1
|
Kambe Y, Nguyen TT, Yasaka T, Nguyen TT, Sameshima Y, Hashiguchi K, Shintani N, Hashimoto H, Kurihara T, Miyata A. The Pivotal Role of Neuropeptide Crosstalk from Ventromedial-PACAP to Dorsomedial-Galanin in the Appetite Regulation in the Mouse Hypothalamus. Mol Neurobiol 2023; 60:171-182. [PMID: 36251233 DOI: 10.1007/s12035-022-03084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/03/2022] [Indexed: 12/30/2022]
Abstract
We have previously shown that pituitary adenylate cyclase-activating polypeptide (PACAP) in the ventromedial hypothalamus (VMH) enhances feeding during the dark cycle and after fasting, and inhibits feeding during the light cycle. On the other hand, galanin is highly expressed in the hypothalamus and has been reported to be involved in feeding regulation. In this study, we investigated the involvement of the VMH-PACAP to the dorsomedial hypothalamus (DMH)-galanin signaling in the regulation of feeding. Galanin expression in the hypothalamus was significantly increased with fasting, but this increment was canceled in PACAP-knockout (KO) mice. Furthermore, overexpression of PACAP in the VMH increased the expression of galanin, while knockdown (KD) of PACAP in the VMH decreased the expression of galanin, indicating that the expression of galanin in the hypothalamus might be regulated by PACAP in the VMH. Therefore, we expressed the synaptophysin-EGFP fusion protein (SypEGFP) in PACAP neurons in the VMH and visualized the neural projection to the hypothalamic region where galanin was highly expressed. A strong synaptophysin-EGFP signal was observed in the DMH, indicating that PACAP-expressing cells of the VMH projected to the DMH. Furthermore, galanin immunostaining in the DMH showed that galanin expression was weak in PACAP-KO mice. When galanin in the DMH was knocked down, food intake during the dark cycle and after fasting was decreased, and food intake during the light cycle was increased, as in PACAP-KO mice. These results indicated that galanin in the DMH may regulate the feeding downstream of PACAP in the VMH.
Collapse
Affiliation(s)
- Yuki Kambe
- Department of Pharmacology, Graduate School of Medical and Dental Science, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima-shi, Kagoshima, 890-8544, Japan.
| | - Thanh Trung Nguyen
- Department of Pharmacology, Graduate School of Medical and Dental Science, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima-shi, Kagoshima, 890-8544, Japan
| | - Toshiharu Yasaka
- Department of Health and Nutrition, Faculty of Health Sciences, University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata, 950-3198, Japan
| | - Thu Thi Nguyen
- Department of Pharmacology, Graduate School of Medical and Dental Science, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima-shi, Kagoshima, 890-8544, Japan
| | - Yoshimune Sameshima
- Department of Pharmacology, Graduate School of Medical and Dental Science, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima-shi, Kagoshima, 890-8544, Japan
| | - Kohei Hashiguchi
- Department of Pharmacology, Graduate School of Medical and Dental Science, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima-shi, Kagoshima, 890-8544, Japan
| | - Norihito Shintani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichibancho, Wakayama-shi, Wakayama, 640-8156, Japan.,Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichibancho, Wakayama-shi, Wakayama, 640-8156, Japan.,United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Division of Bioscience, Institute for Datability Science, Osaka University, 2-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Medical and Dental Science, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima-shi, Kagoshima, 890-8544, Japan
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Medical and Dental Science, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima-shi, Kagoshima, 890-8544, Japan
| |
Collapse
|
2
|
Qian S, Yan S, Pang R, Zhang J, Liu K, Shi Z, Wang Z, Chen P, Zhang Y, Luo T, Hu X, Xiong Y, Zhou Y. A temperature-regulated circuit for feeding behavior. Nat Commun 2022; 13:4229. [PMID: 35869064 PMCID: PMC9307622 DOI: 10.1038/s41467-022-31917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 07/08/2022] [Indexed: 11/08/2022] Open
Abstract
Both rodents and primates have evolved to orchestrate food intake to maintain thermal homeostasis in coping with ambient temperature challenges. However, the mechanisms underlying temperature-coordinated feeding behavior are rarely reported. Here we find that a non-canonical feeding center, the anteroventral and periventricular portions of medial preoptic area (apMPOA) respond to altered dietary states in mice. Two neighboring but distinct neuronal populations in apMPOA mediate feeding behavior by receiving anatomical inputs from external and dorsal subnuclei of lateral parabrachial nucleus. While both populations are glutamatergic, the arcuate nucleus-projecting neurons in apMPOA can sense low temperature and promote food intake. The other type, the paraventricular hypothalamic nucleus (PVH)-projecting neurons in apMPOA are primarily sensitive to high temperature and suppress food intake. Caspase ablation or chemogenetic inhibition of the apMPOA→PVH pathway can eliminate the temperature dependence of feeding. Further projection-specific RNA sequencing and fluorescence in situ hybridization identify that the two neuronal populations are molecularly marked by galanin receptor and apelin receptor. These findings reveal unrecognized cell populations and circuits of apMPOA that orchestrates feeding behavior against thermal challenges.
