1
|
Swift-Gallant A. Individual differences in the biological basis of androphilia in mice and men. Horm Behav 2019; 111:23-30. [PMID: 30579744 DOI: 10.1016/j.yhbeh.2018.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/21/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023]
Abstract
For nearly 60 years since the seminal paper from W.C Young and colleagues (Phoenix et al., 1959), the principles of sexual differentiation of the brain and behavior have maintained that female-typical sexual behaviors (e.g., lordosis) and sexual preferences (e.g., attraction to males) are the result of low androgen levels during development, whereas higher androgen levels promote male-typical sexual behaviors (e.g., mounting and thrusting) and preferences (e.g., attraction to females). However, recent reports suggest that the relationship between androgens and male-typical behaviors is not always linear - when androgen signaling is increased in male rodents, via exogenous androgen exposure or androgen receptor overexpression, males continue to exhibit male-typical sexual behaviors, but their sexual preferences are altered such that their interest in same-sex partners is increased. Analogous to this rodent literature, recent findings indicate that high level androgen exposure may contribute to the sexual orientation of a subset of gay men who prefer insertive anal sex and report more male-typical gender traits, whereas gay men who prefer receptive anal sex, and who on average report more gender nonconformity, present with biomarkers suggestive of low androgen exposure. Together, the evidence indicates that for both mice and men there is an inverted-U curvilinear relationship between androgens and sexual preferences, such that low and high androgen exposure increases androphilic sexual attraction, whereas relative mid-range androgen exposure leads to gynephilic attraction. Future directions for studying how individual differences in biological development mediate sexual behavior and sexual preferences in both mice and humans are discussed.
Collapse
Affiliation(s)
- Ashlyn Swift-Gallant
- Neuroscience Program, Michigan State University, 293 Farm Lane, East Lansing, MI 48824, USA; Department of Psychology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
2
|
Monks DA, Swift-Gallant A. Non-neural androgen receptors affect sexual differentiation of brain and behaviour. J Neuroendocrinol 2018; 30. [PMID: 28590577 DOI: 10.1111/jne.12493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 01/08/2023]
Abstract
Although gonadal testosterone is the principal endocrine factor that promotes masculine traits in mammals, the development of a male phenotype requires local production of both androgenic and oestrogenic signals within target tissues. Much of our knowledge concerning androgenic components of testosterone signalling in sexual differentiation comes from studies of androgen receptor (Ar) loss of function mutants. Here, we review these studies of loss of Ar function and of AR overexpression either globally or selectively in the nervous system of mice. Global and neural mutations affect socio-sexual behaviour and the neuroanatomy of these mice in a sexually differentiated manner. Some masculine traits are affected by both global and neural mutation, indicative of neural mediation, whereas other masculine traits are affected only by global mutation, indicative of an obligatory non-neural androgen target. These results support a model in which multiple sites of androgen action coordinate to produce masculine phenotypes. Furthermore, AR overexpression does not always have a phenotype opposite to that of loss of Ar function mutants, indicative of a nonlinear relationship between androgen dose and masculine phenotype in some cases. Potential mechanisms of Ar gene function in non-neural targets in producing masculine phenotypes are discussed.
