1
|
Nishimura K, Ueta Y, Yoshino K. Estrogen-dependent oxytocin expression in the hypothalamus and estrogen-dependent vasopressin in the median eminence. J Obstet Gynaecol Res 2024; 50:2009-2018. [PMID: 39340151 DOI: 10.1111/jog.16100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
The posterior pituitary (PP) hormones oxytocin (OXT) and arginine vasopressin (AVP) are synthesized within the hypothalamic nucleus and released from the PP into systemic circulation. Hypothalamic AVP projects its axons into the external layer of median eminence (eME) and regulates anterior pituitary hormone secretion during stress responses. Although similar as PP hormones, we demonstrate distinct regulatory roles of estrogen in hypothalamic OXT and AVP dynamics. OXT dynamics in the hypothalamus exhibit sex-dependent variations and that estrogen may influence dynamic OXT level changes, as observed in OXT-mRFP1 transgenic rats. Estrogen was also observed to modulate dynamic changes in AVP levels in the axon terminals of eME in female AVP-eGFP transgenic rats. Although OXT and AVP are produced within the similar hypothalamic region, both exhibit distinct dynamics within the hypothalamus. Estrogen acts on the hypothalamus, and further effects of estrogen replacement therapy can be expected.
Collapse
Affiliation(s)
- Kazuaki Nishimura
- Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kiyoshi Yoshino
- Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
2
|
Kirchner MK, Althammer F, Donaldson KJ, Cox DN, Stern JE. Changes in neuropeptide large dense core vesicle trafficking dynamics contribute to adaptive responses to a systemic homeostatic challenge. iScience 2023; 26:108243. [PMID: 38026155 PMCID: PMC10654599 DOI: 10.1016/j.isci.2023.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Neuropeptides are packed into large dense core vesicles (LDCVs) that are transported from the soma out into their processes. Limited information exists regarding mechanisms regulating LDCV trafficking, particularly during challenges to bodily homeostasis. Addressing this gap, we used 2-photon imaging in an ex vivo preparation to study LDCVs trafficking dynamics in vasopressin (VP) neurons, which traffic and release neuropeptide from their dendrites and axons. We report a dynamic bidirectional trafficking of VP-LDCVs with important differences in speed and directionality between axons and dendrites. Acute, short-lasting stimuli known to alter VP firing activity and axonal/dendritic release caused modest changes in VP-LDCVs trafficking dynamics. Conversely, chronic/sustained systemic osmotic challenges upregulated VP-LDCVs trafficking dynamic, with a larger effect in dendrites. These results support differential regulation of dendritic and axonal LDCV trafficking, and that changes in trafficking dynamics constitute a novel mechanism by which peptidergic neurons can efficiently adapt to conditions of increased hormonal demand.
Collapse
Affiliation(s)
- Matthew K. Kirchner
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA 30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Ferdinand Althammer
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA 30303, USA
- Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Kevin J. Donaldson
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Center for Neuromics, Georgia State University, Atlanta, GA 30303, USA
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Center for Neuromics, Georgia State University, Atlanta, GA 30303, USA
| | - Javier E. Stern
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA 30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
3
|
Felintro V, Trujillo V, dos-Santos RC, da Silva-Almeida C, Reis LC, Rocha FF, Mecawi AS. Water deprivation induces hypoactivity in rats independently of oxytocin receptor signaling at the central amygdala. Front Endocrinol (Lausanne) 2023; 14:1062211. [PMID: 36817576 PMCID: PMC9928579 DOI: 10.3389/fendo.2023.1062211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Vasopressin (AVP) and oxytocin (OXT) are neuropeptides produced by magnocellular neurons (MCNs) of the hypothalamus and secreted through neurohypophysis to defend mammals against dehydration. It was recently demonstrated that MCNs also project to limbic structures, modulating several behavioral responses. METHODS AND RESULTS We found that 24 h of water deprivation (WD) or salt loading (SL) did not change exploration or anxiety-like behaviors in the elevated plus maze (EPM) test. However, rats deprived of water for 48 h showed reduced exploration of open field and the closed arms of EPM, indicating hypoactivity during night time. We evaluated mRNA expression of glutamate decarboxylase 1 (Gad1), vesicular glutamate transporter 2 (Slc17a6), AVP (Avpr1a) and OXT (Oxtr) receptors in the lateral habenula (LHb), basolateral (BLA) and central (CeA) amygdala after 48 h of WD or SL. WD, but not SL, increased Oxtr mRNA expression in the CeA. Bilateral pharmacological inhibition of OXTR function in the CeA with the OXTR antagonist L-371,257 was performed to evaluate its possible role in regulating the EPM exploration or water intake induced by WD. The blockade of OXTR in the CeA did not reverse the hypoactivity response in the EPM, nor did it change water intake induced in 48-h water-deprived rats. DISCUSSION We found that WD modulates exploratory activity in rats, but this response is not mediated by oxytocin receptor signaling to the CeA, despite the upregulated Oxtr mRNA expression in that structure after WD for 48 h.
Collapse
Affiliation(s)
- Viviane Felintro
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Verónica Trujillo
- Department of Physiology, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Raoni C. dos-Santos
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Claudio da Silva-Almeida
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Luís C. Reis
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Fábio F. Rocha
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - André S. Mecawi
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: André S. Mecawi,
| |
Collapse
|
4
|
Sanada K, Ueno H, Miyamoto T, Baba K, Tanaka K, Nishimura H, Nishimura K, Sonoda S, Yoshimura M, Maruyama T, Onaka T, Otsuji Y, Kataoka M, Ueta Y. AVP-eGFP was significantly upregulated by hypovolemia in the parvocellular division of the paraventricular nucleus in the transgenic rats. Am J Physiol Regul Integr Comp Physiol 2022; 322:R161-R169. [PMID: 35018823 DOI: 10.1152/ajpregu.00107.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
Arginine vasopressin (AVP) is produced in the paraventricular (PVN) and supraoptic nuclei (SON). Peripheral AVP, which is secreted from the posterior pituitary, is produced in the magnocellular division of the PVN (mPVN) and SON. In addition, AVP is produced in the parvocellular division of the PVN (pPVN), where corticotrophin-releasing factor (CRF) is synthesized. These peptides synergistically modulate the hypothalamic-pituitary-adrenal (HPA) axis. Previous studies have revealed that the HPA axis was activated by hypovolemia. However, the detailed dynamics of AVP in the pPVN under hypovolemic state has not been elucidated. Here, we evaluated the effects of hypovolemia and hyperosmolality on the hypothalamus, using AVP-enhanced green fluorescent protein (eGFP) transgenic rats. Polyethylene glycol (PEG) or 3% hypertonic saline (HTN) was intraperitoneally administered to develop hypovolemia or hyperosmolality. AVP-eGFP intensity was robustly upregulated at 3 and 6 h after intraperitoneal administration of PEG or HTN in the mPVN. While in the pPVN, eGFP intensity was significantly increased at 6 h after intraperitoneal administration of PEG with significant induction of Fos-immunoreactive (-ir) neurons. Consistently, eGFP mRNA, AVP hnRNA, and CRF mRNA in the pPVN and plasma AVP and corticosterone were significantly increased at 6 h after intraperitoneal administration of PEG. The results suggest that AVP and CRF syntheses in the pPVN were activated by hypovolemia, resulting in the activation of the HPA axis.
Collapse
Affiliation(s)
- Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tetsu Miyamoto
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuhiko Baba
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kentaro Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Haruki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, Japan
| | - Yutaka Otsuji
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masaharu Kataoka
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
5
|
Ueta Y. Transgenic approaches to opening up new fields of vasopressin and oxytocin research. J Neuroendocrinol 2021; 33:e13055. [PMID: 34713515 DOI: 10.1111/jne.13055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022]
Abstract
Transgenic approaches have been applied to generate transgenic rats that express exogenous genes in arginine vasopressin (AVP)- and oxytocin (OXT)-producing magnocellular neurosecretory cells (MNCs) of the hypothalamic-neurohypophyseal system (HNS). First, the fusion gene that expresses AVP-enhanced green fluorescent protein (eGFP) and OXT-monomeric red fluorescent protein 1 (mRFP1) was used to visualize AVP- and OXT-producing MNCs and their axon terminals in the HNS under fluorescence microscopy. Second, the fusion gene that expresses c-fos-eGFP and c-fos-mRFP1 was used to identify activated neurons physiologically in the central nervous system, including MNCs, circumventricular organs and spinal cord. In addition, AVP-eGFP x c-fos-mRFP1 and OXT-mRFP1 × c-fos-eGFP double transgenic rats were generated to identify activated AVP- and OXT-producing MNCs using appropriate physiological stimuli. Third, the fusion gene that expresses AVP-chanelrhodopsin 2 (ChR2)-eGFP and AVP-hM3Dq-mCherry was used to activate AVP- and OXT-producing MNCs by optogenetic and chemogenetic approaches. In each step, these transgenic approaches in rats have provided new insights on the physiological roles of AVP and OXT not only in the HNS, but also in the whole body. In this review, we summarize the transgenic rats that we generated, as well as related physiological findings.
Collapse
Affiliation(s)
- Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
6
|
Hellas JA, Andrew RD. Neuronal Swelling: A Non-osmotic Consequence of Spreading Depolarization. Neurocrit Care 2021; 35:112-134. [PMID: 34498208 PMCID: PMC8536653 DOI: 10.1007/s12028-021-01326-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/04/2021] [Indexed: 01/22/2023]
Abstract
An acute reduction in plasma osmolality causes rapid uptake of water by astrocytes but not by neurons, whereas both cell types swell as a consequence of lost blood flow (ischemia). Either hypoosmolality or ischemia can displace the brain downwards, potentially causing death. However, these disorders are fundamentally different at the cellular level. Astrocytes osmotically swell or shrink because they express functional water channels (aquaporins), whereas neurons lack functional aquaporins and thus maintain their volume. Yet both neurons and astrocytes immediately swell when blood flow to the brain is compromised (cytotoxic edema) as following stroke onset, sudden cardiac arrest, or traumatic brain injury. In each situation, neuronal swelling is the direct result of spreading depolarization (SD) generated when the ATP-dependent sodium/potassium ATPase (the Na+/K+ pump) is compromised. The simple, and incorrect, textbook explanation for neuronal swelling is that increased Na+ influx passively draws Cl- into the cell, with water following by osmosis via some unknown conduit. We first review the strong evidence that mammalian neurons resist volume change during acute osmotic stress. We then contrast this with their dramatic swelling during ischemia. Counter-intuitively, recent research argues that ischemic swelling of neurons is non-osmotic, involving ion/water cotransporters as well as at least one known amino acid water pump. While incompletely understood, these mechanisms argue against the dogma that neuronal swelling involves water uptake driven by an osmotic gradient with aquaporins as the conduit. Promoting clinical recovery from neuronal cytotoxic edema evoked by spreading depolarizations requires a far better understanding of molecular water pumps and ion/water cotransporters that act to rebalance water shifts during brain ischemia.
