1
|
Park SB, Lur G. Repeated exposure to multiple concurrent stressors alters visual processing in the adult posterior parietal cortex. Neurobiol Stress 2024; 31:100660. [PMID: 39100726 PMCID: PMC11296072 DOI: 10.1016/j.ynstr.2024.100660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 08/06/2024] Open
Abstract
Chronic stress is well known to erode cognitive functions. Yet, our understanding of how repeated stress exposure impacts one of the fundamental bases of cognition: sensory processing, remains limited. The posterior parietal cortex (PPC) is a high order visual region, known for its role in visually guided decision making, multimodal integration, attention, and working memory. Here, we used functional measures to determine how repeated exposure to multiple concurrent stressors (RMS) affects sensory processing in the PPC in adult male mice. A longitudinal experimental design, repeatedly surveying the same population of neurons using in vivo two-photon imaging, revealed that RMS disrupts the balanced turnover of visually responsive cells in layer 2/3 of the PPC. Across the population, RMS-induced changes in visual responsiveness followed a bimodal distribution suggesting idiosyncratic stress effects. In cells that maintained their responsiveness across recording sessions, we found that stress reduced visual response magnitudes and feature selectivity. While we did not observe stress-induced elimination of excitatory synapses, noise correlation statistics indicated that RMS altered visual input to the neuronal population. The impact of RMS was restricted to visually evoked responses and was not evident in neuronal activity associated with locomotion onset. Together, our results indicate that despite no apparent synaptic reorganization, stress exposure in adulthood can disrupt sensory processing in the PPC, with the effects showing remarkable individual variation.
Collapse
Affiliation(s)
- Soo Bin Park
- Department of Neurobiology and Behavior, University of California, Irvine, CA USA, 92697
| | - Gyorgy Lur
- Department of Neurobiology and Behavior, University of California, Irvine, CA USA, 92697
| |
Collapse
|
2
|
Zhang M, Wei J, Sun Y, He C, Ma S, Pan X, Zhu X. The efferocytosis process in aging: Supporting evidence, mechanisms, and therapeutic prospects for age-related diseases. J Adv Res 2024:S2090-1232(24)00109-7. [PMID: 38499245 DOI: 10.1016/j.jare.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Aging is characterized by an ongoing struggle between the buildup of damage caused by a combination of external and internal factors. Aging has different effects on phagocytes, including impaired efferocytosis. A deficiency in efferocytosis can cause chronic inflammation, aging, and several other clinical disorders. AIM OF REVIEW Our review underscores the possible feasibility and extensive scope of employing dual targets in various age-related diseases to reduce the occurrence and progression of age-related diseases, ultimately fostering healthy aging and increasing lifespan. Key scientific concepts of review Hence, the concurrent implementation of strategies aimed at augmenting efferocytic mechanisms and anti-aging treatments has the potential to serve as a potent intervention for extending the duration of a healthy lifespan. In this review, we comprehensively discuss the concept and physiological effects of efferocytosis. Subsequently, we investigated the association between efferocytosis and the hallmarks of aging. Finally, we discuss growing evidence regarding therapeutic interventions for age-related disorders, focusing on the physiological processes of aging and efferocytosis.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yu Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chang He
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shiyin Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
3
|
Goel N, Philippe TJ, Chang J, Koblanski ME, Viau V. Cellular and serotonergic correlates of habituated neuroendocrine responses in male and female rats. Psychoneuroendocrinology 2022; 136:105599. [PMID: 34891046 DOI: 10.1016/j.psyneuen.2021.105599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023]
Abstract
Male and females appear equally capable of showing habituated hypothalamic-pituitary-adrenal (HPA) axis output responses to repeated exposures of the same challenge. Whether this reflects, within males and females, common mechanisms of decreased neuronal activity within stress responding, afferents to the paraventricular hypothalamic nucleus (PVH), the final common pathway to the HPA axis, has not been examined. Here we compared in adult male and female rats the extent to which declines in HPA axis responses to repeated restraint are met by habituated cellular (Fos) responses, in addition to changes in serotonin (5-hydroxytryptamine; 5-HT) expression and signaling, which normally stimulates the HPA axis. Thus, alterations in this component of HPA axis drive could provide an underlying basis for sex differences in adaptive responses. Males and females showed reliable declines in ACTH and corticosterone responses after 10 daily episodes of repeated restraint, recapitulated, in largest part, by similar regional patterns of Fos habituation, including within the PVH, several stress sensitive cell groups of the limbic forebrain, as well as within the raphe nucleus. Serotonin staining in the dorsal raphe and terminal profiles in the forebrain continued to reflect a higher pre-synaptic capacity for the 5-HT system in females. The sexual dimorphism encountered within the lateral septum and medial preoptic area of control animals was less distinguished in the repeat condition, however, whereas 5-HT varicosities in the PVH increased after repeated restraint only in females. Relative to their singly restrained counterparts, males displayed an increase in 5-HT 1 A receptor expression in the raphe nucleus after repeated restraint, whereas females showed a decrease in 5-HT 1 A mRNA levels in the hippocampus and in the zona incerta, representing the most proximal of cell groups expressing the 5-HT 1 A receptor in the vicinity of the PVH. In conclusion, similar regional profiles of cellular habituation in males and females suggest common CNS substrates of neuroendocrine adaptation. However, this process may be met by underlying sex differences in serotonergic control, given the respective roles for pre- and postsynaptic 5-HT 1 A receptors in mediating serotonin availability and signal transfer.
Collapse
Affiliation(s)
- Nirupa Goel
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Tristan J Philippe
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Judy Chang
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Maya E Koblanski
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Victor Viau
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
4
|
Moraes DA, Machado RB, Koban M, Hoffman GE, Suchecki D. The Pituitary-Adrenal Response to Paradoxical Sleep Deprivation Is Similar to a Psychological Stressor, Whereas the Hypothalamic Response Is Unique. Front Endocrinol (Lausanne) 2022; 13:885909. [PMID: 35880052 PMCID: PMC9308007 DOI: 10.3389/fendo.2022.885909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022] Open
Abstract
Stressors of different natures induce activation of the hypothalamic-pituitary-adrenal (HPA) axis at different magnitudes. Moreover, the HPA axis response to repeated exposure is usually distinct from that elicited by a single session. Paradoxical sleep deprivation (PSD) augments ACTH and corticosterone (CORT) levels, but the nature of this stimulus is not yet defined. The purpose of the present study was to qualitatively compare the stress response of animals submitted to PSD to that of rats exposed once or four times to cold, as a physiological stress, movement restraint (RST) as a mixed stressor and predator odour (PRED) as the psychological stressor, whilst animals were submitted for 1 or 4 days to PSD and respective control groups. None of the stressors altered corticotropin releasing factor immunoreactivity in the paraventricular nucleus of the hypothalamus (PVN), median eminence (ME) or central amygdala, compared to control groups, whereas vasopressin immunoreactivity in PSD animals was decreased in the PVN and increased in the ME, indicating augmented activity of this system. ACTH levels were higher after repeated stress or prolonged PSD than after single- or 1 day-exposure and control groups, whereas the CORT response was habituated by repeated stress, but not by 4-days PSD. This dissociation resulted in changes in the CORT : ACTH ratio, with repeated cold and RST decreasing the ratio compared to single exposure, but no change was seen in PRED and PSD groups. Comparing the magnitude and pattern of pituitary-adrenal response to the different stressors, PSD-induced responses were closer to that shown by PRED-exposed rats. In contrast, the hypothalamic response of PSD-exposed rats was unique, inasmuch as this was the only stressor which increased the activity of the vasopressin system. In conclusion, we propose that the pituitary-adrenal response to PSD is similar to that induced by a psychological stressor.