Collapse
Affiliation(s)
- D A Monks
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cells and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - A Swift-Gallant
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
3
|
Roselli CE, Meaker M, Stormshak F, Estill CT. Effects of Long-Term Flutamide Treatment During Development on Sexual Behaviour and Hormone Responsiveness in Rams. J Neuroendocrinol 2016; 28:10.1111/jne.12389. [PMID: 27005749 PMCID: PMC4882258 DOI: 10.1111/jne.12389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 03/19/2016] [Indexed: 01/06/2023]
Abstract
Testosterone exposure during midgestation differentiates neural circuits controlling sex-specific behaviours and patterns of gonadotrophin secretion in male sheep. Testosterone acts through androgen receptors (AR) and/or after aromatisation to oestradiol and binding to oestrogen receptors. The present study assessed the role of AR activation in male sexual differentiation. We compared rams that were exposed to the AR antagonist flutamide (Flu) throughout the critical period (i.e. days 30-90 of gestation) to control rams and ewes that received no prenatal treatments. The external genitalia of all Flu rams were phenotypically female. Testes were positioned s.c. in the inguinal region of the abdomen, exhibited seasonally impaired androgen secretion and were azospermic. Flu rams displayed male-typical precopulatory and mounting behaviours but could not intromit or ejaculate because they lacked a penis. Flu rams exhibited greater mounting behaviour than control rams and, similar to controls, showed sexual partner preferences for oestrous ewes. Neither control, nor Flu rams responded to oestradiol treatments with displays of female-typical receptive behaviour or LH surge responses, whereas all control ewes responded as expected. The ovine sexually dimorphic nucleus in Flu rams was intermediate in volume between control rams and ewes and significantly different from both. These results indicate that prenatal anti-androgen exposure is not able to block male sexual differentiation in sheep and suggest that compensatory mechanisms intervene to maintain sufficient androgen stimulation during development.
Collapse
Affiliation(s)
- Charles E. Roselli
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239-3098
| | - Mary Meaker
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331-4501
| | - Fred Stormshak
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331-4501
| | - Charles T. Estill
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331-4501
- College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331-4501
| |
Collapse
|
4
|
Forger NG, Strahan JA, Castillo-Ruiz A. Cellular and molecular mechanisms of sexual differentiation in the mammalian nervous system. Front Neuroendocrinol 2016; 40:67-86. [PMID: 26790970 PMCID: PMC4897775 DOI: 10.1016/j.yfrne.2016.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/31/2015] [Accepted: 01/09/2016] [Indexed: 01/16/2023]
Abstract
Neuroscientists are likely to discover new sex differences in the coming years, spurred by the National Institutes of Health initiative to include both sexes in preclinical studies. This review summarizes the current state of knowledge of the cellular and molecular mechanisms underlying sex differences in the mammalian nervous system, based primarily on work in rodents. Cellular mechanisms examined include neurogenesis, migration, the differentiation of neurochemical and morphological cell phenotype, and cell death. At the molecular level we discuss evolving roles for epigenetics, sex chromosome complement, the immune system, and newly identified cell signaling pathways. We review recent findings on the role of the environment, as well as genome-wide studies with some surprising results, causing us to re-think often-used models of sexual differentiation. We end by pointing to future directions, including an increased awareness of the important contributions of tissues outside of the nervous system to sexual differentiation of the brain.
Collapse
Affiliation(s)
- Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| | - J Alex Strahan
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| | | |
Collapse
|
5
|
Derouiche L, Keller M, Martini M, Duittoz AH, Pillon D. Developmental Exposure to Ethinylestradiol Affects Reproductive Physiology, the GnRH Neuroendocrine Network and Behaviors in Female Mouse. Front Neurosci 2015; 9:463. [PMID: 26696819 PMCID: PMC4673314 DOI: 10.3389/fnins.2015.00463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/23/2015] [Indexed: 01/10/2023] Open
Abstract
During development, environmental estrogens are able to induce an estrogen mimetic action that may interfere with endocrine and neuroendocrine systems. The present study investigated the effects on the reproductive function in female mice following developmental exposure to pharmaceutical ethinylestradiol (EE2), the most widespread and potent synthetic steroid present in aquatic environments. EE2 was administrated in drinking water at environmentally relevant (ENVIR) or pharmacological (PHARMACO) doses [0.1 and 1 μg/kg (body weight)/day respectively], from embryonic day 10 until postnatal day 40. Our results show that both groups of EE2-exposed females had advanced vaginal opening and shorter estrus cycles, but a normal fertility rate compared to CONTROL females. The hypothalamic population of GnRH neurons was affected by EE2 exposure with a significant increase in the number of perikarya in the preoptic area of the PHARMACO group and a modification in their distribution in the ENVIR group, both associated with a marked decrease in GnRH fibers immunoreactivity in the median eminence. In EE2-exposed females, behavioral tests highlighted a disturbed maternal behavior, a higher lordosis response, a lack of discrimination between gonad-intact and castrated males in sexually experienced females, and an increased anxiety-related behavior. Altogether, these results put emphasis on the high sensitivity of sexually dimorphic behaviors and neuroendocrine circuits to disruptive effects of EDCs.