Collapse
Affiliation(s)
- Julia A Hellas
- Center for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada.
| | - R David Andrew
- Center for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
7
|
Hagiwara D, Tochiya M, Azuma Y, Tsumura T, Hodai Y, Kawaguchi Y, Miyata T, Kobayashi T, Sugiyama M, Onoue T, Takagi H, Ito Y, Iwama S, Suga H, Banno R, Arima H. Arginine vasopressin-Venus reporter mice as a tool for studying magnocellular arginine vasopressin neurons. Peptides 2021; 139:170517. [PMID: 33647312 DOI: 10.1016/j.peptides.2021.170517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/20/2022]
Abstract
Arginine vasopressin (AVP) synthesized in the magnocellular neurons of the hypothalamus is transported through their axons and released from the posterior pituitary into the systemic circulation to act as an antidiuretic hormone. AVP synthesis and release are precisely regulated by changes in plasma osmolality. Magnocellular AVP neurons receive innervation from osmosensory and sodium-sensing neurons, but previous studies showed that AVP neurons per se are osmosensitive as well. In the current study, we made AVP-Venus reporter mice and showed that Venus was expressed exclusively in AVP neurons and was upregulated under water deprivation. In hypothalamic organotypic cultures from the AVP-Venus mice, Venus-labeled AVP neurons in the supraoptic and paraventricular nuclei survived for 1 month, and Venus expression was upregulated by forskolin. Furthermore, in dissociated Venus-labeled magnocellular neurons, treatment with NaCl, but not with mannitol, decreased Venus fluorescence in the soma of the AVP neurons. Thus, Venus expression in AVP-Venus transgenic mice, as well as in primary cultures, faithfully showed the properties of intrinsic AVP expression. These findings indicate that AVP-Venus mice as well as the primary hypothalamic cultures could be useful for studying magnocellular AVP neurons.
Collapse
Affiliation(s)
- Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Masayoshi Tochiya
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yoshinori Azuma
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Tetsuro Tsumura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yuichi Hodai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yohei Kawaguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan; Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, 464-8601, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| |
Collapse
|
8
|
Nishimura H, Kawasaki M, Suzuki H, Matsuura T, Baba K, Motojima Y, Yamanaka Y, Fujitani T, Ohnishi H, Tsukamoto M, Maruyama T, Yoshimura M, Nishimura K, Sonoda S, Sanada K, Tanaka K, Onaka T, Ueta Y, Sakai A. The neurohypophysial oxytocin and arginine vasopressin system is activated in a knee osteoarthritis rat model. J Neuroendocrinol 2020; 32:e12892. [PMID: 32761684 DOI: 10.1111/jne.12892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/11/2020] [Accepted: 07/11/2020] [Indexed: 01/11/2023]
Abstract
Osteoarthritis (OA) causes chronic joint pain and significantly impacts daily activities. Hence, developing novel treatment options for OA has become an increasingly important area of research. Recently, studies have reported that exogenous, as well as endogenous, hypothalamic-neurohypophysial hormones, oxytocin (OXT) and arginine-vasopressin (AVP), significantly contribute to nociception modulation. Moreover, the parvocellular OXT neurone (parvOXT) extends its projection to the superficial spinal dorsal horn, where it controls the transmission of nociceptive signals. Meanwhile, AVP produced in the magnocellular AVP neurone (magnAVP) is released into the systemic circulation where it contributes to pain management at peripheral sites. The parvocellular AVP neurone (parvAVP), as well as corticotrophin-releasing hormone (CRH), suppresses inflammation via activation of the hypothalamic-pituitary adrenal (HPA) axis. Previously, we confirmed that the OXT/AVP system is activated in rat models of pain. However, the roles of endogenous hypothalamic-neurohypophysial hormones in OA have not yet been characterised. In the present study, we investigated whether the OXT/AVP system is activated in a knee OA rat model. Our results show that putative parvOXT is activated and the amount of OXT-monomeric red fluorescent protein 1 positive granules in the ipsilateral superficial spinal dorsal horn increases in the knee OA rat. Furthermore, both magnAVP and parvAVP are activated, concurrent with HPA axis activation, predominantly modulated by AVP, and not CRH. The OXT/AVP system in OA rats was similar to that in systemic inflammation models, including adjuvant arthritis; however, magnocellular OXT neurones (magnOXT) were not activated in OA. Hence, localised chronic pain conditions, such as knee OA, activate the OXT/AVP system without impacting magnOXT.
Collapse
Affiliation(s)
- Haruki Nishimura
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Makoto Kawasaki
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hitoshi Suzuki
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takanori Matsuura
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuhiko Baba
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yasuhito Motojima
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Teruaki Fujitani
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hideo Ohnishi
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Manabu Tsukamoto
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kentarou Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akinori Sakai
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
9
|
Unique Organization of Actin Cytoskeleton in Magnocellular Vasopressin Neurons in Normal Conditions and in Response to Salt-Loading. eNeuro 2020; 7:ENEURO.0351-19.2020. [PMID: 32209611 PMCID: PMC7189486 DOI: 10.1523/eneuro.0351-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/04/2022] Open
Abstract
Magnocellular neurosecretory cells (MNCs) are intrinsically osmosensitive and can be activated by increases in blood osmolality, triggering the release of antidiuretic hormone vasopressin (VP) to promote water retention. Hence, the activity of magnocellular VP neurons is one of the key elements contributing to the regulation of body fluid homeostasis in healthy organisms. Chronic exposure to high dietary salt leads to excessive activation of VP neurons, thereby elevating levels of circulating VP, which can cause increases in blood pressure contributing to salt-dependent hypertension. However, the molecular basis underlying high-salt diet-induced hyperactivation of magnocellular VP neurons remains not fully understood. Previous studies suggest that magnocellular neurosecretory neurons contain a subcortical layer of actin filaments and pharmacological stabilization of this actin network potentiates osmotically-induced activation of magnocellular neurons. Using super-resolution imaging in situ, we investigated the organization of the actin cytoskeleton in rat MNCs under normal physiological conditions and after a chronic increase in blood osmolality following 7 d of salt-loading (SL). We found that, in addition to the subcortical layer of actin filaments, magnocellular VP neurons are endowed with a unique network of cytoplasmic actin filaments throughout their somata. Moreover, we revealed that the density of both subcortical and cytoplasmic actin networks in magnocellular VP neurons is dramatically increased following SL. These results suggest that increased osmo-responsiveness of VP neurons following chronic exposure to high dietary salt may be mediated by the modulation of unique actin networks in magnocellular VP neurons, possibly contributing to elevated blood pressure in this condition.
Collapse
|
10
|
Abstract
The scientific community has searched for years for ways of examining neuronal tissue to track neural activity with reliable anatomical markers for stimulated neuronal activity. Existing studies that focused on hypothalamic systems offer a few options but do not always compare approaches or validate them for dependence on cell firing, leaving the reader uncertain of the benefits and limitations of each method. Thus, in this article, potential markers will be presented and, where possible, placed into perspective in terms of when and how these methods pertain to hypothalamic function. An example of each approach is included. In reviewing the approaches, one is guided through how neurons work, the consequences of their stimulation, and then the potential markers that could be applied to hypothalamic systems are discussed. Approaches will use features of neuronal glucose utilization, water/oxygen movement, changes in neuron-glial interactions, receptor translocation, cytoskeletal changes, stimulus-synthesis coupling that includes expression of the heteronuclear or mature mRNA for transmitters or the enzymes that make them, and changes in transcription factors (immediate early gene products, precursor buildup, use of promoter-driven surrogate proteins, and induced expression of added transmitters. This article includes discussion of methodological limitations and the power of combining approaches to understand neuronal function. © 2020 American Physiological Society. Compr Physiol 10:549-575, 2020.
Collapse
Affiliation(s)
- Gloria E. Hoffman
- Department of Biology, Morgan State University, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Hicks AI, Barad Z, Sobrero A, Lean G, Jacob-Tomas S, Yang J, Choe KY, Prager-Khoutorsky M. Effects of salt loading on the organisation of microtubules in rat magnocellular vasopressin neurones. J Neuroendocrinol 2020; 32:e12817. [PMID: 31778225 DOI: 10.1111/jne.12817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/25/2022]
Abstract
Magnocellular vasopressin (VP) neurones are activated by increases in blood osmolality, leading to the secretion of VP into the circulation to promote water retention in the kidney, thus constituting a key mechanism for the regulation of body fluid homeostasis. However, chronic high salt intake can lead to excessive activation of VP neurones and increased circulating levels of VP, contributing to an elevation in blood pressure. Multiple extrinsic factors, such as synaptic inputs and glial cells, modulate the activity of VP neurones. Moreover, magnocellular neurones are intrinsically osmosensitive, and are activated by hypertonicity in the absence of neighbouring cells or synaptic contacts. Hypertonicity triggers cell shrinking, leading to the activation of VP neurones. This cell-autonomous activation is mediated by a scaffold of dense somatic microtubules, uniquely present in VP magnocellular neurones. Treating isolated magnocellular neurones with drugs modulating microtubule stability modifies the sensitivity of neuronal activation in response to acute hypertonic stimuli. However, whether the microtubule network is altered in conditions associated with enhanced neuronal activation and increased VP release, such as chronic high salt intake, remains unknown. We examined the organisation of microtubules in VP neurones of the supraoptic and paraventricular hypothalamic nuclei (SON and PVN, respectively) of rats subjected to salt-loading (drinking 2% NaCl for 7 days). Using super-resolution imaging, we found that the density of microtubules in magnocellular VP neurones from the SON and PVN was significantly increased, whereas the density and organisation of microtubules remain unchanged in other hypothalamic neurones, as well as in neurones from other brain areas (e.g., hippocampus, cortex). We propose that the increase in microtubule density in magnocellular VP neurones in salt-loading promotes their enhanced activation, possibly contributing to elevated blood pressure in this condition.