Collapse
Affiliation(s)
- Shaowen Qian
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, School of Basic Medicine, Army Medical University, Chongqing, China.
- Department of Medical Imaging, The 960th Hospital of Joint Logistics Support Force of PLA (Former Jinan Military General Hospital), Jinan, Shandong, China.
| | - Sumei Yan
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Ruiqi Pang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, School of Basic Medicine, Army Medical University, Chongqing, China
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, Guangxi, China
| | - Jing Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Kai Liu
- Department of Medical Imaging, The 960th Hospital of Joint Logistics Support Force of PLA (Former Jinan Military General Hospital), Jinan, Shandong, China
| | - Zhiyue Shi
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Zhaoqun Wang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Penghui Chen
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Yanjie Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Tiantian Luo
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Xianli Hu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Ying Xiong
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, School of Basic Medicine, Army Medical University, Chongqing, China.
| | - Yi Zhou
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, School of Basic Medicine, Army Medical University, Chongqing, China.
| |
Collapse
|
3
|
Tsuneoka Y, Yoshida S, Takase K, Oda S, Kuroda M, Funato H. Neurotransmitters and neuropeptides in gonadal steroid receptor-expressing cells in medial preoptic area subregions of the male mouse. Sci Rep 2017; 7:9809. [PMID: 28852050 PMCID: PMC5575033 DOI: 10.1038/s41598-017-10213-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/07/2017] [Indexed: 11/09/2022] Open
Abstract
Testosterone is involved in male sexual, parental and aggressive behaviors through the androgen receptor (AR) and estrogen receptor (ER) α expressed in the brain. Although several studies have demonstrated that ERα and AR in the medial preoptic area (MPOA) are required for exhibiting sexual and aggressive behaviors of male mice, the molecular characteristics of ERα- and AR-expressing cells in the mouse MPOA are largely unknown. Here, we performed in situ hybridization for neurotransmitters and neuropeptides, combined with immunohistochemistry for ERα and AR to quantitate and characterize gonadal steroid receptor-expressing cells in the MPOA subregions of male mice. Prodynorphin, preproenkephalin (Penk), cocaine- and amphetamine-related transcript, neurotensin, galanin, tachykinin (Tac)1, Tac2 and thyrotropin releasing hormone (Trh) have distinct expression patterns in the MPOA subregions. Gad67-expressing cells were the most dominant neuronal subtype among the ERα- and AR-expressing cells throughout the MPOA. The percentage of ERα- and AR-immunoreactivities varied depending on the neuronal subtype. A substantial proportion of the neurotensin-, galanin-, Tac2- and Penk-expressing cells in the MPOA were positive for ERα and AR, whereas the vast majority of the Trh-expressing cells were negative. These results suggest that testosterone exerts differential effects depending on both the neuronal subtypes and MPOA subregions.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Sachine Yoshida
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan
| | - Kenkichi Takase
- Laboratory of Psychology, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Satoko Oda
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Masaru Kuroda
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan.
