1
|
Cui L, Li R, Mu T, Wang J, Zhang W, Sun M. In situ Plasmon-Enhanced CARS and TPEF for Gram staining identification of non-fluorescent bacteria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120283. [PMID: 34428635 DOI: 10.1016/j.saa.2021.120283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
In this work, we report in situ nonlinear microscopic images on plasmon-enhanced coherent anti-Stokes Raman scattering (CARS) and plasmon-Induced two-photon excited fluorescence (TPEF)of non-fluorescent microorganism. Our unique synthesized Au@Ag nanorods provide with two distinct surface-plasmon resonance (SPR) at 400 and 800 nm, respectively, which can efficiently induce linear fluorescence signals of E. coli but also enhance the nonlinear optical spectroscopy signals of TPEF, and coherent anti-Stokes Raman scattering (CARS) imaging of E. coli and S. aureus. Furthermore, calculations with complete active space self-consistent field (CASSCF) reveals the hot electrons of SPs can efficiently induce the biological fluorescence of non-fluorescent flavin nucleotides on the surface of E. coli. This novel mechanism is expected to guide the development and application of new microbial detection reagents. Gram-negative and Gram-positive bacteria can be well distinguished by nonlinear microscopic imaging of the CARS signal at 1589 cm-1. Benefit by the strong penetrability of non-linear optical signals, it is expected to realize in situ real-time detection and classification of pathogenic microbial infections in vivo.
Collapse
Affiliation(s)
- Lin Cui
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Rui Li
- School of Physics, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Tingjie Mu
- People's Hospital of Linxia Hui Autonomous Prefecture, Linxia City 731100, People's Republic of China
| | - Jiangcai Wang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China.
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China.
| |
Collapse
|
2
|
Pence IJ, Evans CL. Translational biophotonics with Raman imaging: clinical applications and beyond. Analyst 2021; 146:6379-6393. [PMID: 34596653 PMCID: PMC8543123 DOI: 10.1039/d1an00954k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/30/2021] [Indexed: 01/25/2023]
Abstract
Clinical medicine continues to seek novel rapid non-invasive tools capable of providing greater insight into disease progression and management. Raman scattering based technologies constitute a set of tools under continuing development to address outstanding challenges spanning diagnostic medicine, surgical guidance, therapeutic monitoring, and histopathology. Here we review the mechanisms and clinical applications of Raman scattering, specifically focusing on high-speed imaging methods that can provide spatial context for translational biomedical applications.
Collapse
Affiliation(s)
- Isaac J Pence
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA.
| | - Conor L Evans
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA.
| |
Collapse
|
3
|
Lian J, He B, Wang W, Guo Y, Xu Y, Wei X, Yang Z. Biocompatible diameter-oscillating fiber with microlens endface. OPTICS EXPRESS 2021; 29:12024-12032. [PMID: 33984971 DOI: 10.1364/oe.421996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Optical fibers have been widely applied to life science, such as laser delivering, fluorescence collection, biosensing, bioimaging, etc. To resolve the challenges of advanced multiphoton biophotonic applications utilizing ultrashort laser pulses, here we report a flexible diameter-oscillating fiber (DOF) with microlens endface fabricated by using Polydimethylsiloxane (PDMS) elastomers. The diameter of the DOF is designed to longitudinally vary for providing accurate dispersion management, which is important for near-infrared multiphoton biophotonics that usually involves ultrashort laser pulses. The variation range and period of the DOF's diameter can be flexibly adjusted by controlling the parameters during the fabrication, such that dispersion curves with different oscillation landscapes can be obtained. The dispersion oscillating around the zero-dispersion baseline gives rise to a minimized net dispersion as the ultrashort laser pulse passes through the DOF - reducing the temporal broadening effect and resulting in transform-limited pulsewidth. In addition, the endface of the DOF is fabricated with a microlens, which is especially useful for laser scanning/focusing and fluorescence excitation. It is anticipated that this new biocompatible DOF is of great interest for biophotonic applications, particularly multiphoton microscopy deep inside biological tissues.
Collapse
|
4
|
Velsink MC, Amitonova LV, Pinkse PWH. Spatiotemporal focusing through a multimode fiber via time-domain wavefront shaping. OPTICS EXPRESS 2021; 29:272-290. [PMID: 33362113 DOI: 10.1364/oe.412714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
We shape fs optical pulses and deliver them in a single spatial mode to the input of a multimode fiber. The pulse is shaped in time such that at the output of the multimode fiber an ultrashort pulse appears at a predefined focus. Our result shows how to raster scan an ultrashort pulse at the output of a stiff piece of square-core step-index multimode fiber and in this way show the potential for making a nonlinear fluorescent image of the scene behind the fiber, while the connection to the multimode fiber can be established via a thin and flexible single-mode fiber. The experimental results match our numerical simulation well.
Collapse
|
5
|
Kolosova K, Gao Q, Tuznik M, Bouhabel S, Kost KM, Wang H, Li-Jessen NYK, Mongeau L, Wiseman PW. Characterizing Vocal Fold Injury Recovery in a Rabbit Model With Three-Dimensional Virtual Histology. Laryngoscope 2020; 131:1578-1587. [PMID: 32809236 DOI: 10.1002/lary.29028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES/HYPOTHESIS In animal studies of vocal fold scarring and treatment, imaging-based evaluation is most often conducted by tissue slicing and histological staining. Given variation in anatomy, injury type, severity, and sacrifice timepoints, planar histological sections provide limited spatiotemporal details of tissue repair. Three-dimensional (3D) virtual histology may provide additional contextual spatial information, enhancing objective interpretation. The study's aim was to evaluate the suitability of magnetic resonance imaging (MRI), microscale computed tomography (CT), and nonlinear laser-scanning microscopy (NM) as virtual histology approaches for rabbit studies of vocal fold scarring. METHODS A unilateral injury was created using microcup forceps in the left vocal fold of three New Zealand White rabbits. Animals were sacrificed at 3, 10, and 39 days postinjury. ex vivo imaging of excised larynges was performed with MRI, CT, and NM modalities. RESULTS The MRI modality allowed visualization of injury location and morphological internal features with 100-μm spatial resolution. The CT modality provided a view of the injury defect surface with 12-μm spatial resolution. The NM modality with optical clearing resolved second-harmonic generation signal of collagen fibers and two-photon autofluorescence in vocal fold lamina propria, muscle, and surrounding cartilage structures at submicrometer spatial scales. CONCLUSIONS Features of vocal fold injury and wound healing were observed with MRI, CT, and NM. The MRI and CT modalities provided contextual spatial information and dissection guidance, whereas NM resolved extracellular matrix structure. The results serve as a proof of concept to motivate incorporation of 3D virtual histology techniques in future vocal fold injury animal studies. LEVEL OF EVIDENCE NA Laryngoscope, 131:1578-1587, 2021.
Collapse
Affiliation(s)
- Ksenia Kolosova
- Department of Physics, McGill University, Montreal, Quebec, Canada
| | - Qiman Gao
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Marius Tuznik
- Small Animal Imaging Laboratory of the McConnell Brain Imaging Centre at the Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sarah Bouhabel
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Quebec, Canada
| | - Karen M Kost
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Quebec, Canada
| | - Huijie Wang
- Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada
| | - Nicole Y K Li-Jessen
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Quebec, Canada.,Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada.,School of Communication Sciences and Disorders, McGill University, Montreal, Quebec, Canada
| | - Luc Mongeau
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Quebec, Canada.,Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada.,Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Paul W Wiseman
- Department of Physics, McGill University, Montreal, Quebec, Canada.,Department of Chemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Garofalakis A, Kruglik SG, Mansuryan T, Gillibert A, Thiberville L, Louradour F, Vever-Bizet C, Bourg-Heckly G. Characterization of a multicore fiber image guide for nonlinear endoscopic imaging using two-photon fluorescence and second-harmonic generation. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-12. [PMID: 31646840 PMCID: PMC7000885 DOI: 10.1117/1.jbo.24.10.106004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Multiphoton microscopy (MPM) has the capacity to record second-harmonic generation (SHG) and endogenous two-photon excitation fluorescence (2PEF) signals emitted from biological tissues. The development of fiber-based miniaturized endomicroscopes delivering pulses in the femtosecond range will allow the transfer of MPM to clinical endoscopy. We present real-time SHG and 2PEF ex vivo images using an endomicroscope, which totally complies with clinical endoscopy regulations. This system is based on the proximal scanning of a commercial multicore image guide (IG). For understanding the inhomogeneities of the recorded images, we quantitatively characterize the IG at the single-core level during nonlinear excitation. The obtained results suggest that these inhomogeneities originate from the variable core geometries that, therefore, exhibit variable nonlinear and dispersive properties. Finally, we propose a method based on modulation of dispersion precompensation to address the image inhomogeneity issue and, as a proof of concept, we demonstrate its capability to improve the nonlinear image quality.
