1
|
de Moura Ferreira MA, da Silveira FA, da Silveira WB. Ethanol stress responses in Kluyveromyces marxianus: current knowledge and perspectives. Appl Microbiol Biotechnol 2022; 106:1341-1353. [DOI: 10.1007/s00253-022-11799-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/02/2022]
|
2
|
Kluyveromyces marxianus: Current State of Omics Studies, Strain Improvement Strategy and Potential Industrial Implementation. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6040124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bioethanol is considered an excellent alternative to fossil fuels, since it importantly contributes to the reduced consumption of crude oil, and to the alleviation of environmental pollution. Up to now, the baker yeast Saccharomyces cerevisiae is the most common eukaryotic microorganism used in ethanol production. The inability of S. cerevisiae to grow on pentoses, however, hinders its effective growth on plant biomass hydrolysates, which contain large amounts of C5 and C12 sugars. The industrial-scale bioprocessing requires high temperature bioreactors, diverse carbon sources, and the high titer production of volatile compounds. These criteria indicate that the search for alternative microbes possessing useful traits that meet the required standards of bioethanol production is necessary. Compared to other yeasts, Kluyveromyces marxianus has several advantages over others, e.g., it could grow on a broad spectrum of substrates (C5, C6 and C12 sugars); tolerate high temperature, toxins, and a wide range of pH values; and produce volatile short-chain ester. K. marxianus also shows a high ethanol production rate at high temperature and is a Crabtree-negative species. These attributes make K. marxianus promising as an industrial host for the biosynthesis of biofuels and other valuable chemicals.
Collapse
|
3
|
Perpetuini G, Tittarelli F, Battistelli N, Suzzi G, Tofalo R. γ‐aminobutyric acid production by
Kluyveromyces marxianus
strains. J Appl Microbiol 2020; 129:1609-1619. [DOI: 10.1111/jam.14736] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 12/24/2022]
Affiliation(s)
- G. Perpetuini
- Faculty of BioScience and Technology for Food, Agriculture and Environment University of Teramo Teramo Italy
| | - F. Tittarelli
- Faculty of BioScience and Technology for Food, Agriculture and Environment University of Teramo Teramo Italy
| | - N. Battistelli
- Faculty of BioScience and Technology for Food, Agriculture and Environment University of Teramo Teramo Italy
| | - G. Suzzi
- Faculty of BioScience and Technology for Food, Agriculture and Environment University of Teramo Teramo Italy
| | - R. Tofalo
- Faculty of BioScience and Technology for Food, Agriculture and Environment University of Teramo Teramo Italy
| |
Collapse
|
4
|
Abstract
Significant advancements in biotechnology have resulted in the development of numerous fundamental bioprocesses, which have consolidated research and development and industrial progress in the field. These bioprocesses are used in medical therapies, diagnostic and immunization procedures, agriculture, food production, biofuel production, and environmental solutions (to address water-, soil-, and air-related problems), among other areas. The present study is a first approach toward the identification of scientific and technological bioprocess trajectories within the framework of sustainability. The method included a literature search (Scopus), a patent search (Patentscope), and a network analysis for the period from 2010 to 2019. Our results highlight the main technological sectors, countries, institutions, and academic publications that carry out work or publish literature related to sustainability and bioprocesses. The network analysis allowed for the identification of thematic clusters associated with sustainability and bioprocesses, revealing different related scientific topics. Our conclusions confirm that biotechnology is firmly positioned as an emerging knowledge area. Its dynamics, development, and outcomes during the study period reflect a substantial number of studies and technologies focused on the creation of knowledge aimed at improving economic development, environmental protection, and social welfare.
Collapse
|
5
|
Abo BO, Gao M, Wang Y, Wu C, Ma H, Wang Q. Lignocellulosic biomass for bioethanol: an overview on pretreatment, hydrolysis and fermentation processes. REVIEWS ON ENVIRONMENTAL HEALTH 2019; 34:57-68. [PMID: 30685745 DOI: 10.1515/reveh-2018-0054] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/17/2018] [Indexed: 05/14/2023]
Abstract
Bioethanol is currently the only alternative to gasoline that can be used immediately without having to make any significant changes in the way fuel is distributed. In addition, the carbon dioxide (CO2) released during the combustion of bioethanol is the same as that used by the plant in the atmosphere for its growth, so it does not participate in the increase of the greenhouse effect. Bioethanol can be obtained by fermentation of plants containing sucrose (beet, sugar cane…) or starch (wheat, corn…). However, large-scale use of bioethanol implies the use of very large agricultural surfaces for maize or sugarcane production. Lignocellulosic biomass (LCB) such as agricultural residues for the production of bioethanol seems to be a solution to this problem due to its high availability and low cost even if its growth still faces technological difficulties. In this review, we present an overview of lignocellulosic biomass, the different methods of pre-treatment of LCB and the various fermentation processes that can be used to produce bioethanol from LCB.