Collapse
Affiliation(s)
- Lyes Derouiche
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Matthieu Keller
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Mariangela Martini
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Anne H Duittoz
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Delphine Pillon
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| |
Collapse
|
6
|
Abstract
We examined the role of the androgen receptor (AR) in the investigatory behaviour of conspecifics using mice carrying the testicular feminisation mutation (X(Tfm) Y). Responses to members of the same and opposite sex were evaluated in a habituation/dishabituation task. Adult mice were gonadectomised and treated with oestradiol (E(2) ) or testosterone. After E(2) treatment, regardless of the sex of the stimulus mouse, wild-type (WT) males engaged in significantly more investigation than WT females. X(Tfm) Y males treated with E(2) showed 'male-like' behaviour in response to a male but behaved 'female-like' when the stimulus was a female. Because WT and X(Tfm) Y males behaved the same in response to another male, we used two additional mouse models to ask whether sex chromosomes were responsible for this phenomenon. Regardless of sex chromosome complement, gonadal males displayed high levels of investigation. When mice were treated with testosterone, investigation by WT females was enhanced, which eliminated the sex differences. Most strikingly, X(Tfm) Y males receiving testosterone-treatment increased the investigation of females to levels equal to those shown by WT mice. Given that testosterone, but not its metabolite E(2) , caused X(Tfm) Y males to investigate female conspecifics at high levels, it is plausible that nonclassical actions of AR, and/or activation of a novel AR, may be involved in this behaviour. Taken together, our data show that AR activation during adulthood is not required for males to investigate mice of either sex. However, 'male-like' levels of investigation of a female stimulus may depend on neonatal activation of the classic nuclear AR.
Collapse
Affiliation(s)
- L D Tejada
- Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
7
|
Female mice deficient in alpha-fetoprotein show female-typical neural responses to conspecific-derived pheromones. PLoS One 2012; 7:e39204. [PMID: 22720075 PMCID: PMC3376129 DOI: 10.1371/journal.pone.0039204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 05/21/2012] [Indexed: 02/03/2023] Open
Abstract
The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO) and which lack the protective actions of AFP against maternal estradiol, that exposure to prenatal estradiol completely defeminized the potential to show lordosis behavior in adulthood. Furthermore, AFP-KO females failed to show any male-directed mate preferences following treatment with estradiol and progesterone, indicating a reduced sexual motivation to seek out the male. In the present study, we asked whether neural responses to male- and female-derived odors are also affected in AFP-KO female mice. Therefore, we compared patterns of Fos, the protein product of the immediate early gene, c-fos, commonly used as a marker of neuronal activation, between wild-type (WT) and AFP-KO female mice following exposure to male or estrous female urine. We also tested WT males to confirm the previously observed sex differences in neural responses to male urinary odors. Interestingly, AFP-KO females showed normal, female-like Fos responses, i.e. exposure to urinary odors from male but not estrous female mice induced equivalent levels of Fos protein in the accessory olfactory pathways (e.g. the medial part of the preoptic nucleus, the bed nucleus of the stria terminalis, the amygdala, and the lateral part of the ventromedial hypothalamic nucleus) as well as in the main olfactory pathways (e.g. the piriform cortex and the anterior cortical amygdaloid nucleus), as WT females. By contrast, WT males did not show any significant induction of Fos protein in these brain areas upon exposure to either male or estrous female urinary odors. These results thus suggest that prenatal estradiol is not involved in the sexual differentiation of neural Fos responses to male-derived odors.
