1
|
Jeon GH, Kim HJ, Park J, Lee SH, Cheon YP, Choi D. The Effects of Daily Melatonin Gavage on Reproductive Activity in the Male Syrian Hamsters. Dev Reprod 2020; 24:263-276. [PMID: 33537513 PMCID: PMC7837417 DOI: 10.12717/dr.2020.24.4.263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
The proper administration of melatonin has well been documented to induce testicular regression in seasonal breeding animals. The subcutaneous injections of melatonin in the afternoon, not in the morning, consistently occurred testicular involution in the male Syrian (golden) hamsters whose reproductive activity is regulated by the photoperiod. But the effects of daily melatonin via gavage have not been estimated. Golden hamsters housed in long photoperiod (LP) were divided into 5 groups: the control animals housed in LP or in short photoperiod (SP) and animals treated daily with low (15 μg), middle (150 μg), and high dosages (1,500 μg) of pure melatonin by using gavage in the evening for 8 weeks. As results, LP control animals had large testes and SP controls displayed small and entirely regressed testes. The animals treated with various dosages of melatonin showed collectively degenerating effects on the weights of testes, epididymides, and seminal vesicles in the middle and high dosage groups, with the individual differences as well. The high dosages induced testicular regression in more proportion than the middle dosages did. The low dosage had large testes like the LP control animals. The small and inactive testes shown in some animals of both middle and high groups presented the complete regression as those of the animals maintained in SP. These results strongly suggest that the administrations of melatonin lead to testicular involution in the male golden hamsters when it is administered through gavage.
Collapse
Affiliation(s)
- Geon Hyung Jeon
- Dept. of Life Science, College of Environmental Sciences, Yong-In University, Yongin 17092, Korea
| | - Hyeon Jeong Kim
- Dept. of Life Science, College of Environmental Sciences, Yong-In University, Yongin 17092, Korea
| | - Jinsoo Park
- Dept. of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Sung-Ho Lee
- Dept. of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Yong-Pil Cheon
- Division of Developmental Biology and Physiology, Dept. of Biotechnology, Sungshin University, Seoul 02844, Korea
| | - Donchan Choi
- Dept. of Life Science, College of Environmental Sciences, Yong-In University, Yongin 17092, Korea
| |
Collapse
|
2
|
Choi D. Effects of Dietary Supplement Containing Melatonin on Reproductive Activity in Male Golden Hamsters. Dev Reprod 2019; 23:101-110. [PMID: 31321350 PMCID: PMC6635611 DOI: 10.12717/dr.2019.23.2.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 04/25/2019] [Accepted: 04/02/2019] [Indexed: 11/26/2022]
Abstract
Melatonin is a pineal hormone that is synthesized and released at night under the
light and dark cycles of a day. Its effects on the reproductive activities have
well been established by the administration through various routes in
photoperiodic animals. It was also identified in plants and named
phytomelatonin. The capacity of the phytomelatonin was investigated in this
investigation whether it affects the reproductive function in male golden
hamster. As expected, animals housed in long photoperiod (long photoperiod,
LP>12.5 hours of lights in a day) had large testes and animals kept in
short photoperiod (SP≦12.5 hours of lights in a day) showed remarkably
reduced testes. The dietary supplement with melatonin itself induced the
complete involution of testes. Pistachios that were reported to contain a large
amount of melatonin demonstrated no effects at all in male golden hamsters.
These results suggest that dietary supplement containing melatonin-rich
foodstuff used in this investigation may not be enough to affect the
reproductive endocrine system in male golden hamsters.
Collapse
Affiliation(s)
- Donchan Choi
- Dept. of Life Science, College of Environmental Sciences, Yong-In University, Yongin 17092, Korea
| |
Collapse
|
3
|
Choi D. Continuous melatonin attenuates the regressing activities of short photoperiod in male golden hamsters. Dev Reprod 2015; 17:111-9. [PMID: 25949127 PMCID: PMC4282274 DOI: 10.12717/dr.2013.17.2.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/05/2013] [Accepted: 06/13/2013] [Indexed: 01/19/2023]
Abstract
Golden hamsters reproduce in a limited time of a year. Their sexual activities are active in summer but inactive in winter during which day length does not exceed night time and environmental conditions are severe to them. The reproductive activities are determined by the length of light in a day (photoperiod). Melatonin is synthesized and secreted only at night time from the pineal gland. Duration of elevated melatonin is longer in winter than summer, resulting in gonadal regression. The present study aimed at the influences of continuous melatonin treatments impinging on the gonadal function in male golden hamsters. Animals received empty or melatonin-filled capsules for 10 weeks. They were divided into long photoperiod (LP) and short photoperiod (SP). All the animals maintained in LP (either empty or melatonin-filled capsules) showed large testes, implying that melatonin had no effects on testicular functions. Animals housed in SP displayed completely regressed testes. But animals kept in SP and implanted with melatonin capsules exhibited blockage of full regression by SP. These results suggest that constant release of melatonin prohibits the regressing influence of SP.
