1
|
Kim JY, Yang JE, Mitchell JW, English LA, Yang SZ, Tenpas T, Dent EW, Wildonger J, Wright ER. Handling Difficult Cryo-ET Samples: A Study with Primary Neurons from Drosophila melanogaster. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2127-2148. [PMID: 37966978 PMCID: PMC11168236 DOI: 10.1093/micmic/ozad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/01/2023] [Accepted: 10/18/2023] [Indexed: 11/17/2023]
Abstract
Cellular neurobiology has benefited from recent advances in the field of cryo-electron tomography (cryo-ET). Numerous structural and ultrastructural insights have been obtained from plunge-frozen primary neurons cultured on electron microscopy grids. With most primary neurons having been derived from rodent sources, we sought to expand the breadth of sample availability by using primary neurons derived from 3rd instar Drosophila melanogaster larval brains. Ultrastructural abnormalities were encountered while establishing this model system for cryo-ET, which were exemplified by excessive membrane blebbing and cellular fragmentation. To optimize neuronal samples, we integrated substrate selection, micropatterning, montage data collection, and chemical fixation. Efforts to address difficulties in establishing Drosophila neurons for future cryo-ET studies in cellular neurobiology also provided insights that future practitioners can use when attempting to establish other cell-based model systems.
Collapse
Affiliation(s)
- Joseph Y. Kim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jie E. Yang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Cryo-Electron Microscopy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Josephine W. Mitchell
- Department of Chemistry and Biochemistry, Kalamazoo College, Kalamazoo, MI 49006, USA
| | - Lauren A. English
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sihui Z. Yang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tanner Tenpas
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erik W. Dent
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jill Wildonger
- Departments of Pediatrics and Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Cryo-Electron Microscopy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA
| |
Collapse
|
2
|
Kim JY, Yang JE, Mitchell JW, English LA, Yang SZ, Tenpas T, Dent EW, Wildonger J, Wright ER. Handling difficult cryo-ET samples: A study with primary neurons from Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548468. [PMID: 37502991 PMCID: PMC10369871 DOI: 10.1101/2023.07.10.548468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Cellular neurobiology has benefited from recent advances in the field of cryo-electron tomography (cryo-ET). Numerous structural and ultrastructural insights have been obtained from plunge-frozen primary neurons cultured on electron microscopy grids. With most primary neurons been derived from rodent sources, we sought to expand the breadth of sample availability by using primary neurons derived from 3rd instar Drosophila melanogaster larval brains. Ultrastructural abnormalities were encountered while establishing this model system for cryo-ET, which were exemplified by excessive membrane blebbing and cellular fragmentation. To optimize neuronal samples, we integrated substrate selection, micropatterning, montage data collection, and chemical fixation. Efforts to address difficulties in establishing Drosophila neurons for future cryo-ET studies in cellular neurobiology also provided insights that future practitioners can use when attempting to establish other cell-based model systems.
Collapse
Affiliation(s)
- Joseph Y. Kim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jie E. Yang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Cryo-Electron Microscopy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Josephine W. Mitchell
- Department of Chemistry and Biochemistry, Kalamazoo College, Kalamazoo, MI, 49006, USA
| | - Lauren A. English
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Sihui Z. Yang
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Tanner Tenpas
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Erik W. Dent
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jill Wildonger
- Departments of Pediatrics and Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Cryo-Electron Microscopy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, 53715, USA
| |
Collapse
|
3
|
Zhang S, Saunders T. Mechanical processes underlying precise and robust cell matching. Semin Cell Dev Biol 2021; 120:75-84. [PMID: 34130903 DOI: 10.1016/j.semcdb.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 11/26/2022]
Abstract
During the development of complicated multicellular organisms, the robust formation of specific cell-cell connections (cell matching) is required for the generation of precise tissue structures. Mismatches or misconnections can lead to various diseases. Diverse mechanical cues, including differential adhesion and temporally varying cell contractility, are involved in regulating the process of cell-cell recognition and contact formation. Cells often start the process of cell matching through contact via filopodia protrusions, mediated by specific adhesion interactions at the cell surface. These adhesion interactions give rise to differential mechanical signals that can be further perceived by the cells. In conjunction with contractions generated by the actomyosin networks within the cells, this differentially coded adhesion information can be translated to reposition and sort cells. Here, we review the role of these different cell matching components and suggest how these mechanical factors cooperate with each other to facilitate specificity in cell-cell contact formation.
Collapse
Affiliation(s)
- Shaobo Zhang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Timothy Saunders
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore; Warwick Medical School, University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
4
|
Schreiber C, Amiri B, Heyn JCJ, Rädler JO, Falcke M. On the adhesion-velocity relation and length adaptation of motile cells on stepped fibronectin lanes. Proc Natl Acad Sci U S A 2021; 118:e2009959118. [PMID: 33483418 PMCID: PMC7869109 DOI: 10.1073/pnas.2009959118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The biphasic adhesion-velocity relation is a universal observation in mesenchymal cell motility. It has been explained by adhesion-promoted forces pushing the front and resisting motion at the rear. Yet, there is little quantitative understanding of how these forces control cell velocity. We study motion of MDA-MB-231 cells on microlanes with fields of alternating Fibronectin densities to address this topic and derive a mathematical model from the leading-edge force balance and the force-dependent polymerization rate. It reproduces quantitatively our measured adhesion-velocity relation and results with keratocytes, PtK1 cells, and CHO cells. Our results confirm that the force pushing the leading-edge membrane drives lamellipodial retrograde flow. Forces resisting motion originate along the whole cell length. All motion-related forces are controlled by adhesion and velocity, which allows motion, even with higher Fibronectin density at the rear than at the front. We find the pathway from Fibronectin density to adhesion structures to involve strong positive feedbacks. Suppressing myosin activity reduces the positive feedback. At transitions between different Fibronectin densities, steady motion is perturbed and leads to changes of cell length and front and rear velocity. Cells exhibit an intrinsic length set by adhesion strength, which, together with the length dynamics, suggests a spring-like front-rear interaction force. We provide a quantitative mechanistic picture of the adhesion-velocity relation and cell response to adhesion changes integrating force-dependent polymerization, retrograde flow, positive feedback from integrin to adhesion structures, and spring-like front-rear interaction.
Collapse
Affiliation(s)
- Christoph Schreiber
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Behnam Amiri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Johannes C J Heyn
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80539 Munich, Germany;
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany;
- Department of Physics, Humboldt University, 12489 Berlin, Germany
| |
Collapse
|
5
|
Dias CSB, Neto DPA, Baraldi GL, Fonseca MDC. Comparative analysis of sample preparation protocols of soft biological tissues for morphometric studies using synchrotron-based X-ray microtomography. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:2013-2023. [PMID: 31721746 DOI: 10.1107/s1600577519011299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
The spread of microtomography as a tool for visualization of soft tissues has had a significant impact on a better understanding of complex biological systems. This technique allows a detailed three-dimensional quantitative view of the specimen to be obtained, correlating its morphological organization with its function, providing valuable insights on the functionality of the tissue. Regularly overlooked, but of great importance, proper sample mounting and preparation are fundamental for achieving the highest possible image quality even for the high-resolution imaging systems currently under development. Here, a quantitative analysis compares some of the most common sample-mounting strategies used for synchrotron-based X-ray microtomography of soft tissues: alcoholic-immersion, paraffin-embedding and critical-point drying. These three distinct sample-mounting strategies were performed on the same specimen in order to investigate their impact on sample morphology regardless of individual sample variation. In that sense, the alcoholic-immersion strategy, although causing less shrinkage to the tissue, proved to be the most unsuitable approach for a high-throughput high-resolution imaging experiment due to sample drifting. Also, critical-point drying may present some interesting advantages regarding image quality but is also incompatible with a high-throughput experiment. Lastly, paraffin-embedding is shown to be the most suitable strategy for current soft tissue microtomography experiments. Such detailed analysis of biological sample-mounting strategies for synchrotron-based X-ray microtomography are expected to offer valuable insights on the best approach for using this technique for 3D imaging of soft tissues and following morphometric analysis.