Collapse
Affiliation(s)
- Danilo A. Moraes
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo B. Machado
- Grupo de Pesquisa em Psicossomática, Universidade Ibirapuera, São Paulo, Brazil
| | - Michael Koban
- Department of Biology, Morgan State University, Baltimore, MD, United States
| | - Gloria E. Hoffman
- Department of Biology, Morgan State University, Baltimore, MD, United States
| | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Deborah Suchecki,
| |
Collapse
|
5
|
Romeo RD, Sciortino RK. Age-dependent changes in hormonal stress reactivity following repeated restraint stress throughout adolescence in male rats. Stress 2021; 24:496-503. [PMID: 33587012 DOI: 10.1080/10253890.2021.1873945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Stress-related psychological dysfunctions show a marked increase during adolescence, yet the mechanisms that mediate these vulnerabilities are unknown. Notably, however, adolescence is associated with changes in hormonal stress reactivity mediated by the hypothalamic-pituitary-adrenal (HPA) axis, which might contribute to these dysfunctions. Specifically, pre-adolescent animals display prolonged stress-induced HPA responses compared to adults. Previous experience with stressors further modify these changes in stress reactivity, such that repeated exposure to the same stressor results in an augmented HPA response prior to adolescence, but a habituated response in adulthood. It is unclear when during adolescence the habituated, adult-like response develops to a repeated stressor. Using male rats at various ages that span adolescence (30-70 days of age), we show that by mid-adolescence (i.e. 42 days of age), animals show neither a facilitated nor a habituated HPA hormonal response following four days of repeated restraint stress (4RS) compared to a single restraint session (1RS). We also show that the habituated HPA response to 4RS develops between late-adolescence and young adulthood (i.e. between 56 and 70 days of age, respectively). Further, we find age- and experience-dependent changes in progesterone and testosterone secretion, indicating that the interaction between development and experience affects stress-induced hormonal responses outside of canonical HPA-related hormones. Despite these hormonal differences mediated by age and experience, repeated restraint stress resulted in decreased fecal boli production at all four ages, suggesting dissociation between hormonal and autonomic reactivity during adolescence. These data indicate that HPA plasticity is significantly affected by adolescence and that a habituated hormonal response to homotypic stress does not occur until young adulthood. A greater appreciation of these changes in stress reactivity will contribute to our understanding of the psychological vulnerabilities often associated with stressful adolescence.
Collapse
Affiliation(s)
- Russell D Romeo
- Departments of Psychology and Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, USA
| | - Rose K Sciortino
- Departments of Psychology and Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, USA
| |
Collapse
|
6
|
Roustazade R, Radahmadi M, Yazdani Y. Therapeutic effects of saffron extract on different memory types, anxiety, and hippocampal BDNF and TNF-α gene expressions in sub-chronically stressed rats. Nutr Neurosci 2021; 25:192-206. [PMID: 34165393 DOI: 10.1080/1028415x.2021.1943138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objective: While stress reportedly impairs memory, saffron enhances it. This study investigated the therapeutic effects of saffron extract on different memory types, anxiety-like behavior, and expressions of BDNF and TNF-α genes in sub-chronically stressed rats.Methods: Rats were randomly assigned to control, restraint stress (6 h/day/7 days), two 7-days saffron treatments with 30 and 60 mg/kg, and two stress-saffron groups (30 and 60 mg/kg/7 post-stress days). Serum cortisol level and hippocampal BDNF and TNF-α gene expressions were measured. Open field, passive avoidance, novel object recognition, and object location tests were performed to assess anxiety-like behavior and avoidance as well as cognitive and spatial memories, respectively.Results: The low saffron dose in the sub-chronic stressed group led to a significant increase in passive avoidance latency from day 3 onward whereas this effect was observed after 7 days under the high-dose treatment that simultaneously led to a significant decline in serum cortisol level. While the low saffron dose led to a sharp drop in hippocampal TNF-α gene expression, the high dose significantly increased the hippocampal BDNF gene expression in the sub-chronic stress group. Finally, both saffron doses reduced anxiety in the stressed groups.Conclusion: Compared to the low saffron dose, the high dose had a latent but long-lasting impact. Cognitive and spatial memories remained unaffected by either stress or saffron treatment. In addition, only the high saffron dose reversed anxiety in the sub-chronically stressed group. These findings suggest that various doses of saffron act differently on different brain functions under sub-chronic stress conditions.Abbreviations: Brain derived neurotrophic factor (BDNF), tumor necrosis factor-α (TNF-α), hypothalamic-pituitary-adrenal axis (HPA), novel object recognition task (NORT), novel object location task (NOLT), open field test (OFT), passive avoidance (PA).
Collapse
Affiliation(s)
- Roshanak Roustazade
- Medical Students' Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yeganeh Yazdani
- Medical Students' Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Psychobiological mechanisms underlying the mood benefits of meditation: A narrative review. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2021; 6:100037. [PMID: 35757358 PMCID: PMC9216450 DOI: 10.1016/j.cpnec.2021.100037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 01/19/2023] Open
Abstract
Psychological stressors can lead to distress and result in autonomic arousal and activation of a stress response. Ongoing or persistent stress can disrupt the stress response feedback mechanisms and result in elevated cortisol and pro-inflammatory cytokines which can cause damage to brain regions involved in the regulation of mood and emotion. We propose that the magnitude of the stress response experienced in response to psychological stressors depends on a number of modifiable psychological processes including an individual’s level of self-compassion, dispositional mindfulness, tendency to ruminate and attentional bias. We further propose that the stress response elected by psychological stressors can be meditated by influencing these modifiable psychological processes, and that meditation practices can decrease stress and improve mood by decreasing stress reactivity on a psychological, physiological and neurobiological level. We explore this in a narrative review. Meditation decreases blood pressure, heart rate, cortisol and cytokine levels. Meditation increases self-compassion, dispositional mindfulness and meta-cognition. Meditation improves attention and memory. Meditation results in brain changes in regions related to emotion regulation.
Collapse
|
8
|
Costa-Ferreira W, Gomes-de-Souza L, Crestani CC. Role of angiotensin receptors in the medial amygdaloid nucleus in autonomic, baroreflex and cardiovascular changes evoked by chronic stress in rats. Eur J Neurosci 2021; 53:763-777. [PMID: 33372338 DOI: 10.1111/ejn.15094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 01/27/2023]
Abstract
This study investigated the role of AT1 , AT2 and Mas angiotensinergic receptors within the MeA in autonomic, cardiovascular and baroreflex changes evoked by a 10-day (1 hr daily) repeated restraint stress (RRS) protocol. Analysis of cardiovascular function after the end of the RRS protocol indicated increased values of arterial pressure, without heart rate changes. Arterial pressure increase was not affected by acute MeA treatment after the RRS with either the selective AT1 receptor antagonist losartan, the selective AT2 receptor antagonist PD123319 or the selective Mas receptor antagonist A-779. Analysis of heart rate variability indicated that RRS increased the sympathetic tone to the heart, which was inhibited by MeA treatment with either losartan, PD123319 or A-779. Baroreflex function assessed using the pharmacological approach via intravenous infusion of vasoactive agents revealed a facilitation of tachycardia evoked by blood pressure decrease in chronically stressed animals, which was inhibited by MeA treatment with losartan. Conversely, baroreflex responses during spontaneous fluctuations of blood pressure were impaired by RRS, and this effect was not affected by injection of the angiotensinergic receptor antagonists into the MeA. Altogether, the data reported in the present study suggest an involvement of both angiotensinergic receptors present in the MeA in autonomic imbalance evoked by RRS, as well as an involvement of MeA AT1 receptor in the enhanced baroreflex responses during full range of blood pressure changes. Results also indicate that RRS-evoked increase in arterial pressure and impairment of baroreflex responses during spontaneous variations of arterial pressure are independent of MeA angiotensinergic receptors.
