MOI) library, comprises around 96,000 independent mutants, also stored in 96-well plates, with approximately 200 individuals per well. The MOI library was sequenced on the Illumina MiSeq platform using Transposon-Directed Insertion site Sequencing (TraDIS) to map insertion sites onto the Psa genome. A grid-based PCR method was developed to recover individual mutants, and using this strategy, the MOI library was successfully screened for a putative LPS mutant not identified in the visual screen. The Psa chromosome and plasmid had 24,031 and 1,236 independent insertion events respectively, giving insertion frequencies of 3.65 and 16.6 per kb respectively. These data suggest that the MOI library is near saturation, with the theoretical probability of finding an insert in any one chromosomal gene estimated to be 97.5%. However, only 47% of chromosomal genes had insertions. This surprisingly low rate cannot be solely explained by the lack of insertions in essential genes, which would be expected to be around 5%. Strikingly, many accessory genes, including most of those encoding type III effectors, lacked insertions. In contrast, 94% of genes on the Psa plasmid had insertions, including for example, the type III effector HopAU1. These results suggest that some chromosomal sites are rendered inaccessible to transposon insertion, either by DNA-binding proteins or by the architecture of the nucleoid.
Collapse
Affiliation(s)
- Carl H. Mesarich
- Bioprotection Portfolio, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- Laboratory of Molecular Plant Pathology, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, New Zealand
| | - Jonathan Rees-George
- Bioprotection Portfolio, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Paul P. Gardner
- Bio-Protection Research Centre, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Fatemeh Ashari Ghomi
- Bio-Protection Research Centre, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Monica L. Gerth
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Mark T. Andersen
- Bioprotection Portfolio, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Erik H. A. Rikkerink
- Bioprotection Portfolio, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Peter C. Fineran
- Bio-Protection Research Centre, New Zealand
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Matthew D. Templeton
- Bioprotection Portfolio, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- Bio-Protection Research Centre, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
26
|
Buttimer C, McAuliffe O, Ross RP, Hill C, O’Mahony J, Coffey A. Bacteriophages and Bacterial Plant Diseases. Front Microbiol 2017; 8:34. [PMID: 28163700 PMCID: PMC5247434 DOI: 10.3389/fmicb.2017.00034] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 01/06/2017] [Indexed: 12/23/2022] Open
Abstract
Losses in crop yields due to disease need to be reduced in order to meet increasing global food demands associated with growth in the human population. There is a well-recognized need to develop new environmentally friendly control strategies to combat bacterial crop disease. Current control measures involving the use of traditional chemicals or antibiotics are losing their efficacy due to the natural development of bacterial resistance to these agents. In addition, there is an increasing awareness that their use is environmentally unfriendly. Bacteriophages, the viruses of bacteria, have received increased research interest in recent years as a realistic environmentally friendly means of controlling bacterial diseases. Their use presents a viable control measure for a number of destructive bacterial crop diseases, with some phage-based products already becoming available on the market. Phage biocontrol possesses advantages over chemical controls in that tailor-made phage cocktails can be adapted to target specific disease-causing bacteria. Unlike chemical control measures, phage mixtures can be easily adapted for bacterial resistance which may develop over time. In this review, we will examine the progress and challenges for phage-based disease biocontrol in food crops.