Collapse
Affiliation(s)
- Anikitos Garofalakis
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | - Sergei G. Kruglik
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | | | - André Gillibert
- Rouen University Hospital, Department of Biostatistics, Rouen, France
| | - Luc Thiberville
- CHU Rouen, Service de Pneumologie, Oncologie Thoracique et Soins Intensifs Respiratoires, Rouen, France
| | | | - Christine Vever-Bizet
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | - Genevieve Bourg-Heckly
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| |
Collapse
|
7
|
Multiplexed temporally focused light shaping through a gradient index lens for precise in-depth optogenetic photostimulation. Sci Rep 2019; 9:7603. [PMID: 31110187 PMCID: PMC6527563 DOI: 10.1038/s41598-019-43933-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/25/2019] [Indexed: 11/08/2022] Open
Abstract
In the past 10 years, the use of light has become irreplaceable for the optogenetic study and control of neurons and neural circuits. Optical techniques are however limited by scattering and can only see through a depth of few hundreds µm in living tissues. GRIN lens based micro-endoscopes represent a powerful solution to reach deeper regions. In this work we demonstrate that cutting edge optical methods for the precise photostimulation of multiple neurons in three dimensions can be performed through a GRIN lens. By spatio-temporally shaping a laser beam in the two-photon regime we project several tens of spatially confined targets in a volume of at least 100 × 150 × 300 µm3. We then apply such approach to the optogenetic stimulation of multiple neurons simultaneously in vivo in mice. Our work paves the way for an all-optical investigation of neural circuits in previously inaccessible brain areas.
Collapse
|
8
|
Microstructured Optical Waveguide-Based Endoscopic Probe Coated with Silica Submicron Particles. MATERIALS 2019; 12:ma12091424. [PMID: 31052408 PMCID: PMC6539507 DOI: 10.3390/ma12091424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 11/17/2022]
Abstract
Microstructured optical waveguides (MOW) are of great interest for chemical and biological sensing. Due to the high overlap between a guiding light mode and an analyte filling of one or several fiber capillaries, such systems are able to provide strong sensitivity with respect to variations in the refractive index and the thickness of filling materials. Here, we introduce a novel type of functionalized MOWs whose capillaries are coated by a layer-by-layer (LBL) approach, enabling the alternate deposition of silica particles (SiO2) at different diameters—300 nm, 420 nm, and 900 nm—and layers of poly(diallyldimethylammonium chloride) (PDDA). We demonstrate up to three covering bilayers consisting of 300-nm silica particles. Modifications in the MOW transmission spectrum induced by coating are measured and analyzed. The proposed technique of MOW functionalization allows one to reach novel sensing capabilities, including an increase in the effective sensing area and the provision of a convenient scaffold for the attachment of long molecules such as proteins.
Collapse
|
9
|
Waterhouse DJ, Fitzpatrick CRM, Pogue BW, O'Connor JPB, Bohndiek SE. A roadmap for the clinical implementation of optical-imaging biomarkers. Nat Biomed Eng 2019; 3:339-353. [PMID: 31036890 DOI: 10.1038/s41551-019-0392-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/17/2019] [Indexed: 02/07/2023]
Abstract
Clinical workflows for the non-invasive detection and characterization of disease states could benefit from optical-imaging biomarkers. In this Perspective, we discuss opportunities and challenges towards the clinical implementation of optical-imaging biomarkers for the early detection of cancer by analysing two case studies: the assessment of skin lesions in primary care, and the surveillance of patients with Barrett's oesophagus in specialist care. We stress the importance of technical and biological validations and clinical-utility assessments, and the need to address implementation bottlenecks. In addition, we define a translational roadmap for the widespread clinical implementation of optical-imaging technologies.
Collapse
Affiliation(s)
- Dale J Waterhouse
- Department of Physics, University of Cambridge, Cambridge, UK
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Catherine R M Fitzpatrick
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Engineering, University of Cambridge, Cambridge, UK
| | | | | | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, Cambridge, UK.
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
MEMS Actuators for Optical Microendoscopy. MICROMACHINES 2019; 10:mi10020085. [PMID: 30682852 PMCID: PMC6412441 DOI: 10.3390/mi10020085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 01/21/2023]
Abstract
Growing demands for affordable, portable, and reliable optical microendoscopic imaging devices are attracting research institutes and industries to find new manufacturing methods. However, the integration of microscopic components into these subsystems is one of today's challenges in manufacturing and packaging. Together with this kind of miniaturization more and more functional parts have to be accommodated in ever smaller spaces. Therefore, solving this challenge with the use of microelectromechanical systems (MEMS) fabrication technology has opened the promising opportunities in enabling a wide variety of novel optical microendoscopy to be miniaturized. MEMS fabrication technology enables abilities to apply batch fabrication methods with high-precision and to include a wide variety of optical functionalities to the optical components. As a result, MEMS technology has enabled greater accessibility to advance optical microendoscopy technology to provide high-resolution and high-performance imaging matching with traditional table-top microscopy. In this review the latest advancements of MEMS actuators for optical microendoscopy will be discussed in detail.
Collapse
|
11
|
Waterhouse DJ, Luthman AS, Yoon J, Gordon GSD, Bohndiek SE. Quantitative evaluation of comb-structure correction methods for multispectral fibrescopic imaging. Sci Rep 2018; 8:17801. [PMID: 30542081 PMCID: PMC6290790 DOI: 10.1038/s41598-018-36088-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023] Open
Abstract
Removing the comb artifact introduced by imaging fibre bundles, or 'fibrescopes', for example in medical endoscopy, is essential to provide high quality images to the observer. Multispectral imaging (MSI) is an emerging method that combines morphological (spatial) and chemical (spectral) information in a single data 'cube'. When a fibrescope is coupled to a spectrally resolved detector array (SRDA) to perform MSI, comb removal is complicated by the demosaicking step required to reconstruct the multispectral data cube. To understand the potential for using SRDAs as multispectral imaging sensors in medical endoscopy, we assessed five comb correction methods with respect to five performance metrics relevant to biomedical imaging applications: processing time, resolution, smoothness, signal and the accuracy of spectral reconstruction. By assigning weights to each metric, which are determined by the particular imaging application, our results can be used to select the correction method to achieve best overall performance. In most cases, interpolation gave the best compromise between the different performance metrics when imaging using an SRDA.
Collapse
Affiliation(s)
- Dale J Waterhouse
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - A Siri Luthman
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Jonghee Yoon
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - George S D Gordon
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK.
| |
Collapse
|
12
|
Lee C, Kim JY, Kim C. Recent Progress on Photoacoustic Imaging Enhanced with Microelectromechanical Systems (MEMS) Technologies. MICROMACHINES 2018; 9:E584. [PMID: 30413091 PMCID: PMC6266184 DOI: 10.3390/mi9110584] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 01/01/2023]
Abstract
Photoacoustic imaging (PAI) is a new biomedical imaging technology currently in the spotlight providing a hybrid contrast mechanism and excellent spatial resolution in the biological tissues. It has been extensively studied for preclinical and clinical applications taking advantage of its ability to provide anatomical and functional information of live bodies noninvasively. Recently, microelectromechanical systems (MEMS) technologies, particularly actuators and sensors, have contributed to improving the PAI system performance, further expanding the research fields. This review introduces cutting-edge MEMS technologies for PAI and summarizes the recent advances of scanning mirrors and detectors in MEMS.
Collapse
Affiliation(s)
- Changho Lee
- Department of Nuclear Medicine, Chonnam National University Medical School & Hwasun Hospital, Hwasun 58128, Korea.
| | - Jin Young Kim
- Departments of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| | - Chulhong Kim
- Departments of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
- Departments of Creative IT Engineering and Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| |
Collapse
|
13
|
Amitonova LV, de Boer JF. Compressive imaging through a multimode fiber. OPTICS LETTERS 2018; 43:5427-5430. [PMID: 30383024 DOI: 10.1364/ol.43.005427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/09/2018] [Indexed: 05/20/2023]
Abstract
We propose and experimentally demonstrate a new concept of endo-microscopy: compressive multimode (MM) fiber imaging. We show that the speckle patterns generated in a MM fiber represent an excellent basis for compressive sensing. We demonstrate high-resolution compressive imaging through a fiber probe with the total number of measurements 20 times less than what is required for the standard raster scanning approach to endo-microscopy. Moreover, we show that the inherent optical sectioning of a MM fiber can help to overcome the main problem of compressive sensing and can be used for the imaging of bulk structures. Compressive MM fiber imaging does not require complex wavefront shaping and significantly increases the pre-calibration and imaging speed, creating a new approach to endo-microscopy.