Collapse
Affiliation(s)
- Willian Costa-Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Lucas Gomes-de-Souza
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Carlos C Crestani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| |
Collapse
|
9
|
Fujii Y, Suzuki K, Adachi T, Taira S, Osakabe N. Corticotropin-releasing hormone is significantly upregulated in the mouse paraventricular nucleus following a single oral dose of cinnamtannin A2 as an (-)-epicatechin tetramer. J Clin Biochem Nutr 2019; 65:29-33. [PMID: 31379411 PMCID: PMC6667379 DOI: 10.3164/jcbn.19-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/13/2019] [Indexed: 12/31/2022] Open
Abstract
Cinnamtannin A2, an (−)-epicatechin tetramer, was reported to have potent physiological activity. Cinnamtannin A2 is rarely absorbed from the gastrointestinal tract into the blood and the mechanisms of its beneficial activities are unknown. Cinnamtannin A2 reported to increase sympathetic nervous activity, which was induced by various stressors. In present study, we examined the stress response in the mouse paraventricular nucleus following a single oral dose of cinnamtannin A2 by monitoring mRNA expression of corticotropin-releasing hormone (CRH) and c-fos using in situ hybridization. Corticotropin-releasing hormone mRNA showed a tendency to increase at 15 min and significantly increased at 60 min following a single oral administration of 100 µg/kg cinnamtannin A2. After a single dose of 10 µg/kg cinnamtannin A2, there was significant upregulation of CRH mRNA at 60 min. These results suggested that cinnamtannin A2 was recognized as a stressor in central nervous system and this may lead to its beneficial effects on circulation and metabolism.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Kenta Suzuki
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shu Taira
- Fukushima University, Faculty of Food and Agricultural Sciences, 1 Kanayagawa, Fukushima 960-1248, Japan
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| |
Collapse
|
10
|
Fujii Y, Suzuki K, Adachi T, Taira S, Osakabe N. Corticotropin-releasing hormone is significantly upregulated in the mouse paraventricular nucleus following a single oral dose of cinnamtannin A2 as an (-)-epicatechin tetramer. J Clin Biochem Nutr 2019. [PMID: 31379411 DOI: 10.3164/jcbn.19.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cinnamtannin A2, an (-)-epicatechin tetramer, was reported to have potent physiological activity. Cinnamtannin A2 is rarely absorbed from the gastrointestinal tract into the blood and the mechanisms of its beneficial activities are unknown. Cinnamtannin A2 reported to increase sympathetic nervous activity, which was induced by various stressors. In present study, we examined the stress response in the mouse paraventricular nucleus following a single oral dose of cinnamtannin A2 by monitoring mRNA expression of corticotropin-releasing hormone (CRH) and c-fos using in situ hybridization. Corticotropin-releasing hormone mRNA showed a tendency to increase at 15 min and significantly increased at 60 min following a single oral administration of 100 µg/kg cinnamtannin A2. After a single dose of 10 µg/kg cinnamtannin A2, there was significant upregulation of CRH mRNA at 60 min. These results suggested that cinnamtannin A2 was recognized as a stressor in central nervous system and this may lead to its beneficial effects on circulation and metabolism.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Kenta Suzuki
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shu Taira
- Fukushima University, Faculty of Food and Agricultural Sciences, 1 Kanayagawa, Fukushima 960-1248, Japan
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| |
Collapse
|
11
|
Endocannabinoid system, stress and HPA axis. Eur J Pharmacol 2018; 834:230-239. [DOI: 10.1016/j.ejphar.2018.07.039] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/19/2018] [Indexed: 11/19/2022]
|
12
|
Fujii Y, Suzuki K, Hasegawa Y, Nanba F, Toda T, Adachi T, Taira S, Osakabe N. Single oral administration of flavan 3-ols induces stress responses monitored with stress hormone elevations in the plasma and paraventricular nucleus. Neurosci Lett 2018; 682:106-111. [PMID: 29902479 DOI: 10.1016/j.neulet.2018.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/16/2018] [Accepted: 06/08/2018] [Indexed: 02/05/2023]
Abstract
We previously confirmed that postprandial alterations in the circulation and metabolism after a single oral dose of flavan 3-ols (mixture of catechin and catechin oligomers) were involved in an increase in sympathetic nervous activity. However, it is well known that, in response to various stresses, activation of the hypothalamic-pituitary-adrenal (HPA) axis occurs together with sympathetic nerve activity, which is associated with activation of the sympathetic-adrenal-medullary (SAM) axis. In this study, we examined whether the HPA axis was activated after a single dose of flavan 3-ols. We administered an oral dose of 10 or 50 mg/kg flavan 3-ols to male ICR mice, removed the brains, and fixed them in paraformaldehyde-phosphate buffer. Other animals that were treated similarly were decapitated, and blood was collected. In the paraventricular nucleus (PVN), c-fos mRNA expression increased significantly at 15 min after administration of either 10 or 50 mg/kg flavan 3-ols. Corticotropin-releasing hormone (CRH) mRNA expression levels significantly increased at 240 min after administration of 10 mg/kg flavan 3-ols, and at 60 min after administration of 50 mg/kg flavan 3-ols. Plasma corticosterone levels were also significantly increased at 240 min after ingestion of 50 mg/kg flavan 3-ols. In this experiment, we confirmed that the ingestion of flavan 3-ols acted as a stressor in mammals with activation both the SAM and HPA axes.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Kenta Suzuki
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Yahiro Hasegawa
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Fumio Nanba
- Department of Research and Development, Fujicco Co. Ltd. Hyogo, 650-8558, Japan
| | - Toshiya Toda
- Department of Research and Development, Fujicco Co. Ltd. Hyogo, 650-8558, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 113-8510, Japan
| | - Shu Taira
- Fukushima University, Faculty of Food and Agricultural Sciences, Kanayagawa, Fukushima, 960-1248, Japan
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan.
| |
Collapse
|
13
|
Pal'chikova NA, Kuzminova OI, Selyatitskaya VG. Stress Response to Physical Exercise in Rats with Alimentary Obesity. Bull Exp Biol Med 2018; 164:587-590. [PMID: 29577206 DOI: 10.1007/s10517-018-4037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Indexed: 11/29/2022]
Abstract
Stress response to physical exercise was studied in rats with alimentary obesity with and without caloric diet restriction. Daily excretion of corticosterone, progesterone, and testosterone, weights of internal organs, and serum levels of glucose, free fatty acids, triglycerides, corticosterone, and testosterone were estimated. Stress response to moderate exercise in rats with alimentary obesity was associated with predominance of anabolic influence of testosterone over the catabolic effects of corticosterone, which promoted the increase in the weight of reproductive organs. Exposure to physical loads against the background of restricted ration potentiated the response of the adrenocortical system and reduced the concentration and anabolic effects of testosterone.
Collapse
Affiliation(s)
- N A Pal'chikova
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, Russia.
| | - O I Kuzminova
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, Russia
| | - V G Selyatitskaya
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, Russia
| |
Collapse
|
14
|
Assessment of Cardiac Vegetative Control during Acute Graduated Exogenous Normobaric Hypoxia in Rats. Bull Exp Biol Med 2018; 164:591-595. [PMID: 29577207 DOI: 10.1007/s10517-018-4038-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 10/17/2022]
Abstract
The effects of exogenous normobaric hypoxic hypoxia on vegetative control of the heart and BP were examined in Wistar rats. The reference ranges of variation pulsometry parameters were determined in rats with normoxemia for 3 physiological variants of autonomic homeostasis: eutony, sympathicotony, and vagotony. Most rats (80%) demonstrated autonomic eutony. The study showed that saturation of arterial blood with oxygen is the most adequate assessment of severity of acute exogenous normobaric hypoxic hypoxia progressing within a closed hypoxic chamber, which standardizes this method and minimizes inaccuracies resulting from individual sensitivity to hypoxic stress. The changes in functional activity of systems that control the heart rhythm closely correlated with the drop in arterial blood oxygenation. While a small arterial hypoxemia activated the ergotropic elements of autonomic nervous system central subdivision accompanied by elevation of systolic BP, the moderate hypoxemia augmented the cholinergic influences and moderated the adrenergic ones under maintaining mobilization of the central autonomic nervous system-control loop and normotension. Severe hypoxemia was manifested by augmented influences from autonomic nervous system central subdivisions on the heart rate, disadaptation of the control systems, and systolic-diastolic arterial hypotension.