Collapse
Affiliation(s)
- Colin Buttimer
- Department of Biological Sciences, Cork Institute of TechnologyCork, Ireland
| | | | - R. P. Ross
- Alimentary Pharmabiotic Centre, University CollegeCork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University CollegeCork, Ireland
| | - Jim O’Mahony
- Department of Biological Sciences, Cork Institute of TechnologyCork, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of TechnologyCork, Ireland
| |
Collapse
|
27
|
Meaden S, Paszkiewicz K, Koskella B. The cost of phage resistance in a plant pathogenic bacterium is context-dependent. Evolution 2015; 69:1321-8. [PMID: 25809535 PMCID: PMC4979666 DOI: 10.1111/evo.12652] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 03/17/2015] [Indexed: 12/24/2022]
Abstract
Parasites are ubiquitous features of living systems and many parasites severely reduce the fecundity or longevity of their hosts. This parasite-imposed selection on host populations should strongly favor the evolution of host resistance, but hosts typically face a trade-off between investment in reproductive fitness and investment in defense against parasites. The magnitude of such a trade-off is likely to be context-dependent, and accordingly costs that are key in shaping evolution in nature may not be easily observable in an artificial environment. We set out to assess the costs of phage resistance for a plant pathogenic bacterium in its natural plant host versus in a nutrient-rich, artificial medium. We demonstrate that mutants of Pseudomonas syringae that have evolved resistance via a single mutational step pay a substantial cost for this resistance when grown on their tomato plant hosts, but do not realize any measurable growth rate costs in nutrient-rich media. This work demonstrates that resistance to phage can significantly alter bacterial growth within plant hosts, and therefore that phage-mediated selection in nature is likely to be an important component of bacterial pathogenicity.
Collapse
Affiliation(s)
- Sean Meaden
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom.
| | - Konrad Paszkiewicz
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Britt Koskella
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom
| |
Collapse
|
28
|
Mohamed KH, Daniel T, Aurélien D, El-Maarouf-Bouteau H, Rafik E, Arbelet-Bonnin D, Biligui B, Florence V, Mustapha EM, François B. Deciphering the dual effect of lipopolysaccharides from plant pathogenic Pectobacterium. PLANT SIGNALING & BEHAVIOR 2015; 10:e1000160. [PMID: 25760034 PMCID: PMC4622587 DOI: 10.1080/15592324.2014.1000160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 05/29/2023]
Abstract
Lipopolysaccharides (LPS) are a component of the outer cell surface of almost all Gram-negative bacteria and play an essential role for bacterial growth and survival. Lipopolysaccharides represent typical microbe-associated molecular pattern (MAMP) molecules and have been reported to induce defense-related responses, including the expression of defense genes and the suppression of the hypersensitive response in plants. However, depending on their origin and the challenged plant, LPS were shown to have complex and different roles. In this study we showed that LPS from plant pathogens Pectobacterium atrosepticum and Pectobacterium carotovorum subsp. carotovorum induce common and different responses in A. thaliana cells when compared to those induced by LPS from non-phytopathogens Escherichia coli and Pseudomonas aeruginosa. Among common responses to both types of LPS are the transcription of defense genes and their ability to limit of cell death induced by Pectobacterium carotovorum subsp carotovorum. However, the differential kinetics and amplitude in reactive oxygen species (ROS) generation seemed to regulate defense gene transcription and be determinant to induce programmed cell death in response to LPS from the plant pathogenic Pectobacterium. These data suggest that different signaling pathways could be activated by LPS in A. thaliana cells.
Collapse
Key Words
- AD, actinomycin D
- Chx, cycloheximide
- DPI, diphenylene iodonium
- EB, Evans Blue
- ETI, effector-triggered immunity
- HR, hypersensitive response
- LPS, lipopolysaccharides
- MAMP, microbe associated molecular pattern
- OPS, O-polysaccharide part
- PAMP, pathogen- associated molecular pattern
- PCD, programmed cell death
- PTI, PAMP triggered immunity
- Pa, Pectobacterium atrosepticum
- Pcc, Pectobacterium carotovorum carotovorum
- Pectobacterium spp
- ROS, reactive oxygen species
- Tiron, sodium 4,5-dihydroxybenzene-1,3-disulfonate
- defense responses
- lipopolysaccharides
- programmed cell death
- reactive oxygen species