Collapse
Affiliation(s)
| | - Zsuzsanna Barad
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Alberto Sobrero
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Graham Lean
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | | - Jieyi Yang
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
12
|
Nishimura H, Kawasaki M, Matsuura T, Suzuki H, Motojima Y, Baba K, Ohnishi H, Yamanaka Y, Fujitani T, Yoshimura M, Maruyama T, Ueno H, Sonoda S, Nishimura K, Tanaka K, Sanada K, Onaka T, Ueta Y, Sakai A. Acute Mono-Arthritis Activates the Neurohypophysial System and Hypothalamo-Pituitary Adrenal Axis in Rats. Front Endocrinol (Lausanne) 2020; 11:43. [PMID: 32117068 PMCID: PMC7026388 DOI: 10.3389/fendo.2020.00043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/23/2020] [Indexed: 01/04/2023] Open
Abstract
Various types of acute/chronic nociceptive stimuli cause neuroendocrine responses such as activation of the hypothalamo-neurohypophysial [oxytocin (OXT) and arginine vasopressin (AVP)] system and hypothalamo-pituitary adrenal (HPA) axis. Chronic multiple-arthritis activates the OXT/AVP system, but the effects of acute mono-arthritis on the OXT/AVP system in the same animals has not been simultaneously evaluated. Further, AVP, not corticotropin-releasing hormone (CRH), predominantly activates the HPA axis in chronic multiple-arthritis, but the participation of AVP in HPA axis activation in acute mono-arthritis remains unknown. Therefore, we aimed to simultaneously evaluate the effects of acute mono-arthritis on the activity of the OXT/AVP system and the HPA axis. In the present study, we used an acute mono-arthritic model induced by intra-articular injection of carrageenan in a single knee joint of adult male Wistar rats. Acute mono-arthritis was confirmed by a significant increase in knee diameter in the carrageenan-injected knee and a significant decrease in the mechanical nociceptive threshold in the ipsilateral hind paw. Immunohistochemical analysis revealed that the number of Fos-immunoreactive (ir) cells in the ipsilateral lamina I-II of the dorsal horn was significantly increased, and the percentage of OXT-ir and AVP-ir neurons expressing Fos-ir in both sides of the supraoptic (SON) and paraventricular nuclei (PVN) was increased in acute mono-arthritic rats. in situ hybridization histochemistry revealed that levels of OXT mRNA and AVP hnRNA in the SON and PVN, CRH mRNA in the PVN, and proopiomelanocortin mRNA in the anterior pituitary were also significantly increased in acute mono-arthritic rats. Further, plasma OXT, AVP, and corticosterone levels were significantly increased in acute mono-arthritic rats. These results suggest that acute mono-arthritis activates ipsilateral nociceptive afferent pathways at the spinal level and causes simultaneous and integrative activation of the OXT/AVP system. In addition, the HPA axis is activated by both AVP and CRH in acute mono-arthritis with a distinct pattern compared to that in chronic multiple-arthritis.
Collapse
Affiliation(s)
- Haruki Nishimura
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Makoto Kawasaki
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- *Correspondence: Makoto Kawasaki
| | - Takanori Matsuura
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hitoshi Suzuki
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yasuhito Motojima
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuhiko Baba
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hideo Ohnishi
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Teruaki Fujitani
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kentarou Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akinori Sakai
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
13
|
Nishimura H, Kawasaki M, Suzuki H, Matsuura T, Motojima Y, Ohnishi H, Yamanaka Y, Yoshimura M, Maruyama T, Saito R, Ueno H, Sonoda S, Nishimura K, Onaka T, Ueta Y, Sakai A. Neuropathic Pain Up-Regulates Hypothalamo-Neurohypophysial and Hypothalamo-Spinal Oxytocinergic Pathways in Oxytocin-Monomeric Red Fluorescent Protein 1 Transgenic Rat. Neuroscience 2019; 406:50-61. [PMID: 30826522 DOI: 10.1016/j.neuroscience.2019.02.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
Abstract
Despite the high incidence of neuropathic pain, its mechanism remains unclear. Oxytocin (OXT) is an established endogenous polypeptide produced in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus. OXT, which is synthesized by OXT neurons in the SON and the magnocellular part of the PVN (mPVN), is delivered into the posterior pituitary (PP), then released into the systemic blood circulation. Meanwhile, OXT-containing neurosecretory cells in the parvocellular part of the PVN (pPVN) are directly projected to the spinal cord and are associated with sensory modulation. In this study, the OXT system in the hypothalamo-neurohypophysial and hypothalamo-spinal pathway was surveyed using a rat neuropathic pain model induced by partial sciatic nerve ligation (PSL). In the present study, we used transgenic rats expressing an OXT-monomeric red fluorescent protein 1 (mRFP1) fusion gene. In a neuropathic pain model, mechanical allodynia was observed, and glial cell activation was also confirmed via immunohistochemistry. In this neuropathic pain model, a significant increase in the OXT-mRFP1 expression was observed in the PP, the SON, mPVN, and pPVN. Furthermore, OXT-mRFP1 granules with positive fluorescent reaction were remarkably increased in laminae I and II of the ipsilateral dorsal horn. Although the plasma concentrations of OXT did not significantly change, a significant increase of the mRNA levels of OXT and mRFP1 in the SON, mPVN, and pPVN were observed. These results suggest that neuropathic pain induced by PSL upregulates hypothalamic OXT synthesis and transportation to the OXTergic axon terminals in the PP and spinal cord.
Collapse
Affiliation(s)
- Haruki Nishimura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Makoto Kawasaki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Hitoshi Suzuki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Takanori Matsuura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yasuhito Motojima
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan; Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hideo Ohnishi
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Reiko Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimono, 329-0498, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| |
Collapse
|
14
|
Ueno H, Serino R, Sanada K, Akiyama Y, Tanaka K, Nishimura H, Nishimura K, Sonoda S, Motojima Y, Saito R, Yoshimura M, Maruyama T, Miyamoto T, Tamura M, Otsuji Y, Ueta Y. Effects of acute kidney dysfunction on hypothalamic arginine vasopressin synthesis in transgenic rats. J Physiol Sci 2019; 69:531-541. [PMID: 30937882 PMCID: PMC10717941 DOI: 10.1007/s12576-019-00675-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/25/2019] [Indexed: 12/13/2022]
Abstract
Acute loss of kidney function is a critical internal stressor. Arginine vasopressin (AVP) present in the parvocellular division of the paraventricular nucleus (PVN) plays a key role in the regulation of stress responses. However, hypothalamic AVP dynamics during acute kidney dysfunction remain unclear. In this study, we investigated the effects of bilateral nephrectomy on AVP, using a transgenic rat line that expressed the AVP-enhanced green fluorescent protein (eGFP). The eGFP fluorescent intensities in the PVN were dramatically increased after bilateral nephrectomy. The mRNA levels of eGFP, AVP, and corticotrophin-releasing hormone in the PVN were dramatically increased after bilateral nephrectomy. Bilateral nephrectomy also increased the levels of Fos-like immunoreactive cells in brainstem neurons. These results indicate that bilateral nephrectomy upregulates the AVP-eGFP synthesis. Further studies are needed to identify the neural and/or humoral factors that activate AVP synthesis and regulate neuronal circuits during acute kidney dysfunction.
Collapse
Affiliation(s)
- Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Ryota Serino
- Department of Nephrology, Yoshino Hospital, Kitakyushu, 808-0034, Japan
| | - Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yasuki Akiyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kentaro Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Haruki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yasuhito Motojima
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Reiko Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Tetsu Miyamoto
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Masahito Tamura
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yutaka Otsuji
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
15
|
Effect of oestrogen-dependent vasopressin on HPA axis in the median eminence of female rats. Sci Rep 2019; 9:5153. [PMID: 30914732 PMCID: PMC6435644 DOI: 10.1038/s41598-019-41714-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/14/2019] [Indexed: 11/08/2022] Open
Abstract
The median eminence (ME) anatomically consists of external (eME) and internal (iME) layers. The hypothalamic neurosecretory cells terminate their axons in the eME and secrete their neurohormones regulating anterior pituitary hormone secretion involved in stress responses into the portal vein located in the eME. Magnocellular neurosecretory cells (MNCs) which produce arginine vasopressin (AVP) and oxytocin in the paraventricular (PVN) and supraoptic nuclei (SON) terminate their axons in the posterior pituitary gland (PP) through the iME. Here, we provide the first evidence that oestrogen modulates the dynamic changes in AVP levels in the eME axon terminals in female rats, using AVP-eGFP and AVP-DREADDs transgenic rats. Strong AVP-eGFP fluorescence in the eME was observed at all oestrus cycle stages in adult female rats but not in male transgenic rats. AVP-eGFP fluorescence in the eME was depleted after bilateral ovariectomy but re-appeared with high-dose 17β-oestradiol. AVP-eGFP fluorescence in the MNCs and PP did not change significantly in most treatments. Peripheral clozapine-N-oxide administration induced AVP-DREADDs neurone activation, causing a significant increase in plasma corticosterone levels in the transgenic rats. These results suggest that stress-induced activation of the hypothalamic-pituitary-adrenal axis may be caused by oestrogen-dependent upregulation of AVP in the eME of female rats.
Collapse
|
16
|
Yoshimura M, Ueta Y. Advanced genetic and viral methods for labelling and manipulation of oxytocin and vasopressin neurones in rats. Cell Tissue Res 2018; 375:311-327. [PMID: 30338378 DOI: 10.1007/s00441-018-2932-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
Rats have been widely used as one of the most common laboratory animals for biological research, because their physiology, pathology, and behavioral characteristics are highly similar to humans. Recent developments in rat genetic modification techniques have now led to further their utility for a broad range of research questions, including the ability to specifically label individual neurones, and even manipulate neuronal function in rats. We have succeeded in generating several transgenic rat lines that enable visualization of specific neurones due to their expression of fluorescently-tagged oxytocin, vasopressin, and c-fos protein. Furthermore, we have been able to generate novel transgenic rat lines in which we can activate vasopressin neurones using optogenetic and chemogenetic techniques. In this review, we will summarize the techniques of genetic modification for labeling and manipulating the specific neurones. Successful examples of generating transgenic rat lines in our lab and usefulness of these rats will also be introduced. These transgenic rat lines enable the interrogation of neuronal function and physiology in a way that was not possible in the past, providing novel insights into neuronal mechanisms both in vivo and ex vivo.