Collapse
Affiliation(s)
- Carlos Sato Baraldi Dias
- Brazilian Synchrotron Light National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo 13083-970, Brazil
| | - Dionísio Pedro Amorim Neto
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo 13083-970, Brazil
| | - Giovanni Lenzi Baraldi
- Brazilian Synchrotron Light National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo 13083-970, Brazil
| | - Matheus de Castro Fonseca
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo 13083-970, Brazil
| |
Collapse
|
6
|
Stürner T, Tatarnikova A, Mueller J, Schaffran B, Cuntz H, Zhang Y, Nemethova M, Bogdan S, Small V, Tavosanis G. Transient localization of the Arp2/3 complex initiates neuronal dendrite branching in vivo. Development 2019; 146:dev.171397. [PMID: 30910826 DOI: 10.1242/dev.171397] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/08/2019] [Indexed: 01/02/2023]
Abstract
The formation of neuronal dendrite branches is fundamental for the wiring and function of the nervous system. Indeed, dendrite branching enhances the coverage of the neuron's receptive field and modulates the initial processing of incoming stimuli. Complex dendrite patterns are achieved in vivo through a dynamic process of de novo branch formation, branch extension and retraction. The first step towards branch formation is the generation of a dynamic filopodium-like branchlet. The mechanisms underlying the initiation of dendrite branchlets are therefore crucial to the shaping of dendrites. Through in vivo time-lapse imaging of the subcellular localization of actin during the process of branching of Drosophila larva sensory neurons, combined with genetic analysis and electron tomography, we have identified the Actin-related protein (Arp) 2/3 complex as the major actin nucleator involved in the initiation of dendrite branchlet formation, under the control of the activator WAVE and of the small GTPase Rac1. Transient recruitment of an Arp2/3 component marks the site of branchlet initiation in vivo These data position the activation of Arp2/3 as an early hub for the initiation of branchlet formation.
Collapse
Affiliation(s)
- Tomke Stürner
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V./German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Anastasia Tatarnikova
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V./German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.,MPI for Neurobiology, 82152 Munich- Martinsried, Germany
| | - Jan Mueller
- Institute of Molecular biotechnology (IMBA), 1030 Wien, Austria
| | - Barbara Schaffran
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V./German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Hermann Cuntz
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany.,Frankfurt Institute for Advanced Studies, 60438 Frankfurt, Germany
| | - Yun Zhang
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V./German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Maria Nemethova
- Institute of Molecular biotechnology (IMBA), 1030 Wien, Austria
| | - Sven Bogdan
- Institut für Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Phillips-Universität Marburg, 35037 Marburg, Germany
| | - Vic Small
- Institute of Molecular biotechnology (IMBA), 1030 Wien, Austria
| | - Gaia Tavosanis
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V./German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
7
|
Dejardin MJ, Hemmerle A, Sadoun A, Hamon Y, Puech PH, Sengupta K, Limozin L. Lamellipod Reconstruction by Three-Dimensional Reflection Interference Contrast Nanoscopy (3D-RICN). NANO LETTERS 2018; 18:6544-6550. [PMID: 30179011 DOI: 10.1021/acs.nanolett.8b03134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
There are very few techniques to reconstruct the shape of a cell at nanometric resolution, and those that exist are almost exclusively based on fluorescence, implying limitations due to staining constraints and artifacts. Reflection interference contrast microscopy (RICM), a label-free technique, permits the measurement of nanometric distances between refractive objects. However, its quantitative application to cells has been largely limited due to the complex interferometric pattern caused by multiple reflections on internal or thin structures like lamellipodia. Here we introduce 3D reflection interference contrast nanoscopy, 3D-RICN, which combines information from multiple illumination wavelengths and aperture angles to characterize the lamellipodial region of an adherent cell in terms of its distance from the surface and its thickness. We validate this new method by comparing data obtained on fixed cells imaged with atomic force microscopy and quantitative phase imaging. We show that as expected, cells adhering to micropatterns exhibit a radial symmetry for the lamellipodial thickness. We demonstrate that the substrate-lamellipod distance may be as high as 100 nm. We also show how the method applies to living cells, opening the way for label-free dynamical study of cell structures with nanometric resolution.
Collapse
Affiliation(s)
| | | | - Anaïs Sadoun
- Aix Marseille Univ , CNRS, INSERM, LAI , Marseille 13288 , France
| | - Yannick Hamon
- Aix Marseille Univ , CNRS, INSERM, CIML , Marseille 13288 , France
| | | | - Kheya Sengupta
- Aix Marseille Univ , CNRS, CINAM , Marseille 13288 , France
| | - Laurent Limozin
- Aix Marseille Univ , CNRS, INSERM, LAI , Marseille 13288 , France
| |
Collapse
|
8
|
Petit V, Larue L. Any route for melanoblasts to colonize the skin! Exp Dermatol 2016; 25:669-73. [DOI: 10.1111/exd.13061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Valérie Petit
- Institut Curie; INSERM U1021; Normal and Pathological Development of Melanocytes; PSL Research University; Orsay France
- CNRS UMR 3347; University of Paris-Sud; University of Paris-Saclay; Orsay France
- Equipe Labellisée Ligue Contre le Cancer; Orsay France
| | - Lionel Larue
- Institut Curie; INSERM U1021; Normal and Pathological Development of Melanocytes; PSL Research University; Orsay France
- CNRS UMR 3347; University of Paris-Sud; University of Paris-Saclay; Orsay France
- Equipe Labellisée Ligue Contre le Cancer; Orsay France
| |
Collapse
|
9
|
Parsons B, Foley E. Cellular immune defenses of Drosophila melanogaster. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:95-101. [PMID: 26748247 DOI: 10.1016/j.dci.2015.12.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
Drosophila melanogaster is a widely used model for the characterization of blood cell development and function, with an array of protocols for the manipulation and visualization of fixed or live cells in vitro or in vivo. Researchers have deployed these techniques to reveal Drosophila hemocytes as a remarkably versatile cell type that engulfs apoptotic corpses; neutralizes invading parasites; seals epithelial wounds; and deposits extracellular matrix proteins. In this review, we will discuss the key features of Drosophila hemocyte development and function, and identify similarities with vertebrate counterparts.