Collapse
Affiliation(s)
- Donchan Choi
- Department of Life Science, College of Environmental Sciences, Yong-In University, Yongin 449-714, Republic of Korea
| |
Collapse
|
4
|
Prendergast BJ. MT1 melatonin receptors mediate somatic, behavioral, and reproductive neuroendocrine responses to photoperiod and melatonin in Siberian hamsters (Phodopus sungorus). Endocrinology 2010; 151:714-21. [PMID: 19966183 PMCID: PMC2817621 DOI: 10.1210/en.2009-0710] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Environmental day length drives nocturnal pineal melatonin secretion, which in turn generates or entrains seasonal cycles of physiology, reproduction, and behavior. In mammals, melatonin (MEL) binds to a number of receptor subtypes including high-affinity (MT1 and MT2) and low-affinity (MT3, nuclear orphan receptors) binding sites, which are distributed throughout the central nervous system and periphery. The MEL receptors that mediate photoperiodic reproductive and behavioral responses to MEL have not been identified in a reproductively photoperiodic species. Here I tested the hypothesis that MT1 receptors are necessary and sufficient to engage photoperiodic responses by challenging male Siberian hamsters (Phodopus sungorus), a species that does not express functional MT2 receptors, with ramelteon (RAM), a specific MT1/MT2 receptor agonist. In hamsters housed in a long-day photoperiod, late-afternoon RAM treatment inhibited gonadotropin secretion, induced gonadal regression, and suppressed food intake and body mass, mimicking effects of MEL. In addition, chronic (24 h/d) RAM infusions were sufficient to obscure endogenous MEL signaling, and these treatments attenuated gonadal regression in short days. Together, the outcomes indicate that signaling at the MT1 receptor is sufficient and necessary to mediate the effects of photoperiod-driven changes in MEL on behavior and reproductive function in a reproductively photoperiodic mammal.
Collapse
Affiliation(s)
- Brian J Prendergast
- Department of Psychology and Committee on Neurobiology, Institute for Mind and Biology, University of Chicago, 940 East 57th Street, Chicago, Illinois 60637, USA.
| |
Collapse
|
5
|
Hiebert SM, Green SA, Yellon SM. Daily timed melatonin feedings mimic effects of short days on testis regression and cortisol in circulation in Siberian hamsters. Gen Comp Endocrinol 2006; 146:211-6. [PMID: 16386252 DOI: 10.1016/j.ygcen.2005.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 07/15/2005] [Accepted: 11/15/2005] [Indexed: 11/17/2022]
Abstract
This study tested the efficacy of timed oral administration of melatonin as an alternative both to invasive methods (daily injections, timed infusions) and to untimed oral administration in Siberian hamsters (Phodopus sungorus), an important model for the study of photoperiodism. Hamsters readily consumed a small piece of melatonin-treated apple immediately when presented and circulating melatonin was rapidly elevated with a half-life of approximately 3.5 h. Melatonin-treated apple was fed to hamsters for 3 weeks at 2 h before lights off to extend the duration of the nighttime rise in endogenous melatonin. Melatonin treatment induced testicular regression and elevated serum cortisol, effects comparable to those in hamsters exposed to short days. These findings support the hypothesis that timed oral administration of melatonin can mimic the effects of short days and provide a method by which melatonin can be delivered without the potentially confounding effects of handling and injection stress.