Collapse
Affiliation(s)
- Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
17
|
Ueno H, Yoshimura M, Tanaka K, Nishimura H, Nishimura K, Sonoda S, Motojima Y, Saito R, Maruyama T, Miyamoto T, Serino R, Tamura M, Onaka T, Otsuji Y, Ueta Y. Upregulation of hypothalamic arginine vasopressin by peripherally administered furosemide in transgenic rats expressing arginine vasopressin-enhanced green fluorescent protein. J Neuroendocrinol 2018; 30:e12603. [PMID: 29682811 DOI: 10.1111/jne.12603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/17/2018] [Indexed: 11/30/2022]
Abstract
Furosemide, which is used worldwide as a diuretic agent, inhibits sodium reabsorption in the Henle's loop, resulting in diuresis and natriuresis. Arginine vasopressin (AVP) is synthesized in the supraoptic nucleus (SON), paraventricular nucleus (PVN), and suprachiasmatic nucleus (SCN) of the hypothalamus. The synthesis AVP in the magnocellular neurons of SON and PVN physiologically regulated by plasma osmolality and blood volume and contributed water homeostasis by increasing water reabsorption in the collecting duct. Central AVP dynamics after peripheral administration of furosemide remain unclear. Here, we studied the effects of intraperitoneal (i.p.) administration of furosemide (20 mg/kg) on hypothalamic AVP by using transgenic rats expressing AVP-enhanced green fluorescent protein (eGFP) under the AVP promoter. The i.p. administration of furosemide did not affect plasma osmolality in the present study; however, eGFP in the SON and magnocellular divisions of the PVN (mPVN) were significantly increased after furosemide administration compared to the control. Immunohistochemical analysis revealed Fos-like immunoreactivity (IR) in eGFP-positive neurons in the SON and mPVN 90 min after i.p. administration of furosemide, and AVP heteronuclear (hn) RNA and eGFP mRNA levels were significantly increased. These furosemide-induced changes were not observed in the suprachiasmatic AVP neurons. Furthermore, furosemide induced a remarkable increase in Fos-IR in the organum vasculosum laminae terminals (OVLT), median preoptic nucleus (MnPO), subfornical organ (SFO), locus coeruleus (LC), nucleus of the solitary tract (NTS), and rostral ventrolateral medulla (RVLM) after i.p. administration of furosemide. In conclusion, we were able to visualize and quantitatively evaluate AVP-eGFP synthesis and neuronal activations after peripheral administration of furosemide, using the AVP-eGFP transgenic rats. The results of this study may provide new insights into the elucidation of physiological mechanisms underlying body fluid homeostasis induced by furosemide. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hiromichi Ueno
- Department of Physiology
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | | | | | | | | | | | | | | | | | - Tetsu Miyamoto
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Ryota Serino
- Department of Nephrology, Yoshino Hospital, Kitakyushu, 808-0034, Japan
| | - Masahito Tamura
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, 329-0498, Japan
| | - Yutaka Otsuji
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | | |
Collapse
|
18
|
Ohno S, Hashimoto H, Fujihara H, Fujiki N, Yoshimura M, Maruyama T, Motojima Y, Saito R, Ueno H, Sonoda S, Ohno M, Umezu Y, Hamamura A, Saeki S, Ueta Y. Increased oxytocin-monomeric red fluorescent protein 1 fluorescent intensity with urocortin-like immunoreactivity in the hypothalamo-neurohypophysial system of aged transgenic rats. Neurosci Res 2018; 128:40-49. [PMID: 28859972 DOI: 10.1016/j.neures.2017.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 10/19/2022]
Abstract
To visualize oxytocin in the hypothalamo-neurohypophysial system, we generated a transgenic rat that expresses the oxytocin-monomeric red fluorescent protein 1 (mRFP1) fusion gene. In the present study, we examined the age-related changes of oxytocin-mRFP1 fluorescent intensity in the posterior pituitary (PP), the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) of transgenic rats. The mRFP1 fluorescent intensities were significantly increased in the PP, the SON and the PVN of 12-, 18- and 24-month-old transgenic rats in comparison with 3-month-old transgenic rats. Immunohistochemical staining for urocortin, which belongs to the family of corticotropin-releasing factor family, revealed that the numbers of urocortin-like immunoreactive (LI) cells in the SON and the PVN were significantly increased in 12-, 18- and 24-month-old transgenic rats in comparison with 3-month-old transgenic rats. Almost all of urocortin-LI cells co-exist mRFP1-expressing cells in the SON and the PVN of aged transgenic rats. These results suggest that oxytocin content of the hypothalamo-neurohypophysial system may be modulated by age-related regulation. The physiological role of the co-existence of oxytocin and urocortin in the SON and PVN of aged rats remains unclear.
Collapse
Affiliation(s)
- Shigeo Ohno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan; Kokura Rehabilitation Hospital, Kokurakita-ku, Kitakyushu 803-0861, Japan
| | - Hirofumi Hashimoto
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hiroaki Fujihara
- Department of Ergonomics, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Nobuhiro Fujiki
- Department of Ergonomics, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Yasuhito Motojima
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Reiko Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Motoko Ohno
- Kokura Rehabilitation Hospital, Kokurakita-ku, Kitakyushu 803-0861, Japan
| | - Yuichi Umezu
- Kokura Rehabilitation Hospital, Kokurakita-ku, Kitakyushu 803-0861, Japan
| | - Akinori Hamamura
- Kokura Rehabilitation Hospital, Kokurakita-ku, Kitakyushu 803-0861, Japan
| | - Satoru Saeki
- Department of Rehabilitation Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| |
Collapse
|
19
|
Activation of endogenous arginine vasopressin neurons inhibit food intake: by using a novel transgenic rat line with DREADDs system. Sci Rep 2017; 7:15728. [PMID: 29146932 PMCID: PMC5691068 DOI: 10.1038/s41598-017-16049-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
Various studies contributed to discover novel mechanisms of central arginine vasopressin (AVP) system responsible for the behaviour albeit endogenous vasopressin activation. We established a novel transgenic rat line which expresses both human muscarinic acetylcholine receptors (hM3Dq), of which ligand is clozapine-N-oxide (CNO), and mCherry fluorescence specifically in AVP neurons. The mCherry neurons that indicate the expression of the hM3Dq gene were observed in the suprachiasmatic (SCN), supraoptic (SON), and paraventricular nuclei (PVN). hM3Dq-mCherry fluorescence was localized mainly in the membrane of the neurons. The mCherry neurons were co-localized with AVP-like immunoreactive (LI) neurons, but not with oxytocin-LI neurons. The induction of Fos, which is the indicator for neuronal activity, was observed in approximately 90% of the AVP-LI neurons in the SON and PVN 90 min after intraperitoneal (i.p.) administration of CNO. Plasma AVP was significantly increased and food intake, water intake, and urine volume were significantly attenuated after i.p. administration of CNO. Although the detailed mechanism has unveiled, we demonstrated, for the first time, that activation of endogenous AVP neurons decreased food intake. This novel transgenic rat line may provide a revolutionary insight into the neuronal mechanism regarding central AVP system responsible for various kind of behaviours.
Collapse
|
20
|
Ishii M, Hashimoto H, Ohkubo JI, Ohbuchi T, Saito T, Maruyama T, Yoshimura M, Yamamoto Y, Kusuhara K, Ueta Y. Transgenic approach to express the channelrhodopsin 2 gene in arginine vasopressin neurons of rats. Neurosci Lett 2016; 630:194-198. [DOI: 10.1016/j.neulet.2016.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
|
21
|
Satoh K, Oti T, Katoh A, Ueta Y, Morris JF, Sakamoto T, Sakamoto H. In vivoprocessing and release into the circulation of GFP fusion protein in arginine vasopressin enhanced GFP transgenic rats: response to osmotic stimulation. FEBS J 2015; 282:2488-99. [DOI: 10.1111/febs.13291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/20/2015] [Accepted: 03/30/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Keita Satoh
- Ushimado Marine Institute; Graduate School of Natural Science and Technology; Okayama University; Japan
| | - Takumi Oti
- Ushimado Marine Institute; Graduate School of Natural Science and Technology; Okayama University; Japan
| | - Akiko Katoh
- Department of Physiology; School of Medicine; University of Occupational and Environmental Health; Kitakyushu Japan
| | - Yoichi Ueta
- Department of Physiology; School of Medicine; University of Occupational and Environmental Health; Kitakyushu Japan
| | - John F. Morris
- Department of Physiology; Anatomy and Genetics; Le Gros Clark Building; University of Oxford; UK
| | - Tatsuya Sakamoto
- Ushimado Marine Institute; Graduate School of Natural Science and Technology; Okayama University; Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute; Graduate School of Natural Science and Technology; Okayama University; Japan
| |
Collapse
|
22
|
Hashimoto H, Matsuura T, Ueta Y. Fluorescent visualization of oxytocin in the hypothalamo-neurohypophysial system. Front Neurosci 2014; 8:213. [PMID: 25100939 PMCID: PMC4107947 DOI: 10.3389/fnins.2014.00213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/02/2014] [Indexed: 11/13/2022] Open
Abstract
Oxytocin (OXT) is well known for its ability to the milk ejection reflex and uterine contraction. It is also involved in several other behaviors, such as anti-nociception, anxiety, feeding, social recognition, and stress responses. OXT is synthesized in the magnocellular neurosecretory cells (MNCs) in the hypothalamic paraventricular (PVN) and the supraoptic nuclei (SON) that terminate their axons in the posterior pituitary (PP). We generated transgenic rats that express the OXT and fluorescent protein fusion gene in order to visualize OXT in the hypothalamo-neurohypophysial system (HNS). In these transgenic rats, fluorescent proteins were observed in the MNCs and axon terminals in the PP. This transgenic rat is a new tool to study the physiological role of OXT in the HNS.