Collapse
Affiliation(s)
- Bodjui Olivier Abo
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Ming Gao
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
- Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Yonglin Wang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chuanfu Wu
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
- Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Hongzhi Ma
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
- Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Qunhui Wang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
- Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
6
|
High temperature alcoholic fermentation by new thermotolerant yeast strains Pichia kudriavzevii isolated from sugarcane field soil. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.anres.2018.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Jansen MLA, Bracher JM, Papapetridis I, Verhoeven MD, de Bruijn H, de Waal PP, van Maris AJA, Klaassen P, Pronk JT. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Res 2017; 17:3868933. [PMID: 28899031 PMCID: PMC5812533 DOI: 10.1093/femsyr/fox044] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/15/2017] [Indexed: 11/18/2022] Open
Abstract
The recent start-up of several full-scale 'second generation' ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these novel industrial contexts impose on yeast strains, this minireview describes key metabolic engineering strategies that have been developed to address these challenges. Additionally, it outlines how proof-of-concept studies, often developed in academic settings, can be used for the development of robust strain platforms that meet the requirements for industrial application. Fermentation performance of current engineered industrial S. cerevisiae strains is no longer a bottleneck in efforts to achieve the projected outputs of the first large-scale second-generation ethanol plants. Academic and industrial yeast research will continue to strengthen the economic value position of second-generation ethanol production by further improving fermentation kinetics, product yield and cellular robustness under process conditions.
Collapse
Affiliation(s)
- Mickel L. A. Jansen
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The
Netherlands
| | - Jasmine M. Bracher
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| | - Ioannis Papapetridis
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| | - Maarten D. Verhoeven
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| | - Hans de Bruijn
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The
Netherlands
| | - Paul P. de Waal
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The
Netherlands
| | - Antonius J. A. van Maris
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| | - Paul Klaassen
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The
Netherlands
| | - Jack T. Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
8
|
Zhang G, Lu M, Wang J, Wang D, Gao X, Hong J. Identification of hexose kinase genes in Kluyveromyces marxianus and thermo-tolerant one step producing glucose-free fructose strain construction. Sci Rep 2017; 7:45104. [PMID: 28338054 PMCID: PMC5364472 DOI: 10.1038/srep45104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/16/2017] [Indexed: 01/01/2023] Open
Abstract
In yeast, the hexose assimilation is started at hexose phosphorylation. However, in Kluyveromyces marxianus, the hexokinase (HXK) and glucokinase (GLK) genes were not identified by experiments. Meanwhile, the glucose-free fructose product requires more cost-efficient method. In this study, the KmHXK1 and KmGLK1 genes were functionally identified through gene disruption, over-expression and recombinant enzymes characterization. Both glucose and fructose assimilation ability decreased significantly in KmHXK1 disrupted strain YLM001, however, this ability was not changed obviously in KmGLK1 disrupted strain YLM002. When over-expressing KmGLK1 in YLM001, only the glucose assimilation ability was recovered in obtained strain (YLM005). The kinetic constant analysis of recombinant enzymes also proved that KmHXK1 could phosphorylate glucose (Vmax 553.01 U/mg, Km 0.83 mM) and fructose (Vmax 609.82 U/mg, Km 0.52 mM), and KmGLK1 only phosphorylate glucose with a Vmax of 0.73 U/mg and a Km 4.09 mM. A thermo-tolerant strain YGR003 which produced glucose-free fructose from Jerusalem artichoke tuber in one step was constructed based on the obtained information. The highest production and fastest productivity were 234.44 g/L and 10.26 g/L/h, respectively, which were several folds of the results in previous reports.