Collapse
Affiliation(s)
- Brendon Parsons
- 1B3.14, 8440-112 Street, Walter Mackenzie Health Sciences Centre, University of Alberta, Edmonton, AB, T6G 2J2, Canada
| | - Edan Foley
- University of Alberta, Department of Medical Microbiology and Immunology, Canada.
| |
Collapse
|
10
|
Mi N, Chen Y, Wang S, Chen M, Zhao M, Yang G, Ma M, Su Q, Luo S, Shi J, Xu J, Guo Q, Gao N, Sun Y, Chen Z, Yu L. CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat Cell Biol 2015; 17:1112-23. [DOI: 10.1038/ncb3215] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 07/01/2015] [Indexed: 12/16/2022]
|
11
|
Stanley A, Thompson K, Hynes A, Brakebusch C, Quondamatteo F. NADPH oxidase complex-derived reactive oxygen species, the actin cytoskeleton, and Rho GTPases in cell migration. Antioxid Redox Signal 2014; 20:2026-42. [PMID: 24251358 DOI: 10.1089/ars.2013.5713] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Rho GTPases are historically known to be central regulators of actin cytoskeleton reorganization. This affects many processes including cell migration. In addition, members of the Rac subfamily are known to be involved in reactive oxygen species (ROS) production through the regulation of NADPH oxidase (Nox) activity. This review focuses on relationships between Nox-regulated ROS, Rho GTPases, and cytoskeletal reorganization, in the context of cell migration. RECENT ADVANCES It has become clear that ROS participate in the regulation of certain Rho GTPase family members, thus mediating cytoskeletal reorganization. CRITICAL ISSUES The role of the actin cytoskeleton in providing a scaffold for components of the Nox complex needs to be examined in the light of these new advances. During cell migration, Rho GTPases, ROS, and cytoskeletal organization appear to function as a complex regulatory network. However, more work is needed to fully elucidate the interactions between these factors and their potential in vivo importance. FUTURE DIRECTIONS Ultrastructural analysis, that is, electron microscopy, particularly immunogold labeling, will enable direct visualization of subcellular compartments. This in conjunction with the analysis of tissues lacking specific Rho GTPases, and Nox components will facilitate a detailed examination of the interactions of these structures with the actin cytoskeleton. In combination with the analysis of ROS production, including its subcellular location, these data will contribute significantly to our understanding of this intricate network under physiological conditions. Based on this, in vivo and in vitro studies can then be combined to elucidate the signaling pathways involved and their targets.
Collapse
Affiliation(s)
- Alanna Stanley
- 1 Skin and Extracellular Matrix Research Group , Anatomy, NUI Galway, Galway, Ireland
| | | | | | | | | |
Collapse
|
12
|
Bornschlögl T. How filopodia pull: what we know about the mechanics and dynamics of filopodia. Cytoskeleton (Hoboken) 2013; 70:590-603. [PMID: 23959922 DOI: 10.1002/cm.21130] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 01/04/2023]
Abstract
In recent years, the dynamic, hair-like cell protrusions called filopodia have attracted considerable attention. They have been found in a multitude of different cell types and are often called "sensory organelles," since they seem to sense the mechanical and chemical environment of a cell. Once formed, filopodia can exhibit complex behavior, they can grow and retract, push or pull, and transform into distinct structures. They are often found to make first adhesive contact with the extracellular matrix, pathogens or with adjacent cells, and to subsequently exert pulling forces. Much is known about the cytoskeletal players involved in filopodia formation, but only recently have we started to explore the mechanics of filopodia together with the related cytoskeletal dynamics. This review summarizes current advancements in our understanding of the mechanics and dynamics of filopodia, with a focus on the molecular mechanisms behind filopodial force exertion.
Collapse
Affiliation(s)
- Thomas Bornschlögl
- Institut Curie, Laboratoire, Physico-Chimie UMR CNRS, 168, 11 Rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
13
|
Sebé-Pedrós A, Burkhardt P, Sánchez-Pons N, Fairclough SR, Lang BF, King N, Ruiz-Trillo I. Insights into the origin of metazoan filopodia and microvilli. Mol Biol Evol 2013; 30:2013-23. [PMID: 23770652 PMCID: PMC3748353 DOI: 10.1093/molbev/mst110] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Filopodia are fine actin-based cellular projections used for both environmental sensing and cell motility, and they are essential organelles for metazoan cells. In this study, we reconstruct the origin of metazoan filopodia and microvilli. We first report on the evolutionary assembly of the filopodial molecular toolkit and show that homologs of many metazoan filopodial components, including fascin and myosin X, were already present in the unicellular or colonial progenitors of metazoans. Furthermore, we find that the actin crosslinking protein fascin localizes to filopodia-like structures and microvilli in the choanoflagellate Salpingoeca rosetta. In addition, homologs of filopodial genes in the holozoan Capsaspora owczarzaki are upregulated in filopodia-bearing cells relative to those that lack them. Therefore, our findings suggest that proteins essential for metazoan filopodia and microvilli are functionally conserved in unicellular and colonial holozoans and that the last common ancestor of metazoans bore a complex and specific filopodial machinery.
Collapse
Affiliation(s)
- Arnau Sebé-Pedrós
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Zobel T, Bogdan S. A high resolution view of the fly actin cytoskeleton lacking a functional WAVE complex. J Microsc 2013; 251:224-31. [PMID: 23410210 DOI: 10.1111/jmi.12020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 01/17/2013] [Indexed: 12/12/2022]
Abstract
The development of multicellular organisms involves a series of morphogenetic processes coordinating a highly dynamic and organized interplay between cells and their environment. Thus, the generation of forces that drive cellular and intracellular movements is prerequisite to shape single cells into tissues and organs. The actin cytoskeleton represents a highly dynamic filamentous system providing cell structure and mechanical forces to drive membrane protrusion, cell migration and vesicle trafficking. Here, we apply the structured-illumination microscopy (SIM) technique to analyse the actin cytoskeleton in fixed Drosophila Schneider (S2R+) cells, both in wild type and in cells depleted for WAVE, a major activator of Arp2/3 mediated actin polymerization. In addition, we demonstrate that live cell SIM imaging also allows the visualization of actin-driven lamellipodial membrane dynamics at high spatial resolution in S2R+ cells. Three dimensional (3D) SIM images of up to 70 μm thick Drosophila wild-type and abi-mutant egg chambers further enables us to resolve changes of actin structures in a multicellular context with an impressive lateral and axial resolution, which is not possible with conventional confocal microscopy. Thus, the combination of superresolution 3D microscopy with Drosophila genetics and cell biology allows detailed insights into the structural and molecular requirements of different actin-dependent processes.
Collapse
Affiliation(s)
- T Zobel
- Institut für Neurobiologie, Universität Münster, Münster, Germany
| | | |
Collapse
|
15
|
CD2AP links cortactin and capping protein at the cell periphery to facilitate formation of lamellipodia. Mol Cell Biol 2012; 33:38-47. [PMID: 23090967 DOI: 10.1128/mcb.00734-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding the physiology of complex relationships between components of signaling pathways and the actin cytoskeleton is an important challenge. CD2AP is a membrane scaffold protein implicated in a variety of physiological and disease processes. The physiological function of CD2AP is unclear, but its biochemical interactions suggest that it has a role in dynamic actin assembly. Here, we report that CD2AP functions to facilitate the recruitment of actin capping protein (CP) to the Src kinase substrate, cortactin, at the cell periphery, and that this is necessary for formation of the short branched filaments that characterize lamellipodium formation and are required for cell migration. Superresolution fluorescence microscopy demonstrated that the efficient colocalization of CP and cortactin at the cell periphery required CD2AP. As both cortactin and CP function to enhance branched actin filament formation, CD2AP functions synergistically to enhance the function of both proteins. Our data demonstrate how the interplay between specialized actin regulatory molecules shapes the actin cytoskeleton.