Collapse
|
14
|
Dravid U A, Mazumder N. Types of advanced optical microscopy techniques for breast cancer research: a review. Lasers Med Sci 2018; 33:1849-1858. [PMID: 30311083 DOI: 10.1007/s10103-018-2659-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
Abstract
A cancerous cell is characterized by morphological and metabolic changes which are the key features of carcinogenesis. Adenosine triphosphate (ATP) in cancer cells is primarily produced by aerobic glycolysis rather than oxidative phosphorylation. In normal cellular metabolism, nicotinamide adenine dinucleotide (NADH) is considered as a principle electron donor and flavin adenine dinucleotide (FAD) as an electron acceptor. During metabolism in a cancerous cell, a net increase in NADH is found as the pathway switched from oxidative phosphorylation to aerobic glycolysis. Often during initiation and progression of cancer, the developmental regulation of extracellular matrix (ECM) is restricted and becomes disorganized. Tumor cell behavior is regulated by the ECM in the tumor micro environment. Collagen, which forms the scaffold of tumor micro-environment also influences its behavior. Advanced optical microscopy techniques are useful for determining the metabolic characteristics of cancerous, normal cells and tissues. They can be used to identify the collagen microstructure and the function of NADH, FAD, and lipids in living system. In this review article, various optical microscopy techniques applied for breast cancer research are discussed including fluorescence, confocal, second harmonic generation (SHG), coherent anti-Stokes Raman scattering (CARS), and fluorescence lifetime imaging (FLIM).
Collapse
Affiliation(s)
- Aparna Dravid U
- Department of Biophysics, School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nirmal Mazumder
- Department of Biophysics, School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
15
|
Hu C, Zhu S, Gao L, Popescu G. Endoscopic diffraction phase microscopy. OPTICS LETTERS 2018; 43:3373-3376. [PMID: 30004509 DOI: 10.1364/ol.43.003373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/11/2018] [Indexed: 05/23/2023]
Abstract
In this Letter, we present, to our knowledge, the first endoscopic diffraction phase microscopy (eDPM) system. This instrument consists of a gradient-index-lens-based endoscope probe followed by a DPM module, which enables single-shot phase imaging at a single-cell-level resolution. Using the phase information provided by eDPM, we show that the geometric aberrations associated with the endoscope can be reduced by digitally applying a spectral phase filter to the raw data. The filter function is a linear combination of polynomials with weighting optimized to improve resolution. We validate the principle of the proposed method using reflective semiconductor samples and blood cells. This research extends the current scope of quantitative phase imaging applications, and proves its potential for future in vivo studies.
Collapse
|
16
|
Qiu Z, Piyawattanamatha W. New Endoscopic Imaging Technology Based on MEMS Sensors and Actuators. MICROMACHINES 2017; 8:mi8070210. [PMID: 30400401 PMCID: PMC6190023 DOI: 10.3390/mi8070210] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/14/2022]
Abstract
Over the last decade, optical fiber-based forms of microscopy and endoscopy have extended the realm of applicability for many imaging modalities. Optical fiber-based imaging modalities permit the use of remote illumination sources and enable flexible forms supporting the creation of portable and hand-held imaging instrumentations to interrogate within hollow tissue cavities. A common challenge in the development of such devices is the design and integration of miniaturized optical and mechanical components. Until recently, microelectromechanical systems (MEMS) sensors and actuators have been playing a key role in shaping the miniaturization of these components. This is due to the precision mechanics of MEMS, microfabrication techniques, and optical functionality enabling a wide variety of movable and tunable mirrors, lenses, filters, and other optical structures. Many promising results from MEMS based optical fiber endoscopy have demonstrated great potentials for clinical translation. In this article, reviews of MEMS sensors and actuators for various fiber-optical endoscopy such as fluorescence, optical coherence tomography, confocal, photo-acoustic, and two-photon imaging modalities will be discussed. This advanced MEMS based optical fiber endoscopy can provide cellular and molecular features with deep tissue penetration enabling guided resections and early cancer assessment to better treatment outcomes.
Collapse
Affiliation(s)
- Zhen Qiu
- Department of Radiology, Stanford University, Stanford, CA 94305, USA.
| | - Wibool Piyawattanamatha
- Departments of Biomedical and Electronics Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
17
|
Protti S, Albini A, Viswanathan R, Greer A. Targeting Photochemical Scalpels or Lancets in the Photodynamic Therapy Field—The Photochemist's Role. Photochem Photobiol 2017; 93:1139-1153. [DOI: 10.1111/php.12766] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Stefano Protti
- PhotoGreen Lab Department of Chemistry University of Pavia Pavia Italy
| | - Angelo Albini
- PhotoGreen Lab Department of Chemistry University of Pavia Pavia Italy
| | | | - Alexander Greer
- Department of Chemistry Brooklyn College Brooklyn NY
- Ph.D. Program in Chemistry The Graduate Center of the City University of New York New York City NY
| |
Collapse
|
18
|
Liang W, Hall G, Messerschmidt B, Li MJ, Li X. Nonlinear optical endomicroscopy for label-free functional histology in vivo. LIGHT, SCIENCE & APPLICATIONS 2017; 6:e17082-. [PMID: 29854567 PMCID: PMC5972527 DOI: 10.1038/lsa.2017.82] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 05/06/2017] [Accepted: 05/07/2017] [Indexed: 05/19/2023]
Abstract
This manuscript reports on the first two-photon, label-free, metabolic imaging of biological tissues in vivo at histological resolution on an extremely compact, fiber-optic endomicroscopy platform. This system provides new opportunities for performing non-invasive and functional histological imaging of internal organs in vivo, in situ and in real time. As a routine clinical procedure, traditional histology has made significant impacts on medicine. However, the procedure is invasive and time consuming, suffers random sampling errors, and cannot provide in vivo functional information. The technology reported here features an extremely compact and flexible fiber-optic probe ~2 mm in diameter, enabling direct access to internal organs. Unprecedented two-photon imaging quality comparable to a large bench-top laser scanning microscope was achieved through technological innovations in double-clad fiber optics and miniature objective lenses (among many others). In addition to real-time label-free visualization of biological tissues in situ with subcellular histological detail, we demonstrated for the first time in vivo two-photon endomicroscopic metabolic imaging on a functioning mouse kidney model. Such breakthroughs in nonlinear endoscopic imaging capability present numerous promising opportunities for paradigm-shifting applications in both clinical diagnosis and basic research.
Collapse
Affiliation(s)
- Wenxuan Liang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Gunnsteinn Hall
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Ming-Jun Li
- Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA
| | - Xingde Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- E-mail:
| |
Collapse
|
19
|
Descloux A, Amitonova LV, Pinkse PWH. Aberrations of the point spread function of a multimode fiber due to partial mode excitation. OPTICS EXPRESS 2016; 24:18501-12. [PMID: 27505814 DOI: 10.1364/oe.24.018501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We investigate the point spread function of a multimode fiber. The distortion of the focal spot created on the fiber output facet is studied for a variety of the parameters. We develop a theoretical model of wavefront shaping through a multimode fiber and use it to confirm our experimental results and analyze the nature of the focal distortions. We show that aberration-free imaging with a large field of view can be achieved by using an appropriate number of segments on the spatial light modulator during the wavefront-shaping procedure. The results describe aberration limits for imaging with multimode fibers as in, e.g., microendoscopy.