Collapse
Affiliation(s)
- Hirofumi Hashimoto
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health Kitakyushu, Japan
| | - Takanori Matsuura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health Kitakyushu, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health Kitakyushu, Japan
| |
Collapse
|
23
|
Rood BD, Beck SG. Vasopressin indirectly excites dorsal raphe serotonin neurons through activation of the vasopressin1A receptor. Neuroscience 2013; 260:205-16. [PMID: 24345477 DOI: 10.1016/j.neuroscience.2013.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/04/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
Abstract
The neuropeptide vasopressin (AVP; arginine-vasopressin) is produced in a handful of brain nuclei located in the hypothalamus and extended amygdala and is released both peripherally as a hormone and within the central nervous system as a neurotransmitter. Central projections have been associated with a number of functions including regulation of physiological homeostasis, control of circadian rhythms, and modulation of social behavior. The AVP neurons located in the bed nucleus of the stria terminalis and medial amygdala (i.e., extended amygdala) in particular have been associated with affiliative social behavior in multiple species. It was recently demonstrated that in the mouse AVP projections emanating from extended amygdala neurons innervate a number of forebrain and midbrain brain regions including the dorsal raphe nucleus (DR), the site of origin of most forebrain-projecting serotonin neurons. Based on the presence of AVP fibers in the DR, we hypothesized that AVP would alter the physiology of serotonin neurons via AVP 1A receptor (V1AR) activation. Using whole-cell electrophysiology techniques, we found that AVP increased the frequency and amplitude of excitatory post-synaptic currents (EPSCs) in serotonin neurons of male mice. The indirect stimulation of serotonin neurons was AMPA/kainate receptor dependent and blocked by the sodium channel blocker tetrodotoxin, suggesting an effect of AVP on glutamate neurons. Further, the increase in EPSC frequency induced by AVP was blocked by selective V1AR antagonists. Our data suggest that AVP had an excitatory influence on serotonin neurons. This work highlights a new target (i.e., V1AR) for manipulating serotonin neuron excitability. In light of our data, we propose that some of the diverse effects of AVP on physiology and behavior, including social behavior, may be due to activation of the DR serotonin system.
Collapse
Affiliation(s)
- B D Rood
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States.
| | - S G Beck
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Anesthesiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
24
|
Rood BD, Stott RT, You S, Smith CJ, Woodbury ME, De Vries GJ. Site of origin of and sex differences in the vasopressin innervation of the mouse (Mus musculus) brain. J Comp Neurol 2013; 521:2321-58. [DOI: 10.1002/cne.23288] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/11/2012] [Accepted: 12/11/2012] [Indexed: 01/14/2023]
|
25
|
Ishikura T, Suzuki H, Yoshimura M, Ohkubo JI, Katoh A, Ohbuchi T, Ohno M, Fujihara H, Kawasaki M, Ohnishi H, Nakamura T, Ueta Y. Expression of the c-fos-monomeric red fluorescent protein 1 fusion gene in the spinal cord and the hypothalamic paraventricular nucleus in transgenic rats after nociceptive stimulation. Brain Res 2012; 1479:52-61. [PMID: 22960202 DOI: 10.1016/j.brainres.2012.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 08/17/2012] [Accepted: 08/17/2012] [Indexed: 11/24/2022]
Abstract
We generated transgenic rats expressing the c-fos and monomeric red fluorescent protein 1 (mRFP1) fusion gene in the central nervous system after adequate stimulation. In the present study, the time-course of the induction patterns of mRFP1 fluorescence in the spinal cord and the paraventricular nucleus (PVN) was compared with that of Fos-like immunoreactivity (LI) within 24 h after subcutaneous (s.c.) injection of 0.9% saline and 5% formalin in both hind paws. Control rats were not treated. In the control and saline/formalin injected rats, scattered mRFP1 fluorescence in the spinal cord and the PVN was observed at 0 min, though there was little Fos-LI in the same region. The mRFP1 fluorescence in the spinal cord and the PVN was increased at 3h after formalin. On the other hand, the changes of Fos-LI in the spinal cord and the PVN were relatively shorter than those of the mRFP1 fluorescence after formalin. These results suggest that the c-fos-mRFP1 fusion gene expression is slightly upregulated in normal conditions and nociceptive stimulation-induced induction of the fusion gene may be maintained longer than the endogenous c-fos gene expression in the spinal cord and the PVN. Next, nocifensive behavior and mRFP1 fluorescence and Fos-LI in the spinal cord and the PVN after s.c. injection of formalin, 4α-phorbol 12,13-didecanoate (4α-PDD) and saline were compared. Although the 4α-PDD injected rats seldom displayed nocifensive behaviors like s.c. saline injection, 4α-PDD injection caused mRFP1 fluorescence and Fos-LI significantly in the spinal cord and the PVN unlike s.c. saline injection.
Collapse
Affiliation(s)
- Toru Ishikura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Murphy D, Konopacka A, Hindmarch C, Paton JFR, Sweedler JV, Gillette MU, Ueta Y, Grinevich V, Lozic M, Japundzic-Zigon N. The hypothalamic-neurohypophyseal system: from genome to physiology. J Neuroendocrinol 2012; 24:539-53. [PMID: 22448850 PMCID: PMC3315060 DOI: 10.1111/j.1365-2826.2011.02241.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The elucidation of the genomes of a large number of mammalian species has produced a huge amount of data on which to base physiological studies. These endeavours have also produced surprises, not least of which has been the revelation that the number of protein coding genes needed to make a mammal is only 22 333 (give or take). However, this small number belies an unanticipated complexity that has only recently been revealed as a result of genomic studies. This complexity is evident at a number of levels: (i) cis-regulatory sequences; (ii) noncoding and antisense mRNAs, most of which have no known function; (iii) alternative splicing that results in the generation of multiple, subtly different mature mRNAs from the precursor transcript encoded by a single gene; and (iv) post-translational processing and modification. In this review, we examine the steps being taken to decipher genome complexity in the context of gene expression, regulation and function in the hypothalamic-neurohypophyseal system (HNS). Five unique stories explain: (i) the use of transcriptomics to identify genes involved in the response to physiological (dehydration) and pathological (hypertension) cues; (ii) the use of mass spectrometry for single-cell level identification of biological active peptides in the HNS, and to measure in vitro release; (iii) the use of transgenic lines that express fusion transgenes enabling (by cross-breeding) the generation of double transgenic lines that can be used to study vasopressin (AVP) and oxytocin (OXT) neurones in the HNS, as well as their neuroanatomy, electrophysiology and activation upon exposure to any given stimulus; (iv) the use of viral vectors to demonstrate that somato-dendritically released AVP plays an important role in cardiovascular homeostasis by binding to V1a receptors on local somata and dendrites; and (v) the use of virally-mediated optogenetics to dissect the role of OXT and AVP in the modulation of a wide variety of behaviours.
Collapse
Affiliation(s)
- D Murphy
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Neuronal excitability in the adult brain is controlled by a balance between synaptic excitation and inhibition mediated by glutamate and GABA, respectively. While generally inhibitory in the adult brain, GABA(A) receptor activation is excitatory under certain conditions in which the GABA reversal potential is shifted positive due to intracellular Cl(-) accumulation, such as during early postnatal development and brain injury. However, the conditions under which GABA is excitatory are generally either transitory or pathological. Here, we reveal GABAergic synaptic inputs to be uniformly excitatory in vasopressin (VP)-secreting magnocellular neurons in the adult hypothalamus under normal conditions. The GABA reversal potential (E(GABA)) was positive to resting potential and spike threshold in VP neurons, but not in oxytocin (OT)-secreting neurons. The VP neurons lacked expression of the K(+)-Cl(-) cotransporter 2 (KCC2), the predominant Cl(-) exporter in the adult brain. The E(GABA) was unaffected by inhibition of KCC2 in VP neurons, but was shifted positive in OT neurons, which express KCC2. Alternatively, inhibition of the Na(+)-K(+)-Cl(-) cotransporter 1 (NKCC1), a Cl(-) importer expressed in most cell types mainly during postnatal development, caused a negative shift in E(GABA) in VP neurons, but had no effect on GABA currents in OT neurons. GABA(A) receptor blockade caused a decrease in the firing rate of VP neurons, but an increase in firing in OT neurons. Our findings demonstrate that GABA is excitatory in adult VP neurons, suggesting that the classical excitation/inhibition paradigm of synaptic glutamate and GABA control of neuronal excitability does not apply to VP neurons.
Collapse
|
28
|
Segregation of calcium signalling mechanisms in magnocellular neurones and terminals. Cell Calcium 2012; 51:293-9. [DOI: 10.1016/j.ceca.2012.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 02/03/2012] [Indexed: 11/22/2022]
|
29
|
Katoh A, Fujihara H, Ohbuchi T, Onaka T, Hashimoto T, Kawata M, Suzuki H, Ueta Y. Highly visible expression of an oxytocin-monomeric red fluorescent protein 1 fusion gene in the hypothalamus and posterior pituitary of transgenic rats. Endocrinology 2011; 152:2768-74. [PMID: 21540286 DOI: 10.1210/en.2011-0006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have generated rats bearing an oxytocin (OXT)-monomeric red fluorescent protein 1 (mRFP1) fusion transgene. The mRFP1 fluorescence was highly visible in ventral part of the supraoptic nucleus (SON) and the posterior pituitary in a whole mount. mRFP1 fluorescence in hypothalamic sections was also observed in the SON, the paraventricular nucleus (PVN), and the internal layer of the median eminence. Salt loading for 5 d caused a marked increase in mRFP1 fluorescence in the SON, the PVN, the median eminence, and the posterior pituitary. In situ hybridization histochemistry revealed that the expression of the mRNA encoding the OXT-mRFP1 fusion gene was observed in the SON and the PVN of euhydrated rats and increased dramatically after chronic salt loading. The expression of the endogenous OXT and the arginine vasopressin (AVP) genes were significantly increased in the SON and the PVN after chronic salt loading in both nontransgenic and transgenic rats. These responses were not different between male and female rats. Compared with nontransgenic rats, euhydrated and salt-loaded male and female transgenic rats showed no significant differences in plasma osmolality, sodium concentration, OXT, and AVP levels. Finally, we succeeded in generating a double-transgenic rat that expresses both the OXT-mRFP1 fusion gene and the AVP-enhanced green fluorescent protein fusion gene. Our new transgenic rats are valuable new tools to study the physiology of the hypothalamo-neurohypophysial system.