Collapse
Affiliation(s)
- Guorong Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Min Lu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Jichao Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Dongmei Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Xiaolian Gao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| |
Collapse
|
9
|
Hughes SR, Qureshi N, López-Núñez JC, Jones MA, Jarodsky JM, Galindo-Leva LÁ, Lindquist MR. Utilization of inulin-containing waste in industrial fermentations to produce biofuels and bio-based chemicals. World J Microbiol Biotechnol 2017; 33:78. [PMID: 28341907 DOI: 10.1007/s11274-017-2241-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 03/06/2017] [Indexed: 12/18/2022]
Abstract
Inulins are polysaccharides that belong to an important class of carbohydrates known as fructans and are used by many plants as a means of storing energy. Inulins contain 20 to several thousand fructose units joined by β-2,1 glycosidic bonds, typically with a terminal glucose unit. Plants with high concentrations of inulin include: agave, asparagus, coffee, chicory, dahlia, dandelion, garlic, globe artichoke, Jerusalem artichoke, jicama, onion, wild yam, and yacón. To utilize inulin as its carbon and energy source directly, a microorganism requires an extracellular inulinase to hydrolyze the glycosidic bonds to release fermentable monosaccharides. Inulinase is produced by many microorganisms, including species of Aspergillus, Kluyveromyces, Penicillium, and Pseudomonas. We review various inulinase-producing microorganisms and inulin feedstocks with potential for industrial application as well as biotechnological efforts underway to develop sustainable practices for the disposal of residues from processing inulin-containing crops. A multi-stage biorefinery concept is proposed to convert cellulosic and inulin-containing waste produced at crop processing operations to valuable biofuels and bioproducts using Kluyveromyces marxianus, Yarrowia lipolytica, Rhodotorula glutinis, and Saccharomyces cerevisiae as well as thermochemical treatments.
Collapse
Affiliation(s)
- Stephen R Hughes
- Renewable Product Technology Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), 1815 North University Street, Peoria, IL, 61604, USA.
| | - Nasib Qureshi
- Bioenergy Research Unit, USDA, ARS, NCAUR, 1815 North University Street, Peoria, IL, 61604, USA
| | - Juan Carlos López-Núñez
- National Coffee Research Centre (Cenicafe), National Federation of Coffee Growers of Colombia (FNC), Cenicafé Planalto Km 4 vía Antigua Chinchiná, Manizales, Caldas, Colombia
| | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Joshua M Jarodsky
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Luz Ángela Galindo-Leva
- National Coffee Research Centre (Cenicafe), National Federation of Coffee Growers of Colombia (FNC), Cenicafé Planalto Km 4 vía Antigua Chinchiná, Manizales, Caldas, Colombia
| | - Mitchell R Lindquist
- Renewable Product Technology Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), 1815 North University Street, Peoria, IL, 61604, USA
| |
Collapse
|
10
|
Khatun MM, Liu CG, Zhao XQ, Yuan WJ, Bai FW. Consolidated ethanol production from Jerusalem artichoke tubers at elevated temperature by Saccharomyces cerevisiae engineered with inulinase expression through cell surface display. J Ind Microbiol Biotechnol 2016; 44:295-301. [PMID: 27999966 DOI: 10.1007/s10295-016-1881-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/26/2016] [Indexed: 12/30/2022]
Abstract
Ethanol fermentation from Jerusalem artichoke tubers was performed at elevated temperatures by the consolidated bioprocessing strategy using Saccharomyces cerevisiae MK01 expressing inulinase through cell surface display. No significant difference was observed in yeast growth when temperature was controlled at 38 and 40 °C, respectively, but inulinase activity with yeast cells was substantially enhanced at 40 °C. As a result, enzymatic hydrolysis of inulin was facilitated and ethanol production was improved with 89.3 g/L ethanol produced within 72 h from 198.2 g/L total inulin sugars consumed. Similar results were also observed in ethanol production from Jerusalem artichoke tubers with 85.2 g/L ethanol produced within 72 h from 185.7 g/L total sugars consumed. On the other hand, capital investment on cooling facilities and energy consumption for running the facilities would be saved, since regular cooling water instead of chill water could be used to cool down the fermentation system.
Collapse
Affiliation(s)
- M Mahfuza Khatun
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116023, China
| | - Chen-Guang Liu
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin-Qing Zhao
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wen-Jie Yuan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116023, China
| | - Feng-Wu Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116023, China. .,School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
11
|
Gao J, Yuan W, Li Y, Bai F, Zhong S, Jiang Y. Application of redox potential control to improve ethanol productivity from inulin by consolidated bioprocessing. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
|
13
|
Galindo-Leva LÁ, Hughes SR, López-Núñez JC, Jarodsky JM, Erickson A, Lindquist MR, Cox EJ, Bischoff KM, Hoecker EC, Liu S, Qureshi N, Jones MA. Growth, ethanol production, and inulinase activity on various inulin substrates by mutant Kluyveromyces marxianus strains NRRL Y-50798 and NRRL Y-50799. J Ind Microbiol Biotechnol 2016; 43:927-39. [PMID: 27130462 PMCID: PMC4902847 DOI: 10.1007/s10295-016-1771-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/11/2016] [Indexed: 10/26/2022]
Abstract
Economically important plants contain large amounts of inulin. Disposal of waste resulting from their processing presents environmental issues. Finding microorganisms capable of converting inulin waste to biofuel and valuable co-products at the processing site would have significant economic and environmental impact. We evaluated the ability of two mutant strains of Kluyveromyces marxianus (Km7 and Km8) to utilize inulin for ethanol production. In glucose medium, both strains consumed all glucose and produced 0.40 g ethanol/g glucose at 24 h. In inulin medium, Km7 exhibited maximum colony forming units (CFU)/mL and produced 0.35 g ethanol/g inulin at 24 h, while Km8 showed maximum CFU/mL and produced 0.02 g ethanol/g inulin at 96 h. At 24 h in inulin + glucose medium, Km7 produced 0.40 g ethanol/g (inulin + glucose) and Km8 produced 0.20 g ethanol/g (inulin + glucose) with maximum CFU/mL for Km8 at 72 h, 40 % of that for Km7 at 36 h. Extracellular inulinase activity at 6 h for both Km7 and Km8 was 3.7 International Units (IU)/mL.