Collapse
|
16
|
Nagai S, Moreno O, Smith CA, Ivanchuk S, Romagnuolo R, Golbourn B, Weeks A, Seol HJ, Rutka JT. Role of the cofilin activity cycle in astrocytoma migration and invasion. Genes Cancer 2012; 2:859-69. [PMID: 22593798 DOI: 10.1177/1947601911431839] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/10/2011] [Indexed: 01/09/2023] Open
Abstract
The cofilin pathway plays a central role in the regulation of actin polymerization and the formation of cell membrane protrusions that are essential for cell migration. Overexpression of cofilin has been linked to the aggressiveness of a variety of different cancers. In these cancers, the phosphorylation of cofilin at Ser3 is a key regulatory mechanism modulating cofilin activity. The activation status of cofilin has been directly linked to tumor invasion. Accordingly, in this study, we examined the expression of cofilin and its activation status in astrocytoma cell lines and astrocytic tumors. We show that cofilin expression was increased and correlated with increasing grade malignant astrocytoma. In addition, both cofilin and LIMK had elevated expression in astrocytoma cell lines. Knockdown of cofilin by siRNA altered astrocytoma cell morphology and inhibited astrocytoma migration and invasion. Conversely, overexpression of a cofilin phosphorylation mutant in an in vivo intracranial xenograft model resulted in a more highly invasive phenotype than those xenographs expressing wild-type cofilin. Animals harboring astrocytomas stably expressing the cofilin phosphorylation mutant (cofilin-S3A) demonstrated marked local invasiveness and spread across the corpus callosum to the contralateral hemisphere in all animals. Taken together, these data indicate that the cofilin activity pathway may represent a novel therapeutic target to diminish the invasion of these highly malignant tumors.
Collapse
Affiliation(s)
- Shoichi Nagai
- Department of Neurosurgery, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Salbreux G, Charras G, Paluch E. Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol 2012; 22:536-45. [PMID: 22871642 DOI: 10.1016/j.tcb.2012.07.001] [Citation(s) in RCA: 532] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/27/2012] [Accepted: 07/04/2012] [Indexed: 12/11/2022]
Abstract
The cortex is a thin, crosslinked actin network lying immediately beneath the plasma membrane of animal cells. Myosin motors exert contractile forces in the meshwork. Because the cortex is attached to the cell membrane, it plays a central role in cell shape control. The proteic constituents of the cortex undergo rapid turnover, making the cortex both mechanically rigid and highly plastic, two properties essential to its function. The cortex has recently attracted increasing attention and its functions in cellular processes such as cytokinesis, cell migration, and embryogenesis are progressively being dissected. In this review, we summarize current knowledge on the structural organization, composition, and mechanics of the actin cortex, focusing on the link between molecular processes and macroscopic physical properties. We also highlight consequences of cortex dysfunction in disease.
Collapse
Affiliation(s)
- Guillaume Salbreux
- Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany.
| | | | | |
Collapse
|
18
|
Enculescu M, Falcke M. Modeling morphodynamic phenotypes and dynamic regimes of cell motion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 736:337-58. [PMID: 22161339 DOI: 10.1007/978-1-4419-7210-1_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many cellular processes and signaling pathways converge onto cell morphology and cell motion, which share important components. The mechanisms used for propulsion could also be responsible for shape changes, if they are capable of generating the rich observed variety of dynamic regimes. Additionally, the analysis of cell shape changes in space and time promises insight into the state of the cytoskeleton and signaling pathways controlling it. While this has been obvious for some time by now, little effort has been made to systematically and quantitatively explore this source of information. First pioneering experimental work revealed morphodynamic phenotypes which can be associated with dynamic regimes like oscillations and excitability. Here, we review the current state of modeling of morphodynamic phenotypes, the experimental results and discuss the ideas on the mechanisms driving shape changes which are suggested by modeling.
Collapse
Affiliation(s)
- Mihaela Enculescu
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | | |
Collapse
|
19
|
Hanein D, Horwitz AR. The structure of cell-matrix adhesions: the new frontier. Curr Opin Cell Biol 2011; 24:134-40. [PMID: 22196929 DOI: 10.1016/j.ceb.2011.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 12/18/2022]
Abstract
Adhesions between the cell and the extracellular matrix (ECM) are mechanosensitive multi-protein assemblies that transmit force across the cell membrane and regulate biochemical signals in response to the chemical and mechanical environment. These combined functions in force transduction, signaling and mechanosensing contribute to cellular phenotypes that span development, homeostasis and disease. These adhesions form, mature and disassemble in response to actin organization and physical forces that originate from endogenous myosin activity or external forces by the extracellular matrix. Despite advances in our understanding of the protein composition, interactions and regulation, our understanding of matrix adhesion structure and organization, how forces affect this organization, and how these changes dictate specific signaling events is limited. Insights across multiple structural levels are acutely needed to elucidate adhesion structure and ultimately the molecular basis of signaling and mechanotransduction. Here we describe the challenges and recent advances and prospects for unraveling the structure of cell-matrix adhesions and their response to force.
Collapse
Affiliation(s)
- Dorit Hanein
- Bioinformatics and Systems Biology Program, Sanford Burnham Medical Research Institute, La Jolla, CA, United States.
| | | |
Collapse
|
20
|
Sedlmair J, Gleber SC, Mert SÖ, Bertilson M, von Hofsten O, Thieme J, Pfohl T. Imaging of vascular smooth muscle cells with soft X-ray spectromicroscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2011; 17:991-1001. [PMID: 22067812 DOI: 10.1017/s1431927611012165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Using X-ray microscopy and spectromicroscopy, vascular smooth muscle cells (VSMCs) were imaged, prepared without using additional embedding material or staining, but by applying simple, noncryo fixation techniques. The cells were imaged with a compact source transmission X-ray microscope and a scanning transmission X-ray microscope (STXM). With the STXM, spectromicroscopy was performed at the C K-edge and the Ca L(III,II)-edges. VSMCs were chosen because of their high amount of actin stress fibers, so that the actin cytoskeleton should be visible. Other parts of the cell, such as the nucleus and organelles, were also identified from the micrographs. Both in the spectra and the images, the effects of the different preparation procedures were observable. Furthermore, Ca hotspots were detected and their density is determined.
Collapse
Affiliation(s)
- Julia Sedlmair
- Institute for X-Ray Physics, Georg-August-University Göttingen, Friedrich-Hund-Pl. 1, D-37077 Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Mizutani R, Suzuki Y. X-ray microtomography in biology. Micron 2011; 43:104-15. [PMID: 22036251 DOI: 10.1016/j.micron.2011.10.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
Abstract
Progress in high-resolution X-ray microtomography has provided us with a practical approach to determining three-dimensional (3D) structures of opaque samples at micrometer to submicrometer resolution. In this review, we give an introduction to hard X-ray microtomography and its application to the visualization of 3D structures of biological soft tissues. Practical aspects of sample preparation, handling, data collection, 3D reconstruction, and structure analysis are described. Furthermore, different sample contrasting methods are approached in detail. Examples of microtomographic studies are overviewed to present an outline of biological applications of X-ray microtomography. We also provide perspectives of biological microtomography as the convergence of sciences in X-ray optics, biology, and structural analysis.