Collapse
|
8
|
Majdic G, Tobet S. Cooperation of sex chromosomal genes and endocrine influences for hypothalamic sexual differentiation. Front Neuroendocrinol 2011; 32:137-45. [PMID: 21338619 PMCID: PMC3085655 DOI: 10.1016/j.yfrne.2011.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 02/11/2011] [Accepted: 02/15/2011] [Indexed: 02/04/2023]
Abstract
There is little debate that mammalian sexual differentiation starts from the perspective of two primary sexes that correspond to differential sex chromosomes (X versus Y) that lead to individuals with sex typical characteristics. Sex steroid hormones account for most aspects of brain sexual differentiation, however, a growing literature has raised important questions about the role of sex chromosomal genes separate from sex steroid actions. Several important model animals are being used to address these issues and, in particular, they are taking advantage of molecular genetic approaches using different mouse strains. The current review examines the cooperation of genetic and endocrine influences from the perspective of behavioral and morphological hypothalamic sexual differentiation, first in adults and then in development. In the final analysis, there is an ongoing need to account for the influence of hormones in the context of underlying genetic circumstances and null hormone conditions.
Collapse
Affiliation(s)
- Gregor Majdic
- Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia and Medical Faculty, University of Maribor, Maribor, Slovenia
| | | |
Collapse
|
9
|
Henley CL, Nunez AA, Clemens LG. Hormones of choice: the neuroendocrinology of partner preference in animals. Front Neuroendocrinol 2011; 32:146-54. [PMID: 21377487 DOI: 10.1016/j.yfrne.2011.02.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 02/17/2011] [Accepted: 02/28/2011] [Indexed: 11/29/2022]
Abstract
Partner preference behavior can be viewed as the outcome of a set of hierarchical choices made by an individual in anticipation of mating. The first choice involves approaching a conspecific verses an individual of another species. As a rule, a conspecific is picked as a mating partner, but early life experiences can alter that outcome. Within a species, an animal then has the choice between a member of the same sex or the opposite sex. The final choice is for a specific individual. This review will focus on the middle choice, the decision to mate with either a male or a female. Available data from rats, mice, and ferrets point to the importance of perinatal exposure to steroid hormones in the development of partner preferences, as well as the importance of activational effects in adulthood. However, the particular effects of this hormone exposure show species differences in both the specific steroid hormone responsible for the organization of behavior and the developmental period when it has its effect. Where these hormones have an effect in the brain is mostly unknown, but regions involved in olfaction and sexual behavior, as well as sexually dimorphic regions, seem to play a role. One limitation of the literature base is that many mate or 'partner preference studies' rely on preference for a specific stimulus (usually olfaction) but do not include an analysis of the relation, if any, that stimulus has to the choice of a particular sexual partner. A second limitation has been the almost total lack of attention to the type of behavior that is shown by the choosing animal once a 'partner' has been chosen, specifically, if the individual plays a mating role typical of its own sex or the opposite sex. Additional paradigms that address these questions are needed for better understanding of partner preferences in rodents.
Collapse
Affiliation(s)
- C L Henley
- Departments of Zoology and Psychology, and the Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
10
|
Brock O, Bakker J. Potential contribution of prenatal estrogens to the sexual differentiation of mate preferences in mice. Horm Behav 2011; 59:83-9. [PMID: 21029737 PMCID: PMC3022080 DOI: 10.1016/j.yhbeh.2010.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/14/2010] [Accepted: 10/18/2010] [Indexed: 02/07/2023]
Abstract
The neural mechanisms controlling sexual behavior are sexually differentiated by perinatal actions of gonadal hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO) and which lack the protective actions of AFP against maternal estrogens, that exposure to prenatal estrogens completely defeminized their potential to show lordosis behavior in adulthood. Therefore, we determined here whether mate preferences were also affected in female AFP-KO mice. We observed a robust preference for an estrous female over an intact male in female AFP-KO mice, which were ovariectomized in adulthood and subsequently treated with estradiol and progesterone, whereas similarly treated WT females preferred the intact male over the estrous female. Gonadally intact WT males preferred the estrous female over the male, but only when visual cues were blocked by placing stimulus animals behind opaque partitions. Furthermore, when given the choice between an intact male and a castrated male, WT females preferred the intact male, whereas AFP-KO females showed no preference. Finally when given the choice between an estrous female and an ovariectomized female, WT males preferred the estrous female whereas AFP-KO females preferred the ovariectomized female or showed no preference depending on whether they could see the stimulus animals or not. Taken together, when AFP-KO females are tested under estrous conditions, they do not show any male-directed preferences, indicating a reduced sexual motivation to seek out the male in these females. However, they do not completely resemble males in their mate preferences suggesting that the male-typical pattern of mate preferences is not solely organized by prenatal estrogens.