Collapse
Affiliation(s)
| | - Stephen R Hughes
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS) National Center for Agricultural Utilization Research (NCAUR) Renewable Product Technology Research Unit, 1815, North University Street, Peoria, IL, 61604, USA.
| | - Juan Carlos López-Núñez
- National Coffee Research Centre (Cenicafe) National Federation of Coffee Growers of Colombia (FNC), Cenicafé Planalto Km 4 vía Antigua Chinchiná, Manizales, Caldas, Colombia
| | - Joshua M Jarodsky
- Department of Chemistry, Illinois State University, Normal, IL, 61790-4160, USA
| | - Adam Erickson
- Department of Chemistry, Illinois State University, Normal, IL, 61790-4160, USA
| | - Mitchell R Lindquist
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS) National Center for Agricultural Utilization Research (NCAUR) Renewable Product Technology Research Unit, 1815, North University Street, Peoria, IL, 61604, USA
| | - Elby J Cox
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS) National Center for Agricultural Utilization Research (NCAUR) Renewable Product Technology Research Unit, 1815, North University Street, Peoria, IL, 61604, USA
| | - Kenneth M Bischoff
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS) National Center for Agricultural Utilization Research (NCAUR) Renewable Product Technology Research Unit, 1815, North University Street, Peoria, IL, 61604, USA
| | - Eric C Hoecker
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS) National Center for Agricultural Utilization Research (NCAUR) Renewable Product Technology Research Unit, 1815, North University Street, Peoria, IL, 61604, USA
| | - Siqing Liu
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS) National Center for Agricultural Utilization Research (NCAUR) Renewable Product Technology Research Unit, 1815, North University Street, Peoria, IL, 61604, USA
| | - Nasib Qureshi
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS) National Center for Agricultural Utilization Research (NCAUR) Renewable Product Technology Research Unit, 1815, North University Street, Peoria, IL, 61604, USA
| | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, IL, 61790-4160, USA
| |
Collapse
|
14
|
Wang D, Li FL, Wang SA. Engineering a natural Saccharomyces cerevisiae strain for ethanol production from inulin by consolidated bioprocessing. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:96. [PMID: 27134653 PMCID: PMC4851821 DOI: 10.1186/s13068-016-0511-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/19/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND The yeast Saccharomyces cerevisiae is an important eukaryotic workhorse in traditional and modern biotechnology. At present, only a few S. cerevisiae strains have been extensively used as engineering hosts. Recently, an astonishing genotypic and phenotypic diversity of S. cerevisiae was disclosed in natural populations. We suppose that some natural strains can be recruited as superior host candidates in bioengineering. This study engineered a natural S. cerevisiae strain with advantages in inulin utilization to produce ethanol from inulin resources by consolidated bioprocess. Rational engineering strategies were employed, including secretive co-expression of heterologous exo- and endo-inulinases, repression of a protease, and switch between haploid and diploid strains. RESULTS Results from co-expressing endo- and exo-inulinase genes showed that the extracellular inulinase activity increased 20 to 30-fold in engineered S. cerevisiae strains. Repression of the protease PEP4 influenced cell physiology in late stationary phase. Comparison between haploid and diploid engineered strains indicated that diploid strains were superior to haploid strains in ethanol production albeit not in production and secretion of inulinases. Ethanol fermentation from both inulin and Jerusalem artichoke tuber powder was dramatically improved in most engineered strains. Ethanol yield achieved in the ultimate diploid strain JZD-InuMKCP was close to the theoretical maximum. Productivity achieved in the strain JZD-InuMKCP reached to 2.44 and 3.13 g/L/h in fermentation from 200 g/L inulin and 250 g/L raw Jerusalem artichoke tuber powder, respectively. To our knowledge, these are the highest productivities reported up to now in ethanol fermentation from inulin resources. CONCLUSIONS Although model S. cerevisiae strains are preferentially used as hosts in bioengineering, some natural strains do have specific excellent properties. This study successfully engineered a natural S. cerevisiae strain for efficient ethanol production from inulin resources by consolidated bioprocess, which indicated the feasibility of natural strains used as bioengineering hosts. This study also presented different properties in enzyme secretion and ethanol fermentation between haploid and diploid engineering strains. These findings provided guidelines for host selection in bioengineering.