Collapse
|
20
|
Ducourthial G, Leclerc P, Mansuryan T, Fabert M, Brevier J, Habert R, Braud F, Batrin R, Vever-Bizet C, Bourg-Heckly G, Thiberville L, Druilhe A, Kudlinski A, Louradour F. Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal. Sci Rep 2015; 5:18303. [PMID: 26673905 PMCID: PMC4682136 DOI: 10.1038/srep18303] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/09/2015] [Indexed: 02/08/2023] Open
Abstract
We present a two-photon microendoscope capable of in vivo label-free deep-tissue high-resolution fast imaging through a very long optical fiber. First, an advanced light-pulse spectro-temporal shaping device optimally precompensates for linear and nonlinear distortions occurring during propagation within the endoscopic fiber. This enables the delivery of sub-40-fs duration infrared excitation pulses at the output of 5 meters of fiber. Second, the endoscopic fiber is a custom-made double-clad polarization-maintaining photonic crystal fiber specifically designed to optimize the imaging resolution and the intrinsic luminescence backward collection. Third, a miniaturized fiber-scanner of 2.2 mm outer diameter allows simultaneous second harmonic generation (SHG) and two-photon excited autofluorescence (TPEF) imaging at 8 frames per second. This microendoscope’s transverse and axial resolutions amount respectively to 0.8 μm and 12 μm, with a field-of-view as large as 450 μm. This microendoscope’s unprecedented capabilities are validated during label-free imaging, ex vivo on various fixed human tissue samples, and in vivo on an anesthetized mouse kidney demonstrating an imaging penetration depth greater than 300 μm below the surface of the organ. The results reported in this manuscript confirm that nonlinear microendoscopy can become a valuable clinical tool for real-time in situ assessment of pathological states.
Collapse
Affiliation(s)
| | | | | | - Marc Fabert
- XLIM, UMR-CNRS 7252, Université de Limoges, France
| | | | - Rémi Habert
- PhLAM, UMR-CNRS 8523, Université Lille I, Villeneuve d'Ascq, France
| | - Flavie Braud
- PhLAM, UMR-CNRS 8523, Université Lille I, Villeneuve d'Ascq, France
| | | | - Christine Vever-Bizet
- Université Pierre et Marie Curie-Paris 06, LJP, F-75005 Paris, France.,CNRS, UMR 8237, LJP, F-75005 Paris, France
| | - Geneviève Bourg-Heckly
- Université Pierre et Marie Curie-Paris 06, LJP, F-75005 Paris, France.,CNRS, UMR 8237, LJP, F-75005 Paris, France
| | - Luc Thiberville
- Laboratoire LITIS-QuantIF, EA 4108, Clinique Pneumologique, CHU de Rouen, France
| | - Anne Druilhe
- CRIBL, UMR-CNRS 7276, Université de Limoges, France
| | | | | |
Collapse
|
21
|
Amitonova LV, Mosk AP, Pinkse PWH. Rotational memory effect of a multimode fiber. OPTICS EXPRESS 2015; 23:20569-75. [PMID: 26367909 DOI: 10.1364/oe.23.020569] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We demonstrate the rotational memory effect in a multimode fiber. Rotating the incident wavefront around the fiber core axis leads to a rotation of the resulting pattern of the fiber output without significant changes in the resulting speckle pattern. The rotational memory effect can be exploited for non-invasive imaging or ultrafast high-resolution scanning through a multimode fiber. Our experiments demonstrate this effect over a full range of angles in two experimental configurations.
Collapse
|
22
|
Thomas G, van Voskuilen J, Gerritsen HC, Sterenborg HJCM. Advances and challenges in label-free nonlinear optical imaging using two-photon excitation fluorescence and second harmonic generation for cancer research. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 141:128-38. [PMID: 25463660 DOI: 10.1016/j.jphotobiol.2014.08.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/20/2014] [Accepted: 08/23/2014] [Indexed: 11/28/2022]
Abstract
Nonlinear optical imaging (NLOI) has emerged to be a promising tool for bio-medical imaging in recent times. Among the various applications of NLOI, its utility is the most significant in the field of pre-clinical and clinical cancer research. This review begins by briefly covering the core principles involved in NLOI, such as two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG). Subsequently, there is a short description on the various cellular components that contribute to endogenous optical fluorescence. Later on the review deals with its main theme--the challenges faced during label-free NLO imaging in translational cancer research. While this review addresses the accomplishment of various label-free NLOI based studies in cancer diagnostics, it also touches upon the limitations of the mentioned studies. In addition, areas in cancer research that need to be further investigated by label-free NLOI are discussed in a latter segment. The review eventually concludes on the note that label-free NLOI has and will continue to contribute richly in translational cancer research, to eventually provide a very reliable, yet minimally invasive cancer diagnostic tool for the patient.
Collapse
Affiliation(s)
- Giju Thomas
- Department of Biomedical Engineering and Physics, Academic Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Centre for Optical Diagnostics and Therapy, Erasmus Medical Centre, Post Box 2040, 3000 CA, Rotterdam, the Netherlands.
| | - Johan van Voskuilen
- Department of Molecular Biophysics, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Hans C Gerritsen
- Department of Molecular Biophysics, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - H J C M Sterenborg
- Department of Biomedical Engineering and Physics, Academic Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
23
|
Ehmke T, Nitzsche TH, Knebl A, Heisterkamp A. Molecular orientation sensitive second harmonic microscopy by radially and azimuthally polarized light. BIOMEDICAL OPTICS EXPRESS 2014; 5:2231-46. [PMID: 25071961 PMCID: PMC4102361 DOI: 10.1364/boe.5.002231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/24/2014] [Accepted: 05/27/2014] [Indexed: 05/20/2023]
Abstract
We demonstrate the possibility to switch the z-polarization component of the illumination in the vicinity of the focus of high-NA objective lenses by applying radially and azimuthally polarized incident light. The influence of the field distribution on nonlinear effects was first investigated by the means of simulations. These were performed for high-NA objective lenses commonly used in nonlinear microscopy. Special attention is paid to the influence of the polarization of the incoming field. For linearly, circularly and radially polarized light a considerable polarization component in z-direction is generated by high NA focusing. Azimuthal polarization is an exceptional case: even for strong focusing no z-component arises. Furthermore, the influence of the input polarization on the intensity contributing to the nonlinear signal generation was computed. No distinct difference between comparable input polarization states was found for chosen thresholds of nonlinear signal generation. Differences in signal generation for radially and azimuthally polarized vortex beams were experimentally evaluated in native collagen tissue (porcine cornea). The findings are in good agreement with the theoretical predictions and display the possibility to probe the molecular orientation along the optical axis of samples with known nonlinear properties. The combination of simulations regarding the nonlinear response of materials and experiments with different sample orientations and present or non present z-polarization could help to increase the understanding of nonlinear signal formation in yet unstudied materials.
Collapse
Affiliation(s)
- Tobias Ehmke
- Institute of Applied Optics, Friedrich-Schiller-University Jena, 07743 Jena,
Germany
| | - Tim Heiko Nitzsche
- Institute of Applied Optics, Friedrich-Schiller-University Jena, 07743 Jena,
Germany
| | - Andreas Knebl
- Institute of Applied Optics, Friedrich-Schiller-University Jena, 07743 Jena,
Germany
| | - Alexander Heisterkamp
- Institute of Applied Optics, Friedrich-Schiller-University Jena, 07743 Jena,
Germany
| |
Collapse
|
24
|
GU M, BAO H, KANG H. Fibre-optical microendoscopy. J Microsc 2014; 254:13-18. [DOI: 10.1111/jmi.12119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 02/08/2014] [Indexed: 11/30/2022]
Affiliation(s)
- M. GU
- Centre for Micro-Photonics; Faculty of Science; Engineering and Technology; Swinburne University of Technology; Hawthorn Victoria Australia
| | - H. BAO
- Centre for Micro-Photonics; Faculty of Science; Engineering and Technology; Swinburne University of Technology; Hawthorn Victoria Australia
| | - H. KANG
- Centre for Micro-Photonics; Faculty of Science; Engineering and Technology; Swinburne University of Technology; Hawthorn Victoria Australia
| |
Collapse
|
25
|
Gu M, Kang H, Li X. Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam. Sci Rep 2014; 4:3627. [PMID: 24406685 PMCID: PMC3887375 DOI: 10.1038/srep03627] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/10/2013] [Indexed: 11/09/2022] Open
Abstract
Although fiber-optical two-photon endoscopy has been recognized as a potential high-resolution diagnostic and therapeutic procedure in vivo, its resolution is limited by the optical diffraction nature to a few micrometers due to the low numerical aperture of an endoscopic objective. On the other hand, stimulated emission depletion (STED) achieved by a circularly-polarized vortex beam has been used to break the diffraction-limited resolution barrier in a bulky microscope. It has been a challenge to apply the STED principle to a fiber-optical two-photon endoscope as a circular polarization state cannot be maintained due to the birefringence of a fiber. Here, we demonstrate the first fiber-optical STED two-photon endoscope using an azimuthally-polarized beam directly generated from a double-clad fiber. As such, the diffraction-limited resolution barrier of fiber-optical two-photon endoscopy can be broken by a factor of three. Our new accomplishment has paved a robust way for high-resolution in vivo biomedical studies.