- International Institutes for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
4
|
Tsuneoka Y, Maruyama T, Yoshida S, Nishimori K, Kato T, Numan M, Kuroda KO. Functional, anatomical, and neurochemical differentiation of medial preoptic area subregions in relation to maternal behavior in the mouse. J Comp Neurol 2013; 521:1633-63. [DOI: 10.1002/cne.23251] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/05/2012] [Accepted: 10/25/2012] [Indexed: 01/20/2023]
|
5
|
Scopinho A, Fortaleza E, Corrêa F, Resstel L. Medial amygdaloid nucleus 5-HT2C receptors are involved in the hypophagic effect caused by zimelidine in rats. Neuropharmacology 2012; 63:301-9. [DOI: 10.1016/j.neuropharm.2012.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/21/2012] [Accepted: 03/24/2012] [Indexed: 10/28/2022]
|
6
|
Sethi J, Sanchez-Alavez M, Tabarean IV. Loss of histaminergic modulation of thermoregulation and energy homeostasis in obese mice. Neuroscience 2012; 217:84-95. [PMID: 22579982 DOI: 10.1016/j.neuroscience.2012.04.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 01/27/2023]
Abstract
Histamine acts centrally to increase energy expenditure and reduce body weight by mechanisms not fully understood. It has been suggested that in the obese state hypothalamic histamine signaling is altered. Previous studies have also shown that histamine acting in the preoptic area controls thermoregulation. We aimed to study the influence of preoptic histamine on body temperature and energy homeostasis in control and obese mice. Activating histamine receptors in the preoptic area by increasing the concentration of endogenous histamine or by local injection of specific agonists induced an elevation of core body temperature and decreased respiratory exchange ratio (RER). In addition, the food intake was significantly decreased. The hyperthermic effect was associated with a rapid increase in mRNA expression of uncoupling proteins in thermogenic tissues, the most pronounced being that of uncoupling protein (UCP) 1 in brown adipose tissue and of UCP2 in white adipose tissue. In diet-induced obese mice histamine had much diminished hyperthermic effects as well as reduced effect on RER. Similarly, the ability of preoptic histamine signaling to increase the expression of uncoupling proteins was abolished. We also found that the expression of mRNA encoding the H1 receptor subtype in the preoptic area was significantly lower in obese animals. These results indicate that histamine signaling in the preoptic area modulates energy homeostasis by regulating body temperature, metabolic parameters and food intake and that the obese state is associated with a decrease in neurotransmitter's influence.
Collapse
Affiliation(s)
- J Sethi
- The Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
7
|
Mercer RE, Chee MJS, Colmers WF. The role of NPY in hypothalamic mediated food intake. Front Neuroendocrinol 2011; 32:398-415. [PMID: 21726573 DOI: 10.1016/j.yfrne.2011.06.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/17/2011] [Accepted: 06/13/2011] [Indexed: 12/29/2022]
Abstract
Neuropeptide Y (NPY) is a highly conserved neuropeptide with orexigenic actions in discrete hypothalamic nuclei that plays a role in regulating energy homeostasis. NPY signals via a family of high affinity receptors that mediate the widespread actions of NPY in all hypothalamic nuclei. These actions are also subject to tight, intricate regulation by numerous peripheral and central energy balance signals. The NPY system is embedded within a densely-redundant network designed to ensure stable energy homeostasis. This redundancy may underlie compensation for the loss of NPY or its receptors in germline knockouts, explaining why conventional knockouts of NPY or its receptors rarely yield a marked phenotypic change. We discuss insights into the hypothalamic role of NPY from studies of its physiological actions, responses to genetic manipulations and interactions with other energy balance signals. We conclude that numerous approaches must be employed to effectively study different aspects of NPY action.
Collapse
Affiliation(s)
- Rebecca E Mercer
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | | | | |
Collapse
|
8
|
Shiba K, Kageyama H, Takenoya F, Shioda S. Galanin-like peptide and the regulation of feeding behavior and energy metabolism. FEBS J 2011; 277:5006-13. [PMID: 21126314 DOI: 10.1111/j.1742-4658.2010.07933.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hypothalamic neuropeptides modulate physiological activity via G protein-coupled receptors (GPCRs). Galanin-like peptide (GALP) is a 60 amino acid neuropeptide that was originally isolated from porcine hypothalamus using a binding assay for galanin receptors, which belong to the GPCR family. GALP is mainly produced in neurons in the hypothalamic arcuate nucleus. GALP-containing neurons form neuronal networks with several other types of peptide-containing neurons and then regulate feeding behavior and energy metabolism. In rats, the central injection of GALP produces a dichotomous action that involves transient hyperphasia followed by hypophasia and a reduction in body weight, whereas, in mice, it has only one action that reduces both food intake and body weight. In the present minireview, we discuss current evidence regarding the function of GALP, particularly in relation to feeding and energy metabolism. We also examine the effects of GALP activity on food intake, body weight and locomotor activity after intranasal infusion, a clinically viable mode of delivery. We conclude that GALP may be of therapeutic value for obesity and life-style-related diseases in the near future.
