1
|
Kikuchi S, Odashima K, Yasui T, Torii S, Hosaka M, Gomi H. Dominant Expression of Chromogranin B in Pituitary Corticotrophs and Its Putative Role in Interaction With Secretogranin III. J Histochem Cytochem 2025:221554241311965. [PMID: 39791490 PMCID: PMC11719422 DOI: 10.1369/00221554241311965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/24/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
SummaryPrevious studies have suggested that chromogranin A (CgA) is a partner molecule of secretogranin III (SgIII). In mouse pituitary corticotroph-derived AtT-20 cells, SgIII plays a role in sorting CgA/hormone aggregates into secretory granules (SGs). Although CgA expression is equivocal, CgB is clearly detectable in the rat pituitary corticotrophs. Therefore, we hypothesized that CgB shares a function with CgA in pituitary corticotrophs. In the binding assays, CgB, similar to CgA, showed binding activity to SgIII under weakly acidic conditions and in the presence of Ca2+. Considering the differences in animal species, the different abilities of antibodies, and the conditions of tissue fixation and thin sectioning in immunofluorescence histochemistry, we found that CgA was expressed in a small population (approximately 10%), and its expression intensity was weaker than that of CgB (>98%) in rodent pituitary corticotrophs. In addition, similar to CgA, CgB and SgIII were colocalized in adrenocorticotropic hormone (ACTH) granules. The labeling of CgA and CgB was not completely consistent, and CgB colocalized with SgIII in many granules. These results suggest that there are multiple sorting systems for ACTH granules in pituitary corticotrophs and that the SgIII/CgB complex behaves more dominantly than the SgIII/CgA complex, which has somewhat different properties.
Collapse
Affiliation(s)
- Shota Kikuchi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Koki Odashima
- Laboratory of Molecular Life Sciences, Department of Biotechnology, Akita Prefectural University, Akita, Japan
| | - Tadashi Yasui
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Seiji Torii
- Center for Food Science and Wellness, Gunma University, Maebashi, Japan
| | - Masahiro Hosaka
- Laboratory of Molecular Life Sciences, Department of Biotechnology, Akita Prefectural University, Akita, Japan
| | - Hiroshi Gomi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
2
|
Chromogranin A: An Endocrine Factor of Pregnancy. Int J Mol Sci 2023; 24:ijms24054986. [PMID: 36902417 PMCID: PMC10002927 DOI: 10.3390/ijms24054986] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Pregnancy is a state of physiological and hormonal changes. One of the endocrine factors involved in these processes is chromogranin A, an acidic protein produced, among others, by the placenta. Although it has been previously linked to pregnancy, no existing articles have ever managed to clarify the role of this protein regarding this subject. Therefore, the aim of the present study is to gather knowledge of chromogranin A's function with reference to gestation and parturition, clarify elusive information, and, most importantly, to formulate hypotheses for the future studies to verify.
Collapse
|
3
|
Yao Q, Tong Y, Peng R, Liu Z, Li Y. Associations of serum chromogranin A with depressive symptoms in men with unipolar depressive disorder. Gen Hosp Psychiatry 2020; 66:120-124. [PMID: 32829062 DOI: 10.1016/j.genhosppsych.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/12/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The aim of the present study was to determine the changes of serum chromogranin A (CgA) levels upon depression by investigating the relationship between serum CgA levels and the depressive symptoms assessed by 24-item Hamilton Rating Scale for Depression (HRSD-24). METHOD Serum CgA levels were measured by enzyme-linked immunosorbent assay in 133 male patients with major depressive disorder (MDD) and were compared with those of 47 healthy controls. Then generalized linear regression, logistic regression and restricted cubic spline models were performed to examine the association between serum CgA levels and depressive symptoms. RESULTS Serum CgA levels were lower in MDD patients than in controls (P < 0.001) and were inversely associated with scores on HRSD-24 in unadjusted, age, smoking, alcohol consumption, traumatic life events and family history of depression-adjusted and fully adjusted linear regression model. The fully adjusted regression coefficient with 95% confidence intervals was -0.028 (-0.045, -0.010) for serum CgA levels and HRSD-24 score. Serum CgA levels were inversely associated with depressive symptoms (HRSD ≥20) in each logistic regression model. CONCLUSION Serum CgA decrease was noted in male patients of MDD and may be inversely associated with depressive symptoms.