Collapse
Affiliation(s)
- Min Gu
- Centre for Micro-Photonics, Faculty of Engineering & Industrial Sciences, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Hong Kang
- Centre for Micro-Photonics, Faculty of Engineering & Industrial Sciences, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Xiangping Li
- Centre for Micro-Photonics, Faculty of Engineering & Industrial Sciences, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
26
|
Tu H, Boppart SA. Coherent fiber supercontinuum for biophotonics. LASER & PHOTONICS REVIEWS 2013; 7:10.1002/lpor.201200014. [PMID: 24358056 PMCID: PMC3864867 DOI: 10.1002/lpor.201200014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/05/2012] [Indexed: 05/17/2023]
Abstract
Biophotonics and nonlinear fiber optics have traditionally been two independent fields. Since the discovery of fiber-based supercontinuum generation in 1999, biophotonics applications employing incoherent light have experienced a large impact from nonlinear fiber optics, primarily because of the access to a wide range of wavelengths and a uniform spatial profile afforded by fiber supercontinuum. However, biophotonics applications employing coherent light have not benefited from the most well-known techniques of supercontinuum generation for reasons such as poor coherence (or high noise), insufficient controllability, and inadequate portability. Fortunately, a few key techniques involving nonlinear fiber optics and femtosecond laser development have emerged to overcome these critical limitations. Despite their relative independence, these techniques are the focus of this review, because they can be integrated into a low-cost portable biophotonics source platform. This platform can be shared across many different areas of research in biophotonics, enabling new applications such as point-of-care coherent optical biomedical imaging.
Collapse
Affiliation(s)
- Haohua Tu
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephen A Boppart
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
27
|
Park KD, Kim YH, Park JH, Yim SY, Jeong MS. Note: automatic laser-to-optical-fiber coupling system based on monitoring of Raman scattering signal. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:096104. [PMID: 23020432 DOI: 10.1063/1.4753925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We developed an automatic laser-to-optical-fiber coupling (ALOC) system that is based on the difference in the Raman scattering signals of the core and cladding of the optical fiber. This system can be easily applied to all fields of fiber optics since it can perform automatic optical coupling within a few seconds regardless of the core size or the condition of the output end of the optical fiber. The coupling time for a commercial single-mode fiber for a wavelength of 632.8 nm (core diameter: 9 μm, cladding diameter: 125 μm) is ~1.5 s. The ALOC system was successfully applied to single-mode-fiber Raman endoscopy for the measurement of the Raman spectrum of carbon nanotubes.
Collapse
Affiliation(s)
- Kyoung-Duck Park
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| | | | | | | | | |
Collapse
|
28
|
Schulz K, Sydekum E, Krueppel R, Engelbrecht CJ, Schlegel F, Schröter A, Rudin M, Helmchen F. Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex. Nat Methods 2012; 9:597-602. [PMID: 22561989 DOI: 10.1038/nmeth.2013] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 03/28/2012] [Indexed: 01/10/2023]
Abstract
Functional magnetic resonance imaging (fMRI) based on blood oxygen level-dependent (BOLD) contrast is widely used for probing brain activity, but its relationship to underlying neural activity remains elusive. Here, we combined fMRI with fiber-optic recordings of fluorescent calcium indicator signals to investigate this relationship in rat somatosensory cortex. Electrical forepaw stimulation (1-10 Hz) evoked fast calcium signals of neuronal origin that showed frequency-dependent adaptation. Additionally, slower calcium signals occurred in astrocyte networks, as verified by astrocyte-specific staining and two-photon microscopy. Without apparent glia activation, we could predict BOLD responses well from simultaneously recorded fiber-optic signals, assuming an impulse response function and taking into account neuronal adaptation. In cases with glia activation, we uncovered additional prolonged BOLD signal components. Our findings highlight the complexity of fMRI BOLD signals, involving both neuronal and glial activity. Combined fMRI and fiber-optic recordings should help to clarify cellular mechanisms underlying BOLD signals.
Collapse
Affiliation(s)
- Kristina Schulz
- Department of Neurophysiology, Brain Research Institute, University of Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Perry SW, Burke RM, Brown EB. Two-photon and second harmonic microscopy in clinical and translational cancer research. Ann Biomed Eng 2012; 40:277-91. [PMID: 22258888 DOI: 10.1007/s10439-012-0512-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 01/09/2012] [Indexed: 11/30/2022]
Abstract
Application of two-photon microscopy (TPM) to translational and clinical cancer research has burgeoned over the last several years, as several avenues of pre-clinical research have come to fruition. In this review, we focus on two forms of TPM-two-photon excitation fluorescence microscopy, and second harmonic generation microscopy-as they have been used for investigating cancer pathology in ex vivo and in vivo human tissue. We begin with discussion of two-photon theory and instrumentation particularly as applicable to cancer research, followed by an overview of some of the relevant cancer research literature in areas that include two-photon imaging of human tissue biopsies, human skin in vivo, and the rapidly developing technology of two-photon microendoscopy. We believe these and other evolving two-photon methodologies will continue to help translate cancer research from the bench to the bedside, and ultimately bring minimally invasive methods for cancer diagnosis and treatment to therapeutic reality.
Collapse
Affiliation(s)
- Seth W Perry
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA.
| | | | | |
Collapse
|
30
|
Knorr F, Yankelevich DR, Liu J, Wachsmann-Hogiu S, Marcu L. Two-photon excited fluorescence lifetime measurements through a double-clad photonic crystal fiber for tissue micro-endoscopy. JOURNAL OF BIOPHOTONICS 2012; 5:14-9. [PMID: 22045513 PMCID: PMC4128622 DOI: 10.1002/jbio.201100070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 05/26/2023]
Abstract
This paper presents an endoscopic configuration for measurements of tissue autofluorescence using two-photon excitation and time-correlated single photon counting detection through a double-clad photonic crystal fiber (DC-PCF) without pre-chirping of laser pulses. The instrument performance was evaluated by measurements of fluorescent standard dyes, biological fluorophores (collagen and elastin), and tissue specimens (muscle, cartilage, tendon). Current results demonstrate the ability of this system to accurately retrieve the fluorescence decay profile and lifetime of these samples. This simple setup, which offers larger penetration depth than one-photon-based techniques, may be combined with morphology-yielding techniques such as photoacoustic and ultrasound imaging.
Collapse
Affiliation(s)
- Florian Knorr
- Department of Biomedical Engineering Davis, University of California, Davis, California 95616, USA
- NSF Center for Biophotonics Science and Technology, University of California, Davis, Sacramento, California 95817, USA
| | - Diego R. Yankelevich
- Department of Biomedical Engineering Davis, University of California, Davis, California 95616, USA
| | - Jing Liu
- Department of Biomedical Engineering Davis, University of California, Davis, California 95616, USA
| | - Sebastian Wachsmann-Hogiu
- NSF Center for Biophotonics Science and Technology, University of California, Davis, Sacramento, California 95817, USA
- Department of Pathology and Internal Medicine, University of California, Davis, Sacramento, California 95817, USA
| | - Laura Marcu
- Department of Biomedical Engineering Davis, University of California, Davis, California 95616, USA
| |
Collapse
|
31
|
Li Z, Yang Z, Fu L. Scanning properties of a resonant fiber-optic piezoelectric scanner. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:123707. [PMID: 22225224 DOI: 10.1063/1.3671290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We develop a resonant fiber-optic scanner using four piezoelectric elements arranged as a square tube, which is efficient to manufacture and drive. Using coupled-field model based on finite element method, scanning properties of the scanner, including vibration mode, resonant frequency, and scanning range, are numerically studied. We also physically measure the effects of geometry sizes and drive signals on the scanning properties, thus providing a foundation for general purpose designs. A scanner adopted in a prototype of imaging system, with a diameter of ~2 mm and driven by a voltage of 10 V (peak to peak), demonstrates the scanning performance by obtaining an image of resolution target bars. The proposed fiber-optic scanner can be applied to micro-endoscopy that requires two-dimensional scanning of fibers.