Collapse
Affiliation(s)
- Ryuta Mizutani
- Department of Applied Biochemistry, School of Engineering, Tokai University, Kitakaname 4-1-1, Hiratsuka, Kanagawa 259-1292, Japan.
| | | |
Collapse
|
22
|
Halpert M, Abu-Abied M, Avisar D, Moskovitz Y, Altshuler O, Cohen A, Weissberg M, Riov J, Gottlieb HE, Perl A, Sadot E. Rac-dependent doubling of HeLa cell area and impairment of cell migration and cell cycle by compounds from Iris germanica. PROTOPLASMA 2011; 248:785-797. [PMID: 21207085 DOI: 10.1007/s00709-010-0254-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 12/06/2010] [Indexed: 05/30/2023]
Abstract
Plants are an infinite source of bioactive compounds. We screened the Israeli flora for compounds that interfere with the organization of the actin cytoskeleton. We found an activity in lipidic extract from Iris germanica that was able to increase HeLa cell area and adhesion and augment the formation of actin stress fibers. This effect was not observed when Ref52 fibroblasts were tested and was not the result of disruption of microtubules. Further, the increase in cell area was Rac1-dependent, and the iris extract led to slight Rac activation. Inhibitor of RhoA kinase did not interfere with the ability of the iris extract to increase HeLa cell area. The increase in HeLa cell area in the presence of iris extract was accompanied by impairment of cell migration and arrest of the cell cycle at G1 although the involvement of Rac1 in these processes is not clear. Biochemical verification of the extract based on activity-mediated fractionation and nuclear magnetic resonance analysis revealed that the active compounds belong to the group of iridals, a known group of triterpenoid. Purified iripallidal was able to increase cell area of both HeLa and SW480 cells.
Collapse
Affiliation(s)
- Michal Halpert
- The Institute of Plant Sciences, Volcani Center, P.O. Box 6, Bet-Dagan, 50250, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Azimi M, Jamali Y, Mofrad MRK. Accounting for diffusion in agent based models of reaction-diffusion systems with application to cytoskeletal diffusion. PLoS One 2011; 6:e25306. [PMID: 21966493 PMCID: PMC3179499 DOI: 10.1371/journal.pone.0025306] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 08/31/2011] [Indexed: 12/18/2022] Open
Abstract
Diffusion plays a key role in many biochemical reaction systems seen in nature. Scenarios where diffusion behavior is critical can be seen in the cell and subcellular compartments where molecular crowding limits the interaction between particles. We investigate the application of a computational method for modeling the diffusion of molecules and macromolecules in three-dimensional solutions using agent based modeling. This method allows for realistic modeling of a system of particles with different properties such as size, diffusion coefficients, and affinity as well as the environment properties such as viscosity and geometry. Simulations using these movement probabilities yield behavior that mimics natural diffusion. Using this modeling framework, we simulate the effects of molecular crowding on effective diffusion and have validated the results of our model using Langevin dynamics simulations and note that they are in good agreement with previous experimental data. Furthermore, we investigate an extension of this framework where single discrete cells can contain multiple particles of varying size in an effort to highlight errors that can arise from discretization that lead to the unnatural behavior of particles undergoing diffusion. Subsequently, we explore various algorithms that differ in how they handle the movement of multiple particles per cell and suggest an algorithm that properly accommodates multiple particles of various sizes per cell that can replicate the natural behavior of these particles diffusing. Finally, we use the present modeling framework to investigate the effect of structural geometry on the directionality of diffusion in the cell cytoskeleton with the observation that parallel orientation in the structural geometry of actin filaments of filopodia and the branched structure of lamellipodia can give directionality to diffusion at the filopodia-lamellipodia interface.
Collapse
Affiliation(s)
- Mohammad Azimi
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Yousef Jamali
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Mohammad R. K. Mofrad
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Small JV, Winkler C, Vinzenz M, Schmeiser C. Reply: Visualizing branched actin filaments in lamellipodia by electron tomography. Nat Cell Biol 2011. [DOI: 10.1038/ncb2322] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Resch GP, Brandstetter M, Wonesch VI, Urban E. Immersion freezing of cell monolayers for cryo-electron tomography. Cold Spring Harb Protoc 2011; 2011:815-23. [PMID: 21724812 DOI: 10.1101/pdb.prot5643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTIONCryo-transmission electron microscopy (cryo-TEM) is not limited to the visualization of suspended macromolecules in their native hydrated state. It can also be used to elucidate the molecular architecture of peripheral parts of adherent cells: After cultivation of the cells directly on EM grids, they are physically fixed by immersion freezing to yield cells embedded in thin, crystal-free layers of frozen water. Subsequently, specimens can be visualized using cryo-electron tomography (cryo-ET). This protocol outlines the production of protein-coated gold particles as suitable fiducial markers for electron tomography, and how to cultivate cells on grids with a carbon support film. It also describes how to freeze cells to obtain optimal and reproducible results using the Leica EM GP immersion freezer, and how to assess the results.
Collapse
Affiliation(s)
- Guenter P Resch
- IMP-IMBA-GMI Electron Microscopy Facility, Institute of Molecular Biotechnology, 1030 Vienna, Austria.
| | | | | | | |
Collapse
|
26
|
CD81 is essential for the formation of membrane protrusions and regulates Rac1-activation in adhesion-dependent immune cell migration. Blood 2011; 118:1818-27. [PMID: 21677313 DOI: 10.1182/blood-2010-12-326595] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
CD81 (TAPA-1) is a member of the widely expressed and evolutionary conserved tetraspanin family that forms complexes with a variety of other cell surface receptors and facilitates hepatitis C virus entry. Here, we show that CD81 is specifically required for the formation of lamellipodia in migrating dendritic cells (DCs). Mouse CD81(-/-) DCs, or murine and human CD81 RNA interference knockdown DCs lacked the ability to form actin protrusions, thereby impairing their motility dramatically. Moreover, we observed a selective loss of Rac1 activity in the absence of CD81, the latter of which is exclusively required for integrin-dependent migration on 2-dimensional substrates. Neither integrin affinity for substrate nor the size of basal integrin clusters was affected by CD81 deficiency in adherent DCs. However, the use of total internal reflection fluorescence microscopy revealed an accumulation of integrin clusters above the basal layer in CD81 knockdown cells. Furthermore, β1- or β2-integrins, actin, and Rac are strongly colocalized at the leading edge of DCs, but the very fronts of these cells protrude CD81-containing membranes that project outward from the actin-integrin area. Taken together, these data suggest a thus far unappreciated role for CD81 in the mobilization of preformed integrin clusters into the leading edge of migratory DCs on 2-dimensional surfaces.
Collapse
|
27
|
Lichius A, Berepiki A, Read ND. Form follows function – The versatile fungal cytoskeleton. Fungal Biol 2011; 115:518-40. [DOI: 10.1016/j.funbio.2011.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 12/11/2022]
|
28
|
Vicente-Manzanares M, Newell-Litwa K, Bachir AI, Whitmore LA, Horwitz AR. Myosin IIA/IIB restrict adhesive and protrusive signaling to generate front-back polarity in migrating cells. ACTA ACUST UNITED AC 2011; 193:381-96. [PMID: 21482721 PMCID: PMC3080254 DOI: 10.1083/jcb.201012159] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Migratory front-back polarity emerges from the cooperative effect of myosin IIA (MIIA) and IIB (MIIB) on adhesive signaling. We demonstrate here that, during polarization, MIIA and MIIB coordinately promote localized actomyosin bundling, which generates large, stable adhesions that do not signal to Rac and thereby form the cell rear. MIIA formed dynamic actomyosin proto-bundles that mark the cell rear during spreading; it also bound to actin filament bundles associated with initial adhesion maturation in protrusions. Subsequent incorporation of MIIB stabilized the adhesions and actomyosin filaments with which it associated and formed a stable, extended rear. These adhesions did not turn over and no longer signal to Rac. Microtubules fine-tuned the polarity by positioning the front opposite the MIIA/MIIB-specified rear. Decreased Rac signaling in the vicinity of the MIIA/MIIB-stabilized proto-bundles and adhesions was accompanied by the loss of Rac guanine nucleotide exchange factor (GEFs), like βPIX and DOCK180, and by inhibited phosphorylation of key residues on adhesion proteins that recruit and activate Rac GEFs. These observations lead to a model for front-back polarity through local GEF depletion.