Collapse
Affiliation(s)
- Kettani-Halabi Mohamed
- Université Paris Diderot-Paris 7; Institut des Energies de Demain (UMR8236); Paris, France
- LVHM–Université Hassan II Mohammedia – Casabalanca; FSTM, Maroc
| | - Tran Daniel
- Université Paris Diderot-Paris 7; Institut des Energies de Demain (UMR8236); Paris, France
| | - Dauphin Aurélien
- UPMC UMR-S975; Inserm U975; CNRS UMR 7225 Plateforme d'Imagerie cellulaire Pitié-Salpêtrière; GH Pitié-Salpêtrière; Paris, France
| | | | - Errakhi Rafik
- Université Paris Diderot-Paris 7; Institut des Energies de Demain (UMR8236); Paris, France
| | | | - Bernadette Biligui
- Université Paris Diderot-Paris 7; Institut des Energies de Demain (UMR8236); Paris, France
| | | | | | - Bouteau François
- Université Paris Diderot-Paris 7; Institut des Energies de Demain (UMR8236); Paris, France
| |
Collapse
|
29
|
Saubeau G, Gaillard F, Legentil L, Nugier-Chauvin C, Ferrières V, Andrivon D, Val F. Identification of three elicitins and a galactan-based complex polysaccharide from a concentrated culture filtrate of Phytophthora infestans efficient against Pectobacterium atrosepticum. Molecules 2014; 19:15374-90. [PMID: 25264828 PMCID: PMC6270706 DOI: 10.3390/molecules191015374] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/10/2014] [Accepted: 09/15/2014] [Indexed: 12/21/2022] Open
Abstract
The induction of plant immunity by Pathogen Associated Molecular Patterns (PAMPs) constitutes a powerful strategy for crop protection. PAMPs indeed induce general defense responses in plants and thus increase plant resistance to pathogens. Phytophthora infestans culture filtrates (CCFs) are known to induce defense responses and decrease the severity of soft rot due to Pectobacterium atrosepticum in potato tubers. The aim of this study was to identify and characterize the active compounds from P. infestans filtrate. The filtrate was fractionated by gel filtration, and the protection effects against P. atrosepticum and the ability to induce PAL activity were tested for each fraction. The fraction active in protection (F1) also induced PAL activity, as did the whole filtrate. Three elicitins (INF1, INF4 and INF5) were identified in F1b, subfraction of F1, by MALDI-TOF-MS and MS/MS analyses. However, deproteinized F1b still showed biological activity against the bacterium, revealing the presence of an additional active compound. GC-MS analyses of the deproteinized fraction highlighted the presence of a galactan-based complex polysaccharide. These experiments demonstrate that the biological activity of the CCF against P. atrosepticum results from a combined action of three elicitins and a complex polysaccharide, probably through the activation of general defense responses.
Collapse
Affiliation(s)
| | - Fanny Gaillard
- CNRS-Université Pierre et Marie Curie, FR2424, Station Biologique de Roscoff, Roscoff-Cedex 29682, France.
| | - Laurent Legentil
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, Rennes Cedex 7 35708, France.
| | - Caroline Nugier-Chauvin
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, Rennes Cedex 7 35708, France.
| | - Vincent Ferrières
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, Rennes Cedex 7 35708, France.
| | | | - Florence Val
- Agrocampus Ouest, UMR1349 IGEPP, Rennes F-35000, France.
| |
Collapse
|
30
|
Bowden SD, Hale N, Chung JCS, Hodgkinson JT, Spring DR, Welch M. Surface swarming motility by Pectobacterium atrosepticum is a latent phenotype that requires O antigen and is regulated by quorum sensing. Microbiology (Reading) 2013; 159:2375-2385. [DOI: 10.1099/mic.0.070748-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Steven D. Bowden
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Nicola Hale
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Jade C. S. Chung
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | | | - David R. Spring
- Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| |
Collapse
|
31
|
Nykyri J, Mattinen L, Niemi O, Adhikari S, Kõiv V, Somervuo P, Fang X, Auvinen P, Mäe A, Palva ET, Pirhonen M. Role and regulation of the Flp/Tad pilus in the virulence of Pectobacterium atrosepticum SCRI1043 and Pectobacterium wasabiae SCC3193. PLoS One 2013; 8:e73718. [PMID: 24040039 PMCID: PMC3767616 DOI: 10.1371/journal.pone.0073718] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/22/2013] [Indexed: 12/18/2022] Open
Abstract