Collapse
Affiliation(s)
- Kanako Shiba
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
9
|
Lawrence C, Fraley GS. Galanin-like peptide (GALP) is a hypothalamic regulator of energy homeostasis and reproduction. Front Neuroendocrinol 2011; 32:1-9. [PMID: 20558195 PMCID: PMC2950899 DOI: 10.1016/j.yfrne.2010.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/26/2010] [Accepted: 06/09/2010] [Indexed: 12/30/2022]
Abstract
Galanin-like peptide (GALP) was discovered in 1999 in the porcine hypothalamus and was found to be a 60 amino acid neuropeptide. GALP shares sequence homology to galanin (1-13) in position 9-21 and can bind to, as well as activate, the three galanin receptor subtypes (GalR1-3). GALP-expressing cells are limited, and are mainly found in the arcuate nucleus of the hypothalamus (ARC) and the posterior pituitary. GALP-positive neurons in the ARC project to several brain regions where they appear to make contact with multiple neuromodulators. These neuromodulators are involved in the regulation of energy homeostasis and reproduction, anatomical evidence that suggests a role for GALP in these physiological functions. In support of this idea, GALP gene expression is regulated by several factors that reflect metabolic state including the metabolic hormones leptin and insulin, thyroid hormones, and blood glucose. Considerable evidence now exists to support the hypothesis that GALP has a role in the regulation of energy homeostasis and reproduction; and, that GALP's role may be independent of the known galanin receptors. In this review, we (1) provide an overview of the distribution of GALP, and discuss the potential relationship between GALP and other neuromodulators of energy homeostasis and reproduction, (2) discuss the metabolic factors that regulate GALP expression, (3) review the evidence for the role of GALP in energy homeostasis and reproduction, (4) discuss the potential downstream mediators and mechanisms underlying GALP's effects, and (5) discuss the possibility that GALP may mediate its effects via an as yet unidentified GALP-specific receptor.
Collapse
|
10
|
Shioda S, Kageyama H, Takenoya F, Shiba K. Galanin-like peptide: a key player in the homeostatic regulation of feeding and energy metabolism? Int J Obes (Lond) 2010; 35:619-28. [PMID: 20938442 DOI: 10.1038/ijo.2010.202] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The hypothalamus has a critical role in the regulation of feeding behavior, energy metabolism and reproduction. Galanin-like peptide (GALP), a novel 60 amino-acid peptide with a nonamidated C-terminus, was first discovered in porcine hypothalamus. GALP is mainly produced in the hypothalamic arcuate nucleus and is involved in the regulation of feeding behavior and energy metabolism, with GALP-containing neurons forming networks with several feeding-regulating peptide-containing neurons. The effects of GALP on food intake and body weight are complex. In rats, the central effect of GALP is to first stimulate and then reduce food intake, whereas in mice, GALP has an anorectic function. Furthermore, GALP regulates plasma luteinizing hormone levels through activation of gonadotropin-releasing hormone-producing neurons, suggesting that it is also involved in the reproductive system. This review summarizes the research on these topics and discusses current evidence regarding the function of GALP, particularly in relation to feeding and energy metabolism. We also discuss the effects of GALP activity on food intake, body weight and locomotor activity after intranasal infusion, a clinically viable mode of delivery.
Collapse
Affiliation(s)
- S Shioda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan.
| | | | | | | |
Collapse
|
11
|
Galanin-Like Peptide: Neural Regulator of Energy Homeostasis and Reproduction. EXPERIENTIA SUPPLEMENTUM 2010; 102:263-80. [DOI: 10.1007/978-3-0346-0228-0_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Hunt JL, Zaretsky DV, Sarkar S, Dimicco JA. Dorsomedial hypothalamus mediates autonomic, neuroendocrine, and locomotor responses evoked from the medial preoptic area. Am J Physiol Regul Integr Comp Physiol 2009; 298:R130-40. [PMID: 19923355 DOI: 10.1152/ajpregu.00574.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previous studies suggest that sympathetic responses evoked from the preoptic area in anesthetized rats require activation of neurons in the dorsomedial hypothalamus. Disinhibition of neurons in the dorsomedial hypothalamus in conscious rats produces physiological and behavioral changes resembling those evoked by microinjection of muscimol, a GABA(A) receptor agonist and neuronal inhibitor, into the medial preoptic area. We tested the hypothesis that all of these effects evoked from the medial preoptic area are mediated through neurons in the dorsomedial hypothalamus by assessing the effect of bilateral microinjection of muscimol into the DMH on these changes. After injection of vehicle into the dorsomedial hypothalamus, injection of muscimol into the medial preoptic area elicited marked increases in heart rate, arterial pressure, body temperature, plasma ACTH, and locomotor activity and also increased c-Fos expression in the hypothalamic paraventricular nucleus, a region known to control the release of ACTH from the adenohypophysis. Prior bilateral microinjection of muscimol into the dorsomedial hypothalamus produced a modest depression of baseline heart rate and body temperature but completely abolished all changes evoked from the medial preoptic area. Microinjection of muscimol just anterior to the dorsomedial hypothalamus had no effect on autonomic and neuroendocrine changes evoked from the medial preoptic area. Thus, activity of neurons in the dorsomedial hypothalamus mediates a diverse array of physiological and behavioral responses elicited from the medial preoptic area, suggesting that the latter region represents an important source of inhibitory tone to key neurons in the dorsomedial hypothalamus.