Collapse
Affiliation(s)
- Qian Yao
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China
| | - Yongqing Tong
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China
| | - Rui Peng
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| |
Collapse
|
4
|
Tanguy Y, Falluel-Morel A, Arthaud S, Boukhzar L, Manecka DL, Chagraoui A, Prevost G, Elias S, Dorval-Coiffec I, Lesage J, Vieau D, Lihrmann I, Jégou B, Anouar Y. The PACAP-regulated gene selenoprotein T is highly induced in nervous, endocrine, and metabolic tissues during ontogenetic and regenerative processes. Endocrinology 2011; 152:4322-35. [PMID: 21896670 DOI: 10.1210/en.2011-1246] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
Selenoproteins contain the essential trace element selenium whose deficiency leads to major disorders including cancer, male reproductive system failure, or autoimmune thyroid disease. Up to now, 25 selenoprotein-encoding genes were identified in mammals, but the spatiotemporal distribution, regulation, and function of some of these selenium-containing proteins remain poorly documented. Here, we found that selenoprotein T (SelT), a new thioredoxin-like protein, is regulated by the trophic neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) in differentiating but not mature adrenomedullary cells. In fact, our analysis revealed that, in rat, SelT is highly expressed in most embryonic structures, and then its levels decreased progressively as these organs develop, to vanish in most adult tissues. In the brain, SelT was abundantly expressed in neural progenitors in various regions such as the cortex and cerebellum but was undetectable in adult nervous cells except rostral migratory-stream astrocytes and Bergmann cells. In contrast, SelT expression was maintained in several adult endocrine tissues such as pituitary, thyroid, or testis. In the pituitary gland, SelT was found in secretory cells of the anterior lobe, whereas in the testis, the selenoprotein was present only in spermatogenic and Leydig cells. Finally, we found that SelT expression is strongly stimulated in liver cells during the regenerative process that occurs after partial hepatectomy. Taken together, these data show that SelT induction is associated with ontogenesis, tissue maturation, and regenerative mechanisms, indicating that this PACAP-regulated selenoprotein may play a crucial role in cell growth and activity in nervous, endocrine, and metabolic tissues.
Collapse
Affiliation(s)
- Yannick Tanguy
- INSERM, U982, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Sciences Faculty, University of Rouen, Place Emile Blondel, F-76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Krishnamurthy D, Levin Y, Harris LW, Umrania Y, Bahn S, Guest PC. Analysis of the human pituitary proteome by data independent label-free liquid chromatography tandem mass spectrometry. Proteomics 2011; 11:495-500. [PMID: 21268279 DOI: 10.1002/pmic.201000496] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2010] [Revised: 11/05/2010] [Accepted: 11/08/2010] [Indexed: 11/08/2022]
Abstract
Studies of pituitary-related disorders would be facilitated by enhanced knowledge of the pituitary proteome. To construct a data set of human pituitary proteins, separate protein extracts were prepared from 15 post-mortem pituitaries and analyzed by data independent label-free nanoflow liquid chromatography mass spectrometry (nLC-MS(E) ). The detected mass/time features were aligned and quantified using the Rosetta Elucidator(®) system and annotated using results from ProteinLynx Global Server. The resulting data set comprised 1007 unique proteins, with stringent identification by a minimum of two distinct peptides. These proteins consisted predominantly of enzymes, transporters, transcription/translation factors, cell structure and secreted proteins.