Collapse
|
15
|
Thakur T, Gulati K, Rai N, Ray A. Experimental studies on possible regulatory role of nitric oxide on the differential effects of chronic predictable and unpredictable stress on adaptive immune responses. Int Immunopharmacol 2017; 50:236-242. [PMID: 28704798 DOI: 10.1016/j.intimp.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/15/2017] [Accepted: 07/05/2017] [Indexed: 01/05/2023]
|
16
|
Sustained glucocorticoid exposure recruits cortico-limbic CRH signaling to modulate endocannabinoid function. Psychoneuroendocrinology 2016; 66:151-8. [PMID: 26821211 PMCID: PMC4788523 DOI: 10.1016/j.psyneuen.2016.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/09/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022]
Abstract
Sustained exposure to stress or corticosteroids is known to cause changes in brain endocannabinoid (eCB) signaling, such that tissue contents of the eCBs N-arachidonylethanolamine (AEA) are generally reduced while 2-arachidonoylglycerol (2-AG) levels increase. These changes in eCB signaling are important for many of the aspects of chronic stress, such as anxiety, reward sensitivity and stress adaptation, yet the mechanisms mediating these changes are not fully understood. We have recently found that the stress-related neuropeptide corticotropin-releasing hormone (CRH), acting through the CRH type 1 receptor (CRHR1), can reduce AEA content by increasing its hydrolysis by the enzyme fatty acid amide hydrolase (FAAH) as well as increase 2-AG contents. As extra-hypothalamic CRH is upregulated by chronic corticosteroid or stress exposure, we hypothesized that increased CRH signaling through CRHR1 contributes to the effects of chronic corticosteroid exposure on the eCB system within the amygdala and prefrontal cortex. Male rats were exposed to 7 days of systemic corticosterone capsules, with or without concurrent exposure to a CRHR1 antagonist, after which we examined eCB content. Consistent with previous studies in the amygdala, sustained corticosterone exposure increases CRH mRNA in the prefrontal cortex. As was shown previously, FAAH activity was increased and AEA contents were reduced within the amygdala and prefrontal cortex following chronic corticosterone exposure. Chronic corticosterone exposure also elevated 2-AG content in the prefrontal cortex but not the amygdala. These corticosteroid-driven changes were all blocked by systemic CRHR1 antagonism. Consistent with these data indicating sustained increases in CRH signaling can mediate the effects of chronic elevations in corticosteroids, CRH overexpressing mice also exhibited increased FAAH-mediated AEA hydrolysis in the amygdala and prefrontal cortex compared to wild type. CRH overexpression increased 2-AG content in the amygdala, but not the prefrontal cortex. These data indicate that chronic elevations in CRH signaling, as is seen following exposure to chronic elevations in corticosterone or stress, drive persistent changes in eCB function. As reductions in AEA signaling mediate the effects of CRH and chronic stress on anxiety, these data provide a mechanism linking these processes.
Collapse
|
17
|
Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, Scheimann J, Myers B. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compr Physiol 2016; 6:603-21. [PMID: 27065163 DOI: 10.1002/cphy.c150015] [Citation(s) in RCA: 1071] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hypothalamo-pituitary-adrenocortical (HPA) axis is required for stress adaptation. Activation of the HPA axis causes secretion of glucocorticoids, which act on multiple organ systems to redirect energy resources to meet real or anticipated demand. The HPA stress response is driven primarily by neural mechanisms, invoking corticotrophin releasing hormone (CRH) release from hypothalamic paraventricular nucleus (PVN) neurons. Pathways activating CRH release are stressor dependent: reactive responses to homeostatic disruption frequently involve direct noradrenergic or peptidergic drive of PVN neurons by sensory relays, whereas anticipatory responses use oligosynaptic pathways originating in upstream limbic structures. Anticipatory responses are driven largely by disinhibition, mediated by trans-synaptic silencing of tonic PVN inhibition via GABAergic neurons in the amygdala. Stress responses are inhibited by negative feedback mechanisms, whereby glucocorticoids act to diminish drive (brainstem) and promote transsynaptic inhibition by limbic structures (e.g., hippocampus). Glucocorticoids also act at the PVN to rapidly inhibit CRH neuronal activity via membrane glucocorticoid receptors. Chronic stress-induced activation of the HPA axis takes many forms (chronic basal hypersecretion, sensitized stress responses, and even adrenal exhaustion), with manifestation dependent upon factors such as stressor chronicity, intensity, frequency, and modality. Neural mechanisms driving chronic stress responses can be distinct from those controlling acute reactions, including recruitment of novel limbic, hypothalamic, and brainstem circuits. Importantly, an individual's response to acute or chronic stress is determined by numerous factors, including genetics, early life experience, environmental conditions, sex, and age. The context in which stressors occur will determine whether an individual's acute or chronic stress responses are adaptive or maladaptive (pathological).
Collapse
Affiliation(s)
- James P Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jessica M McKlveen
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sriparna Ghosal
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Brittany Kopp
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Aynara Wulsin
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ryan Makinson
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jessie Scheimann
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Brent Myers
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
18
|
Morena M, Patel S, Bains JS, Hill MN. Neurobiological Interactions Between Stress and the Endocannabinoid System. Neuropsychopharmacology 2016; 41:80-102. [PMID: 26068727 PMCID: PMC4677118 DOI: 10.1038/npp.2015.166] [Citation(s) in RCA: 427] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
Abstract
Stress affects a constellation of physiological systems in the body and evokes a rapid shift in many neurobehavioral processes. A growing body of work indicates that the endocannabinoid (eCB) system is an integral regulator of the stress response. In the current review, we discuss the evidence to date that demonstrates stress-induced regulation of eCB signaling and the consequential role changes in eCB signaling have with respect to many of the effects of stress. Across a wide array of stress paradigms, studies have generally shown that stress evokes bidirectional changes in the two eCB molecules, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), with stress exposure reducing AEA levels and increasing 2-AG levels. Additionally, in almost every brain region examined, exposure to chronic stress reliably causes a downregulation or loss of cannabinoid type 1 (CB1) receptors. With respect to the functional role of changes in eCB signaling during stress, studies have demonstrated that the decline in AEA appears to contribute to the manifestation of the stress response, including activation of the hypothalamic-pituitary-adrenal (HPA) axis and increases in anxiety behavior, while the increased 2-AG signaling contributes to termination and adaptation of the HPA axis, as well as potentially contributing to changes in pain perception, memory and synaptic plasticity. More so, translational studies have shown that eCB signaling in humans regulates many of the same domains and appears to be a critical component of stress regulation, and impairments in this system may be involved in the vulnerability to stress-related psychiatric conditions, such as depression and posttraumatic stress disorder. Collectively, these data create a compelling argument that eCB signaling is an important regulatory system in the brain that largely functions to buffer against many of the effects of stress and that dynamic changes in this system contribute to different aspects of the stress response.
Collapse
Affiliation(s)
- Maria Morena
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
| | - Sachin Patel
- Department of Molecular Physiology and Biophysics and Psychiatry, Vanderbilt Brain Institute, Vanderbilt-Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jaideep S Bains
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada,Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, AB, Canada,Departments of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N4N1, Canada, Tel: +1 403 220 8466, Fax: +1 403 283 2700, E-mail:
| |
Collapse
|
19
|
Redei EE, Mehta NS. Blood transcriptomic markers for major depression: from animal models to clinical settings. Ann N Y Acad Sci 2015; 1344:37-49. [PMID: 25823952 DOI: 10.1111/nyas.12748] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Depression is a heterogeneous disorder and, similar to other spectrum disorders, its manifestation varies by age of onset, severity, comorbidity, treatment responsiveness, and other factors. A laboratory blood test based on specific biomarkers for major depressive disorder (MDD) and its subgroups could increase diagnostic accuracy and expedite the initiation of treatment. We identified candidate blood biomarkers by examining genome-wide expression differences in the blood of animal models representing both the genetic and environmental/stress etiologies of depression. Human orthologs of the resulting transcript panel were tested in pilot studies. Transcript abundance of 11 blood markers differentiated adolescent subjects with early-onset MDD from adolescents with no disorder (ND). A set of partly overlapping transcripts distinguished adolescent patients who had comorbid anxiety disorders from those with only MDD. In adults, blood levels of nine transcripts discerned subjects with MDD from ND controls. Even though cognitive behavioral therapy (CBT) resulted in remission of some patients, the levels of three transcripts consistently signaled prior MDD status. A coexpression network of transcripts seems to predict responsiveness to CBT. Thus, our approach can be developed into clinically valid diagnostic panels of blood transcripts for different manifestations of MDD, potentially reducing diagnostic heterogeneity and advancing individualized treatment strategies.