Collapse
Affiliation(s)
- Miguel Vicente-Manzanares
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | | | | | | | | |
Collapse
|
29
|
A role for actin arcs in the leading-edge advance of migrating cells. Nat Cell Biol 2011; 13:371-81. [PMID: 21423177 DOI: 10.1038/ncb2205] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 01/06/2011] [Indexed: 02/07/2023]
Abstract
Epithelial cell migration requires coordination of two actin modules at the leading edge: one in the lamellipodium and one in the lamella. How the two modules connect mechanistically to regulate directed edge motion is not understood. Using live-cell imaging and photoactivation approaches, we demonstrate that the actin network of the lamellipodium evolves spatio-temporally into the lamella. This occurs during the retraction phase of edge motion, when myosin II redistributes to the lamellipodial actin and condenses it into an actin arc parallel to the edge. The new actin arc moves rearward, slowing down at focal adhesions in the lamella. We propose that net edge extension occurs by nascent focal adhesions advancing the site at which new actin arcs slow down and form the base of the next protrusion event. The actin arc thereby serves as a structural element underlying the temporal and spatial connection between the lamellipodium and the lamella during directed cell motion.
Collapse
|
30
|
Abstract
Structural biology research is increasingly focusing on unraveling structural variations at the micro-, meso-, and macroscale aiming at interpreting dynamic biological processes and pathways. Toward this goal, high-resolution transmission cryoelectron microscopy (cryo-EM) and cryoelectron tomography (cryo-ET) are indispensable, as these provide the ability to determine 3D structures of large, dynamic macromolecular assemblies in their native, fully hydrated state in situ. Underlying such analyses is the implicit assumption that specific structural states yield specific cellular outputs. The dependence on this structure-function paradigm is not unique to studies pertaining a particular pathway or biological process but it sets the foundation for all cell biological analyses of macromolecular assemblies. Yet, the paradigm still awaits formal proof. The field of high-resolution electron microscopy (HREM) is in dire need of establishing approaches and technologies to systematic and quantitative determining structure-function correlates in physiologically relevant environment. Here, using the actin cytoskeletal networks as an example, we will provide snapshots of current advances in defining the structures of these highly dynamic networks in situ. We will further detail some of the major stumbling blocks on the way to quantitatively correlate the dynamic state to network morphology in the same window of time and space.
Collapse
|
31
|
Abstract
Filopodia are an important feature of actively motile cells, probing the pericellular environment for chemotactic factors and other molecular cues that enable and direct the movement of the cell. They also act as points of attachment to the extracellular matrix for the cell, generating tension that may act to pull the cell forward and/or stabilize the cell as it moves. Endothelial cell motility is a critical aspect of angiogenesis, but only a limited number of molecules have been identified as specific regulators of endothelial cell filopodia. Recent reports, however, provide evidence for the involvement of PECAM-1, an endothelial cell adhesion and signaling molecule, in the formation of endothelial cell filopodia. This commentary will focus on these studies and their suggestion that at least two PECAM-1-regulated pathways are involved in the processes that enable filopodial protrusions by endothelial cells. Developing a more complete understanding of the role of PECAM-1 in mediating various endothelial cell activities, such as the extension of filopodia, will be essential for exploiting the therapeutic potential of targeting PECAM-1.
Collapse
Affiliation(s)
- Horace M DeLisser
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Small JV. Dicing with dogma: de-branching the lamellipodium. Trends Cell Biol 2010; 20:628-33. [PMID: 20833046 PMCID: PMC2984616 DOI: 10.1016/j.tcb.2010.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/10/2010] [Accepted: 08/12/2010] [Indexed: 11/21/2022]
Abstract
The primary event in the movement of a migrating eukaryotic cell is the extension of cytoplasmic sheets termed lamellipodia composed of networks of actin filaments. Lamellipodia networks are thought to arise through the branching of new filaments from the sides of old filaments, producing a dendritic array. Recent studies by electron tomography have revealed the three dimensional organization of lamellipodia and show, contrary to previous evidence, that actin filaments do not form dendritic arrays in vivo. These findings signal a reconsideration of the structural basis of protrusion and about the roles of the different actin nucleating and elongating complexes involved in the process.
Collapse
Affiliation(s)
- J Victor Small
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Dr Bohr-Gasse 3, Vienna, Austria.
| |
Collapse
|
33
|
Tominaga M, Nishihara E, Oogami T, Iwasaki M, Takagi Y, Shimohigashi M, Nakagawa H. Neurite elongation from Drosophila neural BG2-c6 cells stimulated by 20-hydroxyecdysone. Neurosci Lett 2010; 482:250-4. [PMID: 20667502 DOI: 10.1016/j.neulet.2010.07.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/15/2010] [Accepted: 07/19/2010] [Indexed: 11/28/2022]
Abstract
Neurite elongation is a critical process in the formation of nerve systems from neural cells. During metamorphosis, the holometabolous insect Drosophila melanogaster reorganizes its central nervous system (CNS) under the influence of the steroid molting hormone 20-hydroxyecdysone (20E). A neural cell line that responds to 20E treatment is therefore desired in order to analyze its signal transduction process. Here, we show that cells of the Drosophila neural cell line BG2-c6 extended long projections of over 30 microm in length after being stimulated with 20E. Most of these projections contained both actin filaments and microtubules. Since microtubules are structural markers of neurites, the projections were considered to be neurites. Live imaging of cells expressing GFP tagged alpha-tubulin showed that the neurites did not have a lamellipodial structure at their tips. Under an electron microscope, microtubules were found to run alongside the actin filaments in the neurite shaft but did not reach the tip, where the actin filaments were loosely bundled rather than being arranged into a meshwork as in lamellipodia. These results indicate that BG2-c6 cells project neurites without the typical growth-corn structure at their tips after 20E stimulation.
Collapse
Affiliation(s)
- Makoto Tominaga
- Division of Biology, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Silveira Corrêa TC, Massaro RR, Brohem CA, Taboga SR, Lamers ML, Santos MF, Maria-Engler SS. RECK-mediated inhibition of glioma migration and invasion. J Cell Biochem 2010; 110:52-61. [PMID: 20127710 DOI: 10.1002/jcb.22472] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
RECK is an anti-tumoral gene whose activity has been associated with its inhibitory effects regulating MMP-2, MMP-9, and MT1-MMP. RECK level decreases as gliobastoma progresses, varying from less invasive grade II gliomas to very invasive human glioblastoma multiforme (GBM). Since RECK expression and glioma invasiveness show an inverse correlation, the aim of the present study is to investigate whether RECK expression would inhibit glioma invasive behavior. We conducted this study to explore forced RECK expression in the highly invasive T98G human GBM cell line. Expression levels as well as protein levels of RECK, MMP-2, MMP-9, and MT1-MMP were assessed by qPCR and immunoblotting in T98G/RECK+ cells. The invasion and migration capacity of RECK+ cells was inhibited in transwell and wound assays. Dramatic cytoskeleton modifications were observed in the T98G/RECK+ cells, when compared to control cells, such as the abundance of stress fibers (contractile actin-myosin II bundles) and alteration of lamellipodia. T98G/RECK+ cells also displayed phosphorylated focal adhesion kinase (P-FAK) in mature focal adhesions associated with stress fibers; whereas P-FAK in control cells was mostly associated with immature focal complexes. Interestingly, the RECK protein was predominantly localized at the leading edge of migrating cells, associated with membrane ruffles. Unexpectedly, introduced expression of RECK effectively inhibited the invasive process through rearrangement of actin filaments, promoting a decrease in migratory ability. This work has associated RECK tumor-suppressing activity with the inhibition of motility and invasion in this GBM model, which are two glioma characteristics responsible for the inefficiency of current available treatments.