Collapse
Affiliation(s)
- Akiko Katoh
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ueta Y, Dayanithi G, Fujihara H. Hypothalamic vasopressin response to stress and various physiological stimuli: visualization in transgenic animal models. Horm Behav 2011; 59:221-6. [PMID: 21185297 DOI: 10.1016/j.yhbeh.2010.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/18/2010] [Accepted: 12/17/2010] [Indexed: 11/27/2022]
Abstract
Arginine vasopressin (AVP) is involved in the homeostatic responses numerous life-threatening conditions, for example, the promotion of water conservation during periods of dehydration, and the activation of the hypothalamo-pituitary adrenal axis by emotional stress. Recently, we generated new transgenic animals that faithfully express an AVP-enhanced green fluorescent protein (eGFP) fusion gene in the paraventricular nucleus (PVN), the supraoptic nucleus (SON) and the suprachiasmatic nucleus (SCN) of the hypothalamus. In these transgenic rats, marked increases in eGFP fluorescence and fusion gene expression were observed in the magnocellular division of the PVN and the SON, but not the SCN, after osmotic challenges, such as dehydration and salt loading, and both acute and chronic nociceptive stimuli. In the parvocellular division of the PVN, eGFP expression was increased after acute and chronic pain, bilateral adrenalectomy, endotoxin shock and restraint stress. In the extra-hypothalamic areas of the brain, eGFP expression was induced in the locus coeruleus after the intracerebroventricular administration of colchicine. Next, we generated another transgenic rat that expresses a fusion gene comprised of c-fos promoter-enhancer sequences driving the expression of monomeric red fluorescent protein 1 (mRFP1). In these transgenic rats, abundant nuclear fluorescence of mRFP1 was observed in the PVN, the SON and other osmosensitive areas after acute osmotic stimulation. Finally, we generated a double transgenic rat that expresses both the AVP-eGFP and c-fos-mRFP1 fusion genes. In this double transgenic rat, we have observed nuclear mRFP1 fluorescence in eGFP-positive neurons after acute osmotic stimulation. These unique transgenic rats provide an exciting new tool to examine neuroendocrine responses to physiological and stressful stimuli in both in vivo and in vitro preparations.
Collapse
Affiliation(s)
- Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | | | | |
Collapse
|
31
|
Zhao Y, Tang J, Yao Q, Zhou Y, Zhao H, Zeng X, Shi J, Luo G, Xie X, Zhou S, Liu Z, Lu X, Lin D, Liu J. Fusion of EGFP and porcine α 1,3GT genes decrease GFP expression. ASIAN PAC J TROP MED 2010. [DOI: 10.1016/s1995-7645(11)60001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
32
|
Komori Y, Tanaka M, Kuba M, Ishii M, Abe M, Kitamura N, Verkhratsky A, Shibuya I, Dayanithi G. Ca(2+) homeostasis, Ca(2+) signalling and somatodendritic vasopressin release in adult rat supraoptic nucleus neurones. Cell Calcium 2010; 48:324-32. [PMID: 21047683 DOI: 10.1016/j.ceca.2010.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 09/29/2010] [Accepted: 10/01/2010] [Indexed: 10/18/2022]
Abstract
Multiple mechanisms that maintain Ca(2+) homeostasis and provide for Ca(2+) signalling operate in the somatas and neurohypophysial nerve terminals of supraoptic nucleus (SON) neurones. Here, we examined the Ca(2+) clearance mechanisms of SON neurones from adult rats by monitoring the effects of the selective inhibition of different Ca(2+) homeostatic molecules on cytosolic Ca(2+) ([Ca(2+)](i)) transients in isolated SON neurones. In addition, we measured somatodendritic vasopressin (AVP) release from intact SON tissue in an attempt to correlate it with [Ca(2+)](i) dynamics. When bathing the cells in a Na(+)-free extracellular solution, thapsigargin, cyclopiazonic acid (CPA), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and the inhibitor of plasma membrane Ca(2+)-ATPase (PMCA), La(3+), all significantly slowed down the recovery of depolarisation (50 mM KCl)-induced [Ca(2+)](i) transients. The release of AVP was stimulated by 50 mM KCl, and the decline in the peptide release was slowed by Ca(2+) transport inhibitors. In contrast to previous reports, our results show that in the fully mature adult rats: (i) all four Ca(2+) homeostatic pathways, the Na(+)/Ca(2+) exchanger, the endoplasmic reticulum Ca(2+) pump, the plasmalemmal Ca(2+) pump and mitochondria, are complementary in actively clearing Ca(2+) from SON neurones; (ii) somatodendritic AVP release closely correlates with intracellular [Ca(2+)](i) dynamics; (iii) there is (are) Ca(2+) clearance mechanism(s) distinct from the four outlined above; and (iv) Ca(2+) homeostatic systems in the somatas of SON neurones differ from those expressed in their terminals.
Collapse
Affiliation(s)
- Yoko Komori
- University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Maruyama T, Ohbuchi T, Fujihara H, Shibata M, Mori K, Murphy D, Dayanithi G, Ueta Y. Diurnal changes of arginine vasopressin-enhanced green fluorescent protein fusion transgene expression in the rat suprachiasmatic nucleus. Peptides 2010; 31:2089-93. [PMID: 20727931 DOI: 10.1016/j.peptides.2010.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/12/2010] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
Abstract
We have recently developed a new transgenic rat line expressing an arginine vasopressin (AVP)-enhanced green fluorescent protein (eGFP) fusion gene. The AVP-eGFP transgene is expressed in the paraventricular (PVN) and supraoptic (SON) nuclei and the suprachiasmatic nucleus (SCN) of the hypothalamus. Transgene expression in the PVN and SON showed an exaggerated response to salt loading and nociceptive stimulation. However, the expression of the AVP-eGFP transgene in the SCN did not change under these stressful conditions. Here, we examined daily profiles of the expression of the AVP-eGFP transgene in the SCN in comparison with the endogenous AVP and Period (Per1 and Per2) genes. While all of these genes elicited diurnal patterns of expression in the SCN, the rate of rhythmic change of transgene expression was significantly greater than that of the endogenous AVP gene. We also examined the effect of a light stimulus on the expression of the AVP-eGFP, AVP, Per1 and Per2 genes in the SCN of transgenic rats. Ninety minutes after a light stimulus, AVP-eGFP mRNA and AVP hnRNA levels in the SCN were significantly decreased, while Per2 mRNA levels were significantly increased. In addition, we observed the eGFP fluorescence in the SCN and recorded the electrophysiological properties of a dissociated SCN eGFP-positive neuron. The AVP-eGFP transgenic rat is a useful animal model to study the diurnal change and dynamics of the AVP system, and enables the facile identification of SCN AVP neurons both in vivo and in vitro.
Collapse
Affiliation(s)
- Takashi Maruyama
- Occupational Health Training Center, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Viero C, Shibuya I, Kitamura N, Verkhratsky A, Fujihara H, Katoh A, Ueta Y, Zingg HH, Chvatal A, Sykova E, Dayanithi G. REVIEW: Oxytocin: Crossing the bridge between basic science and pharmacotherapy. CNS Neurosci Ther 2010; 16:e138-56. [PMID: 20626426 PMCID: PMC2972642 DOI: 10.1111/j.1755-5949.2010.00185.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Is oxytocin the hormone of happiness? Probably not. However, this small nine amino acid peptide is involved in a wide variety of physiological and pathological functions such as sexual activity, penile erection, ejaculation, pregnancy, uterus contraction, milk ejection, maternal behavior, osteoporosis, diabetes, cancer, social bonding, and stress, which makes oxytocin and its receptor potential candidates as targets for drug therapy. In this review, we address the issues of drug design and specificity and focus our discussion on recent findings on oxytocin and its heterotrimeric G protein‐coupled receptor OTR. In this regard, we will highlight the following topics: (i) the role of oxytocin in behavior and affectivity, (ii) the relationship between oxytocin and stress with emphasis on the hypothalamo–pituitary–adrenal axis, (iii) the involvement of oxytocin in pain regulation and nociception, (iv) the specific action mechanisms of oxytocin on intracellular Ca2+ in the hypothalamo neurohypophysial system (HNS) cell bodies, (v) newly generated transgenic rats tagged by a visible fluorescent protein to study the physiology of vasopressin and oxytocin, and (vi) the action of the neurohypophysial hormone outside the central nervous system, including the myometrium, heart and peripheral nervous system. As a short nine amino acid peptide, closely related to its partner peptide vasopressin, oxytocin appears to be ideal for the design of agonists and antagonists of its receptor. In addition, not only the hormone itself and its binding to OTR, but also its synthesis, storage and release can be endogenously and exogenously regulated to counteract pathophysiological states. Understanding the fundamental physiopharmacology of the effects of oxytocin is an important and necessary approach for developing a potential pharmacotherapy.
Collapse
Affiliation(s)
- Cedric Viero
- Department of Cardiology, Wales Heart Research Institute, Cardiff University, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Todoroki M, Ueta Y, Fujihara H, Otsubo H, Shibata M, Hashimoto H, Kobayashi M, Sakamoto H, Kawata M, Dayanithi G, Murphy D, Hiro H, Takahashi K, Nagata S. Induction of the arginine vasopressin-enhanced green fluorescent protein fusion transgene in the rat locus coeruleus. Stress 2010; 13:281-91. [PMID: 20536330 DOI: 10.3109/10253890903383406] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We examined the effects of intracerebroventricular (i.c.v.) administration of colchicine on the expression of the arginine vasopressin (AVP)-enhanced green fluorescent protein (eGFP) fusion gene in rats. In rats administered i.c.v. vehicle (control), eGFP fluorescence was observed in the supraoptic nucleus (SON), the magnocellular division of the paraventricular nucleus (PVN), the suprachiasmatic nucleus (SCN), the median eminence (ME) and the posterior pituitary. Two days after i.c.v. administration of colchicine, eGFP fluorescence was markedly increased in the SON, the magnocellular and parvocellular divisions of the PVN, the SCN, the ME and the locus coeruleus (LC). Immunohistochemical staining for eGFP confirmed the distribution of fluorescence in both groups. In the colchicines-administered groups, immunohistochemistry for tyrosine hydroxylase (TH) revealed that the eGFP fluorescence was co-localised with TH-immunoreactivity in the LC. Similarly, in situ hybridization histochemistry for eGFP mRNA revealed a significant increase in gene expression in the LC, the SON and the PVN 12-48 h after administration of colchicine. Our results indicate that the synthesis of AVP-eGFP is upregulated in noradrenergic neurones in the LC after colchicine administration. This implies that AVP and noradrenaline, originating from LC neurones, might play a role in response to chronic stress.