Collapse
Affiliation(s)
- Sara M Hiebert
- Biology Department, Swarthmore College, Swarthmore, PA 19081, USA.
| | | | | |
Collapse
|
6
|
Anchordoquy HC, Lynch GR. Timing of testicular recrudescence in siberian hamsters is unaffected by pinealectomy or long-day photoperiod after 9 weeks in short days. J Biol Rhythms 2000; 15:406-16. [PMID: 11039918 DOI: 10.1177/074873000129001495] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this study, the authors asked whether pinealectomy or temporary exposure to a stimulatory photoperiod affects the timing of spontaneous testicular recrudescence in adult Siberian hamsters chronically exposed to short days (9:15 light:dark). In Experiment 1, hamsters were pinealectomized after 6, 9, or 12 weeks in short days. Pinealectomy after 9 or 12 weeks did not affect the timing of spontaneous gonadal growth (27.7 +/- 1.9 and 25.4 +/- 1.3 weeks, respectively) compared to sham-operated controls (28.6 +/- 0.9 weeks). Enlarged testes occurred earlier in animals that were pinealectomized after 6 weeks in short days (21.8 +/- 2.1 weeks). In Experiment 2, adult hamsters were exposed to short days for 9 weeks, transferred to long days (16:8 light:dark) for 4 weeks, and then returned to short days for 23 additional weeks. Although long-day interruption caused gonadal growth in 15 out of 19 hamsters, the temporary long-day exposure did not affect the timing of spontaneous gonadal growth following return to short days (28.2 +/- 0.9 weeks) in 10 of the 15, relative to the timing observed in control hamsters continuously maintained in short days (28.2 +/- 1.1 weeks). Four out of 19 hamsters did not show gonadal growth following long-day exposure. Spontaneous gonadal growth in these hamsters (28.0 +/- 1.4 weeks) also occurred at the same time as controls. The remaining 5 hamsters exhibited enlarged testes following long-day exposure (12.0 +/- 0.0 weeks) but were refractory to the second short-day exposure. All hamsters exhibited entrainment of wheel-running activity following the change in photoperiod. A final group of 13 animals were pinealectomized before long-day transfer. They exhibited gonadal growth (at 17.2 +/- 0.8 weeks) but failed to regress a second time when returned to short days. The timing of gonadal growth in these animals was delayed relative to the sham-operated hamsters temporarily transferred to long days (Experiment 2) but accelerated relative to the hamsters pinealectomized at 9 weeks, which remained continuously in short days (Experiment 1). The results of both experiments suggest that a pineal-independent process mediates the timing of spontaneous gonadal growth in Siberian hamsters chronically exposed to a short-day photoperiod.
Collapse
Affiliation(s)
- H C Anchordoquy
- Department of Environmental, Population, and Organismic Biology, University of Colorado at Boulder, 80309-0334 USA
| | | |
Collapse
|
7
|
Abstract
The pineal hormone melatonin is involved in photic regulations of various kinds, including adaptation to light intensity, daily changes of light and darkness, and seasonal changes of photoperiod lengths. The melatonin effects are mediated by the specific high-affinity receptors localized on plasma membrane and coupled to GTP-binding protein. Two different G proteins coupled to the melatonin receptors have been described, one sensitive to pertussis toxin and the other sensitive to cholera toxin. On the basis of the molecular structure, three subtypes of the melatonin receptors have been described: Mel1A, Mel1B, and Mel1C. The first two subtypes are found in mammals and may be distinguished pharmacologically using selective antagonists. Melatonin receptor regulates several second messengers: cAMP, cGMP, diacylglycerol, inositol trisphosphate, arachidonic acid, and intracellular Ca2+ concentration ([Ca2+]i). In many cases, its effect is inhibitory and requires previous activation of the cell by a stimulatory agent. Melatonin inhibits cAMP accumulation in most of the cells examined, but the indole effects on other messengers have been often observed only in one type of the cells or tissue, until now. Melatonin also regulates the transcription factors, namely, phosphorylation of cAMP-responsive element binding protein and expression of c-Fos. Molecular mechanisms of the melatonin effects are not clear but may involve at least two parallel transduction pathways, one inhibiting adenylyl cyclase and the other regulating phospholipide metabolism and [Ca2+]i.