Collapse
Affiliation(s)
- Divya Krishnamurthy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
6
|
Fung MM, Salem RM, Mehtani P, Thomas B, Lu CF, Perez B, Rao F, Stridsberg M, Ziegler MG, Mahata SK, O'Connor DT. Direct vasoactive effects of the chromogranin A (CHGA) peptide catestatin in humans in vivo. Clin Exp Hypertens 2010; 32:278-87. [PMID: 20662728 DOI: 10.3109/10641960903265246] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
Catestatin is a bioactive peptide of chromogranin A (CHGA) that is co-released with catecholamines from secretory vesicles. Catestatin may function as a vasodilator and is diminished in hypertension. To evaluate this potential vasodilator in vivo without systemic counterregulation, we infused catestatin to target concentrations of approximately 50, approximately 500, approximately 5000 nM into dorsal hand veins of 18 normotensive men and women, after pharmacologic venoconstriction with phenylephrine. Pancreastatin, another CHGA peptide, was infused as a negative control. After preconstriction to approximately 69%, increasing concentrations of catestatin resulted in dose-dependent vasodilation (P = 0.019), in female subjects (to approximately 44%) predominantly. The EC(50) (approximately 30 nM) for vasodilation induced by catestatin was the same order of magnitude to circulating endogenous catestatin (4.4 nM). No vasodilation occurred during the control infusion with pancreastatin. Plasma CHGA, catestatin, and CHGA-to-catestatin processing were then determined in 622 healthy subjects without hypertension. Female subjects had higher plasma catestatin levels than males (P = 0.001), yet lower CHGA precursor concentrations (P = 0.006), reflecting increased processing of CHGA-to-catestatin (P < 0.001). Our results demonstrate that catestatin dilates human blood vessels in vivo, especially in females. Catestatin may contribute to sex differences in endogenous vascular tone, thereby influencing the complex predisposition to hypertension.
Collapse
Affiliation(s)
- Maple M Fung
- Department of Medicine, University of California at San Diego and Veterans Affairs, San Diego Healthcare System, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
McVicar CM, Cunningham RT, McClure N, Curry WJ. Chromogranin A proteolysis to generate beta-granin and WE-14 in the adenohypophysis during the rat oestrous cycle. REGULATORY PEPTIDES 2003; 115:1-10. [PMID: 12873792 DOI: 10.1016/s0167-0115(03)00130-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
Abstract
Immunohistochemical analysis of the male and female rat adenohypophysis revealed that chromogranin A (CgA), beta-granin and WE-14 immunostaining was localised to follicle stimulating hormone (FSH) producing cells, while luteinizing hormone (LH) producing cells exhibited chromogranin A and beta-granin immunostaining. The intensity of chromogranin A, beta-granin and WE-14 immunostaining exhibited variation during the oestrous cycle; weak immunostaining was observed during proestrous and oestrous, corresponding with the lowest cellular concentration of luteinizing and follicle stimulating hormone. Chromogranin A and beta-granin immunostaining were similar in both the male and female (at dioestrous), however, a larger number of more intense WE-14 immunopositive cells were evident in the male adenohypophysis relative to the female at any stage of the cycle. The tissue and plasma concentrations of beta-granin and WE-14 immunoreactivity fluctuated throughout the oestrous cycle. Maximum and minimum beta-granin and WE-14 tissue concentration counterpoised the latent maximum and minimum plasma concentration. Chromatographic analysis of adenohypophysis extracts revealed the degree of chromogranin A proteolysis throughout the oestrous cycle; in contrast, plasma profiles consistently possessed a large chromogranin A-like immunoreactant. This data suggests that chromogranin A biosynthesis, proteolysis and the secretion of its derived peptides parallels that of the gonadotroph hormones throughout the oestrous cycle.
Collapse
Affiliation(s)
- Carmel Mary McVicar
- School of Medicine, Obstetrics and Gynaecology, Queen's University of Belfast, Institute of Clinical Science, Grosvenor Road, Belfast, BT12 6BJ, Northern Ireland, UK.