Collapse
Affiliation(s)
- Miwako Todoroki
- Department of Mental Health, Institute of Industrial Ecological Sciences, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kalsbeek A, Fliers E, Hofman MA, Swaab DF, Buijs RM. Vasopressin and the output of the hypothalamic biological clock. J Neuroendocrinol 2010; 22:362-72. [PMID: 20088910 DOI: 10.1111/j.1365-2826.2010.01956.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The physiological effects of vasopressin as a peripheral hormone were first reported more than 100 years ago. However, it was not until the first immunocytochemical studies were carried out in the early 1970s, using vasopressin antibodies, and the discovery of an extensive distribution of vasopressin-containing fibres outside the hypothalamus, that a neurotransmitter role for vasopressin could be hypothesised. These studies revealed four additional vasopressin systems next to the classical magnocellular vasopressin system in the paraventricular and supraoptic nuclei: a sexually dimorphic system originating from the bed nucleus of the stria terminalis and the medial amygdala, an autonomic and endocrine system originating from the medial part of the paraventricular nucleus, and the circadian system originating from the hypothalamic suprachiasmatic nuclei (SCN). At about the same time as the discovery of the neurotransmitter function of vasopressin, it also became clear that the SCN contain the main component of the mammalian biological clock system (i.e. the endogenous pacemaker). This review will concentrate on the significance of the vasopressin neurones in the SCN for the functional output of the biological clock that is contained within it. The vasopressin-containing subpopulation is a characteristic feature of the SCN in many species, including humans. The activity of the vasopressin neurones in the SCN shows a pronounced daily variation in its activity that has also been demonstrated in human post-mortem brains. Animal experiments show an important role for SCN-derived vasopressin in the control of neuroendocrine day/night rhythms such as that of the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes. The remarkable correlation between a diminished presence of vasopressin in the SCN and a deterioration of sleep-wake rhythms during ageing and depression make it likely that, also in humans, the vasopressin neurones contribute considerably to the rhythmic output of the SCN.
Collapse
Affiliation(s)
- A Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
37
|
Katoh A, Fujihara H, Ohbuchi T, Onaka T, Young WS, Dayanithi G, Yamasaki Y, Kawata M, Suzuki H, Otsubo H, Suzuki H, Murphy D, Ueta Y. Specific expression of an oxytocin-enhanced cyan fluorescent protein fusion transgene in the rat hypothalamus and posterior pituitary. J Endocrinol 2010; 204:275-85. [PMID: 20026620 PMCID: PMC2922867 DOI: 10.1677/joe-09-0289] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have generated rats bearing an oxytocin (OXT)-enhanced cyan fluorescent protein (eCFP) fusion transgene designed from a murine construct previously shown to be faithfully expressed in transgenic mice. In situ hybridisation histochemistry revealed that the Oxt-eCfp fusion gene was expressed in the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) in these rats. The fluorescence emanating from eCFP was observed only in the SON, the PVN, the internal layer of the median eminence and the posterior pituitary (PP). In in vitro preparations, freshly dissociated cells from the SON and axon terminals showed clear eCFP fluorescence. Immunohistochemistry for OXT and arginine vasopressin (AVP) revealed that the eCFP fluorescence co-localises with OXT immunofluorescence, but not with AVP immunofluorescence in the SON and the PVN. Although the expression levels of the Oxt-eCfp fusion gene in the SON and the PVN showed a wide range of variations in transgenic rats, eCFP fluorescence was markedly increased in the SON and the PVN, but decreased in the PP after chronic salt loading. The expression of the Oxt gene was significantly increased in the SON and the PVN after chronic salt loading in both non-transgenic and transgenic rats. Compared with wild-type animals, euhydrated and salt-loaded male and female transgenic rats showed no significant differences in plasma osmolality, sodium concentration and OXT and AVP levels, suggesting that the fusion gene expression did not disturb any physiological processes. These results suggest that our new transgenic rats are a valuable new tool to identify OXT-producing neurones and their terminals.
Collapse
Affiliation(s)
- Akiko Katoh
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
- Department of Otorhynolaryngology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hiroaki Fujihara
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Toyoaki Ohbuchi
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
- Department of Otorhynolaryngology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Tatsushi Onaka
- Department of Physiology, Jichi Medical School, Tochigi 329-0498, Japan
| | - W. Scott Young
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-4483, USA
| | - Govindan Dayanithi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Science of the Czech Republic, EU Research Centre of Excellence, Prague, Czech Republic
| | - Yuka Yamasaki
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Mitsuhiro Kawata
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hitoshi Suzuki
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hiroki Otsubo
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hideaki Suzuki
- Department of Otorhynolaryngology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - David Murphy
- Molecular Neuroendocrinology Research Group, The Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Dorothy Hodgkin Building, Bristol BS1 3NY, UK
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| |
Collapse
|
38
|
Fujihara H, Ueta Y, Suzuki H, Katoh A, Ohbuchi T, Otsubo H, Dayanithi G, Murphy D. Robust up-regulation of nuclear red fluorescent-tagged fos marks neuronal activation in green fluorescent vasopressin neurons after osmotic stimulation in a double-transgenic rat. Endocrinology 2009; 150:5633-8. [PMID: 19850746 DOI: 10.1210/en.2009-0796] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The up-regulation in the expression of mRNA or protein encoded by the c-fos gene is widely used as a marker of neuronal activation elicited by various stimuli. To facilitate the detection of activated neurons, we generated transgenic rats expressing a fusion gene consisting of c-fos coding sequences in frame with monomeric red fluorescent protein 1 (mRFP1) under the control of c-fos gene regulatory sequences (c-fos-mRFP1 rats). In c-fos-mRFP1 transgenic rats, 90 min after hypertonic saline ip administration, nuclear mRFP1 fluorescence was observed abundantly in brain regions known to be osmosensitive, namely the median preoptic nucleus, organum vasculosum lamina terminalis, supraoptic nucleus, paraventricular nucleus, and subfornical organ. Immunohistochemistry for Fos protein confirmed that the distribution of Fos-like immunoreactivity in nontransgenic rats was similar to those of mRFP1 fluorescence after ip administration of hypertonic saline in the transgenic rats. Several double-transgenic rats were obtained from matings between transgenic rats expressing an arginine vasopressin-enhanced green fluorescent protein fusion gene (AVP-eGFP rats) and c-fos-mRFP1 rats. In these double-transgenic rats, almost all eGFP neurons in the supraoptic nucleus and PVN expressed nuclear mRFP1 fluorescence 90 min after hypertonic saline administration. The c-fos-mRFP1 rats are a powerful tool that enables the facile identification of activated neurons in the nervous system. Furthermore, when combined with transgenes expressing another fluorophore under the control of cell-specific regulatory sequences, activation of specific neuronal cell types in response to physiological cues can be readily detected.
Collapse
Affiliation(s)
- Hiroaki Fujihara
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Houghton BL, Huang C, Johns EJ. Influence of dietary sodium on the blood pressure and renal sympathetic nerve activity responses to intracerebroventricular angiotensin II and angiotensin III in anaesthetized rats. Exp Physiol 2009; 95:282-95. [PMID: 19880539 DOI: 10.1113/expphysiol.2009.049833] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The regulation of blood pressure and sympathetic outflow by the brain renin-angiotensin system in animals subjected to raised or lowered dietary Na(+) intake is unclear. This study compared the mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) responses to intracerebroventricular (i.c.v.) infusion of angiotensin II (AngII) and III (AngIII) before and after peripheral V(1) receptor blockade (V(1)B) in alpha-chloralose-urethane-anaesthetized rats fed a low (0.03%, LNa(+)), normal (0.3%, NNa(+)) or high Na(+) diet (3.0%, HNa(+)) from 4 to 11 weeks of age. The rise in MAP 2 min post AngII i.c.v. was greater in HNa(+) (14 +/- 3 mmHg) versus LNa(+) (8 +/- 1 mmHg, P < 0.05) and after AngIII i.c.v. in HNa(+) (14 +/- 3 mmHg) versus NNa(+) (6 +/- 1 mmHg, P < 0.05) and LNa(+) (7 +/- 1 mmHg, P < 0.05). The MAP responses to AngII and AngIII i.c.v. were abolished after V(1)B in LNa(+), but were only attenuated in HNa(+). In NNa(+), V(1)B blunted the MAP responses to AngII and abolished those to AngIII. The MAP remained elevated 30 min after AngII in all groups, but returned to baseline levels 15 min after AngIII in NNa(+) and HNa(+) (P < 0.01). Twenty minutes after i.c.v. AngII, RSNA rose above baseline in HNa(+) (112 +/- 1%), a response not observed in the LNa(+) and NNa(+) groups. Twenty minutes post AngIII i.c.v., RSNA was elevated in both HNa (109 +/- 2%) and NNa(+) (109 +/- 2%). After V(1)B, RSNA rose only in the HNa(+) group 15 min post AngIII infusion (109 +/- 1%). Together, these findings: (1) suggest that HNa(+) intake augments the MAP and RSNA responses to i.c.v. AngII and AngIII; (2) highlight an important role for peripheral V(1) receptors during these responses; and (3) differentiate the effects of AngII and AngIII on blood pressure and RSNA.