Collapse
Affiliation(s)
- Tatiana C Silveira Corrêa
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Recent advances in structural, biochemical, biophysical, and live cell imaging approaches have furthered our understanding of the molecular mechanisms by which regulated assembly dynamics of actin filaments drive motile processes. Attention is focused on lamellipodium protrusion, powered by the turnover of a branched filament array. ATP hydrolysis on actin is the key reaction that allows filament treadmilling. It regulates barbed-end dynamics and length fluctuations at steady state and specifies the functional interaction of actin with essential regulatory proteins such as profilin and ADF/cofilin. ATP hydrolysis on actin and Arp2/3 acts as a timer, regulating the assembly and disassembly of the branched array to generate tropomyosin-mediated heterogeneity in the structure and dynamics of the lamellipodial network. The detailed molecular mechanisms of ATP hydrolysis/Pi release on F-actin remain elusive, as well as the mechanism of filament branching with Arp2/3 complex or that of the formin-driven processive actin assembly. Novel biophysical methods involving single-molecule measurements should foster progress in these crucial issues.
Collapse
Affiliation(s)
- Beáta Bugyi
- Cytoskeleton Dynamics and Cell Motility Group, CNRS, UPR 3082, Laboratoire d'Enzymologie et Biochimie Structurales, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
36
|
Contribution of Filopodia to Cell Migration: A Mechanical Link between Protrusion and Contraction. Int J Cell Biol 2010; 2010:507821. [PMID: 20671957 PMCID: PMC2910478 DOI: 10.1155/2010/507821] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/25/2010] [Accepted: 05/30/2010] [Indexed: 11/17/2022] Open
Abstract
Numerous F-actin containing structures are involved in regulating protrusion of membrane at the leading edge of motile cells. We have investigated the structure and dynamics of filopodia as they relate to events at the leading edge and the function of the trailing actin networks. We have found that although filopodia contain parallel bundles of actin, they contain a surprisingly nonuniform spatial and temporal distribution of actin binding proteins. Along the length of the actin filaments in a single filopodium, the most distal portion contains primarily T-plastin, while the proximal portion is primarily bound by α-actinin and coronin. Some filopodia are stationary, but lateral filopodia move with respect to the leading edge. They appear to form a mechanical link between the actin polymerization network at the front of the cell and the myosin motor activity in the cell body. The direction of lateral filopodial movement is associated with the direction of cell migration. When lateral filopodia initiate from and move toward only one side of a cell, the cell will turn opposite to the direction of filopodial flow. Therefore, this filopodia-myosin II system allows actin polymerization driven protrusion forces and myosin II mediated contractile force to be mechanically coordinated.
Collapse
|
37
|
Laragione T, Gulko PS. mTOR regulates the invasive properties of synovial fibroblasts in rheumatoid arthritis. Mol Med 2010; 16:352-8. [PMID: 20517583 DOI: 10.2119/molmed.2010.00049] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 05/28/2010] [Indexed: 01/12/2023] Open
Abstract
The invasive properties of fibroblast-like synoviocytes (FLS) correlate with radiographic and histologic damage in rheumatoid arthritis (RA) and pristane-induced arthritis (PIA). We previously determined that highly invasive FLS obtained from PIA-susceptible DA (blood type D, Agouti) rats have increased expression of genes associated with invasive cancers, including Villin-2/ezrin. Villin-2/ezrin mediates invasion via mTOR. In the present study we used the mTOR inhibitor rapamycin to assess the role of the ezrin-mTOR pathway on the invasive properties of FLS. FLS were isolated from synovial tissues from arthritic DA rats, and from RA patients. FLS were treated with rapamycin or dimethyl sulfoxide (DMSO) for 24 h and then studied in a Matrigel-invasion assay. Supernatants were assayed for matrix metalloproteinase (MMP) activity, and cell lysates were used for quantification of mTOR, p70S6K1, 4EBP1 and FAK, as well as their respective phosphorylated subsets. Actin filament and FAK localization were determined by immunofluorescence. Rapamycin decreased FLS invasion in DA and RA tissues by 93% and 82%, respectively. Rapamycin treatment reduced the phosphorylation of mTOR and its substrates, p70S6K1 and 4EBP1, confirming mTOR inhibition. In conclusion, rapamycin prevented actin reorganization in both DA and RA FLS, and inhibited the directional formation of lamellipodia. Phosphorylation of the lamellipodia marker FAK was also reduced by rapamycin. MMPs were not significantly affected by rapamycin. Rapamycin significantly reduced RA and DA rat FLS invasion via the suppression of the mTOR signaling pathway. This discovery suggests that rapamycin could have a role in RA therapy aimed at reducing the articular damage and erosive changes mediated by FLS.
Collapse
Affiliation(s)
- Teresina Laragione
- Laboratory of Experimental Rheumatology, Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | | |
Collapse
|
38
|
Gandhi M, Smith BA, Bovellan M, Paavilainen V, Daugherty-Clarke K, Gelles J, Lappalainen P, Goode BL. GMF is a cofilin homolog that binds Arp2/3 complex to stimulate filament debranching and inhibit actin nucleation. Curr Biol 2010; 20:861-7. [PMID: 20362448 DOI: 10.1016/j.cub.2010.03.026] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 11/19/2022]
Abstract
Cell locomotion and endocytosis are powered by the rapid polymerization and turnover of branched actin filament networks nucleated by Arp2/3 complex. Although a large number of cellular factors have been identified that stimulate Arp2/3 complex-mediated actin nucleation, only a small number of studies so far have addressed which factors promote actin network debranching. Here, we investigated the function of a conserved homolog of ADF/cofilin, glia maturation factor (GMF). We found that S. cerevisiae GMF (also called Aim7) localizes in vivo to cortical actin patches and displays synthetic genetic interactions with ADF/cofilin. However, GMF lacks detectable actin binding or severing activity and instead binds tightly to Arp2/3 complex. Using in vitro evanescent wave microscopy, we demonstrated that GMF potently stimulates debranching of actin filaments produced by Arp2/3 complex. Further, GMF inhibits nucleation of new daughter filaments. Together, these data suggest that GMF binds Arp2/3 complex to both "prune" daughter filaments at the branch points and inhibit new actin assembly. These activities and its genetic interaction with ADF/cofilin support a role for GMF in promoting the remodeling and/or disassembly of branched networks. Therefore, ADF/cofilin and GMF, members of the same superfamily, appear to have evolved to interact with actin and actin-related proteins, respectively, and to make mechanistically distinct contributions to the remodeling of cortical actin structures.