Collapse
Affiliation(s)
- Joseph L Hunt
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | |
Collapse
|
13
|
Lawrence CB. Galanin-like peptide modulates energy balance by affecting inflammatory mediators? Physiol Behav 2009; 97:515-9. [DOI: 10.1016/j.physbeh.2009.02.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/16/2009] [Accepted: 02/18/2009] [Indexed: 12/25/2022]
|
14
|
Taylor A, Madison F, Fraley G. Galanin-like peptide stimulates feeding and sexual behavior via dopaminergic fibers within the medial preoptic area of adult male rats. J Chem Neuroanat 2009; 37:105-11. [DOI: 10.1016/j.jchemneu.2008.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 12/08/2008] [Accepted: 12/09/2008] [Indexed: 02/07/2023]
|
15
|
Miller SM, Lonstein JS. Dopaminergic projections to the medial preoptic area of postpartum rats. Neuroscience 2009; 159:1384-96. [PMID: 19409227 DOI: 10.1016/j.neuroscience.2009.01.060] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/19/2009] [Accepted: 01/27/2009] [Indexed: 11/19/2022]
Abstract
Dopamine receptor activity in the rodent medial preoptic area (mPOA) is crucial for the display of maternal behaviors, as well as numerous other physiological and behavioral functions. However, the origin of dopaminergic input to the mPOA has not been identified through neuroanatomical tracing. To accomplish this, the retrograde tracer Fluorogold was iontophoretically applied to the mPOA of postpartum laboratory rats, and dual-label immunocytochemistry for Fluorogold and tyrosine hydroxylase later performed to identify dopaminergic cells of the forebrain and midbrain projecting to the mPOA. Results indicate that the number of dopaminergic cells projecting to the mPOA is moderate ( approximately 90 cells to one hemisphere), and that these cells have an unexpectedly wide distribution. Even so, more than half of the dual-labeled cells were found in either what has been considered extensions of the A10 dopamine group (particularly the ventrocaudal posterior hypothalamus and adjacent medial supramammillary nucleus), or in the A10 group of the ventral tegmental area. The rostral hypothalamus and surrounding region also contained numerous dual-labeled cells, with the greatest number found within the mPOA itself (including in the anteroventral preoptic area and preoptic periventricular nucleus). Notably, dual-labeled cells were rare in the zona incerta (A13), a site previously suggested to provide dopaminergic input to the mPOA. This study is the first to use anatomical tracing to detail the dopaminergic projections to the mPOA in the laboratory rat, and indicates that much of this projection originates more caudally than previously suggested.
Collapse
Affiliation(s)
- S M Miller
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
16
|
Man PS, Lawrence CB. Galanin-like peptide: a role in the homeostatic regulation of energy balance? Neuropharmacology 2008; 55:1-7. [PMID: 18538801 DOI: 10.1016/j.neuropharm.2008.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 04/07/2008] [Accepted: 04/09/2008] [Indexed: 11/23/2022]
Abstract
Galanin-like peptide (GALP) is a neuropeptide that has been proposed to play a role in the regulation of food intake behaviour and body weight. However, the actions of GALP on energy balance are complex. In rats, it appears to impel both appetite stimulating and suppressing effects, whereas in mice, the only effect is a reduction in food intake. Thus, it is currently unclear whether GALP is important in the homeostatic regulation of energy balance, or if it produces effects on appetite and body weight by non-specific actions. This review discusses current evidence of the role of GALP with respect to energy balance, and the mechanisms involved in its regulation. We describe recent evidence that suggests that GALP may elicit differential effects in different rodent species. Furthermore, we provide an insight into a potential novel role for GALP in inflammation, and discuss how this may relate to the non-homeostatic regulation of energy balance.