In this study, we characterized a putative Flp/Tad pilus-encoding gene cluster, and we examined its regulation at the transcriptional level and its role in the virulence of potato pathogenic enterobacteria of the genus Pectobacterium. The Flp/Tad pilus-encoding gene clusters in Pectobacterium atrosepticum, Pectobacterium wasabiae and Pectobacterium aroidearum were compared to previously characterized flp/tad gene clusters, including that of the well-studied Flp/Tad pilus model organism Aggregatibacter actinomycetemcomitans, in which this pilus is a major virulence determinant. Comparative analyses revealed substantial protein sequence similarity and open reading frame synteny between the previously characterized flp/tad gene clusters and the cluster in Pectobacterium, suggesting that the predicted flp/tad gene cluster in Pectobacterium encodes a Flp/Tad pilus-like structure. We detected genes for a novel two-component system adjacent to the flp/tad gene cluster in Pectobacterium, and mutant analysis demonstrated that this system has a positive effect on the transcription of selected Flp/Tad pilus biogenesis genes, suggesting that this response regulator regulate the flp/tad gene cluster. Mutagenesis of either the predicted regulator gene or selected Flp/Tad pilus biogenesis genes had a significant impact on the maceration ability of the bacterial strains in potato tubers, indicating that the Flp/Tad pilus-encoding gene cluster represents a novel virulence determinant in Pectobacterium. Soft-rot enterobacteria in the genera Pectobacterium and Dickeya are of great agricultural importance, and an investigation of the virulence of these pathogens could facilitate improvements in agricultural practices, thus benefiting farmers, the potato industry and consumers.
Collapse
Affiliation(s)
- Johanna Nykyri
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Laura Mattinen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Outi Niemi
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Satish Adhikari
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Viia Kõiv
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Panu Somervuo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Xin Fang
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Andres Mäe
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - E. Tapio Palva
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Minna Pirhonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
32
|
Nykyri J, Niemi O, Koskinen P, Nokso-Koivisto J, Pasanen M, Broberg M, Plyusnin I, Törönen P, Holm L, Pirhonen M, Palva ET. Revised phylogeny and novel horizontally acquired virulence determinants of the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog 2012; 8:e1003013. [PMID: 23133391 PMCID: PMC3486870 DOI: 10.1371/journal.ppat.1003013] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/18/2012] [Indexed: 11/19/2022] Open
Abstract
Soft rot disease is economically one of the most devastating bacterial diseases affecting plants worldwide. In this study, we present novel insights into the phylogeny and virulence of the soft rot model Pectobacterium sp. SCC3193, which was isolated from a diseased potato stem in Finland in the early 1980s. Genomic approaches, including proteome and genome comparisons of all sequenced soft rot bacteria, revealed that SCC3193, previously included in the species Pectobacterium carotovorum, can now be more accurately classified as Pectobacterium wasabiae. Together with the recently revised phylogeny of a few P. carotovorum strains and an increasing number of studies on P. wasabiae, our work indicates that P. wasabiae has been unnoticed but present in potato fields worldwide. A combination of genomic approaches and in planta experiments identified features that separate SCC3193 and other P. wasabiae strains from the rest of soft rot bacteria, such as the absence of a type III secretion system that contributes to virulence of other soft rot species. Experimentally established virulence determinants include the putative transcriptional regulator SirB, two partially redundant type VI secretion systems and two horizontally acquired clusters (Vic1 and Vic2), which contain predicted virulence genes. Genome comparison also revealed other interesting traits that may be related to life in planta or other specific environmental conditions. These traits include a predicted benzoic acid/salicylic acid carboxyl methyltransferase of eukaryotic origin. The novelties found in this work indicate that soft rot bacteria have a reservoir of unknown traits that may be utilized in the poorly understood latent stage in planta. The genomic approaches and the comparison of the model strain SCC3193 to other sequenced Pectobacterium strains, including the type strain of P. wasabiae, provides a solid basis for further investigation of the virulence, distribution and phylogeny of soft rot bacteria and, potentially, other bacteria as well.