Collapse
Affiliation(s)
- Eva E Redei
- Department of Psychiatry and Behavioral Sciences, The Asher Center for the Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | |
Collapse
|
20
|
Goel N, Workman JL, Lee TT, Innala L, Viau V. Sex differences in the HPA axis. Compr Physiol 2015; 4:1121-55. [PMID: 24944032 DOI: 10.1002/cphy.c130054] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is a major component of the systems that respond to stress, by coordinating the neuroendocrine and autonomic responses. Tightly controlled regulation of HPA responses is critical for maintaining mental and physical health, as hyper- and hypo-activity have been linked to disease states. A long history of research has revealed sex differences in numerous components of the HPA stress system and its responses, which may partially form the basis for sex disparities in disease development. Despite this, many studies use male subjects exclusively, while fewer reports involve females or provide direct sex comparisons. The purpose of this article is to present sex comparisons in the functional and molecular aspects of the HPA axis, through various phases of activity, including basal, acute stress, and chronic stress conditions. The HPA axis in females initiates more rapidly and produces a greater output of stress hormones. This review focuses on the interactions between the gonadal hormone system and the HPA axis as the key mediators of these sex differences, whereby androgens increase and estrogens decrease HPA activity in adulthood. In addition to the effects of gonadal hormones on the adult response, morphological impacts of hormone exposure during development are also involved in mediating sex differences. Additional systems impinging on the HPA axis that contribute to sex differences include the monoamine neurotransmitters norepinephrine and serotonin. Diverse signals originating from the brain and periphery are integrated to determine the level of HPA axis activity, and these signals are, in many cases, sex-specific.
Collapse
Affiliation(s)
- Nirupa Goel
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
21
|
Gray JM, Chaouloff F, Hill MN. To stress or not to stress: a question of models. ACTA ACUST UNITED AC 2015; 70:8.33.1-8.33.22. [PMID: 25559007 DOI: 10.1002/0471142301.ns0833s70] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stress research is a rapidly evolving field that encompasses numerous disciplines ranging from neuroscience to metabolism. With many new researchers migrating into the field, navigating the hows and whys of specific research questions can sometimes be enigmatic given the availability of so many models in the stress field. Additionally, as with every field, there are many seemingly minor experimental details that can have dramatic influences on data interpretation, although many of these are unknown to those not familiar with the field. The aim of this overview is to provide some suggestions and points to guide researchers moving into the stress field and highlight relevant methodological points that they should consider when choosing a model for stress and deciding how to structure a study. We briefly provide a primer on the basics of endpoint measurements in the stress field, factors to consider when choosing a model for acute stress, the difference between repeated and chronic stress, and importantly, influencing variables that modulate endpoints of analysis in stress work.
Collapse
Affiliation(s)
- J Megan Gray
- Hotchkiss Brain Institute, Mathison Centre for Mental Health Research, University of Calgary, Alberta, Canada
| | - Francis Chaouloff
- Endocannabinoids and NeuroAdaptation, Neurocentre INSERM U862, University Bordeaux 2, Bordeaux, France
| | - Matthew N Hill
- Hotchkiss Brain Institute, Mathison Centre for Mental Health Research, University of Calgary, Alberta, Canada
| |
Collapse
|
22
|
Central vasopressin V1A receptor blockade alters patterns of cellular activation and prevents glucocorticoid habituation to repeated restraint stress exposure. Int J Neuropsychopharmacol 2014; 17:2005-15. [PMID: 24913767 DOI: 10.1017/s1461145714000935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous experiments implicated a role for the arginine vasopressin (AVP) V1A receptor subtype in mediating the normal decline (habituation) of hypothalamic-pituitary-adrenal (HPA) axis responses to repeated restraint exposure. To explore pathways mediating the endogenous effects of central AVP on stress HPA axis habituation, here we compared cellular (Fos) and hormone responses in male rats receiving chronic icv infusion of vehicle or a V1A receptor antagonist that began 7 d before stress testing, continued through the duration of acute and repeat restraint exposure. As a group, rats with V1A antagonism displayed a modest reduction in ACTH habituation, whereas the decline in corticosterone was completely prevented. V1A antagonized rats also showed reduced evidence of habituated Fos responses in the paraventricular nucleus of the hypothalamus, medial amygdala, and within the anterior division of the bed nucleus of the stria terminalis. Based on these cellular and neuroendocrine responses, we then examined whether repeated restraint is reflected by changes in V1A receptor binding. Relative to stress naïve animals, repeatedly exposed rats showed lower levels of V1A binding in the dentate gyrus of the hippocampus, thalamus and central amygdala, but higher levels in the septum and anterior BST. Taken together, these findings suggest that AVP may act within multiple targets to regulate the normal decline in stress-induced drive to the HPA axis, and that this may involve the net of V1A receptor stimulatory and inhibitory influences on neuroendocrine habituation.
Collapse
|
23
|
Zhang W, Hetzel A, Shah B, Atchley D, Blume SR, Padival MA, Rosenkranz JA. Greater physiological and behavioral effects of interrupted stress pattern compared to daily restraint stress in rats. PLoS One 2014; 9:e102247. [PMID: 25014526 PMCID: PMC4094544 DOI: 10.1371/journal.pone.0102247] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/17/2014] [Indexed: 11/19/2022] Open
Abstract
Repeated stress can trigger a range of psychiatric disorders, including anxiety. The propensity to develop abnormal behaviors after repeated stress is related to the severity, frequency and number of stressors. However, the pattern of stress exposure may contribute to the impact of stress. In addition, the anxiogenic nature of repeated stress exposure can be moderated by the degree of coping that occurs, and can be reflected in homotypic habituation to the repeated stress. However, expectations are not clear when a pattern of stress presentation is utilized that diminishes habituation. The purpose of these experiments is to test whether interrupted stress exposure decreases homotypic habituation and leads to greater effects on anxiety-like behavior in adult male rats. We found that repeated interrupted restraint stress resulted in less overall homotypic habituation compared to repeated daily restraint stress. This was demonstrated by greater production of fecal boli and greater corticosterone response to restraint. Furthermore, interrupted restraint stress resulted in a lower body weight and greater adrenal gland weight than daily restraint stress, and greater anxiety-like behavior in the elevated plus maze. Control experiments demonstrated that these effects of the interrupted pattern could not be explained by differences in the total number of stress exposures, differences in the total number of days that the stress periods encompased, nor could it be explained as a result of only the stress exposures after an interruption from stress. These experiments demonstrate that the pattern of stress exposure is a significant determinant of the effects of repeated stress, and that interrupted stress exposure that decreases habituation can have larger effects than a greater number of daily stress exposures. Differences in the pattern of stress exposure are therefore an important factor to consider when predicting the severity of the effects of repeated stress on psychiatric disorders.