Collapse
Affiliation(s)
- Da Wang
- />Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- />University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Fu-Li Li
- />Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Shi-An Wang
- />Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| |
Collapse
|
15
|
Ethanol Production from Sweet Sorghum Juice at High Temperatures Using a Newly Isolated Thermotolerant Yeast Saccharomyces cerevisiae DBKKU Y-53. ENERGIES 2016. [DOI: 10.3390/en9040253] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Rawat HK, Soni H, Treichel H, Kango N. Biotechnological potential of microbial inulinases: Recent perspective. Crit Rev Food Sci Nutr 2016; 57:3818-3829. [DOI: 10.1080/10408398.2016.1147419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hemant Kumar Rawat
- Department of Applied Microbiology and Biotechnology, Dr. Harisingh Gour University, Sagar (M.P.), India
| | - Hemant Soni
- Department of Applied Microbiology and Biotechnology, Dr. Harisingh Gour University, Sagar (M.P.), India
| | - Helen Treichel
- Universidade Federal da Fronteira Sul-Campus de Erechim, Erechim, Brazil
| | - Naveen Kango
- Department of Applied Microbiology and Biotechnology, Dr. Harisingh Gour University, Sagar (M.P.), India
| |
Collapse
|
17
|
Zhu N, Liu J, Yang J, Lin Y, Yang Y, Ji L, Li M, Yuan H. Comparative analysis of the secretomes of Schizophyllum commune and other wood-decay basidiomycetes during solid-state fermentation reveals its unique lignocellulose-degrading enzyme system. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:42. [PMID: 26900401 PMCID: PMC4761152 DOI: 10.1186/s13068-016-0461-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/11/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND The genome of Schizophyllum commune encodes a diverse repertoire of degradative enzymes for plant cell wall breakdown. Recent comparative genomics study suggests that this wood decayer likely has a mode of biodegradation distinct from the well-established white-rot/brown-rot models. However, much about the extracellular enzyme system secreted by S. commune during lignocellulose deconstruction remains unknown and the underlying mechanism is poorly understood. In this study, extracellular proteins of S. commune colonizing Jerusalem artichoke stalk were analyzed and compared with those of two white-rot fungi Phanerochaete chrysosporium and Ceriporiopsis subvermispora and a brown-rot fungus Gloeophyllum trabeum. RESULTS Under solid-state fermentation (SSF) conditions, S. commune displayed considerably higher levels of hydrolytic enzyme activities in comparison with those of P. chrysosporium, C. subvermispora and G. trabeum. During biodegradation process, this fungus modified the lignin polymer in a way which was consistent with a hydroxyl radical attack, similar to that of G. trabeum. The crude enzyme cocktail derived from S. commune demonstrated superior performance over a commercial enzyme preparation from Trichoderma longibrachiatum in the hydrolysis of pretreated lignocellulosic biomass at low enzyme loadings. Secretomic analysis revealed that compared with three other fungi, this species produced a higher diversity of carbohydrate-degrading enzymes, especially hemicellulases and pectinases acting on polysaccharide backbones and side chains, and a larger set of enzymes potentially supporting the generation of hydroxyl radicals. In addition, multiple non-hydrolytic proteins implicated in enhancing polysaccharide accessibility were identified in the S. commune secretome, including lytic polysaccharide monooxygenases (LPMOs) and expansin-like proteins. CONCLUSIONS Plant lignocellulose degradation by S. commune involves a hydroxyl radical-mediated mechanism for lignocellulose modification in parallel with the synergistic system of various polysaccharide-degrading enzymes. Furthermore, the complex enzyme system of S. commune holds significant potential for application in biomass saccharification. These discoveries will help unveil the diversity of natural lignocellulose-degrading mechanisms, and advance the design of more efficient enzyme mixtures for the deconstruction of lignocellulosic feedstocks.