Collapse
Affiliation(s)
- Johanna Nykyri
- Department of Agricultural Sciences, Plant Pathology, University of Helsinki, Helsinki, Finland
| | - Outi Niemi
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | - Patrik Koskinen
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | | | - Miia Pasanen
- Department of Agricultural Sciences, Plant Pathology, University of Helsinki, Helsinki, Finland
| | - Martin Broberg
- Department of Agricultural Sciences, Plant Pathology, University of Helsinki, Helsinki, Finland
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | - Ilja Plyusnin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petri Törönen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Liisa Holm
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Minna Pirhonen
- Department of Agricultural Sciences, Plant Pathology, University of Helsinki, Helsinki, Finland
| | - E. Tapio Palva
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Frampton RA, Pitman AR, Fineran PC. Advances in bacteriophage-mediated control of plant pathogens. Int J Microbiol 2012; 2012:326452. [PMID: 22934116 PMCID: PMC3426239 DOI: 10.1155/2012/326452] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/11/2012] [Indexed: 01/21/2023] Open
Abstract
There is continuing pressure to maximise food production given a growing global human population. Bacterial pathogens that infect important agricultural plants (phytopathogens) can reduce plant growth and the subsequent crop yield. Currently, phytopathogens are controlled through management programmes, which can include the application of antibiotics and copper sprays. However, the emergence of resistant bacteria and the desire to reduce usage of toxic products that accumulate in the environment mean there is a need to develop alternative control agents. An attractive option is the use of specific bacteriophages (phages), viruses that specifically kill bacteria, providing a more targeted approach. Typically, phages that target the phytopathogen are isolated and characterised to determine that they have features required for biocontrol. In addition, suitable formulation and delivery to affected plants are necessary to ensure the phages survive in the environment and do not have a deleterious effect on the plant or target beneficial bacteria. Phages have been isolated for different phytopathogens and have been used successfully in a number of trials and commercially. In this paper, we address recent progress in phage-mediated control of plant pathogens and overcoming the challenges, including those posed by CRISPR/Cas and abortive infection resistance systems.
Collapse
Affiliation(s)
- Rebekah A. Frampton
- Department of Microbiology & Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Andrew R. Pitman
- New Zealand Institute for Plant & Food Research, Private Bag 4704, Christchurch 8140, New Zealand
| | - Peter C. Fineran
- Department of Microbiology & Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
34
|
Babujee L, Apodaca J, Balakrishnan V, Liss P, Kiley PJ, Charkowski AO, Glasner JD, Perna NT. Evolution of the metabolic and regulatory networks associated with oxygen availability in two phytopathogenic enterobacteria. BMC Genomics 2012; 13:110. [PMID: 22439737 PMCID: PMC3349551 DOI: 10.1186/1471-2164-13-110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/22/2012] [Indexed: 01/31/2023] Open
Abstract
Background Dickeya dadantii and Pectobacterium atrosepticum are phytopathogenic enterobacteria capable of facultative anaerobic growth in a wide range of O2 concentrations found in plant and natural environments. The transcriptional response to O2 remains under-explored for these and other phytopathogenic enterobacteria although it has been well characterized for animal-associated genera including Escherichia coli and Salmonella enterica. Knowledge of the extent of conservation of the transcriptional response across orthologous genes in more distantly related species is useful to identify rates and patterns of regulon evolution. Evolutionary events such as loss and acquisition of genes by lateral transfer events along each evolutionary branch results in lineage-specific genes, some of which may have been subsequently incorporated into the O2-responsive stimulon. Here we present a comparison of transcriptional profiles measured using densely tiled oligonucleotide arrays for two phytopathogens, Dickeya dadantii 3937 and Pectobacterium atrosepticum SCRI1043, grown to mid-log phase in MOPS minimal medium (0.1% glucose) with and without O2. Results More than 7% of the genes of each phytopathogen are differentially expressed with greater than 3-fold changes under anaerobic conditions. In addition to anaerobic metabolism genes, the O2 responsive stimulon includes a variety of virulence and pathogenicity-genes. Few of these genes overlap with orthologous genes in the anaerobic stimulon of E. coli. We define these as the conserved core, in which the transcriptional pattern as well as genetic architecture are well preserved. This conserved core includes previously described anaerobic metabolic pathways such as fermentation. Other components of the anaerobic stimulon show variation in genetic content, genome architecture and regulation. Notably formate metabolism, nitrate/nitrite metabolism, and fermentative butanediol production, differ between E. coli and the phytopathogens. Surprisingly, the overlap of the anaerobic stimulon between the phytopathogens is also relatively small considering that they are closely related, occupy similar niches and employ similar strategies to cause disease. There are cases of interesting divergences in the pattern of transcription of genes between Dickeya and Pectobacterium for virulence-associated subsystems including the type VI secretion system (T6SS), suggesting that fine-tuning of the stimulon impacts interaction with plants or competing microbes. Conclusions The small number of genes (an even smaller number if we consider operons) comprising the conserved core transcriptional response to O2 limitation demonstrates the extent of regulatory divergence prevalent in the Enterobacteriaceae. Our orthology-driven comparative transcriptomics approach indicates that the adaptive response in the eneterobacteria is a result of interaction of core (regulators) and lineage-specific (structural and regulatory) genes. Our subsystems based approach reveals that similar phenotypic outcomes are sometimes achieved by each organism using different genes and regulatory strategies.