Collapse
Affiliation(s)
- Belinda L Houghton
- Department of Physiology, Windle Building, University College Cork, College Road, Cork, Republic of Ireland
| | | | | |
Collapse
|
40
|
Suzuki H, Kawasaki M, Ohnishi H, Otsubo H, Ohbuchi T, Katoh A, Hashimoto H, Yokoyama T, Fujihara H, Dayanithi G, Murphy D, Nakamura T, Ueta Y. Exaggerated response of a vasopressin-enhanced green fluorescent protein transgene to nociceptive stimulation in the rat. J Neurosci 2009; 29:13182-9. [PMID: 19846706 PMCID: PMC6665199 DOI: 10.1523/jneurosci.2624-09.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/19/2009] [Accepted: 09/06/2009] [Indexed: 11/21/2022] Open
Abstract
Nociceptive stimulation elicits neuroendocrine responses such as arginine vasopressin (AVP) release as well as activation of the hypothalamo-pituitary-adrenal axis. We have generated novel transgenic rats expressing an AVP-enhanced green fluorescent protein (eGFP) fusion gene, and we examined the effects of nociceptive stimulation on transgene expression in the hypothalamus after subcutaneous injection of saline or formalin into the bilateral hindpaws in these rats. We have assessed (1) AVP levels in plasma and the changes of eGFP mRNA and AVP heteronuclear RNA (hnRNA) in the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) using in situ hybridization histochemistry, (2) gene expression changes in distinct magnocellular and parvocellular divisions of the PVN, (3) eGFP fluorescence in the SON, the PVN, the median eminence (ME), and the posterior pituitary gland (PP). Plasma AVP levels were significantly increased 15 min after formalin injection. In the same time period, the AVP hnRNA levels in the PVN were increased, especially in the parvocellular division of the PVN in formalin-injected rats. In the same region, eGFP mRNA levels after formalin injection were also significantly increased to a much greater extent than those of AVP hnRNA. The eGFP fluorescence in the SON, the PVN, the ME, and the PP was markedly increased in formalin-injected rats and especially increased in the parvocellular divisions of the PVN. Together, our results demonstrate robust and rapid changes in the expression of the AVP-eGFP transgene in the rat hypothalamus after acute nociceptive stimulation.
Collapse
Affiliation(s)
- Hitoshi Suzuki
- Departments of Physiology and
- Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Makoto Kawasaki
- Departments of Physiology and
- Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hideo Ohnishi
- Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | - Govindan Dayanithi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, European Union Research Centre of Excellence, CZ-14220 Prague, Czech Republic, and
| | - David Murphy
- Molecular Neuroendocrinology Research Group, The Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Toshitaka Nakamura
- Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | | |
Collapse
|
41
|
Suzuki H, Kawasaki M, Ohnishi H, Nakamura T, Ueta Y. Regulatory mechanism of the arginine vasopressin-enhanced green fluorescent protein fusion gene expression in acute and chronic stress. Peptides 2009; 30:1763-70. [PMID: 19505519 DOI: 10.1016/j.peptides.2009.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 11/17/2022]
Abstract
Various kinds of stress cause neuroendocrine responses such as corticotropin-releasing hormone (CRH) or arginine vasopressin (AVP) release from parvocellular division of the paraventricular nucleus (PVN) and activation of the hypothalamo-pituitary adrenal (HPA) axis. We examined the effects of acute and chronic stress on the expression of the AVP-enhanced green fluorescent protein (eGFP) fusion gene in the hypothalamus, using chronic salt loading as an osmotic stimulation, intraperitoneal administration of lipopolysaccharide (LPS) as acute inflammatory stress and adjuvant arthritis (AA) as chronic inflammatory/nociceptive stress. Salt loading caused a marked increase in the eGFP gene expression and eGFP fluorescence in the supraoptic nucleus, magnocellular division of the PVN and internal layer of the median eminence (ME). Administration of LPS caused increased fluorescence in parvocellular division of the PVN and external layer of the ME. AA rats revealed an increased expression of the eGFP gene and eGFP fluorescence in both magnocellular and parvocellular divisions of the PVN and both internal and external layers of the ME. On the other hand, the levels of the CRH gene expression in parvocellular division of the PVN were significantly decreased as AA developed, though plasma concentrations of corticosterone were significantly increased. These results indicate that AVP-eGFP transgenic rats enable the detection of changes in AVP expression more easily than by using procedures such as immunohistochemistry. We propose that AVP-eGFP transgenic rats represent a useful animal model for further understanding of the physiology of AVP expression in the hypothalamo-pituitary system under various physiological conditions, including various kinds of stress.
Collapse
Affiliation(s)
- Hitoshi Suzuki
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | |
Collapse
|
42
|
Ohbuchi T, Yokoyama T, Saito T, Hashimoto H, Suzuki H, Otsubo H, Fujihara H, Suzuki H, Ueta Y. Brain-derived neurotrophic factor inhibits spontaneous inhibitory postsynaptic currents in the rat supraoptic nucleus. Brain Res 2009; 1258:34-42. [DOI: 10.1016/j.brainres.2008.12.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 12/11/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
|
43
|
Tobin VA, Bull PM, Arunachalam S, O’Carroll AM, Ueta Y, Ludwig M. The effects of apelin on the electrical activity of hypothalamic magnocellular vasopressin and oxytocin neurons and somatodendritic Peptide release. Endocrinology 2008; 149:6136-45. [PMID: 18703633 PMCID: PMC2670455 DOI: 10.1210/en.2008-0178] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Apelin, a novel peptide originally isolated from bovine stomach tissue extracts, is widely but selectively distributed throughout the nervous system. Vasopressin and oxytocin are synthesized in the magnocellular neurons of the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus, which are apelin-rich regions in the central nervous system. We made extracellular electrophysiological recordings from the transpharyngeally exposed SON of urethane-anaesthetized rats to assess the role of apelin in the control of the firing activity of identified magnocellular vasopressin and oxytocin neurons in vivo. Apelin-13 administration onto SON neurons via microdialysis revealed cell-specific responses; apelin-13 increased the firing rates of vasopressin cells but had no effect on the firing rate of oxytocin neurons. A direct excitatory effect of apelin-13 on vasopressin cell activity is also supported by our in vitro studies showing depolarization of membrane potential and increase in action potential firing. To assess the effects of apelin-13 on somatodendritic peptide release, we used in vitro release studies from SON explants in combination with highly sensitive and specific RIA. Apelin-13 decreases basal (by 78%; P < 0.05; n = 6) and potassium-stimulated (by 57%; P < 0.05; n = 6) vasopressin release but had no effect on somatodendritic oxytocin release. Taken together, our data suggest a local autocrine feedback action of apelin on magnocellular vasopressin neurons. Furthermore, these data show a marked dissociation between axonal and dendritic vasopressin release with a decrease in somatodendritic release but an increase in electrical activity at the cell bodies, indicating that release from these two compartments can be regulated wholly independently.
Collapse
Affiliation(s)
- Vicky A. Tobin
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Philip M. Bull
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sathya Arunachalam
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Anne-Marie O’Carroll
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, UK
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Mike Ludwig
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
44
|
Ueta Y, Fujihara H, Dayanithi G, Kawata M, Murphy D. Specific expression of optically active reporter gene in arginine vasopressin-secreting neurosecretory cells in the hypothalamic-neurohypophyseal system. J Neuroendocrinol 2008; 20:660-4. [PMID: 18601686 DOI: 10.1111/j.1365-2826.2008.01706.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The anti-diuretic hormone arginine vasopressin (AVP) is synthesised in the magnocellular neurosecretory cells (MNCs) in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) of the hypothalamus. AVP-containing MNCs that project their axon terminals to the posterior pituitary can be identified using immunohistochemical techniques with specific antibodies recognising AVP and neurophysin II, and by virtue of their electrophysiological properties. Recently, we generated transgenic rats expressing an AVP-enhanced green fluorescent protein (eGFP) fusion gene in AVP-containing MNCs. In this transgenic rat, eGFP mRNA was observed in the PVN and the SON, and eGFP fluorescence was seen in the PVN and the SON, and also in the posterior pituitary, indicating transport of transgene protein down MNC axons to storage in nerve terminals. The expression of the AVP-eGFP transgene and eGFP fluorescence in the PVN and the SON was markedly increased after dehydration and chronic salt-loading. On the other hand, AVP-containing parvocellular neurosecretory cells in the PVN that are involved in the activation of the hypothalamic-pituitary adrenal axis exhibit robust AVP-eGFP fluorescence after bilateral adrenalectomy and intraperitoneal administration of lipopolysaccharide. In the median eminence, the internal and external layer showed strong fluorescence for eGFP after osmotic stimuli and stressful conditions, respectively, again indicating appropriate transport of transgene traslation products. Brain slices and acutely-dissociated MNCs and axon terminals also exhibited strong fluorescence, as observed under fluorescence microscopy. The AVP-eGFP transgenic animals are thus unique and provide a useful tool to study AVP-secreting cells in vivo for electrophysiology, imaging analysis such as intracellular Ca(2+) imaging, organ culture and in vivo monitoring of dynamic change in AVP secretion.
Collapse
Affiliation(s)
- Y Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | | | | | | | | |
Collapse
|
45
|
Shibata M, Fujihara H, Suzuki H, Ozawa H, Kawata M, Dayanithi G, Murphy D, Ueta Y. Physiological studies of stress responses in the hypothalamus of vasopressin-enhanced green fluorescent protein transgenic rat. J Neuroendocrinol 2007; 19:285-92. [PMID: 17355318 DOI: 10.1111/j.1365-2826.2007.01532.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Arginine vasopressin (AVP) plays an important role in stress-induced activation of the hypothalamic-pituitary adrenal axis. In the present study, AVP-enhanced green fluorescent protein (eGFP) transgenic rats were used to investigate changes in AVP-eGFP expression in the hypothalamic paraventricular nucleus (PVN) and the median eminence (ME) upon exposure to stress conditions. The eGFP fluorescence in the parvocellular division of the PVN (pPVN) was markedly increased 5 days after bilateral adrenalectomy (ADX) and it was colocalised with corticotrophin-releasing hormone-like immunoreactivity in the pPVN. Peripheral administration of dexamethasone completely suppressed the increase of eGFP fluorescence in the pPVN and the external layer of the ME (eME) after bilateral ADX. Significant increases of eGFP fluorescence were observed in the pPVN 6, 12, 24 and 48 h after intraperitoneal (i.p.) administration of lipopolysaccharide (LPS). In the eME, eGFP fluorescence was significantly increased 48 h after i.p. administration of LPS. By contrast, eGFP fluorescence changed neither in the magnocellular division of the PVN, nor the internal layer of the ME after i.p. administration of LPS. Our results indicate that AVP-eGFP transgenic rats are useful animal model to study dynamic changes of AVP expression in the hypothalamus under stressful conditions.
Collapse
Affiliation(s)
- M Shibata
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | |
Collapse
|