Collapse
Affiliation(s)
- Zhi Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | |
Collapse
|
32
|
Lin J, Lu F, Zheng W, Xu S, Tai D, Yu H, Huang Z. Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:116024. [PMID: 22112129 DOI: 10.1117/1.3655353] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We report the implementation of a unique integrated coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), and two-photon excitation fluorescence (TPEF) microscopy imaging technique developed for label-free monitoring of the progression of liver steatosis and fibrosis generated in a bile duct ligation (BDL) rat model. Among the 21 adult rats used in this study, 18 rats were performed with BDL surgery and sacrificed each week from weeks 1 to 6 (n = 3 per week), respectively; whereas 3 rats as control were sacrificed at week 0. Colocalized imaging of the aggregated hepatic fats, collagen fibrils, and hepatocyte morphologies in liver tissue is realized by using the integrated CARS, SHG, and TPEF technique. The results show that there are significant accumulations of hepatic lipid droplets and collagen fibrils associated with severe hepatocyte necrosis in BDL rat liver as compared to a normal liver tissue. The volume of normal hepatocytes keeps decreasing and the fiber collagen content in BDL rat liver follows a growing trend until week 6; whereas the hepatic fat content reaches a maximum in week 4 and then appears to stop growing in week 6, indicating that liver steatosis and fibrosis induced in a BDL rat liver model may develop at different rates. This work demonstrates that the integrated CARS and multiphoton microscopy imaging technique has the potential to provide an effective means for early diagnosis and detection of liver steatosis and fibrosis without labeling.
Collapse
Affiliation(s)
- Jian Lin
- National University of Singapore, Optical Bioimaging Laboratory, Department of Bioengineering, Faculty of Engineering, Singapore
| | | | | | | | | | | | | |
Collapse
|
33
|
Domke JF, Rhee CH, Liu Z, Wang TD, Oldham KR. Amplifying transmission and compact suspension for a low-profile, large-displacement piezoelectric actuator. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2011; 21:067004. [PMID: 23180908 PMCID: PMC3505072 DOI: 10.1088/0960-1317/21/6/067004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A low-profile, piezoelectrically-driven microactuator is presented that achieves very large stroke lengths within size constraints suitable for certain endoscopic microscopy applications. The actuator utilizes a transmission consisting of lever arm and chevron-beam structures to amplify high-force, low-displacement motion of a ceramic lead-zirconate-titanate (PZT) brick into large displacement of a translational platform. For ±120 V input, a full range of 486 μm of motion is achieved, with natural frequency greater than 500 Hz. This corresponds to an anticipated In addition, the lateral translational platform is supported by a redesign of common folded silicon flexures to provide large transverse and vertical stiffness when the width of the actuator is limited.
Collapse
Affiliation(s)
- J F Domke
- Department of Microsystems Engineering, University of Freiburg - IMTEK, Georges-Koehler-Allee 102, 79110 Freiburg, Germany, visiting scholar at the Department of Mechanical Engineering, University of Michigan, 2350 Hayward Ave, Ann Arbor, MI 48109, USA
| | - C-H Rhee
- Department of Mechanical Engineering, University of Michigan, 2350 Hayward Ave, Ann Arbor, MI 48109, USA
| | - Z Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - T D Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - K R Oldham
- Department of Mechanical Engineering, University of Michigan, 2350 Hayward Ave, Ann Arbor, MI 48109, USA
| |
Collapse
|
34
|
Mirkhalaf M, Murukeshan VM, Tor SB, Shinoj VK, Sathiyamoorthy K. Characteristics of stand-alone microlenses in fiber-based fluorescence imaging applications. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:043110. [PMID: 21528998 DOI: 10.1063/1.3581217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Microlens-ended fibers, which have found tremendous interest in the recent past, find potential biomedical applications, in particular, in endoscopic imaging. The work presented in this paper focuses on the stand-alone microlenses along with custom-fabricated specialty optical fiber, such as imaging fiber, for probe imaging applications. Stand-alone self-aligned microlenses have been fabricated employing microcompression molding and then attached at the end facet of imaging fiber. A detailed characterization of the fabricated microlens is carried and it demonstrates appropriate focusing ability, high fluorescence collection efficiency and imaging ability for biomedical applications. The surface roughness of the microlens is found to be 25 nm with a minimum spot size of 38 μm. The probe imaging system is found to be able to image the fluorescence microspheres of 10 μm size. The collection efficiency of the fiber probe with lens found to be enhanced by three times approximately.
Collapse
Affiliation(s)
- M Mirkhalaf
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | | | | | | | | |
Collapse
|
35
|
Ducros M, van 't Hoff M, van't Hoff M, Evrard A, Seebacher C, Schmidt EM, Charpak S, Oheim M. Efficient large core fiber-based detection for multi-channel two-photon fluorescence microscopy and spectral unmixing. J Neurosci Methods 2011; 198:172-80. [PMID: 21458489 DOI: 10.1016/j.jneumeth.2011.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/12/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
Abstract
Low-magnification high-numerical aperture objectives maximize the collection efficiency for scattered two-photon excited fluorescence (2PEF), but non-descanned detection schemes for such objectives demand optical components much bigger than standard microscope optics. Fiber coupling offers the possibility of removing bulky multi-channel detectors from the collection site, but coupling and transmission losses are generally believed to outweigh the benefits of optical fibers. We present here two new developments based on large-core fiber-optic fluorescence detection that illustrate clear advantages over conventional air-coupled 2PEF detection schemes. First, with minimal modifications of a commercial microscope, we efficiently couple the output of a 20×/NA0.95 objective to a large-core liquid light guide and we obtain a 7-fold collection gain when imaging astrocytes at 100 μm depth in acute brain slices of adult ALDH1L1-GFP mice. Second, combining 2PEF microscopy and 4-color detection on a custom microscope, mode scrambling inside a 2-mm plastic optical fiber is shown to cancel out the spatially non-uniform spectral sensitivity observed with air-coupled detectors. Spectral unmixing of images of brainbow mice taken with a fiber-coupled detector revealed a uniform color distribution of hippocampal neurons across a large field of view. Thus, fiber coupling improves both the efficiency and the homogeneity of 2PEF collection.
Collapse
|
36
|
Achazi G, Patas A, Weise F, Pawłowska M, Lindinger A. Reconstruction of polarization-shaped laser pulses after a hollow-core fiber using backreflection. APPLIED OPTICS 2011; 50:915-923. [PMID: 21343971 DOI: 10.1364/ao.50.000915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We present a method to reconstruct the pulse shape of polarization-shaped femtosecond laser pulses after a hollow-core photonic crystal fiber by reflecting the pulses back through the fiber. First, a procedure is introduced to receive the optical fiber properties and generate parametrically shaped pulses after propagation through the fiber. Changes of the fiber's birefringence by mechanical stress are examined to investigate the correlation between the pulse shapes after one and two passes through the fiber. Finally, we demonstrate the characterization of the pulse after one pass through the fiber by calculating the pulse shape from the measured pulse after two passes.
Collapse
Affiliation(s)
- Georg Achazi
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany. ‐berlin.de
| | | | | | | | | |
Collapse
|
37
|
Murugkar S, Smith B, Srivastava P, Moica A, Naji M, Brideau C, Stys PK, Anis H. Miniaturized multimodal CARS microscope based on MEMS scanning and a single laser source. OPTICS EXPRESS 2010; 18:23796-804. [PMID: 21164724 DOI: 10.1364/oe.18.023796] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We demonstrate a novel miniaturized multimodal coherent anti-Stokes Raman scattering (CARS) microscope based on microelectromechanical systems (MEMS) scanning mirrors and custom miniature optics. A single Ti:sapphire femtosecond pulsed laser is used as the light source to produce the CARS, two photon excitation fluorescence (TPEF) and second harmonic generation (SHG) images using this miniaturized microscope. The high resolution and distortion-free images obtained from various samples such as a USAF target, fluorescent and polystyrene microspheres and biological tissue successfully demonstrate proof of concept, and pave the path towards future integration of parts into a handheld multimodal CARS probe for non- or minimally-invasive in vivo imaging.