| | | | | | | |
Collapse
|
8
|
Watanabe T, Banno T, Jeziorowski T, Ohsawa Y, Waguri S, Grube D, Uchiyama Y. Effects of sex steroids on secretory granule formation in gonadotropes of castrated male rats with respect to granin expression. Endocrinology 1998; 139:2765-73. [PMID: 9607783 DOI: 10.1210/endo.139.6.6059] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
Pituitary gonadotropes show sex-related differences in their ultrastructure. Typical gonadotropes of male rats exhibit both large granules, which contain chromogranin A (CgA), and small granules, which contain secretogranin II (SgII). In contrast, typical female rat gonadotropes show only a very few large granules among the numerous small granules. To clarify the nature of the biogenesis of these secretory granules and the effects of sex steroids, the ultrastructural and immunocytochemical changes in gonadotropes were examined in castrated male rats supplied with a testosterone or estradiol implant. In castrated rats, pituitary expression and plasma levels of LH increased drastically, but the pituitary content of CgA decreased. The majority of gonadotropes then showed features of "castration cells" containing many small secretory granules. A testosterone implant to castrated rats remarkably suppressed the expression and circulating levels of LH and increased the CgA content in the pituitary to near-normal levels. In this situation, immunocytochemical studies demonstrated that gonadotropes again exhibited large and small secretory granules with the respective localization of CgA and SgII. On the contrary, in castrated rats supplied with an estradiol implant, the expression and content of CgA in the pituitary were remarkably suppressed, and large secretory granules disappeared from gonadotropes. These results suggest that the expression of CgA in gonadotropes is regulated differently by male and female sex steroids. These different effects of androgen and estrogen on the expression level of CgA are closely associated with the sex-related differences in the ultrastructure of secretory granules within gonadotropes.
Collapse
Affiliation(s)
- T Watanabe
- Department of Cell Biology and Anatomy I, Osaka University Medical School, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Tsunashima K, Wolkersdorfer M, Schwarzer C, Sperk G, Fischer-Colbrie R. Limbic seizures induce neuropeptide and chromogranin mRNA expression in rat adrenal medulla. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 51:42-8. [PMID: 9427505 DOI: 10.1016/s0169-328x(97)00214-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023]
Abstract
Rats treated with kainic acid develop limbic seizures and have elevated levels of circulating catecholamines resulting from an extensive stimulation of the adrenal gland. We investigated the levels of several constituents of chromaffin granules in rat adrenal medulla after injection of kainic acid. This treatment increased mRNA steady-state levels of enkephalin, neuropeptide Y and chromogranin B 2-6-fold. Elevated levels of these constituents were found as early as 2 h after treatment and lasted up to 24 h. Chromogranin A and secretogranin II mRNA levels, on the other hand, remained unchanged. Adrenal catecholamine concentrations were reduced by 80%. Pre-treatment of rats with thiopental prior to kainic acid prevented seizures, the decline in catecholamines and the elevation of enkephalin and neuropeptide Y mRNAs but not that of chromogranin B. On the other hand, the peripherally acting ganglionic blocker chlorisondamine did not protect from the kainic acid-induced up-regulation of chromogranin B mRNA, suggesting that chromogranin B mRNA may be regulated by a direct effect of kainic acid on chromaffin cells. The pattern of changes in mRNA expression differed from that seen after insulin hypoglycemia or reserpine treatment. Thus, stimulation of the splanchnic innervation in vivo by various means leads to an individual and independent regulation of granule constituents by quite different mechanisms.
Collapse
Affiliation(s)
- K Tsunashima
- Department of Pharmacology, University of Innsbruck, Austria
| | | | | | | | | |
Collapse
|
10
|
Iacangelo AL, Eiden LE. Chromogranin A: current status as a precursor for bioactive peptides and a granulogenic/sorting factor in the regulated secretory pathway. REGULATORY PEPTIDES 1995; 58:65-88. [PMID: 8577930 DOI: 10.1016/0167-0115(95)00069-n] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
Affiliation(s)
- A L Iacangelo
- Section on Molecular Neuroscience, NIMH, NIH, Bethesda, MD 20892-4090, USA
| | | |
Collapse
|
11
|
Fischer-Colbrie R, Laslop A, Kirchmair R. Secretogranin II: molecular properties, regulation of biosynthesis and processing to the neuropeptide secretoneurin. Prog Neurobiol 1995; 46:49-70. [PMID: 7568909 DOI: 10.1016/0301-0082(94)00060-u] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023]
Abstract
Secretogranin II is an acidic secretory protein in large dense core vesicles of endocrine, neuroendocrine and neuronal tissues. It comprises, together with chromogranins A and B, the class of proteins collectively called chromogranins. In this review the physico-chemical properties, genomic organization, tissue distribution, synthesis regulation, ontogeny and physiological function of this protein are discussed. Secretogranin II gained interest recently for mainly three reasons: (1) secretogranin II is an excellent marker for the regulated secretory pathway due to its simple and specific metabolic labeling by inorganic sulfate; (2) secretogranin II occurs in a variety of neoplasms arising from endocrine and neuroendocrine cells and was shown to be a useful histological tumor marker for these cells; (3) secretogranin II is the precursor of the recently discovered neuropeptide secretoneurin which induces dopamine release in the striatum of the rat brain.