Collapse
Affiliation(s)
- J Vanecek
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague
| |
Collapse
|
8
|
Kennaway DJ, Rowe SA. Controlled-release melatonin implants delay puberty in rats without altering melatonin rhythmicity. J Pineal Res 1997; 22:107-16. [PMID: 9213263 DOI: 10.1111/j.1600-079x.1997.tb00311.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There is increasing evidence that continuous availability of melatonin via implants can produce the same physiological changes in animals as timed administration of the hormone. The mechanisms underlying this apparent contradiction are not known. In an attempt to gain further understanding of the way continuous melatonin administration affects reproductive activity, the effects of melatonin implants on gonadal development and melatonin production were investigated in rats treated neonatally with testosterone. Five-day-old male rats maintained on a 12L:12D photoperiod were injected with 1 mg testosterone propionate to induce photo-responsiveness and implanted at 21 days of age with novel melatonin implants designed to raise the daytime blood melatonin concentration into the nighttime range, i.e., from less than 60 pM in the controls during the day to 380 +/- 33 pM in the implanted rats. Following 21 days treatment, seminal vesicle and ventral prostate weights of implanted rats were significantly less than the controls (27.0 +/- 1.9 vs. 18.5 +/- 1.5 mg/ 100 g BW (P = 0.003) and 33.8 +/- 2.1 vs. 26.7 +/- 2.2 mg/100 g BW (P = 0.02), respectively). To determine the effect of the implants upon melatonin production, urine was collected at hourly intervals during the last four days of the experiment and the hourly 6-sulphatoxymelatonin (aMT.6S) excretion rate was determined. Rats bearing melatonin implants maintained a rhythm of aMT.6S excretion in 12L:12D, which was indistinguishable from that in the control animals except for a raised daytime excretion of the metabolite. Following one cycle of urinary aMT.6S measurements in the light/dark cycle, the animals were released into constant darkness, with the implants still in place or after their removal four hours before darkness to evaluate the characteristics of the melatonin rhythm in the absence of masking effects of the light/dark cycle. The melatonin rhythm persisted in both control and implanted rats and no differences in the onset, offset, or amplitude could be determined. The results of this study indicate that, like many other mammals, for laboratory rats controlled continuous release of melatonin can mimic the effects of short daylength or timed melatonin administration. Despite the reproductive consequences of continuous melatonin delivery, the timing of endogenous melatonin production is unaffected.
Collapse
Affiliation(s)
- D J Kennaway
- Department of Obstetrics and Gynaecology, University of Adelaide Medical School, South Australia
| | | |
Collapse
|
9
|
Grosse J, Hastings MH. A role for the circadian clock of the suprachiasmatic nuclei in the interpretation of serial melatonin signals in the Syrian hamster. J Biol Rhythms 1996; 11:317-24. [PMID: 8946259 DOI: 10.1177/074873049601100405] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Seasonal rhythms of reproduction in the Syrian hamster are triggered by the pineal hormone melatonin. By varying the parameters of systemic infusions of exogenous melatonin delivered to pinealectomized hamsters, it has been shown that the hypothalamus is sensitive to the duration of individual signals, which serve as an inverse coding of day length. It also has been shown that animals are sensitive to the temporal structure of a series of signals insofar as a series of melatonin infusions of appropriate number and duration may fail to invoke a gonadal response if they are presented at inappropriate frequencies. Although the endogenous circadian pacemaker of the suprachiasmatic nucleus (SCN) is not thought to be involved in the measurement of or response to melatonin signal duration, its contribution to the interpretation of a series of melatonin signals remains to be determined. Syrian hamsters are able to show a short-day-like gonadal response to a series of melatonin signals delivered on a variety of noncircadian schedules, including one in which a "random" pattern of infusions is employed. This study investigated the role of the SCN in the interpretation of such infusion paradigms. Adult male Syrian hamsters received electrolytic lesions of the SCN. Pinealectomized, lesioned, and intact hamsters then were infused with melatonin or saline at one of three different phases of the day in a random pattern such that no signal was predictive of the timing of the next. Other lesioned and intact animals received melatonin or saline at the same time daily. After 6 weeks, control saline-infused animals in both lesioned and intact groups had large testes. However, sham animals receiving melatonin in the random infusion pattern had regressed testes, as did the lesioned animals receiving melatonin at the same phase every day. By contrast, lesioned animals that received melatonin in the random pattern of infusion did not show a short-day gonadal response. These results suggest that although the SCN is not necessary for measurement of the duration of individual signals, it may play a role in the interpretation of a series of melatonin signals in which the number of melatonin signals and the period of time over which they are encountered need to be compared.