Collapse
Affiliation(s)
- Sangeeta Murugkar
- School of Information Technology and Engineering (SITE), University of Ottawa 800 King Edward, P.O. Box 450, Stn A, Ottawa, Ontario, K1N 6N5, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Dela Cruz JM, McMullen JD, Williams RM, Zipfel WR. Feasibility of using multiphoton excited tissue autofluorescence for in vivo human histopathology. BIOMEDICAL OPTICS EXPRESS 2010; 1:1320-1330. [PMID: 21258552 PMCID: PMC3018110 DOI: 10.1364/boe.1.001320] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/27/2010] [Accepted: 10/29/2010] [Indexed: 05/18/2023]
Abstract
Rapid and direct imaging of microscopic tissue morphology and pathology can be achieved by multiphoton imaging of intrinsic tissue fluorophores and second harmonic signals. Engineering parameters for developing this technology for clinical applications include excitation levels and collection efficiencies required to obtain diagnostic quality images from different tissue types and whether these levels are mutagenic. Here we provide data on typical average powers required for high signal-to-noise in vivo tissue imaging and assess the risk potential of these irradiance levels using a mammalian cell gene mutation assay. Exposure times of ~16 milliseconds per cell to 760 nm, ~200 fs raster-scanned laser irradiation delivered through a 0.75 NA objective produced negligible mutagenicity at powers up to about 50 mW.
Collapse
Affiliation(s)
| | - Jesse D. McMullen
- Department of Biomedical Engineering, Cornell University, Ithaca NY 14853
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | | | - Warren R. Zipfel
- Department of Biomedical Engineering, Cornell University, Ithaca NY 14853
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
39
|
Zhao Y, Nakamura H, Gordon RJ. Development of a versatile two-photon endoscope for biological imaging. BIOMEDICAL OPTICS EXPRESS 2010; 1:1159-1172. [PMID: 21258538 PMCID: PMC3018080 DOI: 10.1364/boe.1.001159] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/21/2010] [Accepted: 10/03/2010] [Indexed: 05/19/2023]
Abstract
We describe a versatile, catheter-type two-photon probe, designed for in vivo and ex vivo imaging of the aqueous outflow pathway in the eye. The device consists of a silica double cladding fiber used for laser delivery and fluorescence collection, a spiral fiber scanner driven by a miniature piezoelectric tube, and an assembly of three micro-size doublet achromatic lenses used for focusing the laser and collecting the two-photon excitation signal. All the components have a maximum diameter of 2 mm and are enclosed in a length of 12-gauge stainless steel hypodermic tubing having an outer diameter of 2.8 mm. The lateral and axial resolutions of the probe are measured to be 1.5 μm and 9.2 μm, respectively. Different lens configurations and fibers are evaluated by comparing their spatial resolutions and fluorescence signal collection efficiencies. Doublet achromatic lenses and a double cladding fiber with a high inner cladding numerical aperture are found to produce a high signal collection efficiency, which is essential for imaging live tissues. Simple methods for reducing image distortions are demonstrated. Images of human trabecular meshwork tissue are successfully obtained with this miniature two-photon microscope.
Collapse
Affiliation(s)
- Youbo Zhao
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hiroshi Nakamura
- Department of Ophthalmology, Summa Health System, Akron, OH 44309, USA
| | - Robert J. Gordon
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
40
|
Doronina-Amitonova LV, Fedotov IV, Ivashkina OI, Zots MA, Fedotov AB, Anokhin KV, Zheltikov AM. Fiber-optic probes for in vivo depth-resolved neuron-activity mapping. JOURNAL OF BIOPHOTONICS 2010; 3:660-669. [PMID: 20680974 DOI: 10.1002/jbio.201000041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Specialty fiber probes are used for in vivo depth-resolved mapping of neuron activity through the optical detection of fluorescent-protein reporters expressed inside the living brain of anesthetized transgenic mice. Supercontinuum radiation produced by highly nonlinear photonic-crystal fibers is employed to demonstrate a simultaneous multicolor interrogation of several biomarkers in a model aqueous solution system, thus suggesting the way toward a multiplex mapping of various types of neuron dynamics inside the living brain.
Collapse
|
41
|
Jun CS, Kim BY, Park JH, Lee JY, Lee ES, Yeom DI. Investigation of a four-wave mixing signal generated in fiber-delivered CARS microscopy. APPLIED OPTICS 2010; 49:3916-21. [PMID: 20648166 DOI: 10.1364/ao.49.003916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We studied the nonlinear signal generated in the fiber at an anti-Stokes wavelength during the delivery of the picosecond (ps) pump and Stokes beams in coherent anti-Stokes Raman scattering (CARS) microscopy. A small non-phase-matched four-wave mixing (FWM) signal was prevalently observed in the fiber at the power level where other nonlinear processes, including self-phase modulation and cross-phase modulation, were well suppressed. We analyzed the features of the FWM signal generation by varying the location of temporal overlap between two input pulses in the fiber to compare this to the CARS signal generated in the sample. Numerical modeling based on the nonlinear Schrödinger equation was also conducted and clearly explains the results in the experiment. In addition, we experimentally verified the interferometric feature of this FWM signal with the CARS signal by employing a phase-shifting unit, which potentially suggests the use of the FWM signal as a local oscillator for the interferometric CARS system.
Collapse
Affiliation(s)
- Chang Su Jun
- Fiber Optics Laboratory, Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, South Korea
| | | | | | | | | | | |
Collapse
|
42
|
Bao H, Boussioutas A, Reynolds J, Russell S, Gu M. Imaging of goblet cells as a marker for intestinal metaplasia of the stomach by one-photon and two-photon fluorescence endomicroscopy. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:064031. [PMID: 20059269 DOI: 10.1117/1.3269681] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Goblet cells are a requirement for the diagnosis of intestinal metaplasia of the stomach. The gastric mucosa is lined by a monolayer of columnar epithelium with some specialization at the crypts, but there are no goblet cells in normal gastric epithelium. The appearance of goblet cells in gastric epithelium is an indicator of potential malignant progression toward adenocarcinoma. Therefore, in vivo three-dimensional imaging of goblet cells is essential for diagnoses of a premalignant stage of gastric cancers called intestinal metaplasia. We used mouse intestine, which has goblet cells, as a model of intestinal metaplasia. One-photon confocal fluorescence endomicroscopy and two-photon fluorescence endomicroscopy are employed for 3-D imaging of goblet cells. The penetration depth, the sectioning ability, and the photobleaching information of imaging are demonstrated. Both endomicroscopy techniques can three-dimensionally observe goblet cells in mouse large intestine and achieve an imaging depth of 176 microm. The two-photon fluorescence endomicroscopy shows higher resolution and contrast of the imaging sections at each depth. In addition, two-photon fluorescence endomicroscopy also has advantages of sectioning ability and less photobleaching. These results prove that two-photon fluorescence endomicroscopy is advantageous in diagnoses of a premalignant stage of gastric cancers.
Collapse
Affiliation(s)
- Hongchun Bao
- Swinburne University of Technology, Center for Micro-Photonics, Faculty of Engineering & Industrial Sciences, P.O. Box 218 John Street, Hawthorn, Victoria 3122, Australia
| | | | | | | | | |
Collapse
|
43
|
Wilt BA, Burns LD, Wei Ho ET, Ghosh KK, Mukamel EA, Schnitzer MJ. Advances in light microscopy for neuroscience. Annu Rev Neurosci 2009; 32:435-506. [PMID: 19555292 DOI: 10.1146/annurev.neuro.051508.135540] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the work of Golgi and Cajal, light microscopy has remained a key tool for neuroscientists to observe cellular properties. Ongoing advances have enabled new experimental capabilities using light to inspect the nervous system across multiple spatial scales, including ultrastructural scales finer than the optical diffraction limit. Other progress permits functional imaging at faster speeds, at greater depths in brain tissue, and over larger tissue volumes than previously possible. Portable, miniaturized fluorescence microscopes now allow brain imaging in freely behaving mice. Complementary progress on animal preparations has enabled imaging in head-restrained behaving animals, as well as time-lapse microscopy studies in the brains of live subjects. Mouse genetic approaches permit mosaic and inducible fluorescence-labeling strategies, whereas intrinsic contrast mechanisms allow in vivo imaging of animals and humans without use of exogenous markers. This review surveys such advances and highlights emerging capabilities of particular interest to neuroscientists.