Collapse
Affiliation(s)
- Wei Zhang
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Andrea Hetzel
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Bijal Shah
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Derek Atchley
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Shannon R. Blume
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Mallika A. Padival
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - J. Amiel Rosenkranz
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
24
|
Terrón JA. Novel insights into the potential involvement of 5-HT7 receptors in endocrine dysregulation in stress-related disorders. Rev Neurosci 2014; 25:439-49. [DOI: 10.1515/revneuro-2014-0017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/01/2014] [Indexed: 01/01/2023]
|
25
|
Herman JP. Neural control of chronic stress adaptation. Front Behav Neurosci 2013; 7:61. [PMID: 23964212 PMCID: PMC3737713 DOI: 10.3389/fnbeh.2013.00061] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022] Open
Abstract
Stress initiates adaptive processes that allow the organism to physiologically cope with prolonged or intermittent exposure to real or perceived threats. A major component of this response is repeated activation of glucocorticoid secretion by the hypothalamo-pituitary-adrenocortical (HPA) axis, which promotes redistribution of energy in a wide range of organ systems, including the brain. Prolonged or cumulative increases in glucocorticoid secretion can reduce benefits afforded by enhanced stress reactivity and eventually become maladaptive. The long-term impact of stress is kept in check by the process of habituation, which reduces HPA axis responses upon repeated exposure to homotypic stressors and likely limits deleterious actions of prolonged glucocorticoid secretion. Habituation is regulated by limbic stress-regulatory sites, and is at least in part glucocorticoid feedback-dependent. Chronic stress also sensitizes reactivity to new stimuli. While sensitization may be important in maintaining response flexibility in response to new threats, it may also add to the cumulative impact of glucocorticoids on the brain and body. Finally, unpredictable or severe stress exposure may cause long-term and lasting dysregulation of the HPA axis, likely due to altered limbic control of stress effector pathways. Stress-related disorders, such as depression and PTSD, are accompanied by glucocorticoid imbalances and structural/ functional alterations in limbic circuits that resemble those seen following chronic stress, suggesting that inappropriate processing of stressful information may be part of the pathological process.
Collapse
Affiliation(s)
- James P Herman
- Department of Psychiatry and Behavioral Neuroscience, Metabolic Diseases Institute, University of Cincinnati Cincinnati, OH, USA
| |
Collapse
|
26
|
García-Iglesias BB, Mendoza-Garrido ME, Gutiérrez-Ospina G, Rangel-Barajas C, Noyola-Díaz M, Terrón JA. Sensitization of restraint-induced corticosterone secretion after chronic restraint in rats: involvement of 5-HT₇ receptors. Neuropharmacology 2013; 71:216-27. [PMID: 23542440 PMCID: PMC3838668 DOI: 10.1016/j.neuropharm.2013.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/04/2013] [Accepted: 03/18/2013] [Indexed: 01/09/2023]
Abstract
Serotonin (5-HT) modulates the hypothalamic-pituitary-adrenal (HPA) axis response to stress. We examined the effect of chronic restraint stress (CRS; 20 min/day) as compared to control (CTRL) conditions for 14 days, on: 1) restraint-induced ACTH and corticosterone (CORT) secretion in rats pretreated with vehicle or SB-656104 (a 5-HT₇ receptor antagonist); 2) 5-HT₇ receptor-like immunoreactivity (5-HT₇-LI) and protein in the hypothalamic paraventricular nucleus (PVN) and adrenal glands (AG); 3) baseline levels of 5-HT and 5-hydroxyindolacetic acid (5-HIAA), and 5-HIAA/5-HT ratio in PVN and AG; and 4) 5-HT-like immunoreactivity (5-HT-LI) in AG and tryptophan hydroxylase (TPH) protein in PVN and AG. On day 15, animals were subdivided into Treatment and No treatment groups. Treatment animals received an i.p. injection of vehicle or SB-656104; No Treatment animals received no injection. Sixty min later, Treatment animals were either decapitated with no further stress (0 min) or submitted to acute restraint (10, 30, 60 or 120 min); hormone serum levels were measured. No Treatment animals were employed for the rest of measurements. CRS decreased body weight gain and increased adrenal weight. In CTRL animals, acute restraint increased ACTH and CORT secretion in a time of restraint-dependent manner; both responses were inhibited by SB-656104. Exposure to CRS abolished ACTH but magnified CORT responses to restraint as compared to CTRL conditions; SB-656104 had no effect on ACTH levels but significantly inhibited sensitized CORT responses. In CTRL animals, 5-HT₇-LI was detected in magnocellular and parvocellular subdivisions of PVN and sparsely in adrenal cortex. Exposure to CRS decreased 5-HT₇-LI and protein in the PVN, but increased 5-HT₇-LI in the adrenal cortex and protein in whole AG. Higher 5-HT and 5-HIAA levels were detected in PVN and AG from CRS animals but 5-HIAA/5-HT ratio increased in AG only. Finally, whereas 5-HT-LI was sparsely observed in the adrenal cortex of CTRL animals, it strongly increased in the adrenal cortex of CRS animals. No TPH protein was detected in AG from both animal groups. Results suggest that CRS promotes endocrine disruption involving decreased ACTH and sensitized CORT responses to acute restraint. This phenomenon may be associated with increased function and expression of 5-HT₇ receptors as well as 5-HT turnover in AG.
Collapse
Affiliation(s)
- Brenda B. García-Iglesias
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Apartado Postal 14-740, Zacatenco 07000, Mexico City, México
| | | | - Gabriel Gutiérrez-Ospina
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
| | - Claudia Rangel-Barajas
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV-IPN, Mexico City, México
| | - Martha Noyola-Díaz
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Apartado Postal 14-740, Zacatenco 07000, Mexico City, México
| | - José A. Terrón
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Apartado Postal 14-740, Zacatenco 07000, Mexico City, México
| |
Collapse
|
27
|
Gray M, Innala L, Viau V. Central vasopressin V1A receptor blockade impedes hypothalamic-pituitary-adrenal habituation to repeated restraint stress exposure in adult male rats. Neuropsychopharmacology 2012; 37:2712-9. [PMID: 22828750 PMCID: PMC3473337 DOI: 10.1038/npp.2012.136] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies suggest that central arginine vasopressin (AVP) signaling can inhibit the hypothalamic-pituitary-adrenal (HPA) axis. To test a role for the AVP V1A receptor in stress HPA axis habituation, adult male rats were exposed to 5 consecutive days of 3 h restraint with or without continuous intracerebroventricular infusion of the V1A receptor antagonist d(CH2)5Tyr(Me)AVP (10 μg/day). Assessment of neuropeptide expression and HPA output under basal conditions revealed no effects of V1A receptor antagonism in stress naive animals. Between the first and last day of restraint exposure, controls showed marked declines in ACTH and corticosterone responses, and maintained plasma concentrations of testosterone. In contrast, V1A receptor antagonized animals displayed significantly smaller declines in ACTH and corticosterone responses, and a decrease in plasma testosterone. Despite their reduced expression of HPA axis habituation, antagonized animals continued to show stress-induced increases in AVP mRNA in the hypothalamic paraventricular nucleus and bed nucleus of the stria terminalis, and even higher levels of AVP expression in the medial amygdala relative to controls. The data leave open the nature and extent to which these and other AVP-containing pathways are recruited during repeated restraint, but nevertheless reveal a critical role for central V1A receptors in stress adaptation. As the effects of V1A receptor antagonism were restricted to the repeated restraint condition, we conclude that normal adaptation to stress involves a shift toward enhanced AVP utilization and/or V1A receptor signaling.
Collapse
Affiliation(s)
- Megan Gray
- Neuroscience Program, Department of Cellular and Physiological Sciences, Life Science Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leyla Innala
- Neuroscience Program, Department of Cellular and Physiological Sciences, Life Science Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Victor Viau
- Neuroscience Program, Department of Cellular and Physiological Sciences, Life Science Centre, University of British Columbia, Vancouver, British Columbia, Canada,Neuroscience Program, Department of Cellular and Physiological Sciences, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3, Tel: +1 604 822 3899, Fax: +1 604 822 2316, E-mail:
| |
Collapse
|
28
|
Shafiei N, Gray M, Viau V, Floresco SB. Acute stress induces selective alterations in cost/benefit decision-making. Neuropsychopharmacology 2012; 37:2194-209. [PMID: 22569506 PMCID: PMC3422485 DOI: 10.1038/npp.2012.69] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 03/20/2012] [Accepted: 04/09/2012] [Indexed: 12/11/2022]
Abstract
Acute stress can exert beneficial or detrimental effects on different forms of cognition. In the present study, we assessed the effects of acute restraint stress on different forms of cost/benefit decision-making, and some of the hormonal and neurochemical mechanisms that may underlie these effects. Effort-based decision-making was assessed where rats chose between a low effort/reward (1 press=2 pellets) or high effort/reward option (4 pellets), with the effort requirement increasing over 4 blocks of trials (2, 5, 10, and 20 lever presses). Restraint stress for 1 h decreased preference for the more costly reward and induced longer choice latencies. Control experiments revealed that the effects on decision-making were not mediated by general reductions in motivation or preference for larger rewards. In contrast, acute stress did not affect delay-discounting, when rats chose between a small/immediate vs larger/delayed reward. The effects of stress on decision-making were not mimicked by treatment with physiological doses of corticosterone (1-3 mg/kg). Blockade of dopamine receptors with flupenthixol (0.25 mg/kg) before restraint did not attenuate stress-induced effects on effort-related choice, but abolished effects on choice latencies. These data suggest that acute stress interferes somewhat selectively with cost/benefit evaluations concerning effort costs. These effects do not appear to be mediated solely by enhanced glucocorticoid activity, whereas dopaminergic activation may contribute to increased deliberation times induced by stress. These findings may provide insight into impairments in decision-making and anergia associated with stress-related disorders, such as depression.