Collapse
Affiliation(s)
- Ning Zhu
- />State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Jiawen Liu
- />State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Jinshui Yang
- />State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Yujian Lin
- />State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Yi Yang
- />State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Lei Ji
- />State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Meng Li
- />National Energy R&D Center for Non-food Biomass, China Agricultural University, 100193 Beijing, China
| | - Hongli Yuan
- />State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
- />National Energy R&D Center for Non-food Biomass, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
18
|
Charoensopharat K, Thanonkeo P, Thanonkeo S, Yamada M. Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus using consolidated bioprocessing. Antonie van Leeuwenhoek 2015; 108:173-90. [DOI: 10.1007/s10482-015-0476-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/08/2015] [Indexed: 10/23/2022]
|
19
|
Tanimura A, Kikukawa M, Yamaguchi S, Kishino S, Ogawa J, Shima J. Direct ethanol production from starch using a natural isolate, Scheffersomyces shehatae: Toward consolidated bioprocessing. Sci Rep 2015; 5:9593. [PMID: 25901788 PMCID: PMC5386104 DOI: 10.1038/srep09593] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/13/2015] [Indexed: 12/02/2022] Open
Abstract
Consolidated bioprocessing (CBP), which integrates enzyme production, saccharification and fermentation into a one-step process, is a promising strategy for cost-effective ethanol production from starchy biomass. To gain insights into starch-based ethanol production using CBP, an extensive screening was undertaken to identify naturally occurring yeasts that produce ethanol without the addition of any amylases. Three yeast strains were capable of producing a significant amount of ethanol. Quantitative assays revealed that Scheffersomyces shehatae JCM 18690 was the strain showing the highest ethanol production ability. This strain was able to utilize starch directly, and the ethanol concentration reached 9.21 g/L. We attribute the ethanol-producing ability of this strain to the high levels of glucoamylase activity, fermentation potential and ethanol stress tolerance. This study strongly suggests the possibility of starch-based ethanol production by consolidated bioprocessing using natural yeasts such as S. shehatae JCM 18690.
Collapse
Affiliation(s)
- Ayumi Tanimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Minako Kikukawa
- Research Division of Microbial Sciences, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shino Yamaguchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jun Shima
- Faculty of Law, Ryukoku University, 67 Fukakusatsukamoto-cho, Fushimi-ku, Kyoto 612-5662, Japan
| |
Collapse
|
20
|
Yang L, He QS, Corscadden K, Udenigwe CC. The prospects of Jerusalem artichoke in functional food ingredients and bioenergy production. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2015; 5:77-88. [PMID: 28626686 PMCID: PMC5466194 DOI: 10.1016/j.btre.2014.12.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/24/2014] [Accepted: 12/08/2014] [Indexed: 01/09/2023]
Abstract
Jerusalem artichoke, a native plant to North America has recently been recognized as a promising biomass for bioeconomy development, with a number of advantages over conventional crops such as low input cultivation, high crop yield, wide adaptation to climatic and soil conditions and strong resistance to pests and plant diseases. A variety of bioproducts can be derived from Jerusalem artichoke, including inulin, fructose, natural fungicides, antioxidant and bioethanol. This paper provides an overview of the cultivation of Jerusalem artichoke, derivation of bioproducts and applicable production technologies, with an expectation to draw more attention on this valuable crop for its applications as biofuel, functional food and bioactive ingredient sources.
Collapse
Affiliation(s)
- Linxi Yang
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Kenneth Corscadden
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Chibuike C. Udenigwe
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
21
|
Gao J, Yuan W, Li Y, Xiang R, Hou S, Zhong S, Bai F. Transcriptional analysis of Kluyveromyces marxianus for ethanol production from inulin using consolidated bioprocessing technology. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:115. [PMID: 26273319 PMCID: PMC4535673 DOI: 10.1186/s13068-015-0295-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/24/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Ethanol production from non-crop materials, such as Jerusalem artichokes, would make a great contribution to the energy industry. The non-conventional yeast, Kluyveromyces marxianus, is able to carry out ethanol fermentation of sugar molecules obtained from inulin-containing materials by consolidated bioprocessing. Lower inulin concentrations and micro-aeration can lead to a relatively fast and ideal fermentation process; however, it is unclear what causes the inhibition of higher concentrations of inulin and the promotion effect of aeration. RESULTS Next-generation sequencing technology was used to study the global transcriptional response of K. marxianus Y179 under three fermentation conditions, including 120 g/L inulin without aeration (120-N), 230 g/L inulin without aeration (230-N), 230 g/L inulin with aeration by ORP controlling at -130 mV (230-130mV). A total of 35.55 million clean reads were generated from three samples, of which 4,820 predicted that open reading frames were annotated. For differential expression analysis, 950 and 1,452 differentially expressed genes were discovered under the conditions of 230-130mV and 120-N, respectively, and the sample 230-N was used as the control. These genes are mainly associated with the pathways of central carbon metabolism and ethanol formation. Increased expression of inulinase and the low activity of the autophagy-related gene, ATG8, ensured fast and ideal fermentation processes. CONCLUSIONS Despite being reported as the "crabtree-negative" species, K. marxianus Y179 could achieve favorable ethanol fermentation profiles under micro-aeration and high inulin concentrations. K. marxianus Y179 cells responded to inulin concentrations and micro-aeration that is involved in the whole ethanol metabolism network. These results will serve as an important foundation for further exploration of the regulatory mechanisms involved in ethanol fermentation from inulin by consolidated bioprocessing and also provide a valuable reference for future studies on optimization and reconstruction of the metabolism network in K. marxianus.