Collapse
Affiliation(s)
- Pui-Sin Man
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
17
|
Leibowitz SF, Akabayashi A, Wang J, Alexander JT, Dourmashkin JT, Chang GQ. Increased caloric intake on a fat-rich diet: role of ovarian steroids and galanin in the medial preoptic and paraventricular nuclei and anterior pituitary of female rats. J Neuroendocrinol 2007; 19:753-66. [PMID: 17850457 DOI: 10.1111/j.1365-2826.2007.01584.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies in male rats have demonstrated that the orexigenic peptide galanin (GAL), in neurones of the anterior parvocellular region of the paraventricular nucleus (aPVN) projecting to the median eminence (ME), is stimulated by consumption of a high-fat diet and may have a role in the hyperphagia induced by fat. In addition to confirming this relationship in female rats and distinguishing the aPVN-ME from other hypothalamic areas, the present study identified two additional extra-hypothalamic sites where GAL is stimulated by dietary fat in females but not males. These sites were the medial preoptic nucleus (MPN), located immediately rostral to the aPVN, and the anterior pituitary (AP). The involvement of ovarian steroids, oestradiol (E(2)) and progesterone (PROG), in this phenomenon was suggested by an observed increase in circulating levels of these hormones and GAL in MPN and AP with fat consumption and an attenuation of this effect on GAL in ovariectomised (OVX) rats. Furthermore, in the same four areas affected by dietary fat, levels of GAL mRNA and peptide immunoreactivity were stimulated by E(2) and further by PROG replacement in E(2)-primed OVX rats and were higher in females compared to males. Because both GAL and PROG stimulate feeding, their increase on a fat-rich diet may have functional consequences in females, possibly contributing to the increased caloric intake induced by dietary fat. This is supported by the findings that PROG administration in E(2)-primed OVX rats reverses the inhibitory effect of E(2) on total caloric intake while increasing voluntary fat ingestion, and that female rats with higher GAL exhibit increased preference for fat compared to males. Thus, ovarian steroids may function together with GAL in a neurocircuit, involving the MPN, aPVN, ME and AP, which coordinate feeding behaviour with reproductive function to promote consumption of a fat-rich diet at times of increased energy demand.
Collapse
Affiliation(s)
- S F Leibowitz
- The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Rich N, Reyes P, Reap L, Goswami R, Fraley GS. Sex differences in the effect of prepubertal GALP infusion on growth, metabolism and LH secretion. Physiol Behav 2007; 92:814-23. [PMID: 17632189 PMCID: PMC2692297 DOI: 10.1016/j.physbeh.2007.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 05/13/2007] [Accepted: 06/06/2007] [Indexed: 10/23/2022]
Abstract
The hypothalamic neuropeptide, galanin-like peptide (GALP), is known to have an effect on energy expenditure and reproduction in adult male rats, but little work has been done on prepubertal rats. We hypothesized that hypothalamic GALP is involved in physiological changes associated with the onset of puberty. To test this hypothesis, we first determined the postnatal ontogeny of GALP gene expression via in situ hybridization of developing male and female rat pups through adulthood. GALP gene expression was not observed in either male or female rat pups until after postnatal day (PND) 10 and did not reach adult-like levels until after weaning (PND25). To determine if exogenous GALP could induce the onset of puberty, PND25 male and female rats were implanted with lateral ventricular cannulas connected to an osmotic minipump that delivered either GALP or vehicle. GALP infusion significantly (p<0.05) increased body weight, food intake, and metabolic rate in male but not female rats compared to control infusion. After 2 weeks, GALP infusion had no significant effect on the onset of puberty, percent body fat, nor plasma levels of insulin, FSH or gonadal steroids in either sex; however, GALP did significantly (p<0.05) increase plasma levels of LH and leptin in male but not female rats and increased plasma growth hormone (GH) in both sexes. Our observations further demonstrate a sex difference in GALP responsiveness in prepubertal rats. These data suggest that GALP may be involved with the prepubertal increase in circulating leptin, LH, and GH resulting in an increase in metabolic rate and lean growth associated with puberty.
Collapse
Affiliation(s)
- N Rich
- Biology Department, Hope College, 35 East 12th Street, Schaap Science Center 3065, Holland, MI 49423, United States
| | | | | | | | | |
Collapse
|