Collapse
Affiliation(s)
- J Grosse
- Department of Anatomy, University of Cambridge, United Kingdom
| | | |
Collapse
|
10
|
Lerchl A. Sustained response of pineal melatonin synthesis to a single one-minute light pulse during night in Djungarian hamsters (Phodopus sungorus). Neurosci Lett 1995; 198:65-7. [PMID: 8570099 DOI: 10.1016/0304-3940(95)11952-s] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous experiments have demonstrated that short light pulses during the night suppress pineal melatonin formation almost completely for the remainder of the night. Here, the effects of a single 1 min light pulse during the night on melatonin synthesis during the following night was investigated in Djungarian hamsters (Phodopus sungorus). It is shown that the melatonin pattern during the consecutive night is suppressed to a greater extent than that caused by acute light exposure, indicating a very effective light memory of the melatonin-generating neuronal network, possibly a key to understanding the reliability of the photoperiod-measuring system.
Collapse
Affiliation(s)
- A Lerchl
- Institute of Reproductive Medicine, University of Münster, Germany
| |
Collapse
|
11
|
Scott CJ, Jansen HT, Kao CC, Kuehl DE, Jackson GL. Disruption of reproductive rhythms and patterns of melatonin and prolactin secretion following bilateral lesions of the suprachiasmatic nuclei in the ewe. J Neuroendocrinol 1995; 7:429-43. [PMID: 7550290 DOI: 10.1111/j.1365-2826.1995.tb00779.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To determine whether the photoperiodic responses of reproductive and prolactin (PRL) rhythms in the ewe requires an intact suprachiasmatic nucleus (SCN) driving the pineal rhythm of melatonin secretion, four groups of ovary-intact ewes over a 6-year period were subjected to bilateral (n = 40) or sham lesions (n = 15) of the SCN. Animals were exposed to an alternating 90-120 day photoregimen of 9L:15D and 16L:8D photoperiods. Blood samples taken twice weekly were assayed for prolactin and for progesterone to monitor oestrous cycles. On several occasions blood samples also were taken at hourly intervals for 24 h and analyzed for melatonin. Melatonin concentrations in sham lesioned ewes were basal during the lights-on period and rose robustly during darkness. Those sheep bearing unilateral lesions of the SCN (n = 13) or where the lesion spared the SCN entirely (n = 8) had patterns of melatonin secretion similar to sham ewes. The remaining ewes, having complete (n = 9) or incomplete bilateral (n = 8) destruction of the SCN, with one exception, had disrupted patterns of melatonin secretion. The nature of this disruption varied from complete suppression to continuously elevated levels. In lesioned ewes where melatonin secretion was not affected the onset and cessation of ovarian cycles were similar to sham ewes; stimulation of oestrous cycles under 9L:15D and cessation of oestrous cycles under 16L:8D. In contrast, 13 of 17 ewes with disrupted melatonin secretion also exhibited disrupted patterns of ovarian activity. In these animals oestrous cycles were no longer entrained by photoperiod but still occurred in distinct clusters, that is, groups of cycles began and ended spontaneously. Sheep with normal melatonin patterns showed low levels of PRL secretion during short days and elevated PRL levels during long days. However, 8 of 13 ewes with disrupted melatonin showed patterns of PRL secretion that were no longer entrained by photoperiod. A minority of ewes with disrupted melatonin patterns still showed reproductive (n = 4) and PRL (n = 5) responses similar to those of sham-lesioned ewes. These results show that bilateral destruction of the SCN in the ewe disrupts the circadian pattern of melatonin secretion and that this disruption usually, but not always, is associated with altered photoperiodic responses. These results strongly suggest that the SCN are important neural elements within the photoperiod time-keeping system in this species. A role for the SCN in the generation of endogenous transitions in reproductive activity (refractoriness) and prolactin secretion is not supported.