Collapse
Affiliation(s)
- Naghmeh Shafiei
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Brain Research Center, University of British Columbia, Vancouver, BC, Canada
| | - Megan Gray
- Brain Research Center, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Victor Viau
- Brain Research Center, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Stan B Floresco
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Brain Research Center, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
29
|
The Sturm und Drang of anabolic steroid use: angst, anxiety, and aggression. Trends Neurosci 2012; 35:382-92. [PMID: 22516619 DOI: 10.1016/j.tins.2012.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/17/2012] [Accepted: 03/01/2012] [Indexed: 12/13/2022]
Abstract
Anabolic androgenic steroids (AAS) are illicitly administered to enhance athletic performance and body image. Although conferring positive actions on performance, steroid abuse is associated with changes in anxiety and aggression. AAS users are often keenly invested in understanding the biological actions of these drugs. Thus, mechanistic information on AAS actions is important not only for the biomedical community, but also for steroid users. Here we review findings from animal studies on the impact of AAS exposure on neural systems that are crucial for the production of anxiety and aggression, and compare the effects of the different classes of AAS and their potential signaling mechanisms, as well as context-, age- and sex-dependent aspects of their actions.
Collapse
|
30
|
Heydendael W, Sharma K, Iyer V, Luz S, Piel D, Beck S, Bhatnagar S. Orexins/hypocretins act in the posterior paraventricular thalamic nucleus during repeated stress to regulate facilitation to novel stress. Endocrinology 2011; 152:4738-52. [PMID: 21971160 PMCID: PMC3230061 DOI: 10.1210/en.2011-1652] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Orexins/hypocretins heavily innervate the posterior division of the paraventricular nucleus of the thalamus (pPVT), which expresses both orexin receptor types. The pPVT is important for adaptations to repeated stress, particularly the ability to facilitate to novel stress after repeated stress exposure. Here, we examined how orexins acting in the pPVT regulate facilitation of hypothalamic-pituitary-adrenal (HPA) responses to novel restraint after 4 d of repeated swim stress. Blockade of orexin receptors in the pPVT with SB334867 before novel restraint did not change the facilitated HPA response. However, blockade of orexin receptors before each of four daily swim exposures prevented the facilitated ACTH and facilitated hypothalamic c-Fos response to restraint as well as the repeated swim stress-induced increase in CRH mRNA in the paraventricular hypothalamus. These results suggest that orexin actions in the pPVT during the 4 d of swim, but not during restraint, are necessary for the facilitated HPA response to heterotypic restraint. Exposure to the fourth swim produced a shift in orexin1 receptors from membrane to cytosolic fractions. OrexinA also changed the firing patterns of pPVT cells to be more responsive in repeatedly swim stressed rats compared with nonstressed rats. Together, the results suggest that orexin actions in the pPVT, mediated by orexin1 receptors, are important for the ability to adapt to repeated stress.
Collapse
Affiliation(s)
- Willem Heydendael
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia Research Institute and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4399, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Wainwright SR, Lieblich SE, Galea LAM. Hypogonadism predisposes males to the development of behavioural and neuroplastic depressive phenotypes. Psychoneuroendocrinology 2011; 36:1327-41. [PMID: 21481538 DOI: 10.1016/j.psyneuen.2011.03.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/09/2011] [Accepted: 03/08/2011] [Indexed: 11/17/2022]
Abstract
The incidence of depression is 2-3× higher in women particularly during the reproductive years, an occurrence that has been associated with levels of sex hormones. The age-related decline of testosterone levels in men corresponds with the increased acquisition of depressive symptoms, and hormone replacement therapy can be efficacious in treating depression in hypogonadal men. Although it is not possible to model depression in rodents, it is possible to model some of the symptoms of depression including a dysregulated stress response and altered neuroplasticity. Among animal models of depression, chronic mild unpredictable stress (CMS) is a common paradigm used to induce depressive-like behaviours in rodents, disrupt the hypothalamic-pituitary adrenal axis and decrease hippocampal neuroplasticity. The purpose of this study was to assess the effect of hypogonadism, produced by gonadectomy, on the acquisition of depressive-like behaviours and changes in hippocampal neuroplasticity in adult male Sprague-Dawley rats. A 21-day unpredictable CMS protocol was used on gonadectomised (GDX) and sham-operated males which produced an attenuation of weight gain in the GDX males receiving CMS treatment (GDX-CMS). Behavioural analysis was carried out to assess anxiety- and depressive-like behaviours. The combination of GDX and CMS produced greater passive behaviours within the forced swim test than CMS exposure alone. Similarly, hippocampal cell proliferation, neurogenesis and the expression of the neuroplastic protein polysialated neural cell adhesion molecule (PSA-NCAM) were all significantly reduced in the GDX-CMS group compared to all other treatment groups. These findings indicate that testicular hormones confer resiliency to chronic stress in males therefore reducing the likelihood of developing putative physiological, behavioural or neurological depressive-like phenotypes.
Collapse
Affiliation(s)
- Steven R Wainwright
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
32
|
McGuire JL, Larke LE, Sallee FR, Herman JP, Sah R. Differential Regulation of Neuropeptide Y in the Amygdala and Prefrontal Cortex during Recovery from Chronic Variable Stress. Front Behav Neurosci 2011; 5:54. [PMID: 21954381 PMCID: PMC3173714 DOI: 10.3389/fnbeh.2011.00054] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 08/13/2011] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence from clinical studies and pre-clinical animal models supports a role for neuropeptide Y (NPY) in adaptive emotional response following stress. The long-term impact of stress, particularly chronic stress, on availability, and function of resilience factors such as NPY may be critical to understanding the etiology of stress-related psychopathology. In these studies, we examined expression of NPY during recovery from a chronic variable stress (CVS) model of repetitive trauma in rats. Due to the importance of amygdala and prefrontal cortex in regulating emotional responses, we predicted chronic changes in NPY expression could contribute to persistent behavioral deficits seen in this model. Consistent with the hypothesis, ELISA for NPY peptide identified a significant reduction in NPY at the delayed (7 days) recovery time-point. Interestingly, a significant increase in prefrontal NPY was observed at the same recovery time-point. The mRNA expression for NPY was not changed in the amygdala or PFC, although there was a modest but not statistically significant increase in NPY mRNA at the delayed recovery time-point in the prefrontal cortex. The observed changes in NPY expression are consistent with maladaptive coping and enhanced emotionality, due to the nature of NPY signaling within these respective regions, and the nature of reciprocal connections between amygdala and prefrontal cortex.