Collapse
|
12
|
Stridsberg M. The use of chromogranin, synaptophysin and islet amyloid polypeptide as markers for neuroendocrine tumours. Ups J Med Sci 1995; 100:169-99. [PMID: 8808182 DOI: 10.3109/03009739509178905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- M Stridsberg
- Department of Clinical chemistry, University Hospital, Uppsala, Sweden
| |
Collapse
|
13
|
Laslop A, Mahata SK, Wolkersdorfer M, Mahata M, Srivastava M, Seidah NG, Fischer-Colbrie R, Winkler H. Large dense-core vesicles in rat adrenal after reserpine: levels of mRNAs of soluble and membrane-bound constituents in chromaffin and ganglion cells indicate a biosynthesis of vesicles with higher secretory quanta. J Neurochem 1994; 62:2448-56. [PMID: 8189248 DOI: 10.1046/j.1471-4159.1994.62062448.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023]
Abstract
Rats were injected with a large dose of reserpine known to stimulate the adrenal medulla. Various times after drug treatment the mRNA levels of several constituents of large dense-core vesicles were determined by northern blot analysis and in situ hybridization. The latter method allowed detection of changes in mRNA levels not only in chromaffin cells, but also in the ganglion cells found in adrenal medulla. Levels of the mRNAs of secretory components of large dense-core vesicles (chromogranins A and B, secretogranin II, VGF, and neuropeptide Y) increased in chromaffin cells by 215-857% after 1-3 days of drug treatment. For partly membrane-bound components (dopamine beta-hydroxylase, prohormone convertase 2, carboxypeptidase H, and peptidylglycine alpha-amidating monooxygenase) the changes ranged from 182 to 315%, whereas for glycoprotein III and for intrinsic membrane proteins (cytochrome b561 and vesicle monoamine transporter 2) no change occurred. In ganglion cells the mRNAs that could be detected for VGF, neuropeptide Y, secretogranin II, carboxypeptidase H, and vesicle monoamine transporter 1 showed an analogous pattern of change, with significant increases for the secretory proteins and no change for the membrane components. From these and previous results we suggest the following concept: Long-lasting stimulation of chromaffin cells or neurons does not induce the biosynthesis of a larger number of vesicles but rather leads to the formation of vesicles containing higher secretory quanta of chromogranins and neuropeptides.
Collapse
Affiliation(s)
- A Laslop
- Department of Pharmacology, University of Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Laslop A, Tschernitz C, Eiter C. Biosynthesis of proteins of large dense-core vesicles in rat PC12 cells: regulation by forskolin and phorbol ester. Neuroscience 1994; 59:477-85. [PMID: 8008202 DOI: 10.1016/0306-4522(94)90611-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023]
Abstract
We have investigated the influence of various second messengers on the biosynthesis of large dense-core vesicle constituents in rat PC12 cells. After treatment with forskolin, phorbol ester or a combination of both substances for up to six days, the messenger RNA levels of several vesicle components were determined by northern blotting. Forskolin increased the expression of messenger RNA encoding the soluble proteins chromogranin B, neuropeptide Y and VGF. Addition of phorbol ester markedly enhanced the effects of forskolin. On the other hand, the expression of two further soluble proteins, chromogranin A and secretogranin II, remained fairly unchanged with all treatments tested. Amongst partly membrane-bound vesicle components, the biosynthesis of glycoprotein III and peptidylglycine alpha-amidating mono-oxygenase was significantly up-regulated by combined treatment with forskolin plus phorbol ester. The carboxypeptidase H messenger RNA increased due to phorbol ester and after long-term application of both drugs. In contrast, phorbol ester alone or plus forskolin down-regulated the expression of dopamine beta-hydroxylase. Essentially the same applies to the intrinsic membrane protein cytochrome b-561, whose messenger RNA level declined in all treatment groups. In conclusion, our results show that forskolin and phorbol ester can regulate the composition of large dense-core vesicles in quite distinct patterns.