Collapse
Affiliation(s)
- Meghal Gandhi
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Koonce MP, Gräf R. Dictyostelium discoideum: a model system for ultrastructural analyses of cell motility and development. Methods Cell Biol 2010; 96:197-216. [PMID: 20869524 DOI: 10.1016/s0091-679x(10)96009-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dictyostelium occupies an interesting niche in the grand scheme of model organisms. On the one hand, it is a compact, highly motile single cell that presents numerous opportunities to investigate the fundamental mechanisms of signal transduction, cell movement, and pathogen infection. However, upon starvation, individual cells enter a developmental pathway that involves cell aggregation, cell-cell adhesion, pattern formation, and differentiation. Thus, Dictyostelium is also well known as a basic model for studying developmental processes. Electron microscopy (EM) has played a large role in both the unicellular and the multicellular life stages, for example, providing image detail for structure/function relationships of cytoskeletal proteins, the deposition of cellulose fibrils in maturing spores, and the identification of intercellular junctional complexes. Powerful combinations of robust molecular genetic tools, high-resolution light microscopy, and EM methods make this organism an attractive model for imaging dynamic cell processes. This chapter serves to highlight the past and current EM approaches that have advanced our understanding of how cells and proteins function.
Collapse
Affiliation(s)
- Michael P Koonce
- Division of Translational Medicine, Wadsworth Center, Albany, New York 12201-0509, USA
| | | |
Collapse
|
41
|
Resch GP, Urban E, Jacob S. The actin cytoskeleton in whole mount preparations and sections. Methods Cell Biol 2010; 96:529-64. [PMID: 20869537 DOI: 10.1016/s0091-679x(10)96022-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In non-muscle cells, the actin cytoskeleton plays a key role by providing a scaffold contributing to the definition of cell shape, force for driving cell motility, cytokinesis, endocytosis, and propulsion of pathogens, as well as tracks for intracellular transport. A thorough understanding of these processes requires insight into the spatial and temporal organisation of actin filaments into diverse higher-order structures, such as networks, parallel bundles, and contractile arrays. Transmission and scanning electron microscopy can be used to visualise the actin cytoskeleton, but due to the delicate nature of actin filaments, they are easily affected by standard preparation protocols, yielding variable degrees of ultrastructural preservation. In this chapter, we describe different conventional and cryo-approaches to visualise the actin cytoskeleton using transmission electron microscopy and discuss their specific advantages and drawbacks. In the first part, we present three different whole mount techniques, which allow visualisation of actin in the peripheral, thinly spread parts of cells grown in monolayers. In the second part, we describe specific issues concerning the visualisation of actin in thin sections. Techniques for three-dimensional visualisation of actin, protein localisation, and correlative light and electron microscopy are also included.
Collapse
Affiliation(s)
- Guenter P Resch
- IMP-IMBA-GMI Electron Microscopy Facility, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | | | | |
Collapse
|
42
|
Henson JH, Cheung D, Fried CA, Shuster CB, McClellan MK, Voss MK, Sheridan JT, Oldenbourg R. Structure and dynamics of an Arp2/3 complex-independent component of the lamellipodial actin network. ACTA ACUST UNITED AC 2009; 66:679-92. [PMID: 19530177 DOI: 10.1002/cm.20398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sea urchin coelomocytes contain an unusually broad lamellipodial region and have served as a useful model experimental system for studying the process of actin-based retrograde/centripetal flow. In the current study the small molecule drug 2,3-butanedione monoxime (BDM) was employed as a means of delocalizing the Arp2/3 complex from the cell edge in an effort to investigate the Arp2/3 complex-independent aspects of retrograde flow. Digitally-enhanced phase contrast, fluorescence and polarization light microscopy, along with rotary shadow transmission electron microscopy methods demonstrated that BDM treatment resulted in the centripetal displacement of the Arp2/3 complex and the associated dendritic lamellipodial (LP) actin network from the cell edge. In its wake there remained an array of elongate actin filaments organized into concave arcs that displayed retrograde flow at approximately one quarter the normal rate. Actin polymerization inhibitor experiments indicated that these arcs were generated by polymerization at the cell edge, while active myosin-based contraction in BDM treated cells was demonstrated by localization with antiphospho-myosin regulatory light chain (MRLC) antibody, the retraction of the cytoskeleton in the presence of BDM, and the response of the BDM arcs to laser-based severing. The results suggest that BDM treatment reveals an Arp2/3 complex-independent actin structure in coelomocytes consisting of elongate filaments integrated into the LP network and that these filaments represent a potential connection between the LP network and the central cytoskeleton.
Collapse
Affiliation(s)
- John H Henson
- Department of Biology, Dickinson College, Carlisle, PA 17013, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Insall RH, Machesky LM. Actin dynamics at the leading edge: from simple machinery to complex networks. Dev Cell 2009; 17:310-22. [PMID: 19758556 DOI: 10.1016/j.devcel.2009.08.012] [Citation(s) in RCA: 314] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell migration is an essential feature of eukaryotic life, required for processes ranging from feeding and phagoctyosis to development, healing, and immunity. Migration requires the actin cytoskeleton, specifically the localized polymerization of actin filaments underneath the plasma membrane. Here we summarize recent developments in actin biology that particularly affect structures at the leading edge of the cell, including the structure of actin branches, the multiple pathways that lead to cytoskeleton assembly and disassembly, and the role of blebs. Future progress depends on connecting these processes and components to the dynamic behavior of the whole cell in three dimensions.
Collapse
Affiliation(s)
- Robert H Insall
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland.
| | | |
Collapse
|
44
|
Danuser G. Testing the lamella hypothesis: the next steps on the agenda. J Cell Sci 2009; 122:1959-62. [PMID: 19494124 DOI: 10.1242/jcs.054379] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Gaudenz Danuser
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
45
|
Cryo-electron tomography in biology and medicine. Ann Anat 2009; 191:427-45. [PMID: 19559584 DOI: 10.1016/j.aanat.2009.04.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 04/23/2009] [Indexed: 12/16/2022]
Abstract
During the last six decades electron microscopy (EM) has been essential to ultra-structural studies of the cell to understand the fundamentals of cellular morphology and processes underlying diseases. More recently, electron tomography (ET) has emerged as a novel approach able to provide three-dimensional (3D) information on cells and tissues at molecular level. Electron tomography is comparable to medical tomographic techniques like CAT, PET and MRI in the sense that it provides a 3D view of an object, yet it does so at a cellular scale and with nanometer resolution. Electron tomography has the unique ability to visualize molecular assemblies, cytoskeletal elements and organelles within cells. The three-dimensional perspective it provides has revised our understanding of cellular organization and its relation with morphological changes in normal development and disease. Cryo-electron tomography of vitrified samples at cryogenic temperatures combines excellent structural preservation with direct high-resolution imaging. The use of cryo-preparation and imaging techniques eliminates artifacts induced by plastic embedding and staining of the samples is circumvented. This review describes the technique of cryo-electron tomography, its basic principles, cryo-specimen preparation, tomographic data acquisition and image processing. A number of illustrative examples ranging from whole cells, cytoskeletal filaments, viruses and organelles are presented along with a comprehensive list of research articles employing cryo-electron tomography as the key ultrastuctural technique.
Collapse
|
46
|
Möbius W. Cryopreparation of biological specimens for immunoelectron microscopy. Ann Anat 2009; 191:231-47. [DOI: 10.1016/j.aanat.2008.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 11/13/2008] [Indexed: 10/21/2022]
|