Collapse
Affiliation(s)
- Olivier Brock
- GIGA-Neurosciences, University of Liege, Avenue de l'Hôpital 1 (B36), 4000 Liege, Belgium
| | | |
Collapse
|
11
|
Bonthuis P, Cox K, Searcy B, Kumar P, Tobet S, Rissman E. Of mice and rats: key species variations in the sexual differentiation of brain and behavior. Front Neuroendocrinol 2010; 31:341-58. [PMID: 20457175 PMCID: PMC2910167 DOI: 10.1016/j.yfrne.2010.05.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/04/2010] [Accepted: 05/05/2010] [Indexed: 12/25/2022]
Abstract
Mice and rats are important mammalian models in biomedical research. In contrast to other biomedical fields, work on sexual differentiation of brain and behavior has traditionally utilized comparative animal models. As mice are gaining in popularity, it is essential to acknowledge the differences between these two rodents. Here we review neural and behavioral sexual dimorphisms in rats and mice, which highlight species differences and experimental gaps in the literature, that are needed for direct species comparisons. Moving forward, investigators must answer fundamental questions about their chosen organism, and attend to both species and strain differences as they select the optimal animal models for their research questions.
Collapse
Affiliation(s)
- P.J. Bonthuis
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA
| | - K.H. Cox
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA
| | - B.T. Searcy
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - P. Kumar
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - S. Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - E.F. Rissman
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
12
|
Margiasso ME, Longpre KM, Katz LS. Partner preference: Assessing the role of the female goat. Physiol Behav 2010; 99:587-91. [PMID: 20149810 DOI: 10.1016/j.physbeh.2010.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 01/11/2010] [Accepted: 01/21/2010] [Indexed: 11/26/2022]
|
13
|
Keller M, Pawluski JL, Brock O, Douhard Q, Bakker J. The alpha-fetoprotein knock-out mouse model suggests that parental behavior is sexually differentiated under the influence of prenatal estradiol. Horm Behav 2010; 57:434-40. [PMID: 20109458 PMCID: PMC4298041 DOI: 10.1016/j.yhbeh.2010.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 11/28/2022]
Abstract
In rodent species, sexual differentiation of the brain for many reproductive processes depends largely on estradiol. This was recently confirmed again by using the alpha-fetoprotein knockout (AFP-KO) mouse model, which lacks the protective actions of alpha-fetoprotein against maternal estradiol and as a result represents a good model to determine the contribution of prenatal estradiol to the sexual differentiation of the brain and behavior. Female AFP-KO mice were defeminized and masculinized with regard to their neuroendocrine responses as well as sexual behavior. Since parental behavior is also strongly sexually differentiated in mice, we used the AFP-KO mouse model here to ask whether parental responses are differentiated prenatally under the influence of estradiol. It was found that AFP-KO females showed longer latencies to retrieve pups to the nest and also exhibited lower levels of crouching over the pups in the nest in comparison to WT females. In fact, they resembled males (WT and AFP-KO). Other measures of maternal behavior, for example the incidence of infanticide, tended to be higher in AFP-KO females than in WT females but this increase failed to reach statistical significance. The deficits observed in parental behavior of AFP-KO females could not be explained by any changes in olfactory function, novelty recognition or anxiety. Thus our results suggest that prenatal estradiol defeminizes the parental brain in mice.