Collapse
Affiliation(s)
- C J Scott
- Department of Veterinary Biosciences, University of Illinois, Urbana 61801, USA
| | | | | | | | | |
Collapse
|
12
|
Morgan PJ, Barrett P, Howell HE, Helliwell R. Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem Int 1994; 24:101-46. [PMID: 8161940 DOI: 10.1016/0197-0186(94)90100-7] [Citation(s) in RCA: 419] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A pre-requisite to understanding the physiological mechanisms of action of melatonin is the identification of the target sites where the hormone acts. The radioligand 2-[125I]iodo-melatonin has been used extensively to localize binding sites in both the brain and peripheral tissues. In general these binding sites have been found to be high affinity, with Kd in the low picomolar range, and selective for structural analogues of melatonin. Also the affinity of these sites can generally be modulated by guanine nucleotides, consistent with the notion that they are putative G-protein coupled receptors. However, only a few studies have demonstrated that these putative receptors mediate biochemical and cellular responses. In the pars tuberalis (PT) and pars distalis (PD) of the pituitary, the amphibian melanophore and vertebrate retina, evidence indicates that melatonin acts to inhibit intracellular cyclic AMP through a G-protein coupled mechanism, demonstrating that this is a common signal transduction pathway for many melatonin receptors. However in the pars distalis the inhibition of calcium influx and membrane potential are also important mediators of melatonin effects. How many different forms or states of the melatonin receptor exist is unknown, but clearly the identification of the structure of the melatonin receptor(s) and its ability to interact with different G-proteins and signal transduction pathways are quintessential to our understanding of the physiological mechanisms of action of melatonin. In parallel the recent development of new melatonin analogues will greatly aid our understanding of the pharmacology of the melatonin receptor both in terms of the development of potent melatonin receptor antagonists and for the definition of receptor sub-types. The wide species and phylogenic diversity of melatonin binding sites in the brain has probably generated more questions than answers. Nevertheless the localization of melatonin receptors to the suprachiasmatic nucleus of the hypothalamus is at least consistent with circadian effects within the foetus and the adult. In contrast the PT of the pituitary presents an enigma in relation to the seasonal effects of melatonin. A model of how melatonin might mediate the timing of the circannual events through the PT is proposed.
Collapse
Affiliation(s)
- P J Morgan
- Rowett Research Institute, Aberdeen, Bucksburn, Scotland
| | | | | | | |
Collapse
|
13
|
NToumi F, Martinet L, Mondain-Monval M. Effects of melatonin treatment on the gonadotropin-releasing hormone neuronal system and on gonadotropin secretion in male mink, Mustela vison, in the presence or absence of testosterone feedback. J Pineal Res 1994; 16:18-25. [PMID: 8158519 DOI: 10.1111/j.1600-079x.1994.tb00077.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effects of subcutaneous melatonin capsules on the gonadotropin-releasing hormone (GnRH) immunoreactive (ir) system and the secretion of follicle stimulating hormone (FSH) and luteinizing hormone (LH) have been tested in intact, castrated, and castrated adult male mink supplemented with testosterone. Animals were transferred in July, i.e., during the period of sexual rest, under a daily light:dark cycle of 16-hr light and 8-hr darkness and studied over 13 weeks. GnRH (ir) perikarya, visualized by immunocytochemistry, were counted on serial coronal sections from the diagonal band of Broca to the infundibulum. Serum FSH and LH concentrations were measured by radioimmunoassay. In intact mink, melatonin induced a significant increase in the number of (ir) perikarya and in FSH and LH concentrations 3 and 8 weeks, respectively, after melatonin capsule implantation. In castrated mink, the number of perikarya and the concentrations of FSH, which had increased within 2 weeks after castration, did not change during melatonin treatment. In contrast, the concentration of LH, which were not altered by castration, increased 3-6 weeks after the onset of melatonin administration, suggesting a stimulation of GnRH release. In castrated testosterone-treated mink, the number of perikarya was increased as in castrated males, but the elevation of FSH in response to castration was prevented. Within 2 weeks after melatonin capsule implantation, the concentrations of FSH decreased while those of LH remained low, indicating an inhibition of GnRH release. These results show that testosterone modulates the effect of melatonin on the activity of the GnRH-gonadotropin system.