Collapse
Affiliation(s)
- Jiaoqi Gao
- />School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Wenjie Yuan
- />School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Yimin Li
- />School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Ruijuan Xiang
- />School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Shengbo Hou
- />School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Shijun Zhong
- />School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Fengwu Bai
- />School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
- />School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240 China
| |
Collapse
|
22
|
Liu CG, Liu LY, Lin YH, Bai FW. Kinetic modeling for redox potential-controlled repeated batch ethanol fermentation using flocculating yeast. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Enhanced expression of the codon-optimized exo-inulinase gene from the yeast Meyerozyma guilliermondii in Saccharomyces sp. W0 and bioethanol production from inulin. Appl Microbiol Biotechnol 2014; 98:9129-38. [DOI: 10.1007/s00253-014-6079-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/30/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
|
24
|
Optimizing promoters and secretory signal sequences for producing ethanol from inulin by recombinant Saccharomyces cerevisiae carrying Kluyveromyces marxianus inulinase. Bioprocess Biosyst Eng 2014; 38:263-72. [DOI: 10.1007/s00449-014-1265-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
|
25
|
Ji L, Yang J, Fan H, Yang Y, Li B, Yu X, Zhu N, Yuan H. Synergy of crude enzyme cocktail from cold-adapted Cladosporium cladosporioides Ch2-2 with commercial xylanase achieving high sugars yield at low cost. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:130. [PMID: 25254072 PMCID: PMC4172917 DOI: 10.1186/s13068-014-0130-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/22/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND The efficiency and cost of current lignocellulosic enzymes still limit the large-scale production of cellulosic ethanol in industry. Residual lignin after pretreatment severely depresses the activity of polysaccharide hydrolases and the h ydrolysis of holocellulose. If we include in hydrolase mixture construction the ligninase involved in lignin degradation, which mainly includes laccase, manganese peroxidases (MnP) and lignin peroxidase (LiP), it is feasible that this could greatly improve the fermentable sugars yield. RESULTS The psychrophilic lignocellulosic enzymes system of Cladosporium cladosporioides Ch2-2 including ligninase and polysaccharide hydrolases was suitable for selective delignification and efficient saccharification of biomass with wide thermal adaptability. The purified laccase was optimally active at 15°C and pH 3.5, exhibiting high thermostability over a broad range of temperatures (between 4 and 40°C). In addition, manganese-independent peroxidase (MIP), a special type of ligninase with the capacity to oxidize dimethyl phthalate (DMP) in the absence of H2O2 and Mn(2+), was optimally active at 20°C and pH 2.5, exhibiting high thermostability over a broad range of temperatures (4 and 28°C), while depressed completely by Fe(2+) and essentially unaffected by EDTA. Synergy between Ch2-2 crude enzymes and commercial xylanase obviously enhanced biomass hydrolysis, which could take the place of expensive commercial cellulase mixture. The maximum value of synergistic degree reached 4.7 at 28°C, resulting in 10.1 mg/mL reducing sugars. CONCLUSIONS The psychrophilic enzymes system of C. cladosporioides Ch2-2 with a different synergistic mechanism has huge potential for the enhancement of biomass hydrolysis at mesophilic and low temperatures. The application scope of the lignocellulosic enzyme cocktail could be greatly enlarged by optimizing the operation conditions specific to the characteristics of ligninase.