Collapse
Affiliation(s)
- Lavanya Babujee
- Biotechnology Center, University of Wisconsin-Madison, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hossain MJ, Rahman KS, Terhune JS, Liles MR. An outer membrane porin protein modulates phage susceptibility in Edwardsiella ictaluri. MICROBIOLOGY-SGM 2011; 158:474-487. [PMID: 22135098 DOI: 10.1099/mic.0.054866-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bacteriophages ΦeiAU and ΦeiDWF are lytic to the catfish pathogen Edwardsiella (Edw.) ictaluri. The Edw. ictaluri host factors that modulate phage-host interactions have not been described previously. This study identified eleven unique Edw. ictaluri host factors essential for phage infection by screening a transposon mutagenized library of two Edw. ictaluri strains for phage-resistant mutants. Two mutants were isolated with independent insertions in the ompLC gene that encodes a putative outer membrane porin. Phage binding and efficiency of plaquing assays with Edw. ictaluri EILO, its ompLC mutant and a complemented mutant demonstrated that OmpLC serves as a receptor for phage ΦeiAU and ΦeiDWF adsorption. Comparison of translated OmpLCs from 15 Edw. ictaluri strains with varying degrees of phage susceptibility revealed that amino acid variations were clustered on the predicted extracellular loop 8 of OmpLC. Deletion of loop 8 of OmpLC completely abolished phage infectivity in Edw. ictaluri. Site-directed mutagenesis and transfer of modified ompLC genes to complement the ompLC mutants demonstrated that changes in ompLC sequences affect the degree of phage susceptibility. Furthermore, Edw. ictaluri strain Alg-08-183 was observed to be resistant to ΦeiAU, but phage progeny could be produced if phage DNA was electroporated into this strain. A host-range mutant of ΦeiAU, ΦeiAU-183, was isolated that was capable of infecting strain Alg-08-183 by using OmpLC as a receptor for adsorption. The results of this study identified Edw. ictaluri host factors required for phage infection and indicated that OmpLC is a principal molecular determinant of phage susceptibility in this pathogen.
Collapse
Affiliation(s)
| | - Kh S Rahman
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Jeffery S Terhune
- Department of Fisheries and Allied Aquacultures, Auburn University, Auburn, AL, USA
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
36
|
Evans TJ, Coulthurst SJ, Komitopoulou E, Salmond GPC. Two mobile Pectobacterium atrosepticum prophages modulate virulence. FEMS Microbiol Lett 2010; 304:195-202. [PMID: 20146746 DOI: 10.1111/j.1574-6968.2010.01901.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Pectobacterium atrosepticum strain SCRI1043 genome contains two complete prophage sequences. One, ECA41, is Mu-like and is able to integrate into, and excise from, various genomic locations. The other, ECA29, is a P2 family prophage, and is also able to excise from the genome. Excision of both prophages is rare and we were unable to induce lysis of cultures. Deletion of the entire prophages, both separately and in combination, did not affect the growth rate or the secretion of plant cell wall-degrading enzymes, but swimming motility was decreased. The virulence of prophage deletion strains in the potato host was decreased.
Collapse
Affiliation(s)
- Terry J Evans
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|