Collapse
Affiliation(s)
- F NToumi
- Laboratoire de Physiologie Sensorielle, Institut National de la Recherche Agronomique, Jouy en Josas, France
| | | | | |
Collapse
|
14
|
Bartness TJ, Powers JB, Hastings MH, Bittman EL, Goldman BD. The timed infusion paradigm for melatonin delivery: what has it taught us about the melatonin signal, its reception, and the photoperiodic control of seasonal responses? J Pineal Res 1993; 15:161-90. [PMID: 8120796 DOI: 10.1111/j.1600-079x.1993.tb00903.x] [Citation(s) in RCA: 370] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review summarizes the evidence showing that the duration of the nocturnal secretory profile of pineal melatonin (MEL) is critical for eliciting seasonally appropriate reproductive physiological and behavioral responses in mammals. We review experiments using the timed infusion paradigm (TIP) to deliver MEL either systemically or centrally to pinealectomized hamsters and sheep. In this paradigm, MEL is infused, usually once daily, for a specific number of hours and at a predetermined time of day. This experimental strategy tests most directly those features of the MEL signal that are necessary to trigger photoperiodic responses. The data suggest that the duration of the MEL stimulation is the critical feature of the MEL signal for both inhibitory and stimulatory effects of the hormone on the photoperiodic control of reproductive development in juvenile Siberian hamsters, and for the photoperiodic control of reproductive and metabolic responses in adult Siberian and Syrian hamsters and sheep. The use of the TIP reveals the importance of the frequency of the signal presentation of MEL and suggests the importance of a period of low-to-absent circulating concentrations of the hormone. The TIP also reveals that the characteristics of the MEL signal that regulate male sexual behavior are similar to those that are critical for reproductive and metabolic responses in Syrian hamsters. We summarize the locations of possible functional MEL target sites identified by combining the TIP with traditional brain lesion techniques. Evidence from such studies suggests that the integrity of the suprachiasmatic nucleus (SCN) region in Siberian hamsters and the anterior hypothalamus in Syrian hamsters is necessary for the response to short-day MEL signals. The TIP has been used to deliver MEL to putative target sites for the hormone in the brain of juvenile and adult Siberian hamsters. The results of these preliminary experiments suggest that the regions of specific MEL binding in this species, especially the SCN, are effective sites where MEL may stimulate short-day-type responses. In contrast, results from intracranial application of MEL in sheep suggest the medial basal hypothalamus as a critical site of action. Finally, we also discuss potential applications of the TIP for identification of brain MEL target sites, understanding of other photoperiodic phenomena and responses, and resolution of the cellular/molecular basis underlying the reception and interpretation of MEL signals.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- T J Bartness
- Department of Psychology, Georgia State University, Atlanta 30303
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Ebling FJ, Maywood ES, Humby T, Hastings MH. Circadian and photoperiodic time measurement in male Syrian hamsters following lesions of the melatonin-binding sites of the paraventricular thalamus. J Biol Rhythms 1992; 7:241-54. [PMID: 1330085 DOI: 10.1177/074873049200700305] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Autoradiographic studies using [125I]iodomelatonin in several species, including the Syrian hamster, have revealed that the rostral region of the anterior paraventricular nucleus of the thalamus (aPVT) contains a very high density of binding sites for melatonin. In two studies, small or large bilateral electrolytic lesions of the aPVT were made in adult male hamsters maintained on long days (LD 16:8). The hamsters were then transferred to short days (LD 8:16) to test whether testicular regression could occur in response to a decrease in photoperiod. Serum prolactin concentrations were measured as a second photoperiodic response. All unoperated control hamsters showed the typical short-day photoperiodic response: A decrease in serum luteinizing hormone (LH) and prolactin concentrations and testicular regression all occurred within 6 weeks in short days, followed by the development of scotorefractoriness. Lesions of the aPVT did not significantly affect the rate or the degree of the short-day-induced decline in serum levels of LH or prolactin, nor the pattern of testicular regression and the subsequent expression of refractoriness. To enable us to determine whether the aPVT might be involved in the entrainment or the expression of circadian rhythms, locomotor activity was monitored continuously in lesioned and control groups in Experiment 2, prior to and following the switch to short days. The reduction in photoperiod (involving an 8-hr advance in the time of lights-off and an 8-hr extension of the dark phase) caused a decompression of the nocturnal activity bout of control animals, so that after 2 weeks in short days, activity onset had also advanced to regain its phase relationship to the timing of lights-off. A similar pattern of reentrainment was observed in lesioned animals, and no differences were observed between treatment groups in the rate of entrainment and decompression. In addition, both intact controls and animals bearing large bilateral lesions of the aPVT exhibited robust free-running circadian rhythms of locomotor activity when held under constant dim red light. In summary, the integrity of the aPVT is not necessary for the seasonal response of the reproductive axis and prolactin secretion to photoperiod, nor for photic entrainment of activity rhythms, in the Syrian hamster.