Collapse
Affiliation(s)
- A Laslop
- Department of Pharmacology, University of Innsbruck, Austria
| | | | | |
Collapse
|
15
|
Bauer J, Kirchmair R, Egger C, Fischer-Colbrie R. Histamine induces a gene-specific synthesis regulation of secretogranin II but not of chromogranin A and B in chromaffin cells in a calcium-dependent manner. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53893-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
|
16
|
Lahr G, Langley K, Vereczkey C, Gratzl O, Gratzl M. Secretory vesicle and cell surface markers for human endocrine pancreatic and pituitary tumors. Endocr Pathol 1992; 3:165-172. [PMID: 32370422 DOI: 10.1007/bf02921358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
Affiliation(s)
- G Lahr
- Abteilung Anatomie und Zellbiologie der Universität Ulm, Albert-Einstein-Allee 11, Postfach 4066, D-7900, Ulm, Germany
| | - K Langley
- IN-SERM U-338 de Biologie de la Communication Cellulaire, Strasbourg, France
| | - C Vereczkey
- Department of Anatomy, A. Szent-Györgyi Medical University, Szeged, Hungary
| | - O Gratzl
- Neurochirurgische Universitätsklinik Kantonsspital, Basel, Switzerland
| | - M Gratzl
- Abteilung Anatomie und Zellbiologie der Universität Ulm, Albert-Einstein-Allee 11, Postfach 4066, D-7900, Ulm, Germany
| |
Collapse
|
17
|
Affiliation(s)
- H Winkler
- Department of Pharmacology, University of Innsbruck, Austria
| | | |
Collapse
|
18
|
Laslop A, Tschernitz C. Effects of nerve growth factor on the biosynthesis of chromogranin A and B, secretogranin II and carboxypeptidase H in rat PC12 cells. Neuroscience 1992; 49:443-50. [PMID: 1436476 DOI: 10.1016/0306-4522(92)90109-f] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
Abstract
We investigated the biosynthesis of various constituents (chromogranins A and B, secretogranin II, carboxypeptidase H and synaptin/synaptophysin) of large dense core and small vesicles in PC12 cells. These cells were treated for up to 18 days with nerve growth factor. Peptide levels were determined by quantitative immunoblotting, their mRNAs by Northern blotting. Nerve growth factor treatment changed the levels of the various peptides investigated and their mRNAs in three patterns. Peptide and mRNA levels for chromogranin A and chromogranin B were increased on day 1 and then declined. Synaptin/synaptophysin levels slightly decreased from day 1 onwards. On the other hand secretogranin II increased steadily up to 217% for peptide levels and 257% for mRNA levels. For carboxypeptidase H for which only the mRNA could be determined an analogous behaviour was seen. Its mRNA after 14 days of nerve growth factor treatment was 459% of controls. These results establish that the biosynthesis of the secretory proteins chromogranin A, chromogranin B and secretogranin II is regulated differentially during nerve growth factor treatment. We suggest that neuronal differentiation is accompanied by an increased biosynthesis of secretogranin II. For carboxypeptidase H, the marked increase in mRNA levels after nerve growth factor treatment is the first example that the biosynthesis of this peptide is significantly up-regulated. Synaptin/synaptophysin biosynthesis is not increased although this peptide is a major constituent of small vesicles which increase in number during nerve growth factor treatment.
Collapse
Affiliation(s)
- A Laslop
- Department of Pharmacology, University of Innsbruck, Austria
| | | |
Collapse
|