Collapse
Affiliation(s)
- Matthieu Keller
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
| | | | | | | | | |
Collapse
|
14
|
Bakker J, Baum MJ. Role for estradiol in female-typical brain and behavioral sexual differentiation. Front Neuroendocrinol 2008; 29:1-16. [PMID: 17720235 PMCID: PMC2373265 DOI: 10.1016/j.yfrne.2007.06.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 05/29/2007] [Accepted: 06/19/2007] [Indexed: 12/01/2022]
Abstract
The importance of estrogens in controlling brain and behavioral sexual differentiation in female rodents is an unresolved issue in the field of behavioral neuroendocrinology. Whereas, the current dogma states that the female brain develops independently of estradiol, many studies have hinted at possible roles of estrogen in female sexual differentiation. Accordingly, it has been proposed that alpha-fetoprotein, a fetal plasma protein that binds estrogens with high affinity, has more than a neuroprotective role and specifically delivers estrogens to target brain cells to ensure female differentiation. Here, we review new results obtained in aromatase and alpha-fetoprotein knockout mice showing that estrogens can have both feminizing and defeminizing effects on the developing neural mechanisms that control sexual behavior. We propose that the defeminizing action of estradiol normally occurs prenatally in males and is avoided in fetal females because of the protective actions of alpha-fetoprotein, whereas the feminizing action of estradiol normally occurs postnatally in genetic females.
Collapse
Affiliation(s)
- Julie Bakker
- Center for Cellular & Molecular Neurobiology, University of Liège, Belgium.
| | | |
Collapse
|
15
|
Kauffman AS, Park JH, McPhie-Lalmansingh AA, Gottsch ML, Bodo C, Hohmann JG, Pavlova MN, Rohde AD, Clifton DK, Steiner RA, Rissman EF. The kisspeptin receptor GPR54 is required for sexual differentiation of the brain and behavior. J Neurosci 2007; 27:8826-35. [PMID: 17699664 PMCID: PMC6672184 DOI: 10.1523/jneurosci.2099-07.2007] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GPR54 is a G-protein-coupled receptor, which binds kisspeptins and is widely expressed throughout the brain. Kisspeptin-GPR54 signaling has been implicated in the regulation of pubertal and adulthood gonadotropin-releasing hormone (GnRH) secretion, and mutations or deletions of GPR54 cause hypogonadotropic hypogonadism in humans and mice. Other reproductive roles for kisspeptin-GPR54 signaling, including the regulation of developmental GnRH secretion or sexual behavior in adults, have not yet been explored. Using adult wild-type (WT) and GPR54 knock-out (KO) mice, we first tested whether kisspeptin-GPR54 signaling is necessary for male and female sexual behaviors. We found that hormone-replaced gonadectomized GPR54 KO males and females displayed appropriate gender-specific adult sexual behaviors. Next, we examined whether GPR54 signaling is required for proper display of olfactory-mediated partner preference behavior. Testosterone-treated WT males preferred stimulus females rather than males, whereas similarly treated WT females and GPR54 KO males showed no preference for either sex. Because olfactory preference is sexually dimorphic and organized during development by androgens, we assessed whether GPR54 signaling is essential for sexual differentiation of other sexually dimorphic traits. Interestingly, adult testosterone-treated GPR54 KO males displayed "female-like" numbers of tyrosine hydroxylase-immunoreactive and Kiss1 mRNA-containing neurons in the anteroventral periventricular nucleus and likewise possessed fewer motoneurons in the spino-bulbocavernosus nucleus than did WT males. Our findings indicate that kisspeptin-GPR54 signaling is not required for male or female copulatory behavior, provided there is appropriate adulthood hormone replacement. However, GPR54 is necessary for proper male-like development of several sexually dimorphic traits, likely by regulating GnRH-mediated androgen secretion during "critical windows" in perinatal development.
Collapse
Affiliation(s)
- Alexander S Kauffman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|