Collapse
Affiliation(s)
- Lei Ji
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology and National Energy R & D Center for Non-food Biomass, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology and National Energy R & D Center for Non-food Biomass, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Hua Fan
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology and National Energy R & D Center for Non-food Biomass, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Yi Yang
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology and National Energy R & D Center for Non-food Biomass, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Baozhen Li
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology and National Energy R & D Center for Non-food Biomass, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Xuejian Yu
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology and National Energy R & D Center for Non-food Biomass, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Ning Zhu
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology and National Energy R & D Center for Non-food Biomass, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology and National Energy R & D Center for Non-food Biomass, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
26
|
Yuan W, Zhao X, Chen L, Bai F. Improved ethanol production in Jerusalem artichoke tubers by overexpression of inulinase gene in Kluyveromyces marxianus. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-013-0026-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Expression of exoinulinase genes in Saccharomyces cerevisiae to improve ethanol production from inulin sources. Biotechnol Lett 2013; 35:1589-92. [DOI: 10.1007/s10529-013-1251-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/24/2013] [Indexed: 11/26/2022]
|
28
|
Guo L, Zhang J, Hu F, Dy Ryu D, Bao J. Consolidated bioprocessing of highly concentrated Jerusalem artichoke tubers for simultaneous saccharification and ethanol fermentation. Biotechnol Bioeng 2013; 110:2606-15. [PMID: 23568827 DOI: 10.1002/bit.24929] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 02/25/2013] [Accepted: 03/25/2013] [Indexed: 11/11/2022]
Abstract
Consolidated bioprocessing (CBP) of Jerusalem artichoke tuber (Jat) for ethanol production is one of the most promising options for an alternate biofuel technology development. The technical barriers include the weak saccharolytic enzyme (inulinase) activity of the fermentation strain, and the well mixing of the high viscous fermentation slurry at the highly concentrated Jat loading. In this study, Saccharomyces cerevisiae DQ1 was found to produce relatively large amount of inulinase for hydrolysis of inulin in Jat, and the helical ribbon stirring bioreactor used provided well mixing performance under the high Jat loading. Even a highly concentrated Jat loading up to 35% (w/w) in the helical ribbon bioreactor for CBP was allowed. The results obtained from this study have demonstrated a feasibility of developing a CBP process technology in the helical ribbon bioreactor for ethanol production at a high yield 128.7 g/L and the theoretical yield 73.5%, respectively. This level of ethanol yield from Jat is relatively higher than others reported so far. The results of this study could provide a practical CBP process technology in the helical ribbon bioreactor for economically sustainable alternate biofuel production using highly concentrated inulin containing biomass feedstock such as Jat, at least 35%.
Collapse
Affiliation(s)
- Lihao Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | | | | | | | | |
Collapse
|
29
|
Invertase SUC2 Is the key hydrolase for inulin degradation in Saccharomyces cerevisiae. Appl Environ Microbiol 2012; 79:403-6. [PMID: 23104410 DOI: 10.1128/aem.02658-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Specific Saccharomyces cerevisiae strains were recently found to be capable of efficiently utilizing inulin, but genetic mechanisms of inulin hydrolysis in yeast remain unknown. Here we report functional characteristics of invertase SUC2 from strain JZ1C and demonstrate that SUC2 is the key enzyme responsible for inulin metabolism in S. cerevisiae.
Collapse
|
30
|
Hu N, Yuan B, Sun J, Wang SA, Li FL. Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Appl Microbiol Biotechnol 2012; 95:1359-68. [PMID: 22760784 DOI: 10.1007/s00253-012-4240-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/12/2012] [Accepted: 06/14/2012] [Indexed: 11/24/2022]
Abstract
Thermotolerant inulin-utilizing yeast strains are desirable for ethanol production from Jerusalem artichoke tubers by consolidated bioprocessing (CBP). To obtain such strains, 21 naturally occurring yeast strains isolated by using an enrichment method and 65 previously isolated Saccharomyces cerevisiae strains were investigated in inulin utilization, extracellular inulinase activity, and ethanol fermentation from inulin and Jerusalem artichoke tuber flour at 40 °C. The strains Kluyveromyces marxianus PT-1 (CGMCC AS2.4515) and S. cerevisiae JZ1C (CGMCC AS2.3878) presented the highest extracellular inulinase activity and ethanol yield in this study. The highest ethanol concentration in Jerusalem artichoke tuber flour fermentation (200 g L(-1)) at 40 °C achieved by K. marxianus PT-1 and S. cerevisiae JZ1C was 73.6 and 65.2 g L(-1), which corresponded to the theoretical ethanol yield of 90.0 and 79.7 %, respectively. In the range of 30 to 40 °C, temperature did not have a significant effect on ethanol production for both strains. This study displayed the distinctive superiority of K. marxianus PT-1 and S. cerevisiae JZ1C in the thermotolerance and utilization of inulin-type oligosaccharides reserved in Jerusalem artichoke tubers. It is proposed that both K. marxianus and S. cerevisiae have considerable potential in ethanol production from Jerusalem artichoke tubers by a high temperature CBP.
Collapse
Affiliation(s)
- Nan Hu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | | | | | | | | |
Collapse
|
31
|
Purification and characterization of a novel extracellular inulinase from a new yeast species Candida kutaonensis sp. nov. KRF1T. Appl Microbiol Biotechnol 2012; 96:1517-26. [DOI: 10.1007/s00253-012-4108-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/09/2012] [Accepted: 04/12/2012] [Indexed: 10/28/2022]
|