Collapse
Affiliation(s)
- Jennifer L McGuire
- Center for Neuroscience and Regenerative Medicine, Department of Psychiatry, Uniformed Services University Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
33
|
Bingham B, Myung C, Innala L, Gray M, Anonuevo A, Viau V. Androgen receptors in the posterior bed nucleus of the stria terminalis increase neuropeptide expression and the stress-induced activation of the paraventricular nucleus of the hypothalamus. Neuropsychopharmacology 2011; 36:1433-43. [PMID: 21412226 PMCID: PMC3096812 DOI: 10.1038/npp.2011.27] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The posterior bed nuclei of the stria terminalis (BST) are important neural substrate for relaying limbic influences to the paraventricular nucleus (PVN) of the hypothalamus to inhibit hypothalamic-pituitary-adrenal (HPA) axis responses to emotional stress. Androgen receptor-expressing cells within the posterior BST have been identified as projecting to the PVN region. To test a role for androgen receptors in the posterior BST to inhibit PVN motor neurons, we compared the effects of the non-aromatizable androgen dihydrotestosterone (DHT), the androgen receptor antagonist hydroxyflutamide (HF), or a combination of both drugs implanted unilaterally within the posterior BST. Rats bearing unilateral implants were analyzed for PVN Fos induction in response to acute-restraint stress and relative levels of corticotrophin-releasing hormone and arginine vasopressin (AVP) mRNA. Glutamic acid decarboxylase (GAD) 65 and GAD 67 mRNA were analyzed in the posterior BST to test a local involvement of GABA. There were no changes in GAD expression to support a GABA-related mechanism in the BST. For PVN neuropeptide expression and Fos responses, basic effects were lateralized to the sides of the PVN ipsilateral to the implants. However, opposite to our expectations of an inhibitory influence of androgen receptors in the posterior BST, PVN AVP mRNA and stress-induced Fos were augmented in response to DHT and attenuated in response to HF. These results suggest that a subset of androgen receptor-expressing cells within the posterior BST region may be responsible for increasing the biosynthetic capacity and stress-induced drive of PVN motor neurons.
Collapse
Affiliation(s)
- Brenda Bingham
- Neuroscience Program, Department of Cellular and Physiological Sciences, Life Sciences Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Clara Myung
- Neuroscience Program, Department of Cellular and Physiological Sciences, Life Sciences Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Leyla Innala
- Neuroscience Program, Department of Cellular and Physiological Sciences, Life Sciences Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Megan Gray
- Neuroscience Program, Department of Cellular and Physiological Sciences, Life Sciences Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Adam Anonuevo
- Neuroscience Program, Department of Cellular and Physiological Sciences, Life Sciences Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Victor Viau
- Neuroscience Program, Department of Cellular and Physiological Sciences, Life Sciences Centre, The University of British Columbia, Vancouver, BC, Canada,Neuroscience Program, Department of Cellular and Physiological Sciences, Life Sciences Centre, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3, Tel: +1 604 822 3899, Fax: +1 604 822 2316, E-mail:
| |
Collapse
|
34
|
Grissom NM, Bhatnagar S. The basolateral amygdala regulates adaptation to stress via β-adrenergic receptor-mediated reductions in phosphorylated extracellular signal-regulated kinase. Neuroscience 2011; 178:108-22. [PMID: 21256934 PMCID: PMC3049959 DOI: 10.1016/j.neuroscience.2010.12.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 12/13/2010] [Accepted: 12/24/2010] [Indexed: 12/28/2022]
Abstract
The reactivity of physiological systems and behavior to psychological stress is reduced with increasing familiarity with a repeated stressor. This reduced reactivity, termed habituation, is a crucial adaptation limiting negative health consequences of stress and can be disrupted in psychopathology. We hypothesized that the ability to habituate physiologically and behaviorally to previously experienced stressors depends on β-adrenergic receptor activation (β-AR) in the basolateral amygdala (BLA), a specific neural substrate important for the consolidation of multiple types of memories. We observed that administration of the β-AR antagonist propranolol into the BLA after each of four daily exposures to restraint stress prevented the normal development of neuroendocrine and behavioral habituation measured during the fifth restraint in adult male rats. In contrast, the β-AR agonist clenbuterol administered into the BLA after each restraint on days 1-4 enhanced neuroendocrine habituation at the lowest dose but attenuated behavioral habituation at high doses. We then explored intracellular signaling mechanisms in the BLA that might be a target of β-AR activation during stress. β-AR activation post restraint is necessary for the alteration in basal phosphorylated ERK (pERK) levels, as daily post-stress β-AR blockade on days 1-4 prevented repeated stress from leading to decreased pERK in the BLA on day 5. Finally, we examined the effect of blocking ERK phosphorylation in the BLA after each restraint on days 1-4 with the MEK (MAPK/ERK kinase) inhibitor U0126, and found that this was sufficient to both mimic neuroendocrine habituation in stress-naive animals and to enhance it in repeatedly stressed animals during restraint on day 5. Together, the results suggest that an individual's ability to habituate to repeated stress is regulated by activation of BLA β-AR, which may have these effects by transducing subsequent reductions in pERK. Individual variations in β-AR activation and intracellular signaling in the BLA may contribute significantly to adaptation to psychological stress and consequent resilience to stress-related psychopathology.
Collapse
Affiliation(s)
- Nicola M. Grissom
- Department of Psychology, University of Michigan, Ann Arbor, MI 48104
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Anesthesiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
35
|
The medial preoptic nucleus integrates the central influences of testosterone on the paraventricular nucleus of the hypothalamus and its extended circuitries. J Neurosci 2010; 30:11762-70. [PMID: 20810896 DOI: 10.1523/jneurosci.2852-10.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Testosterone contributes to sex differences in hypothalamic-pituitary-adrenal (HPA) function in humans and rodents, but the central organization of this regulation remains unclear. The medial preoptic nucleus (MPN) stands out as an important candidate in this regard because it contains androgen receptors and projects to forebrain nuclei integrating cognitive-affective information and regulating HPA responses to homeostatic threat. These include the HPA effector neurons of the paraventricular nucleus (PVN) of the hypothalamus, medial amygdala, and lateral septum. To test the extent to which androgen receptors in the MPN engage these cell groups, we compared in adult male rats the effects of unilateral microimplants of testosterone and the androgen receptor antagonist hydroxyflutamide into the MPN on acute restraint induced activation and/or neuropeptide expression levels. The basic effects of these implants were lateralized to the sides of the nuclei ipsilateral to the implants. Testosterone, but not hydroxyflutamide implants, decreased stress-induced Fos and arginine vasopressin (AVP) heteronuclear RNA expression in the PVN, as well as Fos expression in the lateral septum. In unstressed animals, AVP mRNA expression in the PVN decreased and increased in response to testosterone and hydroxflutamide MPN implants, respectively. The differential influences of these implants on AVP mRNA expression were opposite in the medial amygdala. These results confirm a role for androgen receptors in the MPN to concurrently modulate neuropeptide expression and activational responses in the PVN and its extended circuitries. This suggests that the MPN is capable of bridging converging limbic influences to the HPA axis with changes in gonadal status.
Collapse
|
36
|
Cruz FC, Leão RM, Marin MT, Planeta CS. Stress-induced reinstatement of amphetamine-conditioned place preference and changes in tyrosine hydroxylase in the nucleus accumbens in adolescent rats. Pharmacol Biochem Behav 2010; 96:160-5. [PMID: 20460138 DOI: 10.1016/j.pbb.2010.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 04/16/2010] [Accepted: 05/02/2010] [Indexed: 11/30/2022]
Abstract
Drug abuse among humans often begins during adolescence. Exposure to psychostimulants during this age period may have long-term consequences which can render the organism more susceptible to drug abuse and relapse later in life. It has been demonstrated that exposure to stress can promote relapse to drug use even after long periods of withdrawal. The reinstatement of conditioned place preference (CPP) is a useful animal model for studying relapse. In humans and animals, changes in tyrosine hydroxylase (TH) have been related to drug addiction. Our study examined whether amphetamine-induced CPP during adolescence could be reinstated by exposure to stress 1 (adolescence) and 30 (adulthood) days after the extinction test. We also investigated TH levels following the reinstatement of CPP. Our results showed that amphetamine-induced CPP during adolescence can be reinstated by stress exposure 1day (P42, end of adolescence) but not 30days after extinction (P71, adulthood). Moreover the reinstatement of AMPH-induced CPP by stress exposure occurred in the presence of decreased TH in the nucleus accumbens. In conclusion, our data add new evidence that neuroadaptations on TH may mediate relapse to drug-seeking behavior induced by stress within adolescence.
Collapse
Affiliation(s)
- Fábio C Cruz
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista-UNESP, Rod. Araraquara-Jaú Km 1, 14801-902, Araraquara, São Paulo, Brazil
| | | | | | | |
Collapse
|