Collapse
Affiliation(s)
- Brian A Wilt
- James H. Clark Center and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
44
|
Mansfield J, Yu J, Attenburrow D, Moger J, Tirlapur U, Urban J, Cui Z, Winlove P. The elastin network: its relationship with collagen and cells in articular cartilage as visualized by multiphoton microscopy. J Anat 2009; 215:682-91. [PMID: 19796069 DOI: 10.1111/j.1469-7580.2009.01149.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A combination of two-photon fluorescence (TPF), second harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) imaging has been used to investigate the elastin fibre network in healthy equine articular cartilage from the metacarpophalangeal joint. The elastin fibres were identified using their intrinsic two-photon fluorescence and immuno-staining was used to confirm the identity of these fibres. SHG was used to reveal the collagen matrix and the collagen fibre orientations were determined from their SHG polarization sensitivity, while CARS was used to clearly delineate the cell boundaries. Extensive elastin fibre networks were found in all the joint regions investigated. The elastin was found predominantly in the superficial zone (upper 50 microm) and was aligned parallel to the articular surface. Elastin was also detected in the pericellular matrix surrounding the superficial chondrocytes; however, individual fibres could not be resolved in this region. Variations in the density and organization of the fibres were observed in different regions on the joint surface.
Collapse
Affiliation(s)
- Jessica Mansfield
- Biophysics, School of Physics, University of Exeter, Exeter EX4 4QL, UK.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang HW, Langohr IM, Sturek M, Cheng JX. Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy. Arterioscler Thromb Vasc Biol 2009; 29:1342-8. [PMID: 19520975 PMCID: PMC2741426 DOI: 10.1161/atvbaha.109.189316] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The purpose of this study was to assess the ability of label-free multimodal nonlinear optical (NLO) microscopy to characterize, and thus enable quantitative in situ analyses of, different atherosclerotic lesion types, according to the original scheme suggested by the AHA Committee. METHODS AND RESULTS Iliac arteries were taken from 24 male Ossabaw pigs divided into lean control and metabolic syndrome groups and were imaged by multimodal NLO microscopy where sum-frequency generation (SFG) and 2-photon excitation fluorescence (TPEF) were integrated on a coherent anti-Stokes Raman scattering (CARS) microscope platform. Foam cells, lipid deposits, matrices, and fibrous caps were visualized with submicron 3D resolution. Starting from the adaptive intimal thickening in the initial stage to the fibrous atheroma or mineralization in the advanced stages, lesions were visualized without labels. Histological staining of each lesion confirmed the lesion stages. Lipid and collagen contents were quantitatively analyzed based on the CARS and SFG signals. Lipid accumulation in thickened intima culminated in type IV whereas the highest collagen deposition was found in Type V lesions. Luminal CARS imaging showed the capability of viewing the location of superficial foam cells that indicate relatively active locus in a lesion artery. CONCLUSIONS We have demonstrated the capability of CARS-based multimodal NLO microscopy to interrogate different stages of lesion development with subcellular detail to permit quantitative analysis of lipid and collagen contents.
Collapse
Affiliation(s)
- Han-Wei Wang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907
| | - Ingeborg M. Langohr
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907
| | - Michael Sturek
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
46
|
Le Harzic R, Riemann I, Weinigel M, König K, Messerschmidt B. Rigid and high-numerical-aperture two-photon fluorescence endoscope. APPLIED OPTICS 2009; 48:3396-400. [PMID: 19543347 DOI: 10.1364/ao.48.003396] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present a rigid miniaturized optical system block fiber-optic two-photon endoscope based on a compact two-axis piezo scanner system and a miniature high (0.65) NA GRIN lens objective. The optical system is scanned as a whole by a piezo scanner allowing always an on-axis beam irradiation of the optical system. A photonic crystal fiber is used for excitation and ultrashort laser pulses can be delivered with typical power up to 100 mW at 800 nm. Two-photon fluorescence signal is collected by the use of a multimode fiber. Lateral resolution values for the system were experimentally measured to be 0.67 microm vertically and 1.08 microm horizontally. Axial resolution was found to be 5.8 microm. The endoscope is highly flexible and controllable in terms of time acquisition, resolution, and magnification. Fluorescence images were acquired over a 420 microm x 420 microm field of view. Results presented here demonstrate the ability of the system to resolve subcellular details and the potential of the technology for in vivo applications.
Collapse
Affiliation(s)
- R Le Harzic
- Fraunhofer Institute of Biomedical Engineering (IBMT), Ensheimer Strasse 48, D-66386 St. Ingbert, Germany.
| | | | | | | | | |
Collapse
|
47
|
Abstract
A miniaturized probe that possesses a diameter of 0.4 mm is developed for two-photon-excited fluorescence imaging. The miniaturized probe was manufactured by the collapse of air holes and the formation of a lens on the tip of a double-clad photonic crystal fiber (DCPCF) using electric arc discharging from a conventional fusion splicer. As a result, a femtosecond pulsed laser beam delivered by the DCPCF can be directly focused on a sample for two-photon fluorescence imaging. The numerical aperture of the lensed DCPCF is 0.12. The corresponding focal spot size is 6 microm, which is close to the diffraction limit. This 0.4-mm-diamter probe can provide clear two-photon-excited fluorescence images of 10-microm-diameter fluorescent microspheres.
Collapse
Affiliation(s)
- Hongchun Bao
- Centre for Micro-Photonics, Faculty of Engineering & Industrial Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | | |
Collapse
|
48
|
Le Harzic R, Weinigel M, Riemann I, König K, Messerschmidt B. Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens. OPTICS EXPRESS 2008; 16:20588-20596. [PMID: 19065197 DOI: 10.1364/oe.16.020588] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report on a nonlinear optical endoscope that adopts a hollow core photonic crystal fiber for single-mode illumination delivery and a multimode one for signal collection. Femtosecond laser pulses up to 100 mW can be delivered at a centered wavelength of 800 nm. The two-photon fluorescence response of our system is shown to have axial and lateral resolutions of 5.8 microm and 0.6 microm respectively. Fluorescence detection was obtained at different wavelengths between 790 and 840 nm which could allow SHG detection for example. The maximal field-of-view of the acquired images is 420 microm x 420 microm. Detection efficiency is greater by using an avalanche photodiode in comparison to a photo multiplier tube. Results presented here demonstrate the ability of the system to resolve cellular details and the potential of the device for future in vivo imaging diagnosis.
Collapse
Affiliation(s)
- R Le Harzic
- Fraunhofer Institute for Biomedical Technology (IBMT), Ensheimer Strasse 48, D-66386 St. Ingbert, Germany.
| | | | | | | | | |
Collapse
|
49
|
Larson AM, Yeh AT. Delivery of sub-10-fs pulses for nonlinear optical microscopy by polarization-maintaining single mode optical fiber. OPTICS EXPRESS 2008; 16:14723-14730. [PMID: 18795010 DOI: 10.1364/oe.16.014723] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Broadband, sub-10-fs pulses, can be propagated through polarization-maintaining single mode fiber (PMF) for use in nonlinear optical microscopy (NLOM). We demonstrate delivery of near transform-limited, 1 nJ pulses from a Ti:Al(2)O(3) (75 MHz repetition rate) oscillator via PMF to the NLOM focal plane while maintaining 120 nm of bandwidth. Negative group delay dispersion (GDD) introduced to pre-compensate normal dispersion of the optical fiber and microscope optics ensured linear pulse propagation through the PMF. The minimized time-bandwidth product of the laser pulses at the NLOM focus allowed the nonlinear excitation of multiple fluorophores simultaneously without central wavelength tuning. Polarization sensitive NLOM imaging using second harmonic generation in collagen was demonstrated using PMF delivered pulses. Two-photon excited fluorescence spectra and second harmonic images taken with and without the fiber indicates that the fiber based system is capable of generating optical signals that are within a factor of two to three of our traditional NLOM.
Collapse
Affiliation(s)
- Adam M Larson
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
50
|
Bao H, Allen J, Pattie R, Vance R, Gu M. Fast handheld two-photon fluorescence microendoscope with a 475 microm x 475 microm field of view for in vivo imaging. OPTICS LETTERS 2008; 33:1333-5. [PMID: 18552949 DOI: 10.1364/ol.33.001333] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A fast handheld two-photon fiber-optic fluorescence endoscope for three-dimensional (3D) in vivo cellular imaging is developed. The compact handheld probe of the two-photon endoscope can simply be placed into contact with the target tissue to reveal clear 3D surface and subsurface histological images without biopsy. The new system has, to the best of our knowledge, the largest field of view (FOV) of 475 microm x 475 microm and a 3D imaging volume larger than 475 microm x 475 microm x 250 microm. A real-time two-photon fluorescence image is displayed at 0.4 mm(2)/s. The lateral and axial resolutions of the two-photon fluorescence endoscope are better than 1 and 14.5 microm, respectively.
Collapse
Affiliation(s)
- Hongchun Bao
- The Center for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia.
| | | | | | | | | |
Collapse
|