Collapse
Affiliation(s)
- F J Ebling
- Department of Anatomy, University of Cambridge, United Kingdom
| | | | | | | |
Collapse
|
17
|
Maywood ES, Grosse J, Lindsay JO, Karp JD, Powers JB, Ebling FJ, Herbert J, Hastings MH. The effect of signal frequency on the gonadal response of male Syrian hamsters to programmed melatonin infusions. J Neuroendocrinol 1992; 4:37-44. [PMID: 21554574 DOI: 10.1111/j.1365-2826.1992.tb00342.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was to investigate which characteristics of the nocturnal melatonin signal, in addition to its duration, convey photoperiodic information to the reproductive axis. To achieve control over the pattern of circulating melatonin, male Syrian hamsters held under stimulatory long daylengths (16h light:8h dark) were pinealectomized to remove the principal source of circulating endogenous hormone and then fitted with chronic subcutaneous cannulae through which programmed infusions of melatonin solution or vehicle could be delivered. Experiment 1 tested whether long intervals between successive melatonin signals impaired the photoperiodic response. Animals which received a short day-like melatonin infusion of 10 h duration once every 24 h (T = 24) for 6 weeks underwent gonadal atrophy. When the same number of signals (42) was delivered at a frequency of once every 32 h (T = 32), they were ineffective and animals remained gonadally active. Two infusion patterns were used to determine if the loss of response to 10 h signals given at T = 32 h was a consequence of the frequency per se or the long interval between signals (22 h). In the first, a 'chimaeric' signal which combined a long duration i.e. short day-like 18 h melatonin signal with a short day-like melatonin-free interval of 14 h (combined signal T = 32 h) was able to induce significant, but only partial, gonadal atrophy. Second, when the 22-h interval between 10-h melatonin signals was interrupted by a short (2 h) melatonin pulse, significant but partial gonadal regression again occurred. Moreover, the response depended upon the timing of the 2 h pulse. When this fell early in the melatonin-free interval, leaving a large portion of it intact, it had no effect on gonadal condition. In contrast, a pulse delivered in the middle of the interval, which divided it up into two short day-like segments of 10 h each, was partially effective in restoring a short day response. The second experiment tested whether melatonin signals delivered at a high frequency would induce a photoperiodic response. A 10 h infusion delivered once every 24 h caused gonadal atrophy. The same melatonin infusion delivered at a periodicity of 20 h (T = 20) was also very potent as a short day stimulus. However, when 10-h signals were delivered at the higher frequencies of once every 18 or 16 h, they were less effective. Only a minority of animals exhibited gonadal atrophy and overall the group means were not significantly different from those of saline-infused controls, but were significantly greater than those of the 24 and 20 h groups. These data demonstrate that the photoperiodic response to the melatonin signal is sensitive to the frequency at which the signal is received. However, there is no evidence for a circadian basis to this sensitivity, nor a dependence upon the relationship between the endocrine stimulus and the light-dark cycle, insofar as signals encountered at a non-circadian period of 20 h are very effective. Moreover, the effectiveness of signals encountered at longer periodicities can be modified by manipulation of the uninterrupted duration of the interval free of melatonin, demonstrating a role in photoperiodic time measurement for the duration of the interval between signals.
Collapse
Affiliation(s)
- E S Maywood
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK. Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Hormones are secreted with circhoral, circadian and seasonal periodicities. Circhoral pulsatility is a temporal code, many chronic and acute changes in neuroendocrine status being mediated by changes in the frequency of circhoral release. The identity of the neuronal circuits controlling circhoral release is not known. Circadian release of hormones occurs with a precise temporal order entrained to the light-dark cycle, synchronized to the activity/rest rhythm and generated by circadian oscillators, of which the suprachiasmatic nuclei are the most important. Seasonal rhythms are driven either by an endogenous circannual clock mechanism or by a process of photoperiodic time measurement which is dependent upon the duration of the nocturnal peak of the pineal hormone melatonin.
Collapse
Affiliation(s)
- M H Hastings
- Department of Anatomy, University of Cambridge, U.K
| |
Collapse
|